• Français
    • English
  • Français 
    • Français
    • English
  • Login
View Document 
  •   Savoirs UdeS Home
  • Sciences
  • Sciences – Mémoires
  • View Document
  •   Savoirs UdeS Home
  • Sciences
  • Sciences – Mémoires
  • View Document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

All of Savoirs UdeSDomains & CollectionsBy Issue DateAuthorsTitlesSubjectsDirectorsThis CollectionBy Issue DateAuthorsTitlesSubjectsDirectors

My Account

Login

Statistics

View Usage Statistics

Unistructuralité des algèbres amassées de type Ã

Thumbnail
View/Open
Document principal (1.221Mb)
Publication date
2016
Author(s)
Bazier-Matte, Véronique
Subject
Algèbre amassée
 
Unistructuralité
 
Triangulation
 
Couronne
Show full document record
Abstract
Assem, Schiffler et Shramchenko ont émis comme conjecture que toute algèbre amassée est unistructurelle, c'est-à-dire que l'ensemble des variables amassées détermine uniquement la structure d'algèbre amassée. En d'autres mots, il existe une unique décomposition de l'ensemble des variables amassées en amas. Cette conjecture est prouvée dans le cas des algèbres amassées de type Dynkin ou de rang 2. Le but de ce mémoire de la prouver également dans le cas des algèbres amassées de type Ã. Nous utilisons les triangulations de couronnes et l'indépendance algébrique des amas pour prouver l'unistructuralité des algèbres provenant de couronnes, donc de type Ã. Nous prouvons également la conjecture des automorphismes pour les algèbres de type à comme conséquence immédiate.
URI
http://hdl.handle.net/11143/9501
Collection
  • Moissonnage BAC [4441]
  • Sciences – Mémoires [1779]

DSpace software [version 5.4 XMLUI], copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
 

 


DSpace software [version 5.4 XMLUI], copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback