Now showing documents 1-3 of 3

    • Déploiements de carquois valués de types B et C

      Douville, Guillaume (Université de Sherbrooke, 2015)
      Dans ce mémoire, après avoir défini le concept de déploiement, nous obtenons les variables des algèbres amassées et les classes de mutations associées aux carquois valués de types B et C en ramenant l'étude de ces concepts ...
    • Frises et triangulations de polygones

      Fraser Martineau, Jean-Sébastien; Lavertu, Dominique (Université de Sherbrooke. Département de mathématiques, 2010)
      Dans un article de 1973, Conway et Coxeter étudiaient les propriétés de frises de nombres respectant une certaine "règle unimodulaire". Nous présentons la preuve de leur résultat qui établit une correspondance entre les ...
    • Triangulations, carquois et théorème de Ptolémée

      Douville, Guillaume (Université de Sherbrooke. Département de mathématiques, 2012)
      Les algèbres amassées sont des Z-algèbres commutatives, ou anneaux commutatifs, de polynômes à coefficients entiers, qui sont munies d'une structure combinatoire. Cette classe d'algèbres a été définie par Sergey Fomin ...