Développement d’une méthode de télédétection pour l’identification d’espèces exotiques envahissantes dans l’agglomération de Québec
Publication date
2022Author(s)
Nininahazwe, Fiston
Subject
CartographieAbstract
Les espèces exotiques envahissantes végétales (EEEv) sont actuellement considérées comme étant à l’origine de plusieurs types d’impacts négatifs dont la perte de la biodiversité et l’altération du fonctionnement des écosystèmes. Dans l’agglomération de Québec, la présence de plusieurs EEEv et les informations partielles sur leur distribution territoriale limitent la mise en place de stratégies efficaces de contrôle et d’éradication. Ces données sur la distribution territoriale peuvent être acquises à partir des inventaires in situ. Cependant, ces derniers nécessitent beaucoup de temps surtout dans les milieux envahis par plusieurs EEEv en même temps tels que les milieux urbains. Ces inventaires ne sont également pas adaptés financièrement et techniquement, lorsqu’il s’agit de grandes étendues ou lorsque les conditions topographiques ne sont pas favorables. La télédétection pourrait être utilisée pour contrer ces limites afin de cartographier les EEEv, suivre leur prolifération et intervenir rapidement. Le but de cette étude consistait donc à élaborer une méthode de cartographie multi-espèces par télédétection de cinq EEEv terrestres présentes dans l’agglomération de Québec, à savoir la renouée du Japon (Fallopia japonica), le phragmite (Phragmites australis), la berce du Caucase (Heracleum mantegazzianum), le nerprun bourdaine (Frangula alnus) et le nerprun cathartique (Rhamnus cathartica). L’approche méthodologique consistait à réaliser une cartographie mono-date et multi-date à l’aide d’images satellitaires WorldView-3 acquises en été, SPOT-7 et GeoEye-1 acquises en automne. Une classification orientée-objet combinée à des méthodes d’apprentissage automatique non paramétriques, à savoir Support Vector Machine (SVM), Random Forest (RF) et Extreme Gradient Boosting (XGBoost) a été utilisée afin de produire des probabilités de présence de ces EEEv. La cartographie des nerpruns a été réalisée à part car leur faible présence sur la zone d’étude et leur distribution sous-couvert à faible densité a nécessité un ajout de l’image GeoEye-1 et un paramétrage des méthodes différent de celui utilisé pour les trois premières EEEv. La combinaison des images WorldView-3 et SPOT-7 a permis d’atteindre d’excellentes performances pour les trois premières EEEv, avec un coefficient Kappa de 0,85 et une précision globale de 91 % en utilisant RF. Les performances individuelles des classes basées sur l’indicateur F1-score ont montré que la renouée du Japon est mieux détectée (F1-score maximal = 0,95), que la berce du Caucase (F1-score maximal = 0,91) et le phragmite (F1-score maximal = 0,87). La classification multi-date des nerpruns est, par contre, moins performante par rapport à celle des autres espèces avec un coefficient Kappa égal à 0,72, une précision globale de 83 % et F1-score maximal égal 0,62. Cette étude montre la possibilité de cartographie et suivi des principales EEEv selon une approche multi-date. Les limites de cette étude, à savoir la faible quantité de données de référence d’EEEv, les coûts élevés d’acquisition et la faible disponibilité des images satellitaires à très haute résolution spatiale ainsi que la distribution des nerpruns en sous-couvert (dans notre zone d’étude) pourraient être réduites en utilisant des images plus accessibles en combinaison avec les techniques de super-résolution. Les données LiDAR à haute densité pourraient également être intégrées à l’imagerie optique afin d’améliorer les performances de cartographie des nerpruns.
Collection
- Moissonnage BAC [4252]
- Lettres et sciences humaines – Mémoires [2389]
The following license files are associated with this document: