• Français
    • English
  • Français 
    • Français
    • English
  • Login
View Document 
  •   Savoirs UdeS Home
  • Sciences
  • Sciences – Thèses
  • View Document
  •   Savoirs UdeS Home
  • Sciences
  • Sciences – Thèses
  • View Document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

All of Savoirs UdeSDomains & CollectionsBy Issue DateAuthorsTitlesSubjectsDirectorsThis CollectionBy Issue DateAuthorsTitlesSubjectsDirectors

My Account

Login

Statistics

View Usage Statistics

Contribution à l'analyse des séquences de protéines similarité, clustering et alignement

Thumbnail
View/Open
NR75066.pdf (9.697Mb)
Publication date
2011
Author(s)
Kelil, Abdellali
Show full document record
Abstract
La prédiction des fonctions biologiques des protéines est primordiale en biologie cellulaire. On peut comprendre facilement tout l'enjeu de pouvoir différencier efficacement les protéines par leurs fonctions, quand on sait que ceci peut rendre possible la réparation des protéines anormales causants des maladies, ou du moins corriger ou améliorer leurs fonctions. Les méthodes expérimentales, basées sur la structure tridimensionnelle des protéines sont les plus fiables pour la prédiction des fonctions biologiques des protéines. Néanmoins, elles sont souvent coûteuses en temps et en ressources, et ne permettent pas de traiter de grands nombres de protéines. Il existe toutefois des algorithmes qui permettent aux biologistes d'arriver à de bons résultats de prédictions en utilisant des moyens beaucoup moins coûteux. Le plus souvent, ces algorithmes sont basés sur la similarité, le clustering, et l'alignement. Cependant, les algorithmes qui sont basés sur la similarité et le clustering utilisent souvent l'alignement des séquences et ne sont donc pas efficaces sur les protéines non alignables. Et lorsqu'ils ne sont pas basés sur l 'alignement, ces algorithmes utilisent souvent des approches qui ne tiennent pas compte de l'aspect biologique des séquences de protéines. D'autre part, l'efficacité des algorithmes d'alignements dépend souvent de la nature structurelle des protéines, ce qui rend difficile le choix de l'algorithme à utiliser quand la structure est inconnue. Par ailleurs, les algorithmes d'alignement ignorent les divergences entre les séquences à aligner, ce qui contraint souvent les biologistes à traiter manuellement les séquences à aligner, une tâche qui n'est pas toujours possible en pratique. Dans cette thèse nous présentons un ensemble de nouveaux algorithmes que nous avons conçus pour l'analyse des séquences de protéines. Dans le premier chapitre, nous présentons CLUSS, le premier algorithme de clustering capable de traiter des séquences de protéines non-alignables. Dans le deuxième chapitre, nous présentons CLUSS2 une version améliorée de CLUSS, capable de traiter de plus grands ensembles de protéines avec plus de de fonctions biologiques. Dans le troisième chapitre, nous présentons SCS, une nouvelle mesure de similarité capable de traiter efficacement non seulement les séquences de protéines mais aussi plusieurs types de séquences catégoriques. Dans le dernier chapitre, nous présentons ALIGNER, un algorithme d'alignement, efficace sur les séquences de protéines indépendamment de leurs types de structures. De plus, ALIGNER est capable de détecter automatiquement, parmi les protéines à aligner, les groupes de protéines dont l'alignement peut révéler d'importantes propriétés biochimiques structurelles et fonctionnelles, et cela sans faire appel à l'utilisateur.
URI
http://savoirs.usherbrooke.ca/handle/11143/5143
Collection
  • Sciences – Thèses [527]

DSpace software [version 5.4 XMLUI], copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
 

 


DSpace software [version 5.4 XMLUI], copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback