• Français
    • English
  • Français 
    • Français
    • English
  • Login
View Document 
  •   Savoirs UdeS Home
  • Génie
  • Génie – Mémoires
  • View Document
  •   Savoirs UdeS Home
  • Génie
  • Génie – Mémoires
  • View Document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

All of Savoirs UdeSDomains & CollectionsBy Issue DateAuthorsTitlesSubjectsDirectorsThis CollectionBy Issue DateAuthorsTitlesSubjectsDirectors

My Account

Login

Statistics

View Usage Statistics

Étude de précision et de performance du processus de classification d'images de phytoplancton à l'aide de machines à vecteurs de support

Thumbnail
View/Open
Document principal (1.802Mb)
Publication date
2014
Author(s)
Morin, Eugène
Subject
Prétraitement
 
Discrimination
 
SVM
 
Précision
 
Temps de traitement
 
Phytoplancton
Show full document record
Abstract
Ce projet de recherche cible l’étude et l’amélioration de la précision de la classification d’images de phytoplancton et la diminution du temps de traitement moyen requis par image. Deux solutions de classification sont proposées pour atteindre ces objectifs. La première solution vise à effectuer la classification d’images en passant par les phases de prétraitement, de discrimination et de classification, et la deuxième solution utilise uniquement les phases de prétraitement et de classification. En résumé, la phase de prétraitement manipule une image en vue de caractériser l’élément principal (le phytoplancton), la phase de discrimination utilise les arbres décisionnels à intervalles pour éliminer les catégories ayant peu ou pas de similitude avec l’image traitée et finalement, la phase de classification se sert de machines à vecteurs de support (SVM) pour prédire une catégorie d’appartenance à chaque image traitée. À la base, il y a un appareil de capture automatisée d’images qui transmet celles-ci à un classificateur. Selon la vitesse de classification, une portion ou l’ensemble des images générées seront classifiés. Donc, plus le nombre d’échantillons à classifier est grand, meilleure est l’approximation de la population de chaque groupe de phytoplanctons, à un temps donné. Le but étant d’obtenir une analyse qualitative, quantitative et temporelle plus précise de ce micro-organisme. Pour permettre la classification de ce type d’image, un logiciel nommé Biotaxis a été développé. Celui-ci offre à l’utilisateur l’option de choisir parmis les deux solutions de classification proposées ci-haut. Toutes deux débutent par l’entraînement d’un groupe de classification, qui est composé de plusieurs catégories d’image, suivi par des tests de classification, qui sont effectués sur ce groupe pour vérifier la précision de la classification des catégories d’image qui le compose. Pour entraîner et tester le classificateur du logiciel Biotaxis, deux ensembles d’images ont été employés. L’un d’eux sert uniquement à l’entrainement de groupes de classification et le second à tester ces derniers. Les résultats obtenus dans ce projet de recherche ont permis de confirmer la validité des deux solutions proposées. Il fut possible d’atteindre une précision de la classification moyenne de 87 % et plus avec des groupes de classification de 13 catégories et moins. De plus, un temps de traitement moyen inférieur à 200 ms par image a été réalisé à partir de ces mêmes groupes de classification. Le logiciel Biotaxis est proposé comme une nouvelle solution pour classifier rapidement des images de phytoplancton.
URI
http://hdl.handle.net/11143/5405
Collection
  • Moissonnage BAC [3209]
  • Génie – Mémoires [1940]

DSpace software [version 5.4 XMLUI], copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
 

 


DSpace software [version 5.4 XMLUI], copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback