Show simple document record

dc.contributor.advisorMasson, Patrice
dc.contributor.authorYazdanpanah Moghadam, Peymanfr
dc.date.accessioned2016-01-15T17:13:45Z
dc.date.available2016-01-15T17:13:45Z
dc.date.created2015fr
dc.date.issued2016-01-15
dc.identifier.urihttp://hdl.handle.net/11143/8172
dc.description.abstractRésumé : Les systèmes de surveillance de santé structurale sont proposés pour la détection d’endommagement dans les infrastructures qui dépassent leur durée de vie en utilisant les ondes guidées (GW). Les ondes guidées peuvent parcourir de longues distances et sont sensibles à une variété d’imperfections. Les transducteurs piézoélectriques sont communément utilisés pour générer et mesurer les ondes guidées dans des structures minces. Comme la détection du défaut et sa localisation sont souhaitées, la nature de la génération des ondes guidées sous forme de plusieurs modes implique une complexité supérieure dans le traitement du signal. Pour remédier à cette limitation, une nouvelle méthode est présentée ici pour la génération des ondes guidées par sélection de mode, et un nouveau transducteur piézoélectrique est ensuite conçu, fabriqué et testé. Tout d'abord, la génération des ondes guidées par optimisation systématique du profil interfacial de la contrainte de cisaillement en mode sélectif est étudiée. En utilisant le principe de superposition, une méthode d'analyse est d'abord développée pour la modélisation de la génération des ondes guidées par un nombre fini de segments de contrainte de cisaillement uniforme, chacun contribuant à un profil élémentaire d’une contrainte constante de cisaillement. Sur cette base, deux fonctions coût sont définies afin de minimiser les modes indésirables et amplifier le mode sélectionné et le problème d'optimisation est résolu avec un cadre d'optimisation d’algorithme génétique parallèle. Les avantages de cette méthode par rapport à d'autres approches de conception de transducteurs classiques sont (1) la contrainte de cisaillement peut être explicitement optimisée à la fois pour exciter un mode et supprimer d'autres modes indésirables, (2) la taille de la zone d'excitation n’est pas limitée et l’excitation en mode sélectif est toujours possible, même si la largeur d'excitation est inférieure à toutes les longueurs d'onde excitées, et (3) la sélectivité est accrue et la largeur de bande est étendue. La méthode analytique et les fonctions coût sont ensuite développées pour concevoir un transducteur piézoélectrique à éléments multiples (MEPT) simple et performant. Une méthode numérique est tout d'abord mise au point pour extraire la contrainte interfaciale entre un seul élément piézocéramique et une structure d'accueil et ensuite utilisée comme entrée d'un modèle analytique pour prédire la propagation des ondes guidées à travers l'épaisseur d'une plaque isotrope. Deux nouvelles fonctions coût sont proposées pour optimiser la contrainte de cisaillement interfaciale pour supprimer le(s) mode(s) indésirable(s) et maximiser un mode désiré. Simplicité et faible coût de fabrication sont deux principales cibles visées dan la conception du MEPT. Un prototype TPEM est ensuite fabriqué à l'aide de micro-usinage laser. Une procédure expérimentale est présentée afin de valider les performances de la TPEM comme une nouvelle solution pour la génération des ondes guidées en mode sélectif. Des essais expérimentaux illustrent la forte capacité du TPEM pour la génération des ondes guidées en mode sélectif, puisque le mode indésirable est supprimé par un facteur allant jusqu'à 170 fois par rapport aux résultats obtenus avec un seul piézocéramique.fr
dc.description.abstractAbstract : Structural Health Monitoring (SHM) systems are being proposed for damage detection of infrastructures that exceed their life using ultrasonic Guided waves (GWs). GWs can travel over long distances and are sensitive to variety of defects. Piezoelectric transducers (PZTs) are commonly used to generate and measure GWs in plate-like structures. As damage detection and localization is sought, the multi-mode nature of GW generation involves higher complexity in signal processing. To overcome this limitation, a new method is presented here for modeselective GW generation, and a novel mode-selective PZT is then designed, manufactured and tested. First, mode-selective generation of GWs by systematic optimization of the interfacial shear stress profile is investigated. Using the superposition principle, an analytical method is first developed for modeling GWs generation by a finite number of uniform shear stress segments, each contributing with a constant elementary shear stress profile. Based on this, two cost functions are defined in order to minimize the undesired modes and amplify the selected mode and the optimization problem is solved with a parallel Genetic Algorithm (GA) optimization framework. Advantages of this method over more conventional transducers tuning approaches are that (1) the shear stress can be explicitly optimized to both excite one mode and suppress other undesired modes, (2) the size of the excitation area is not constrained and mode-selective excitation is still possible even if excitation width is smaller than all excited wavelengths, and (3) the selectivity is increased and the bandwidth extended. The analytical method and objective functions are then developed to design a novel and costeffective multi-element piezoelectric transducer (MEPT). A numerical method is first developed to extract the interfacial stress between a single piezoceramic element and a host structure and then used as the input of an analytical model to predict the GW propagation through the thickness of an isotropic plate. Two novel objective functions are proposed to optimize the interfacial shear stress for both suppressing unwanted mode(s) and maximizing a desired mode. Simplicity and low manufacturing cost are two main targets driving the design of the MEPT. A prototype MEPT is then manufactured using laser micro-machining. An experimental procedure is presented to validate the performances of the MEPT as a new solution for mode-selective GW generation. Experimental tests illustrate the high capability of the MEPT for mode-selective GW generation, as unwanted mode is suppressed by a factor up to 170 times compared with the results obtained with a single piezoceramic.fr
dc.language.isoengfr
dc.publisherUniversité de Sherbrookefr
dc.rights© Peyman Yazdanpanah Moghadamfr
dc.rightsAttribution 2.5 Canada*
dc.rights.urihttp://creativecommons.org/licenses/by/2.5/ca/*
dc.subjectSurveillance de santé structuralefr
dc.subjectOndes guidéesfr
dc.subjectTransducteur piézoélectrique à éléments multiplesfr
dc.subjectMode-sélectiffr
dc.subjectOptimisationfr
dc.subjectModélisation piézoélectriquefr
dc.subjectStructural health monitoringfr
dc.subjectGuided wavesfr
dc.subjectMulti-element piezoelectric transducerfr
dc.subjectMode selectivefr
dc.subjectOptimizationfr
dc.subjectPiezoelectric modelingfr
dc.titleOptimisation de transducteurs piézoélectriques pour la génération d'ondes guidéesfr
dc.typeThèsefr
tme.degree.disciplineGénie mécaniquefr
tme.degree.grantorFaculté de géniefr
tme.degree.levelDoctoratfr
tme.degree.namePh.D.fr


Files in this document

Thumbnail
Thumbnail

This document appears in the following Collection(s)

Show simple document record

© Peyman Yazdanpanah Moghadam
Except where otherwise noted, this document's license is described as © Peyman Yazdanpanah Moghadam