La dispersion turbulente et l'évaporation des particules dans des plasmas à couplage inductif
Other titre : Turbulent dispersion and particle evaporation in inductively coupled plasmas

View/ Open
Publication date
2002Author(s)
Ye, Rubin
Subject
ChaleurAbstract
Cette thèse présente une étude de modélisation mathématique de base effectuée sur des réacteurs à plasma rf et sur Ie traitement des poudres par plasma. La validation des résultats prévus a été conduite en utilisant les données expérimentales disponibles. Premièrement, un modèle liquide de turbulence à trois équations comprenant des fluctuations de densité du plasma a été utilise pour étudier la turbulence dans une torche a plasma rf. Les fluctuations de densité out un effet négligeable sur la température du plasma et sur les profils de vitesse en conditions d'écoulement, compares aux résultats obtenus en utilisant Ie modèle conventionnel de turbulence de k-e. II a été démontré que deux régions distinctes coexistent dans la torche de plasma rf: la région turbulente d'écoulement et la région laminaire d'écoulement, chacune avec une zone distincte de température et de configuration d'écoulement. Les conditions d'opération, comme Ie niveau de turbulence initial, Ie débit des gaz et de la vitesse, la pression de la chambre et la puissance du plasma ont différents degrés d'importance sur la turbulence du plasma. Base sur l'étude de turbulence, la dispersion des particules dans réacteur a plasma rf a été étudiée en considérant l'effet des fluctiations de la vitesse du plasma sur la dynamique des particules. Le modèle de turbulence de k-e a été employé pour décrire la phase plasma, et une approche Eulerienne a été utilisée pour décrire la dynamique des particules. Un modèle Particle-Source-in-Cell (PSI-Cell) a été adopté pour représenter des interactions plasma-particules. Un nombre sans dimension. Ie nombre de Stokes, a été présenté pour élucider la signification et l'ampleur de la dispersion des particules. II a été montre que les particules out des propriétés semblables pour des nombres de Stokes semblables, indépendamment des propriétés physiques matérielles et de la taille du particule. La dispersion des particules devient significative quand Ie nombre de Stokes est moins de un parce que la force de résistance a l'avancement est relativement élevée; mais elle est négligeable quand Ie nombre de Stokes est supérieur a 5 dans la présente étude due à l'inertie des particules. Abstract: This thesis presents mathematical modeling studies on some basic phenomena in radio frequency (rf) induction plasma and plasma treatment of powder materials. At the outset, a three-equation turbulence fluid model, including plasma density fluctuations, was employed to study turbulence phenomena in an rf plasma discharge. The density fluctuations were found to have negligible effect on plasma temperature and velocity profiles in the present flow conditions, compared to those results obtained using the standard k-[epsilon] turbulence model. It was demonstrated that two distinct regions coexist in the rf plasma torch: the turbulent flow region and the laminar flow region, each having distinct temperature fields and flow patterns. Based on this turbulence study, particle turbulent dispersion in an rf plasma reactor system has been investigated by considering the effect of plasma velocity fluctuations on the particle dynamics. The k-[epsilon] turbulence model was used to describe the plasma phase, while an Eulerian approach was employed to describe the particle dynamics. A Particle-Source-in-Cell (PSI-Cell) model was adopted to represent the plasma-particle interactions. A dimensionless number, the Stokes number, was introduced to elucidate the significance and extent of particle turbulent dispersion. It was shown that particles have similar dispersion properties when the Stokes numbers are similar, regardless of the particle material physical properties and size. Alumina particle heating and evaporation in two types of rf plasma, Ar-H[subscript 2] and Ar-N[subscript 2] , were investigated to show the effects of working gas on the particle evaporation. The predicted particle size distributions for the Ar-H[subscript 2] plasma fitted the measurements better than those for the Ar-N[subscript 2] at higher particle feed rates. Four different expressions for the Nusselt number were used in the modeling to assess their effects on plasma-particle heat transfer models. The modeling results revealed that significant differences exist in the plasma-particle heat transfer rate and in the final particle size distributions using different models. It was also found that a proper plasma-particle heat transfer model can significantly improve the predicted results."--Résumé abrégé par UMI.
Collection
- Génie – Thèses [903]