• Français
    • English
  • Français 
    • Français
    • English
  • Login
View Document 
  •   Savoirs UdeS Home
  • Sciences
  • Sciences – Thèses
  • View Document
  •   Savoirs UdeS Home
  • Sciences
  • Sciences – Thèses
  • View Document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

All of Savoirs UdeSDomains & CollectionsBy Issue DateAuthorsTitlesSubjectsDirectorsThis CollectionBy Issue DateAuthorsTitlesSubjectsDirectors

My Account

Login

Statistics

View Usage Statistics

Conception de nouveaux couplages en circuits supraconducteurs

Thumbnail
View/Open
leroux_catherine_PhD_2022.pdf (30.11Mb)
Publication date
2022
Author(s)
Leroux, Catherine
Subject
Circuits supraconducteurs
 
Qubits
 
Coupleurs
 
Couplage
 
Portes logiques
Show full document record
Abstract
Les circuits supraconducteurs se sont imposés dans le domaine de l'informatique quantique. Une preuve nette de leur performance est la récente démonstration de la suprématie quantique par Google. Des processeurs quantiques à grande échelle sont déjà construits à l'heure actuelle. Toutefois, des améliorations de l'architecture supraconductrice, tant du point de vue des qubits que des portes logiques, sont toujours nécessaires. En effet, la propagation d'erreurs dans le processeur est toujours trop importante pour être enrayée, par exemple, avec des codes correcteurs. Des solutions pour réduire les erreurs sont, par conséquent, primordiales. La propagation d'erreurs dans un processeur quantique résulte ultimement du couplage entre les qubits qui est toutefois nécessaire pour réaliser des portes logiques. La réduction des erreurs dans le processeur passera donc en partie par l'optimisation de ces couplages. Dans cette thèse, je propose de nouvelles façons de coupler des modes en circuits supraconducteurs et présente trois projets réalisés pendant mon doctorat. Premièrement, afin de mieux concevoir les processeurs quantiques, il est nécessaire de pouvoir estimer avec le plus de précision possible la vitesse et la fidélité des portes logiques ainsi que l'amplitude des erreurs logiques. J'introduis une théorie de perturbation qui permet d'analyser les effets du couplage et du pilotage forts des qubits dans un processeur quantique. Cette théorie est basée à la fois sur la théorie de Floquet, la théorie de Schrödinger et la théorie des graphes. Deuxièmement, les coupleurs à deux qubits permettent de mitiger les erreurs dans les processeurs à plusieurs qubits. Cependant, la plupart des coupleurs y arrivent en ajustant de manière précise leurs paramètres de circuit et ne se concentrent généralement que sur l'élimination de certaines interactions parasitaires. J'introduis un coupleur supraconducteur à deux qubits qui soulage ces limitations en supprimant toutes les interactions entre les qubits avec un rapport marche-arrêt exponentiellement grand et qui ne nécessite pas de calibration précise. Il s'agit d'un coupleur à deux modes: un mode ``bus'' est connecté à un mode d'un résonateur non linéaire ancillaire. Le pilotage linéaire du mode ancillaire entraine un déplacement du champ dans le résonateur qui dépend de l'état propre du bus. Cela engendre une élimination exponentielle des interactions réelles et virtuelles entre les qubits avec l'amplitude du pilotage. Finalement, je propose une nouvelle interaction de type charge-flux entre deux modes dans une architecture hybride supraconductrice semi-conductrice. L'interaction devient non réciproque en présence d'un champ magnétique externe statique. J'utilise cette propriété pour concevoir un gyrateur passif.
URI
http://hdl.handle.net/11143/20022
Collection
  • Moissonnage BAC [4111]
  • Sciences – Thèses [776]

DSpace software [version 5.4 XMLUI], copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
 

 


DSpace software [version 5.4 XMLUI], copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback