• Français
    • English
  • Français 
    • Français
    • English
  • Login
View Document 
  •   Savoirs UdeS Home
  • Sciences
  • Sciences – Mémoires
  • View Document
  •   Savoirs UdeS Home
  • Sciences
  • Sciences – Mémoires
  • View Document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

All of Savoirs UdeSDomains & CollectionsBy Issue DateAuthorsTitlesSubjectsDirectorsThis CollectionBy Issue DateAuthorsTitlesSubjectsDirectors

My Account

Login

Statistics

View Usage Statistics

L’estimation de distribution à l'aide d'un autoencodeur

Thumbnail
View/Open
Germain_Mathieu_MSc_2015.pdf (702.9Kb)
Publication date
2015
Author(s)
Germain, Mathieu
Subject
Réseau de neurones
 
Autoencodeur
 
Apprentissage automatique
 
Apprentissage non-supervisé
 
Architecture profonde
 
Estimation de distribution
Show full document record
Abstract
Ce mémoire introduit MADE, un nouveau modèle génératif spécifiquement développé pour l’estimation de distribution de probabilité pour données binaires. Ce modèle se base sur le simple autoencodeur et le modifie de telle sorte que sa sortie puisse être considérée comme des probabilités conditionnelles. Il a été testé sur une multitude d’ensembles de données et atteint des performances comparables à l’état de l’art, tout en étant plus rapide. Pour faciliter la description de ce modèle, plusieurs concepts de base de l’apprentissage automatique seront décrits ainsi que d’autres modèles d’estimation de distribution. Comme son nom l’indique, l’estimation de distribution est simplement la tâche d’estimer une distribution statistique à l’aide d’exemples tirés de cette dernière. Bien que certains considèrent ce problème comme étant le Saint Graal de l’apprentissage automatique, il a longtemps été négligé par le domaine puisqu’il était considéré trop difficile. Une raison pour laquelle cette tâche est tenue en si haute estime est qu’une fois la distribution des données connue, elle peut être utilisée pour réaliser la plupart des autres tâches de l’apprentissage automatique, de la classification en passant par la régression jusqu’à la génération. L’information est divisée en trois chapitres principaux. Le premier donne un survol des connaissances requises pour comprendre le nouveau modèle. Le deuxième présente les précurseurs qui ont tenu le titre de l’état de l’art et finalement le troisième explique en détail le modèle proposé.
URI
http://hdl.handle.net/11143/6910
Collection
  • Moissonnage BAC [4441]
  • Sciences – Mémoires [1779]

DSpace software [version 5.4 XMLUI], copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
 

 


DSpace software [version 5.4 XMLUI], copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback