Study of smoke spread during building integrated photovoltaic (BIPV) double skin façade (DSF) fire based on small-scale helium tests and simulations
Other titre : Étude de la propagation des fumées lors d’un incendie de façade double peau (FDP) photovoltaïques intégrés au bâtiment (PVIB) sur la base des essais à l'hélium à petite échelle et de simulations

View/ Open
Publication date
2023Author(s)
Aram, Monireh
Subject
Helium smoke similarityAbstract
De nos jours, la capacité installée des panneaux photovoltaïques augmente considérablement. Cependant, l'augmentation pose un nouveau défi à la sécurité des occupants, y compris les incendies liés au PV. Malheureusement, il n'y a pas eu suffisamment de recherches pour étudier la sécurité incendie des incendies liés au PV. Pour combler les lacunes de la recherche, une nouvelle théorie de la similarité de l'hélium et une méthode de mise à l'échelle sont proposées, qui utilisent la libération d'hélium comme substitut de la fumée réelle du feu. Ensuite, une expérience d'hélium à petite échelle et une simulation CFD sont conçues sur la base de la similarité hélium-fumée et de la méthode de mise à l'échelle. Les résultats montrent que le nouveau modèle CFD proposé est bien validé par les résultats de l'expérience, et la similitude entre un modèle à grande échelle avec fumée, un modèle à petite échelle avec fumée et un modèle à petite échelle avec substitut d'hélium est bien compatible. Enfin, le mécanisme de propagation des fumées d'un incendie de façade double peau BIPV est étudié par l'étude paramétrique. Abstract: Reducing energy consumption and electricity demand in buildings by using advanced clean and energy-efficient technologies such as building attached photovoltaics (BAPVs) and building integrated photovoltaics (BIPVs) systems have been widely applied in new and existing constructions. Meanwhile, they can cause a new critical challenge, i.e., fire safety. Plumes from the PV panel fires could spread into the buildings through the windows and ventilation openings. This creates toxic conditions for people in and around the buildings, leading to inhalation injuries from the toxic chemicals released by solar panels and their batteries. The risk of fire can be elevated by affecting the propagation of fire inside and outside the building. Furthermore, interferes with the smoke and venting system, firefighting operation, and electrical shock dangers. Most of the studies on PV panels are to find the cause of failure, improve the cell efficiency, cost reduction, and extract maximum power, while there is the need to study the system for smoke propagation as well. Applying BIPV on the building causes major changes in the traditional method of using structural components. These changes may include changes in the material, standard distances, gaps, and duties of elements each of which can bring new issues. In this research, a case of BIPV application on the building double skin façade is studied.to observe the physics of smoke spread from ignited BIPV on the façade to the indoor environment. Therefore, a small-scale model is designed using a helium surrogate based on the helium-smoke plume similarity and Froud modeling. The validity of the CFD model is observed and the mentioned scaling method is verified by comparing the similarity of simulation results between the small-scale with helium, small-scale with fire, and full-scale with fire cases. Moreover, from the parametric experimental study, it has been seen that regardless of the fire location the greatest risk is for the top floor. According to the helium concentration results (both transient and steady-state), central floors can be the safest places for receiving smoke from the plenum. The profile of velocity is independent of the HRR magnitude. However, the fire risk can dramatically increase with the higher HRRs.
Collection
- Moissonnage BAC [4177]
- Génie – Thèses [946]