Show simple document record

Other titre : Development of a hybrid finite element-transfer matrix methodology for the modeling of vibroacoustic systems with attached noise control treatments

dc.contributor.advisorAtalla, Noureddine
dc.contributor.advisorBerry, Alain
dc.contributor.authorAlimonti, Lucafr
dc.date.accessioned2015-01-08T14:46:02Z
dc.date.available2015-01-08T14:46:02Z
dc.date.created2014fr
dc.date.issued2015-01-08
dc.identifier.urihttp://hdl.handle.net/11143/5988
dc.description.abstractRésumé : Les véhicules aériens et terrestres sont constitués de systèmes bâtis complexes. La structure principale est généralement composée de panneaux légers renforcés par des éléments rigides. Cette solution de conception est répandue parce qu’elle allie la force et un faible poids. Cependant, on sait qu’elle offre des résultats vibroacoustiques médiocres, c’est à dire que l’effet des perturbations externes qui touchent le système peut générer un niveau de bruit excessif à l’intérieur de la cabine des passagers. C’est une préoccupation majeure chez les fabricants, parce que ce niveau de bruit nuit sensiblement au confort ressenti par les clients et peut causer de la fatigue chez les conducteurs et les pilotes. Pour cette raison, les composants passifs constitués de matériaux dissipatifs assemblés en mode multicouche sont généralement intégrés à la structure. Ces assemblées bordées intègrent surtout des matériaux poroélastiques, qui sont plutôt répandus, grâce à l’agencement intéressant de bonnes propriétés d’isolation sonore et de faible poids. L’intégration en amont des traitements de contrôle du bruit au processus de conception est la clé de succès d’un produit. Pour ce faire, des outils pratiques numériques en mesure de capter le comportement dynamique des systèmes vibroacoustiques impliquant les structures, les cavités et les matériaux d’insonorisation sont requis. D’une part, la modélisation de ces systèmes couplés en utilisant des procédés à base d’éléments finis peut être, bien que précis, irréalisable pour des applications pratiques. D’autre part, les approches analytiques telles que la méthode de matrice de transfert sont souvent préférées grâce à leur facilité d’utilisation, même si elles manquent de précision en raison des hypothèses rigoureuses inhérentes au cadre analytique. Dans ce contexte, les procédures de structuration hybrides sont récemment devenues très populaires. En effet, les différentes techniques de modélisation sont généralement recherchées pour décrire les systèmes vibroacoustiques complexes arbitraires sur la plus large gamme de fréquences possible. L’objectif du projet proposé est de mettre au point un cadre hybride offrant une mé- thodologie simple pour tenir compte des traitements de contrôle du bruit dans l’analyse vibroacoustique par éléments finis. A savoir, le modèle de calcul qui en découle conserve la souplesse et la précision de la méthode des éléments finis en bénéficiant de la simplicité et de l’efficacité de la méthode de matrice de transfert pour obtenir une réduction de la charge de calcul pour la modélisation de composants acoustiques passifs. La performance de la méthode pour prédire la réponse vibroacoustique de structures planes homogènes avec des traitements acoustiques attachées est évaluée. Les résultats démontrent que la méthode hybride proposée est très prometteuse, parce qu’elle permet une réduction de l’effort de calcul tout en conservant suffisamment de précision par rapport à l’analyse complète par éléments finis. En outre, la méthode de matrice de transfert proposée de modélisation des traitements de contrôle des bruits est générale, comme on peut l’appliquer dans d’autres cadres outre l’application de l’élément fini considéré dans ce travail. // Abstract : Aerial and terrestrial vehicles consist of complex built-up systems. The main structure is typically made of light panels strengthened by stiffer components. Such design solution is widely used as it combines strength and low weight. However, it is known to give poor vibroacoustic performances, i.e. the effect of external disturbances acting on the system may generate an excessive noise level inside the passengers cabin. This is a main concern for the manufacturers, as it significantly affects the comfort experienced by the costumers and may fatigue drivers and pilots. For this reason, passive components consisting of dissipative materials assembled in a multilayer fashion are typically integrated within the structure. These lined assemblies mainly involve poroelastic materials, which are commonly used thanks to the appealing combination of good noise insulation properties and low weight. The early integration of noise control treatments in the design process is the key to a successful product. For this purpose, practical numerical tools able to capture the dynamic behavior of vibroacoustic systems involving structures, cavities and noise proofing materials are demanded. On the one hand, modeling such coupled systems using finite element based methods can be, albeit accurate, time consuming for practical applications. On the other hand, analytical approaches such as the transfer matrix method are often preferred thanks to their ease of use, although they suffer from a lack of accuracy due to the stringent assumptions inherent within the analytical framework. In this context, hybrid substructuring procedures have recently become quite popular. Indeed, different modeling techniques are typically sought to describe arbitrarily complex vibroacoustic systems over the widest possible frequency range. The aim of this thesis is to devise a hybrid framework providing a simple methodology to account for noise control treatments in vibroacoustic finite element analysis. Namely, the resulting computational model retains the flexibility and accuracy of the finite element method while taking advantage from the simplicity and efficiency of the transfer matrix method to obtain a reduction of the computational burden in the modeling of passive acoustic components. The performance of the method in predicting the vibroacoustic response of flat structures with attached homogeneous acoustic treatments is assessed. The results prove that the proposed hybrid methodology is very promising, as it allows for a reduction of the computational effort while preserving enough accuracy with respect to full finite element analysis. Furthermore, the proposed transfer matrix based methodology for noise control treatments modeling is general, as it can be used in alternative frameworks besides the finite element application considered in this work.fr
dc.language.isoengfr
dc.publisherUniversité de Sherbrookefr
dc.rights© Luca Alimontifr
dc.subjectVibroacoustiquefr
dc.subjectMéthode des éléments finisfr
dc.subjectMéthode matrice de transfertfr
dc.subjectModélisation hybridefr
dc.subjectPerte par transmissionfr
dc.subjectAbsorptionfr
dc.subjectTraitement acoustiquefr
dc.subjectVibroacousticsfr
dc.subjectFinite element methodfr
dc.subjectTransfer matrix methodfr
dc.subjectHybrid modelingfr
dc.subjectTransmission lossfr
dc.subjectAbsorptionfr
dc.subjectSound packagefr
dc.titleDéveloppement d'une méthode hybride éléments finis-matrice de transfert pour la prédiction de la réponse vibroacoustique de structures avec traitements acoustiquesfr
dc.title.alternativeDevelopment of a hybrid finite element-transfer matrix methodology for the modeling of vibroacoustic systems with attached noise control treatmentsfr
dc.typeThèsefr
tme.degree.disciplineGénie mécaniquefr
tme.degree.grantorFaculté de géniefr
tme.degree.levelDoctoratfr
tme.degree.namePh.D.fr


Files in this document

Thumbnail

This document appears in the following Collection(s)

Show simple document record