Show simple document record

dc.contributor.advisorPanneton, Raymondfr
dc.contributor.authorAtalla, Yousseffr
dc.date.accessioned2014-05-15T12:32:21Z
dc.date.available2014-05-15T12:32:21Z
dc.date.created2002fr
dc.date.issued2002fr
dc.identifier.isbn9780494190111fr
dc.identifier.urihttp://savoirs.usherbrooke.ca/handle/11143/1779
dc.description.abstractDernièrement, des modèles de simulation du comportement dynamique et acoustique des matériaux poro-élastiques ont été développés. Ces modèles sont basés sur l'approche macroscopique de Biot et nécessitent la définition de plusieurs propriétés physiques. Lorsque la matrice du matériau poreux est rigide et non accolée à une structure vibrante (situation où le squelette n'est pas excité directement) ou lorsqu'elle est très souple, on peut considérer le milieu poreux comme un fluide équivalent homogène. A ce titre, il possède une masse volumique dynamique complexe et un module de compression dynamique complexe, eux-mêmes associés aux mécanismes de dissipation dus aux effets visqueux et thermiques. Le modèle de Johnson-Champoux-Allard (JCA) est, parmi les modèles d'analyse des fluides équivalents, l'un des plus utilisés et qui s'accorde le mieux aux mesures expérimentales faites sur une grande gamme de matériaux poreux. Ce modèle est basé sur cinq paramètres non ajustables caractérisant la géométrie interne du poreux: la porosité [straight phi], la résistance au passage de l'air [sigma], la tortuosité [alpha] [infinity] et les longueurs caractéristiques visqueuse [Lambda] et thermique [Lambda]'. Plusieurs méthodes directes ou indirectes de mesure de ces paramètres ont été développées. Si la mesure de [sigma] et de [straight phi] est relativement simple à appliquer et donne de bons résultats, les techniques servant à caractériser les trois autres paramètres sont coûteuses, difficiles à utiliser et limitées à certains matériaux et à certaines géométries d'échantillons. Pour toutes ces raisons, elles sont inaccessibles aux petites compagnies ou aux petits laboratoires. Par conséquent, faute de pouvoir compter sur la mesure des propriétés physiques, l'utilisation des modèles avancés de simulation est restreinte. Compte tenu du développement que connaissent les méthodes de mesure directe de ces propriétés, un bon moyen de pallier certaines des limites des méthodes de caractérisation directes pourrait consister à définir et à résoudre le problème inverse basé à la fois sur des mesures expérimentales et sur des algorithmes d'optimisation. Nous proposons à cet égard une technique inverse de caractérisation des cinq paramètres géométriques du modèle JCA au moyen d'un tube d'impédance. Son principe consiste à relever des mesures d'un indicateur acoustique de surface (le coefficient d'absorption par exemple) d'un matériau poreux plaqué sur un fond rigide dans un tube d'impédance et à les intégrer dans un algorithme d'optimisation couplé au modèle numérique de prédiction. L'algorithme d'inversion ainsi obtenu se charge, à travers un processus d'optimisation régularisé, de remonter aux paramètres géométriques du modèle de prédiction. Le modèle d'inversion à trois paramètres s'appliquera lorsque la porosité [straight phi] et la résistance au passage de l'air [sigma] sont connues. Par contre, si aucun des paramètres géométriques du modèle n'est connu, c'est au modèle général d'inversion à cinq paramètres auquel nous aurons recours. Pour traiter ce problème d'optimisation globale, l'algorithme retenu repose sur une stratégie d'évolution. Le développement et la validation de cette technique inverse ainsi que l'étude des différents éléments qui permettent de l'optimiser constituent le sujet de cette thèse. Les nombreux cas de caractérisation exécutés avec succès sur différents matériaux poreux ainsi que la validation sur des indicateurs différents de l'absorption en incidence normale tels que l'absorption en champ diffus ou la perte par transmission montrent la validité et la robustesse de cette technique inverse de caractérisation qui se révèle dès lors une bonne alternative aux méthodes de caractérisation existantes.fr
dc.language.isofrefr
dc.publisherUniversité de Sherbrookefr
dc.rights© Youssef Atallafr
dc.titleDéveloppement d'une technique inverse de caractérisation acoustique des matériaux poreuxfr
dc.typeThèsefr
tme.degree.disciplineGénie mécaniquefr
tme.degree.grantorFaculté de géniefr
tme.degree.levelDoctoratfr
tme.degree.namePh.D.fr


Files in this document

Thumbnail

This document appears in the following Collection(s)

Show simple document record