Show simple document record

dc.contributor.advisorZiou, Djemelfr
dc.contributor.authorAllili, Mohand Saïdfr
dc.date.accessioned2014-05-16T16:04:13Z
dc.date.available2014-05-16T16:04:13Z
dc.date.created2008fr
dc.date.issued2008fr
dc.identifier.isbn9780494641989fr
dc.identifier.urihttp://savoirs.usherbrooke.ca/handle/11143/5118
dc.description.abstractCette thèse aborde deux problèmes parmi les plus importants et les plus complexes dans la vision artificielle, qui sont la segmentation d'images et le suivi d'objets dans les vidéos. Nous proposons plusieurs approches, traitant de ces deux problèmes, qui sont basées sur la modélisation variationnelle (contours actifs) et statistique. Ces approches ont pour but de surmonter différentes limites théoriques et pratiques (algorithmiques) de ces deux problèmes. En premier lieu, nous abordons le problème d'automatisation de la segmentation par contours actifs"ensembles de niveaux", et sa généralisation pour le cas de plusieurs régions. Pour cela, un modèle permettant d'estimer l'information de régions de manière automatique, et adaptative au contenu de l'image, est proposé. Ce modèle n'utilise aucune information a priori sur les régions, et traite également les images de couleur et de texture, avec un nombre arbitraire de régions. Nous introduisons ensuite une approche statistique pour estimer et intégrer la pertinence des caractéristiques et la sémantique dans la segmentation d'objets d'intérêt. En deuxième lieu, nous abordons le problème du suivi d'objets dans les vidéos en utilisant les contours actifs. Nous proposons pour cela deux modèles différents. Le premier suppose que les propriétés photométriques des objets suivis sont invariantes dans le temps, mais le modèle est capable de suivre des objets en présence de bruit, et au milieu de fonds de vidéos non-statiques et encombrés. Ceci est réalisé grâce à l'intégration de l'information de régions, de frontières et de formes des objets suivis. Le deuxième modèle permet de prendre en charge les variations photométriques des objets suivis, en utilisant un modèle statistique adaptatif à l'apparence de ces derniers. Finalement, nous proposons un nouveau modèle statistique, basé sur la Gaussienne généralisée, pour une représentation efficace de données bruitées et de grandes dimensions en segmentation. Ce modèle est utilisé pour assurer la robustesse de la segmentation des images de couleur contenant du bruit, ainsi que des objets en mouvement dans les vidéos (acquises par des caméras statiques) contenant de l'ombrage et/ou des changements soudains d'illumination.fr
dc.language.isofrefr
dc.publisherUniversité de Sherbrookefr
dc.rights© Mohand Saïd Allilifr
dc.titleSegmentation d'images et suivi d'objets en vidéos approches par estimation, sélection de caractéristiques et contours actifsfr
dc.typeThèsefr
tme.degree.disciplineInformatiquefr
tme.degree.grantorFaculté des sciencesfr
tme.degree.levelDoctoratfr
tme.degree.namePh.D.fr


Files in this document

Thumbnail

This document appears in the following Collection(s)

Show simple document record