• Français
    • English
  • Français 
    • Français
    • English
  • Login
View Document 
  •   Savoirs UdeS Home
  • Sciences
  • Sciences – Mémoires
  • View Document
  •   Savoirs UdeS Home
  • Sciences
  • Sciences – Mémoires
  • View Document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

All of Savoirs UdeSDomains & CollectionsBy Issue DateAuthorsTitlesSubjectsDirectorsThis CollectionBy Issue DateAuthorsTitlesSubjectsDirectors

My Account

Login

Statistics

View Usage Statistics

Estimation non-paramétrique de la distribution et densité de copules

Thumbnail
View/Open
Document principal (808.9Kb)
Publication date
2014
Author(s)
Kadi, Nabil
Subject
Copules
 
Modèles de copules
 
Estimation non-paramétrique
 
Estimateur de la copule de Bernstein
 
Tau de Kendall
 
Polynôme de Bernstein
 
Biais à la frontière
Show full document record
Abstract
Les copules représentent un outil innovant pour modéliser la structure de dépendance de plusieurs variables aléatoires. Introduites par Sklar [1959] pour résoudre un problème de probabilité énoncé par Maurice Fréchet, les copules deviennent essentielles à l'appréhension de nombreux domaines d'application tels que l'hydrologie (Salvadori, De Michele, Kottegoda, et Rosso [2007]), les sciences actuarielles (Frees et Valdez [1998]), ou la finance (Cherubini, Vecchiato, et Luciano [2004]; Mc-Neil, Frey, et Embrechts [2005]). Le grand intérêt est qu'elles fournissent des expressions relativement simples des structures des dépendances liant les marges d'une loi multidimensionnelle. Plus précisément, pour le cas bidimensionnel, une copule C définie sur [0, 1] [indice supérieur 2], associée à une distribution F de marges uniformes F [indice inférieur 1] et F [indice inférieur 2], permet de représenter la fonction de répartition jointe F(x [indice inférieur 1], x [indice inférieur 2]) en fonction de ces marginales F [indice inférieur 1](x [indice inférieur 1]) et F [indice inférieur 2](x [indice inférieur 2]) par la relation : F(x [indice inférieur 1], x [indice inférieur 2]) = C(F [indice inférieur 1](x [indice inférieur 1]), F [indice inférieur 2](x [indice inférieur 2])). Cependant en pratique, la copule est inconnue, d'où l'utilité de l'estimer. Dans ce mémoire nous commençons par les définitions et les propriétés liées aux copules ainsi que les modèles paramétriques des copules. Ensuite nous présentons les différentes méthodes d'estimation: paramétriques, semi-paramétriques et non-paramétriques. Dans ce travail, on a étudié les propriétés asymptotiques d'un estimateur non-paramétrique basé sur les polynômes de Bernstein proposé par Sancetta & Satchell [2004]. Aussi, on a utilisé cet estimateur pour proposer un nouvel estimateur du tau de Kendall.
URI
http://savoirs.usherbrooke.ca/handle/11143/135
Collection
  • Moissonnage BAC [4455]
  • Sciences – Mémoires [1780]

DSpace software [version 5.4 XMLUI], copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
 

 


DSpace software [version 5.4 XMLUI], copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback