Show simple document record

dc.contributor.advisorMarchand, Éricfr
dc.contributor.authorTurcotte, Jean-Philippefr
dc.date.accessioned2015-02-24T14:39:55Z
dc.date.available2015-02-24T14:39:55Z
dc.date.created2013fr
dc.date.issued2013fr
dc.identifier.urihttp://hdl.handle.net/11143/6606
dc.description.abstractL'inférence statistique est un domaine complexe et en constante évolution. Ce mémoire traitera de l'inférence sur la fonction de densité d'une variable aléatoire. Nous partirons de plusieurs résultats connus et développerons une analyse de ces résultats dans le cadre paramétrique avec une approche bayésienne. Nous nous aventurerons aussi dans les problèmes avec espace paramétrique restreint. L'objectif du travail est de trouver les meilleurs estimateurs possibles considérant l'information a priori et l'observation de variables tirées d'une densité faisant intervenir le paramètre. Le chapitre 1 traitera de notions d'inférence bayésienne, de choix de perte évaluant la performance d'un estimateur et possédant des propriétés recherchées. Le chapitre 2 concernera l'estimation ponctuelle du paramètre. En particulier, nous aborderons l'estimateur de James-Stein et trouverons des conditions suffisantes pour la minimaxité et la dominance d'estimateurs en remarquant la forme particulière de ceux-ci. Une condition remontera même à la loi a priori utilisée. Le chapitre 3 établira des liens entre l'estimation ponctuelle et l'estimation par densité prédictive pour le cas multinormal. Des conditions seront aussi établies pour la minimaxité et la dominance. Nous comparerons nos estimateurs à l'estimateur de Bayes découlant d'une loi a priori non informative et démontrerons les résultats par des exemples. Le chapitre 4 considérera le problème dans un cadre plus général où le paramètre d'intérêt pourra être un paramètre de position ou d'échelle. Des liens entre ces deux problèmes seront énoncés et nous trouverons des conditions sur la famille de densités étudiée pour trouver des estimateurs minimax. Quelques exemples concluront cette section. Finalement, le chapitre 5 est l'intégrale de l'article déposé en collaboration avec Tatsuya Kubokawa, Éric Marchand et William E. Strawderman, concernant l'ensemble du problème étudié dans ce mémoire, à savoir l'estimation par densité prédictive dans un espace paramétrique restreint.fr
dc.language.isofrfr
dc.publisherUniversité de Sherbrookefr
dc.rights© Jean-Philippe Turcottefr
dc.subjectInférence statistiquefr
dc.subjectFonction de densité d'une variable aléatoirefr
dc.titleEstimation par densités prédictivesfr
dc.typeMémoirefr
tme.degree.disciplineMathématiquesfr
tme.degree.grantorFaculté des sciencesfr
tme.degree.levelMaîtrisefr
tme.degree.nameM. Sc.fr


Files in this document

Thumbnail

This document appears in the following Collection(s)

Show simple document record