Show simple document record

dc.contributor.advisorFournier, Richard
dc.contributor.advisorChokmani, Karem
dc.contributor.authorIkani, Vahidfr
dc.date.accessioned2020-01-08T16:15:36Z
dc.date.available2020-01-08T16:15:36Z
dc.date.created2019fr
dc.date.issued2020-01-08
dc.identifier.urihttp://hdl.handle.net/11143/16358
dc.description.abstractLe gel radiatif est une des conditions météorologiques sévère affect la production agricole dans de nombreuses région du monde. Les objectives de cette étude inclut deux innovations scientifiques liées aux dégâts causés par le gel radiatif : (1) l'amélioration de la capacité de prédiction du gel local (température nocturne minimale à une résolution de 30 mètres) grâce à un modèle d’échange énergétique entre la végétation et l’atmosphère, et (2) une nouvelle méthode de diminution des risques et de protection des cultures agricoles pendant les périodes de gel. La première innovation a été réalisée en suivant plusieurs objectifs spécifiques visant à améliorer les capacités d'un modèle de répartition spatiale météorologique (Micro-Met) via quatre sous-modèles : (i) estimation journalière du gradient thermique adiabatique de l'air, (ii) modification de l’équation de rayonnement des grandes longueurs d'onde en l’absence de nuage dans l’atmosphère, (iii) quantification des effets de l’écoulement de l’air froid sur la température de l’air, et (iv) quantifier l’effet de haies brise–vent sur la vitesse du vent. La deuxième innovation a été réalisée en mettant en œuvre et en testant une nouvelle méthode active basée sur le cycle thermodynamique. Le site d'étude se localise dans la région de Vallée de Coaticook de l’Estrie (Québec) subit les conséquences désastreuses du gel. Le premier sous-modèle utilise une combinaison de profils de température provenant du satellite AIRS et de stations météorologiques afin d’estimer quotidiennement et régionalement le gradient thermique de l’air. L'utilisation de valeurs journalières, au lieu de valeurs fixes, permet d’estimer plus précisément les conditions atmosphériques. Les résultats ont démontré l’utilité de l’utilisation de la température de l'air obtenue par AIRS (850 hPa et 700 hPa) pour l’estimation du gradient thermique. Le second sous-modèle utilise les données associées aux conditions synoptiques du gel radiatif pour obtenir une équation du rayonnement descendant localement ajustée. Alors que l’erreur aux moindres carrés (RMSE) de Micro-Met était de 176.95 Wm-2 avec une erreur absolue (MAE) moyenne de 176.40 Wm-2, la nouvelle équation génère une RMSE de 4.90 Wm-2 et une MAE de 4.00 Wm-2. Le troisième sous-modèle contient trois parties :la détection des vallées fermées, l’estimation de la rapidité de drainage de l’air, et l’intégration de la perte de chaleur sensible ainsi que le refroidissement radiatif en vallée durant la nuit. La comparaison entre les simulations Micro-Met et les mesures de la température de l’air montrent une MAE de 1.11 (°C) et une RMSE de 1.66 (°C). La comparaison avec le modèle amélioré indique un gain avec une MAE de 0.68 (°C) et une RMSE de 1.08 (°C). Le quatrième sous-modèle était construit sur des résultats expérimentaux de vitesse du vent générés en laboratoire par des simulations. Trois équations ont été proposées pour estimer la vitesse du vent. Les résultats indiquent un coefficient de corrélation (R2) de 71% pour une vitesse de vent en dessous de 6 ms-1. La version améliorée de Micro-Net fournit une nouvelle plateforme pour des modèles d’énergie végétation-atmosphère et permet de prévoir la température minimale nocturne. Les résultats des tests de prédiction de cette température minimum concordent avec les mesures in-situ. Ces mesures ont été prises dans 5 secteurs topographiques différents afin d’améliorer les modèles de prédiction et engendrent des erreurs pour des vallées fermées (RMSE = 1.34, MAE = 1.03), pour différentes pentes (RMAE = 0.93, MAE = 0.73), crêtes (RMSE = 1.02, MAE = 0.88), plaines (RMSE = 0.44, MAE = 0.40), et aux orées des forêts (RMSE = 0.58, MAE = 0.53). En plus des objectifs spécifiques précédents, cette étude a proposé une nouvelle méthode d'atténuation du gel basée sur la thermodynamique du transport de la vapeur d'eau d'une source humide à un puits sec. Nous avons ajouté au Selective Inverse System (SIS) déjà utilisé dans le milieu, un contenant d'eau chaude à sa base pour diffuser la vapeur d'eau dans l'air ambiant. Cette opération a augmenté l’humidité de l'air ambiant et augmenté l'entropie humide. Cet essai a été réalisé dans un verger. La méthode d'atténuation la plus courante se concentre sur la température de l'air. La méthode proposée repose plutôt sur les principes physiques de l'entropie humide, qui combinait à la fois la température et l'humidité de l'air et le contenu thermique représenté. Dans l'ensemble, pour ce projet de recherche, un modèle couplé a été conçu pour prévision la température minimale nocturne de l'air dans des terrains agricoles vallonnés. En particulier, en améliorant la précision des prévisions, nous avons élaboré et ajouté des sous-modèles pour estimer les baisses de température dues à la stagnation du drainage de l'air froid et à l'effet des brise-vent forestiers sur la vitesse du vent. Pour réduire l'effet de gel, une nouvelle méthode de mitigation active respectueuse de l'environnement a été présentée. Cette étude a le potentiel d’aider les agriculteurs à réduire les dommages causés par le gel. De plus, elle peut être utile pour les services agricoles en termes de prise de décision, réduisant ainsi les dommages économiques.fr
