Show simple document record

dc.contributor.advisorHuard, François
dc.contributor.advisorBrüstle, Thomas
dc.contributor.authorBeaudet, Louisfr
dc.date.accessioned2014-08-20T14:35:03Z
dc.date.available2014-08-20T14:35:03Z
dc.date.created2014fr
dc.date.issued2014-08-20
dc.identifier.urihttp://hdl.handle.net/11143/5415
dc.description.abstractRésumé : L’objectif principal de cette thèse est d’approfondir l’étude des modules de dimension projective infinie sur les algèbres inclinées-amassées. Dans un premier temps, nous bornerons la fonction [o barré] d’Igusa-Todorov dans le cadre des algèbres inclinées-amassées de type An et ~ An. Subséquemment, nous donnerons une preuve combinatoire de la périodicité des premiers syzygies des modules de corde et de bande sur de telles algèbres. Grâce à cette périodicité, nous serons en mesure de borner supérieurement la [o barré]-dimension d’Igusa-Todorov. Nous caractériserons, dans une deuxième partie, les modules de dimension projective infinie de l’algèbre d’endomorphismes End C (T), où C’est une catégorie triangulée possédant un objet T maximal 1-orthogonal. Nous montrerons qu’un End C(T)-module M est de dimension projective infinie si et seulement si son idéal de factorisation IM End C(T[1]) est non nul. De plus, inspirés par les travaux sur les hamacs de Brenner, Ringel et Vos- sieck ([7], [26]), nous décrirons et regrouperons les modules de dimension projective infinie en un nouvel ensemble, appelé balançoire, particulièrement localisable dans le carquois d’Auslander-Reiten de End C(T). // Abstract : The writing of this thesis was guided by a single main idea; to go deeper in the study of infinite projective dimension modules on cluster-tilted algebras. At first, we will find an upper bound for the function [o barré] of Igusa-Todorov in the framework of the cluster-tilted algebras of type An and ~ An. Subsequently, we will give a combinatorial proof of the periodicity of the first syzygy of a string and a band module on such algebras. With this periodicity, we will be able to bound the [o barré]-dimension of Igusa-Todorov. In the second part, we will characterize infinite projective dimension modules by explaining their exact positions in the Auslander-Reiten quiver of the algebra End C(T), where C is any triangulated category and T a 1-maximal orthogonal object of C. We show that an End C(T) -module M is of infinite projective dimension if and only if its factorization ideal IM End C(T [1]) is nonzero. In addition, inspired by the works on hammocks by Brenner, Ringel and Vossieck ([7], [26]), we will describe and regroup in a new set, called a swing, the modules of infinite projective dimension especially localizable in the quiver of Auslander-Reiten of End C(T). [Symboles non conformes].fr
dc.language.isofrefr
dc.publisherUniversité de Sherbrookefr
dc.rights© Louis Beaudetfr
dc.subjectDimension projective infiniefr
dc.subjectAlgèbres inclinées-amasséesfr
dc.subjectFonction d'Igusa-Todorovfr
dc.titleSur les modules de dimension projective infinie sur les algèbres inclinées-amasséesfr
dc.typeThèsefr
tme.degree.disciplineMathématiquesfr
tme.degree.grantorFaculté des sciencesfr
tme.degree.levelDoctoratfr
tme.degree.namePh.D.fr


Files in this document

Thumbnail

This document appears in the following Collection(s)

Show simple document record