Show simple document record

dc.contributor.authorLebel, Réjeanfr
dc.contributor.authorMathieu, Davidfr
dc.contributor.authorLepage, Martinfr
dc.contributor.authorBourassa-Moreau, Benoitfr
dc.contributor.editorUniversité de Sherbrooke. Centre d’imagerie moléculaire de Sherbrookefr
dc.contributor.editorMR Clinical Science, Philips Healthcare Canada (Markham, Ontario, Canada)fr
dc.contributor.editorUniversité de Sherbrooke. Service de neurochirurgiefr
dc.contributor.otherGilbert, Guillaumefr
dc.date.accessioned2020-06-28T22:16:09Z
dc.date.available2020-06-28T22:16:09Z
dc.date.created2019fr
dc.date.issued2020-06-28
dc.identifierPMID:31228297fr
dc.identifier.urihttp://hdl.handle.net/11143/17174
dc.description.abstractAbstract: Purpose: In this study, we investigate the effects of pulsatile flow and inflow on dynamic susceptibility-contrast MRI (DSC-MRI) intravascular arterial input function (AIF) measurement in human brain arteries and measure how they are affected by first-order flow compensation (FC). Methods: A dual-echo single-shot EPI sequence with alternating FC gradients was used to acquire DSC-MRI data with electrocardiogram monitoring. The dynamic signal variations measured inside the middle- (MCA) and internal cerebral arteries (ICA) was associated to the pulsatile arterial blood velocities measured with a single-slice quantitative flow sequence throughout the cardiac cycle. Results: Major inverse correlations between intravascular signal and blood velocity were found for the standard SS-EPI sequence. FC reduces these correlated variations that contribute to signal physiological noise. It causes a significant two-fold increase of intravascular SNR in the MCA and the ICA, (2.3 ± 0.9, P = 0.03) and (2.0 ± 0.9, P = 0.04) respectively; and reduced phase standard deviation for the ICA (0.72 ± 0.14, P = 0.004). The correction proposed in this work translates into a quantitative AIF with reduced noise in the ICA. Conclusion: The physiological noise added by pulsatile flow and inflow for intravascular AIF measurement in the brain arteries is significantly reduced by FC.fr
dc.language.isoengfr
dc.relation.isformatofhttps://doi.org/10.1002/mrm.27877fr
dc.relation.ispartofISSN:0740-3194fr
dc.relation.ispartofMagnetic Resonance in Medicinefr
dc.rightsAttribution - Pas d’Utilisation Commerciale - Pas de Modification 2.5 Canada*
dc.rightsAttribution - Pas d’Utilisation Commerciale - Pas de Modification 2.5 Canada*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/ca/*
dc.subjectDynamic susceptibility contrast MRIfr
dc.subjectFlow compensationfr
dc.subjectBlood flowfr
dc.subjectArterial input functionfr
dc.subjectBrain perfusionfr
dc.titleIncreased precision in the intravascular arterial input function with flow compensationfr
dc.typeArticlefr
dc.rights.holder© 2019 International Society for Magnetic Resonance in Medicinefr
udes.description.typestatusPost-publicationfr
udes.description.typepubRévisé et accepté par des pairsfr
udes.description.pages1782-1795fr
udes.description.period82(5)fr
udes.description.sponsorshipFonds de recherche du Québec (FRQ) - Nature et technologies (2018-PR-206157)fr
udes.description.diffusionDiffusé par Savoirs UdeS, le dépôt institutionnel de l'Université de Sherbrookefr
dc.identifier.bibliographicCitationBourassa‐Moreau B, Lebel R, Gilbert G, Mathieu D, et Lepage M. (sous presse). (2019). "Increased precision in the intravascular arterial input function with flow compensation". Magn Reson Med, 82(5), 1782–1795. https://doi.org/10.1002/mrm.27877fr
udes.description.sourceMagnetic Resonance in Medicinefr
udes.autorisation.depottruefr
udes.description.ordreauteursBourassa-Moreau, Benoit; Lebel, Réjean; Gilbert, Guillaume; Mathieu, David; Lepage, Martinfr


Files in this document

Thumbnail
Thumbnail

This document appears in the following Collection(s)

Show simple document record

Attribution - Pas d’Utilisation Commerciale - Pas de Modification 2.5 Canada
Except where otherwise noted, this document's license is described as Attribution - Pas d’Utilisation Commerciale - Pas de Modification 2.5 Canada