dc.description.abstractAbstract: The main objective of this study was related to radiation frost damage: (1) improving the forecasting capability of local frost, which was adapted to forecast nocturnal minimum temperature at a 30-meter resolution, using a vegetation atmosphere energy exchange framework, and (2) proposing a new mitigation approach to protect agricultural crops during frost periods. The first advance was achieved through several specific objectives to enhance the capabilities of a meteorological spatial distribution model (Micro-Met) on four sub-models: (i) estimating local air temperature lapse rate on a daily basis (ii) modifying downward longwave equation under clear sky condition, (iii) quantifying the effects of cold air drainage on air temperature, and (iv) quantifying the forest shelter effect on wind speed. The second advance advancement was accomplished by implementing and testing a new active method based on steam cycle thermodynamic. The first sub-model used AIRS (Atmosphere infrared sounder) air temperature profile and surface station data to estimate air temperature lapse rate on the daily and regional scale. The use of daily basis lapse rate, instead of the fixed value, allowed to present more accurate atmospheric condition. The results showed the potential of the AIRS air temperature profiles (850 hPa and 700 hPa) to estimate the temperature lapse rate. The second sub-model used observational data associated with synoptic conditions of radiation frost to present a locally adjusted downward longwave equation. The reported root means square error (RMSE) and mean absolute error (MAE) for the current version of Micro-Met were 176.95 (Wm-2) and 176.40 (Wm-2) respectively, while the results of the new equation led to an RMSE and MAE of 4.90 (Wm-2) and 4.00 (Wm-2) respectively. The third sub–model constituted three components: detected closed valley, estimated cold air drainage velocity, and integrated sensible heat loss and radiative cooling during the night on detected valleys. Comparison between the current Micro-Met simulation and the measured air temperature shows MAE of 1.11°C and RMSE of 1.66°C, while the comparison with the enhanced Micro-Met simulation indicated an improvement with MAE of 0.68 °C and RMSE of 1.08 °C. The fourth sub-model was based on experimental results of wind velocity produced in a laboratory with wind-tunnel models. Three separate equations were formulated for wind velocity estimation over the windward, through the shelterbelt, and leeward areas. The results indicated a coefficient of determination (R2) of 71% under the wind's velocity lower than 6ms-1. The Enhanced Micro-Met version provided a new platform to power vegetation-atmosphere energy model to forecast minimum nocturnal temperature. The performance test for forecasting minimum air temperatures indicated agreement with in-situ measurements. Measurements were taken on five topographic sectors in order to assess the improved modeled prediction and led to error assessment on closed valleys (RMSE=1.34, MAE = 1.03), different parts of slopes (RMAE = 0.93, MAE = 0.73), ridges (RMSE = 1.02, MAE = 0.88), flat areas (RMSE = 0.44, MAE = 0.40), and areas close to the forest (RMSE = 0.58, MAE = 0.53). In addition to previous specific objectives, this study proposed a new frost mitigation method based on the thermodynamics of water vapor transport from a moist source to dry sink. A vessel of warm water equipped with a Selective Inverted Sink (SIS) system was used to transport water vapor into the air, which ended up decreasing the air dryness and increasing moist entropy. This test was carried out in an orchard. The most common mitigation method focuses on air temperature. Instead, the proposed method was based on the physical principles of moist entropy, which combined both air temperature and humidity and depicted heat content. Overall, for this research project, a coupled model was designed to predict nocturnal minimum air temperature over hilly agricultural terrain. In particular, through improving prediction accuracy, we developed and added sub-models to estimate drops in temperature due to pooling and stagnation of cold air drainage and the effect of forest shelterbelt on wind velocity. To reduce frost effect, a new environmentally friendly active method was presented. This study served to help farmers reduce frost damages. Moreover, it can be useful for agricultural services in terms of decision-making, thereby, reducing economic damages.fr
dc.language.isofrefr
dc.language.isoengfr
dc.publisherUniversité de Sherbrookefr
dc.rights© Vahid Ikanifr
dc.rightsAttribution - Pas d’Utilisation Commerciale - Pas de Modification 2.5 Canada*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/ca/*
dc.subjectRadiation frostfr
dc.subjectForecasting minimum air temperaturefr
dc.subjectSpatial modelingfr
dc.subjectCold air drainagefr
dc.subjectForest shelterbeltfr
dc.subjectAir temperature lapse ratefr
dc.subjectNet radiationfr
dc.subjectFrost mitigationfr
dc.subjectMoist enthropyfr
dc.titleAmélioration de la capabilité de modélisation et de mitigation du gel radiatif au milieu agricolefr
dc.typeThèsefr
tme.degree.disciplineTélédétectionfr
tme.degree.grantorFaculté des lettres et sciences humainesfr
tme.degree.levelDoctoratfr
tme.degree.namePh.D.fr


Files in this document

Thumbnail
Thumbnail

This document appears in the following Collection(s)

Show simple document record

© Vahid Ikani
Except where otherwise noted, this document's license is described as © Vahid Ikani