Show simple document record

Other titre : Analyse par LC-MS/MS des dommages à l’ADN induit par la radiation sur l’ADN isolé et cellulaire

dc.contributor.advisorWagner, Richard J.
dc.contributor.authorMadugundu, Guru Swamyfr
dc.date.accessioned2016-08-24T13:20:10Z
dc.date.available2016-08-24T13:20:10Z
dc.date.created2016fr
dc.date.issued2016-08-24
dc.identifier.urihttp://hdl.handle.net/11143/9465
dc.description.abstractAbstract: It is well established that ionizing radiation induces a variety of damage in DNA by direct effects that are mediated by one-electron oxidation and indirect effects that are mediated by the reaction of water radiolysis products, e.g., hydroxyl radicals (•OH). In cellular DNA, direct and indirect effects appear to have about an equal effect toward DNA damage. We have shown that ϒ-(gamma) ray irradiation of aqueous solutions of DNA, during which •OH is the major damaging ROS can lead to the formation several lesions. On the other hand, the methylation and oxidative demethylation of cytosine in CpG dinucleotides plays a critical role in the gene regulation. The C5 position of cytosine in CG dinucleotides is frequently methylated by DNA methyl transferees (DNMTs) and constitutes 4-5% of the total cytosine. Here, my PhD research work focuses on the analysis of oxidative base modifications of model compounds of methylated and non methylated oligonucleotides, isolated DNA (calf-thymus DNA) and F98 cultured cell by gamma radiation. In addition, we identified a series of modifications of the 2-deoxyribose moiety of DNA arising from the exposure of isolated and cellular DNA to ionizing radiation. We also studied one electron oxidation of cellular DNA in cultured human HeLa cells initiated by intense nanosecond 266 nm laser pulse irradiation, which produces cross-links between guanine and thymine bases (G*-T*). To achieve these goals, we developed several methods based on mass spectrometry to analyze base modifications in isolated DNA and cellular DNA.fr
dc.description.abstractRésumé : Les radiations ionisantes induisent une variété de dommages à l'ADN selon des effets directs, correspondant à une oxydation suite à l’éjection d’un électron, et indirecte, médiés par une réaction avec les produits issus de la radiolyse de l’eau environnante, tels que les radicaux hydroxyles (•OH). Au sein d’une cellule, l’importance relative des effets directs et indirects semble être quantitativement similaire en ce qui concerne les dommages induits à l'ADN cellulaire. Nous avons démontré que l'irradiation par rayons Υ-(gamma) de solutions aqueuses d'ADN, dont l’action délétère est principalement véhiculé e par l’intermédiaire des radicaux hydroxyles, peut induire sur l’ADN la formation de toute une palette de modifications. D'autre part, la méthylation et la déméthylation oxydative de la cytosine au sein de couples de dinucléotides CpG jouent un rôle essentiel dans la régulation des gènes. La position C5 de cette cytosine se retrouve fréquemment méthylée par les méthyltransférases (DNMTs) et constitue alors 4-5% de l’ensemble de la cytosine présente au sein de l’ADN. Mon projet de recherche est centralisé autour de l'analyse de la modification des bases de l’ADN suite à leur oxydation dans des composés modèles constitués d'oligonucléotides méthylés et non-méthylés, puis dans l'ADN isolé (extrait de cellules de thymus de veau) et enfin au sein de cultures cellulaires F98 ayant subies une irradiation par rayons Υ-(gamma). De plus, nous avons identifié une série de modifications spécifiques au groupement fonctionnel 2-désoxyribose de l'ADN résultant de l'exposition de l'ADN isolé et cellulaire aux rayonnements ionisants. Nous avons également étudié les conséquences de l’irradiation par des impulsions lasers nanoseconde à 266 nm de cultures cellulaires de lignée humaine (HeLa). Responsable d’une réaction d’oxydation suite à l’éjection d’un électron, l’identification des modifications induites à l’ADN cellulaire suite à l’irradiation laser a permis de mettre en évidence des pontages ADN-ADN caractéristiques entre les bases guanine et thymine (G*-T*). Pour atteindre ces objectifs, nous avons développé plusieurs méthodes d’analyse des modifications de bases au sein de l’ADN isolé et de l'ADN cellulaire basées sur la spectroscopie de masse.fr
dc.language.isoengfr
dc.publisherUniversité de Sherbrookefr
dc.rights© Guru Swamy Madugundufr
dc.subjectDommages à l'ADNfr
dc.subjectLC-MS/MSfr
dc.subjectOxydation des bases de l’ADNfr
dc.subjectPontages ADN-ADNfr
dc.subjectSucrefr
dc.subjectDNA damagefr
dc.subjectOxidative base modificationsfr
dc.subjectCrosslynkfr
dc.subjectSugar modificationsfr
dc.titleAnalysis of radiation induced DNA damage by LC-MS/MS in isolated and cellular DNAfr
dc.title.alternativeAnalyse par LC-MS/MS des dommages à l’ADN induit par la radiation sur l’ADN isolé et cellulairefr
dc.typeThèsefr
tme.degree.disciplineSciences des radiations et imagerie biomédicalefr
tme.degree.grantorFaculté de médecine et des sciences de la santéfr
tme.degree.levelDoctoratfr
tme.degree.namePh.D.fr


Files in this document

Thumbnail

This document appears in the following Collection(s)

Show simple document record