• Français
    • English
  • Français 
    • Français
    • English
  • Login
View Document 
  •   Savoirs UdeS Home
  • Sciences
  • Sciences – Mémoires
  • View Document
  •   Savoirs UdeS Home
  • Sciences
  • Sciences – Mémoires
  • View Document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

All of Savoirs UdeSDomains & CollectionsBy Issue DateAuthorsTitlesSubjectsDirectorsThis CollectionBy Issue DateAuthorsTitlesSubjectsDirectors

My Account

Login

Statistics

View Usage Statistics

Couplage ultra-fort et dissipation en électrodynamique quantique en circuit

Thumbnail
View/Open
MR83669.pdf (5.794Mb)
Publication date
2011
Author(s)
Beaudoin, Félix
Subject
Couplage ultra-fort
 
Bruit quantique
 
Systèmes quantiques ouverts
 
Interaction lumière-matière
 
Électrodynamique quantique en circuit
 
Qubits supraconducteurs
Show full document record
Abstract
L'électrodynamique quantique en cavité et en circuit étudie l'interaction lumière-matière à son stade le plus fondamental, dans lequel un atome unique, qu'il soit naturel ou artificiel, interagit avec un seul mode du champ électromagnétique. Dans ce système, le confinement du champ augmente l'intensité de l'interaction jusqu'à permettre d'observer l'échange cohérent de quanta entre lumière et matière [1, 2, 3]. Récemment, des expériences réalisées à l'aide de qubits supraconducteurs ont démontré des couplages record caractéristiques d'un nouveau régime, dit ultra-fort, dans lequel l'état fondamental n'est plus le vide, mais un état fortement intriqué entre l'atome et le champ [4, 5]. Malgré cet accroissement gigantesque du couplage lumière-matière, ce dernier est le plus souvent négligé lorsqu'on considère l'interaction de ce système avec son environnement. En effet, la plupart des travaux théoriques publiés récemment décrivent la dynamique dissipative du système atome-cavité en se basant sur l'équation maîtresse de l'optique quantique, un modèle valide seulement dans le cas de l'atome ou du résonateur séparés [6, 7, 8, 9]. Dans ce travail, on démontre qu'employer l'équation maîtresse de l'optique quantique en couplage ultra-fort mène des prédictions qui violent la conservation de l'énergie. Pour pallier ce problème, on établit un modèle de la dissipation qui inclut le couplage atome-champ. On montre en particulier que des fluctuations aléatoires dans la fréquence de l'atome artificiel peuvent générer des excitations dans le système des fréquences précises. On indique aussi que des oscillations cohérentes à ces fréquences dans l'espacement des niveaux de l'atome pourraient être utiles pour accélérer le contrôle cohérent du système quantique. Notre modèle prédit finalement une asymétrie dans les raies de spectroscopie du système atome-cavité qui pourrait être exploitée pour sonder la densité spectrale de bruit de l'environnement des fréquences jusqu'à ce jour inexplorées.
URI
http://savoirs.usherbrooke.ca/handle/11143/4919
Collection
  • Sciences – Mémoires [1656]

DSpace software [version 5.4 XMLUI], copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
 

 


DSpace software [version 5.4 XMLUI], copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback