Show simple document record

dc.contributor.advisorMassé, Daniel I.fr
dc.contributor.advisorLeduc, Rolandfr
dc.contributor.authorBluteau, Claudiafr
dc.date.accessioned2014-09-09T14:15:00Z
dc.date.available2014-09-09T14:15:00Z
dc.date.created2009fr
dc.date.issued2009fr
dc.identifier.isbn9780494910238fr
dc.identifier.urihttp://hdl.handle.net/11143/5518
dc.description.abstractGaseous ammonia emissions from livestock production are a well known source of anthropogenic ammonia emissions and have been the subject of numerous studies in Western Europe and in the United States of America. They are deemed responsible for the acidification of ecosystems. Furthermore, ammonia emissions from intensive livestock operations located in the vicinity of major cities induce favourable conditions for smog formation. Ammonia volatilization from manure also reduces its effectiveness as a fertilizer by reducing its nitrogen content, an important nutrient for plant growth. Certain technologies and structures exist to cover manure storage tanks in order to limit these ammonia losses to the atmosphere. Very few studies have been done in Canada where climate and manure management practices differ widely from those in Western Europe and in the United States of America. In this project, a measurement campaign was financed by Agriculture and Agrifood Canada on four commercial livestock production infrastructure to begin the development of national ammonia inventory. Commercial dairy and swine manure storages covered by floating geomembranes were monitored for periods exceeding six months in the Eastern Townships of Quebec. The swine manure storage emitted negligible amounts of ammonia, from 5.9 ?10[superscript -3] to 0.14 [micro]g? m[superscript -2] . s[superscript -1] over the summer time. The dairy manure storage emitted more substantial amounts of ammonia when the manure surface was frozen in winter, from 1.9 to 16 [micro]g. m[superscript -2] ? s[superscript -1], then when unfrozen, 93 to 166 [micro]g? m[superscript -2] ? s[supercript -1]. A structural difference in the covering technology at the dairy manure storage rendered it less airtight than the swine manure storage. Therefore, the efficiency of a cover to limit ammonia emissions from manure is function of its air tightness. Ammonia emission rates from two tie-stall commercial dairy buildings were also monitored in the Eastern Townships of Quebec. Ammonia emission measurements done at building A during winter 2007 ranged from 3.77 to 6.80 g ? day[superscript -1] ? animal[superscript -1] while those performed at building B during summer 2007 were higher and ranged from 11.33 to 18.20 g ? day[superscript -1] ? animal[superscript -1]. These values fall within the wide range of those published for Western Europe and the United States of America. However, unlike studies completed in Europe using similar procedures, the methods used to measure gaseous ammonia concentrations and building ventilation flow rates in this study were validated in controlled environments.fr
dc.language.isoengfr
dc.publisherUniversité de Sherbrookefr
dc.rights© Claudia Bluteaufr
dc.subjectVentilationfr
dc.subjectGeomembranefr
dc.subjectManure storagefr
dc.subjectDairy housingfr
dc.subjectGaseous emissionfr
dc.subjectAgriculturefr
dc.subjectAmmoniafr
dc.titleÉmissions d'ammoniac en provenance des infrastructures agricolesfr
dc.typeMémoirefr
tme.degree.disciplineGénie civilfr
tme.degree.grantorFaculté de géniefr
tme.degree.levelMaîtrisefr
tme.degree.nameM. Sc. A.fr


Files in this document

Thumbnail

This document appears in the following Collection(s)

Show simple document record