Show simple document record

Other titre : Formwork pressure exerted by self-consolidating concrete

dc.contributor.advisorKhayat, Kamal
dc.contributor.authorOmran, Ahmed Fathyfr
dc.description.abstractSelf-consolidating concrete (SCC) is an emerging technology that utilizes flowable concrete that eliminates the need for consolidation. The advantages of SCC lie in a remarkable reduction of the casting time, facilitating the casting of congested and complex structural elements, possibility to reduce labor demand, elimination of mechanical vibrations and noise, improvement of surface appearance, producing a better and premium concrete product. The research focussed on capturing existing knowledge and making recommendations for current practice. An experimental program was undertaken at the Université de Sherbrooke to evaluate the lateral pressure developed by SCC mixtures. A portable devise (UofS2 pressure column) for measuring and predicting lateral pressure and its rate of decay of SCC was developed and validated. The UofS2 pressure column is cast with 0.5 m high fresh concrete and air pressure is introduced from the top to simulate casting depth up to 13 m. Then, develop and implement test method for field evaluation of relevant plastic and thixotropic properties of SCC that affect formwork pressure were done. Portable vane (PV) test based on the hand-held vane test method used to determine the undrained shear strength property of clay soil was the first setup as well as the inclined plane (IP) test. The IP device involves slumping a small concrete cylinder on a horizontal plate and then lifting up the plate at different durations of rest until the slumped sample starts to move. Identifying role of material constituents, mix design, concrete placement characteristics (casting rate, waiting periods between lifts, and casting depth), temperature, and formwork characteristics that have major influence on formwork pressure exerted by SCC were evaluated in laboratory and validated by actual field measurements. Relating the maximum lateral pressure and its rate of decay to the plastic properties of SCC were established. In the analytical part of the research, effective ways to reduce lateral pressure by developing formulation expertise and practical guidelines to lower lateral pressure of SCC were proposed. Various design equations as well as chart diagrams to predict formwork pressure that can be exerted by SCC on column and wall elements were derived and reported. In general, the results obtained show that measured lateral pressure is lower than corresponding hydrostatic pressure. The study has shown that lateral pressure exerted by SCC is closely related to the structural build-up at rest (or thixotropy) of SCC. The latter can be controlled using different mixture proportionings, material constituents, and chemical admixtures. SCC mixture with a high rate of structural build-up at rest can develop low lateral pressure on formwork. Increased rate of structural build-up at rest can be ensured by incorporating a greater volume of coarse aggregate, lower paste volume, and/or lower sand-to-total aggregate ratio. Incorporating coarse aggregate of larger maximum size could also increase the thixotropy and hence reduce the lateral pressure. This can also be achieved by reducing the workability of SCC using less HRWRA concentration. Indeed, all mixture factors have been replaced by measuring the rate of structural build-up at rest (or thixotropy) using the developed portable vane and inclined plane field-oriented test as well as the modified Tattersall MK-III concrete rheometer. On the other hand, increasing or maintaining the concrete temperature at a certain level plays an important role to reduce the lateral pressure. The higher concrete temperature can accelerate the heat of hydration of cement with water and increase the internal friction leading to higher thixotropy. Controlling the placement rate has a great impact on the resultant lateral pressure of SCC. The lateral pressure can be reduced by slowing down the casting rate, as concrete has more time to build-up. However, this can slow down the rate of construction. The casting rate should be optimized to yield a cost effective formwork system. Pausing the continuous casting by a waiting period can reduce the exerted lateral pressure. The research investigation could accelerate the acceptance and implementation of SCC technology in cast-in-place applications, which is the preponderate business of the ready mixed concrete suppliers. The research findings could also contribute to the removal of some of the major barriers hindering the acceptance of SCC in cast-in-place applications and provide the industry with much needed guidelines on formwork pressure.--Résumé abrégé par
dc.publisherUniversité de Sherbrookefr
dc.rights© Ahmed Fathy Omranfr
dc.subjectModelés de prédictionfr
dc.subjectRestructuration au reposfr
dc.subjectPression latéral [sic] sur colonne et murfr
dc.subjectPression latéralefr
dc.subjectBéton auto-plaçant (BAP)fr
dc.titlePression exercée sur le coffrage par le béton auto-plaçantfr
dc.title.alternativeFormwork pressure exerted by self-consolidating concretefr
dc.typeThèsefrénie civilfré de géniefr

Files in this document


This document appears in the following Collection(s)

Show simple document record