• Français
    • English
  • Français 
    • Français
    • English
  • Login
View Document 
  •   Savoirs UdeS Home
  • Sciences
  • Sciences – Thèses
  • View Document
  •   Savoirs UdeS Home
  • Sciences
  • Sciences – Thèses
  • View Document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

All of Savoirs UdeSDomains & CollectionsBy Issue DateAuthorsTitlesSubjectsDirectorsThis CollectionBy Issue DateAuthorsTitlesSubjectsDirectors

My Account

Login

Statistics

View Usage Statistics

Croissance et spectroscopie de boîtes quantiques diluées d'InAs/InP(001) pour des applications nanophotoniques à 1,55 [micro]m

Thumbnail
View/Open
NR62826.pdf (9.789Mb)
Publication date
2010
Author(s)
Dupuy, Emmanuel
Subject
CL
 
[micro]PL
 
Reconstructions de surface
 
MBE
 
InAs/InP
 
Boîtes quantiques
Show full document record
Abstract
This thesis focus on the epitaxial growth and optical characterization of diluted InAs/InP(001) quantum dots for the realisation of new nanophotonic devices emitting at 1.55 [micro]m. The structural and optical properties of the quantum islands are correlated to different growth parameters of a solid source molecular beam epitaxy system. Our results highlight the influence of InAs surface reconstructions on the island shape. Dots rather than elongated dashes usually observed can be directly formed by adequate growth conditions. Dash to dot shape transition is also demonstrated by post-growth treatments. Low dot densities are obtained for small InAs deposited thickness. Their emission wavelength is easily tuned to 1.55 [micro]m using the"double cap" procedure for the growth of the InP capping layer. Optical properties of such single InAs/InP quantum dots are then evaluated. Micro-photoluminescence studies reveal sharp and well separated emission lines near 1.55 [micro]m from single dots confirming their atom-like properties. Last, we propose for the first time a high spatial resolution method to study the carrier transport in the vicinity of a single quantum dot using a low-voltage cathodoluminescence technique. A direct measurement of the carrier diffusion length before capture into one dot has been obtained. These results open the way to the integration of these single dots into optical micro-cavities for the realisation of quantum light sources at 1.55 [micro]m.
URI
http://savoirs.usherbrooke.ca/handle/11143/5117
Collection
  • Sciences – Thèses [716]

DSpace software [version 5.4 XMLUI], copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
 

 


DSpace software [version 5.4 XMLUI], copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback