Show simple document record

dc.contributor.advisorMarcos, Bernardfr
dc.contributor.authorBoulet, Micaëlfr
dc.date.accessioned2015-02-23T18:18:33Z
dc.date.available2015-02-23T18:18:33Z
dc.date.created2012fr
dc.date.issued2012fr
dc.identifier.urihttp://hdl.handle.net/11143/6116
dc.description.abstractUne des composantes clefs pour l'amélioration de la qualité et de l'efficacité énergétique du procédé de cuisson est la capacité à modéliser et simuler celui-ci. Dû à la nature physique et géométrique de ce procédé très complexe, les techniques de Computational Fluid Dynamics (CFD) représentent un puissant outil de modélisation. Or, le recours aux méthodes CFD pour simuler la cuisson est une tendance récente et il n'y a pas encore de modèle couplant transfert de chaleur et de masse tout en considérant à la fois l'enceinte et le produit. Cette thèse présente un travail de recherche précurseur dans la modélisation CFD et multi-physique du procédé de cuisson, en particulier au niveau du couplage enceinte-produit. Dans un premier temps, considérant principalement l'enceinte, la simulation tridimensionnelle d'un four de laboratoire est réalisée en considérant le modèle k-epsilon realizable pour la turbulence et le modèle de radiosité S2S pour le rayonnement. En modélisant en détail un instrument de mesure au centre du four, la simulation est comparée aux mesures expérimentales. Il est ainsi démontré que la température des parois rayonnantes est un paramètre critique, due à la dominance du transfert par rayonnement. Une connaissance limitée de ces températures réduit la précision du modèle. Deuxièmement, afin de palier ce désavantage, une méthode inverse originale est développée afin de déterminer la température rayonnante des parois à partir de mesures d'un instrument placé au centre du four. Les résultats démontrent l'efficacité de la méthode tant dans sa capacité à retrouver les températures de parois que dans sa légèreté en coût de calcul. Ce dernier étant un avantage certain lorsque la méthode est implantée dans un code CFD, car ces codes sont intrinsèquement très intensifs en quantité de calcul. Finalement, un modèle couplant enceinte et produit en cuisson est modélisé et simulé. Le produit de cuisson est considéré multiphasique (eau liquide, vapeur et pâte sèche). Le changement de phase est modélisé avec une formulation originale où le taux d'évaporation obéit à une équation hors équilibre en dessous de 100°C, puis à une équation d'ébullition à partir de cette température. Grace à un maillage dynamique, un front d'évaporation est simulé pour la première fois en 2 dimensions Afin de tenir compte de la participation de l'humidité dans l'enceinte du four, le modèle de rayonnement Discrete Ordinates est utilisé. La simulation de l'évolution de la température ainsi que des phases liquide et vapeur dans le pain est en accord avec les comportements reconnus dans la littérature. Combiné à une corrélation reconnue pour le coefficient d'absorption, l'effet de l'humidité dans l'enceinte sur les flux de rayonnement est quantifié. Entre autre, une réduction significative de ces flux est observée lorsque les parois rayonnantes sont plus chaudes que l'air du four. La pose d'un modèle multi-physique englobant autant l'enceinte que le produit en cuisson est très prometteur pour l'amélioration du contrôle du procédé de cuisson. Ce travail de recherche développe un tel modèle et aboutit à des techniques originales de modélisation et de simulation propres à l'implantation dans les codes CFD.fr
dc.language.isofrfr
dc.publisherUniversité de Sherbrookefr
dc.rights© Micaël Bouletfr
dc.subjectTransfert de massefr
dc.subjectTransfert de chaleurfr
dc.subjectRayonnementfr
dc.subjectProcédé de cuissonfr
dc.subjectMulti-physiquefr
dc.subjectModélisationfr
dc.subjectFourfr
dc.subjectCFDfr
dc.titleModélisation CFD du procédé de cuisson avec couplage des transferts de chaleur et de massefr
dc.typeThèsefr
tme.degree.disciplineGénie chimiquefr
tme.degree.grantorFaculté de géniefr
tme.degree.levelDoctoratfr
tme.degree.namePh.D.fr


Files in this document

Thumbnail

This document appears in the following Collection(s)

Show simple document record