Show simple document record

dc.contributor.advisorBenmokrane, Brahimfr
dc.contributor.authorDulude, Christianfr
dc.date.accessioned2014-05-14T19:56:49Z
dc.date.available2014-05-14T19:56:49Z
dc.date.created2011fr
dc.date.issued2011fr
dc.identifier.isbn9780494836880fr
dc.identifier.urihttp://savoirs.usherbrooke.ca/handle/11143/1604
dc.description.abstractIn Quebec and in North-America, there is a common deterioration problem of the reinforced concrete structures in parking garages. The harsh environment surrounding those structures corrodes the steel rebars which is the principal cause of degradation. However, this problem can be completely eliminated by the use of a non corroding material such as glass fiber-reinforced polymer (GFRP). This master's thesis presents an overview of the properties of fiber-reinforced polymer (FRP) material and the standards related to their application. Also, the internal punching shear resistance mechanisms of two-way slabs are reviewed. This type of structure is widely used in parking garages. The results of eight two-way slabs reinforced with GFRP bars tested up to punching shear failure are presented in this master's thesis. Moreover, two reference slabs reinforced with steel have also been tested. The test parameters are : (i) the reinforcement type (GFRP or Steel) (ii) the slab thickness (iii) the column dimensions (iv) the reinforcement ratio and; (v) the presence of compressive reinforcement. The slab dimensions are 2.5 m x 2.5 m with a slab thickness of 200 or 350 mm. The results revealed that all the specimens reinforced with GFRP bars showed a brittle failure similar to the reference specimens reinforced with steel. Furthermore, the GFRP specimens had a similar crack pattern and surface failure than the homologue reference specimens. However, the GFRP specimens showed a normalized punching shear strength of 67% in average of the reference specimens with the same reinforcement ratio. Those results are due to the lower modulus of elasticity of the GFRP bars which is about 25% of the steel. The ACI 440.1R-06 shows a very conservative ratio of the experimental results to the prediction (Vc,exp /Nc,pred ) of 2.11 which lead to a none optimum and economical design of two-way slabs reinforced with FRP bars. However, the proposed equation in the next CSA-S806 standard shows good agreement with the experimental results with a ratio Vc,exp /N c,pred of 1.04 and a COV of 13%. Furthermore, the coefficient of determination, R2, of this equation is 0.95. The experimental results presented in this document have been used in the reconstruction of a parking garage in Quebec City. The Hôtel de ville parking garage is the first field application worldwide to use GFRP bars in a two-way slabs.fr
dc.language.isofrefr
dc.publisherUniversité de Sherbrookefr
dc.rights© Christian Duludefr
dc.subjectBéton arméfr
dc.subjectRésistance au poinçonnementfr
dc.subjectStationnement étagéfr
dc.subjectDalle planefr
dc.subjectJonction dalle-colonnefr
dc.titlePoinçonnement des dalles bidirectionnelles en béton armé d'armature de polymères renforcés de fibres de verrefr
dc.typeMémoirefr
tme.degree.disciplineGénie civilfr
tme.degree.grantorFaculté de géniefr
tme.degree.levelMaîtrisefr
tme.degree.nameM. Sc. A.fr


Files in this document

Thumbnail

This document appears in the following Collection(s)

Show simple document record