Show simple document record

dc.contributor.advisorBelley, Jean-Marc
dc.contributor.authorGueye, Abdoul Aziz Dabfr
dc.date.accessioned2017-11-21T20:48:10Z
dc.date.available2017-11-21T20:48:10Z
dc.date.created2017fr
dc.date.issued2017-11-21
dc.identifier.urihttp://hdl.handle.net/11143/11518
dc.description.abstractSoit $T$ une constante positive. Dans le présent travail, nous nous intéressons à l'existence d'une solution $T$-anti-périodique et d'une solution $T$-périodique de l'équation différentielle d'Abel \begin{equation*} \theta^{\prime}=f_0+\sum_{j\in \mathbb N} f_j\theta^j \end{equation*} avec $f_j$, ($j \in \lbrace 0, 1, 2, ...\rbrace$) à variation bornée sur $[0, T]$. Nous allons généraliser cette équation au cas impulsif où $\theta$ et $\theta^{\prime}$ subissent des sauts dépendants de l'état. Le premier chapitre consiste en un rappel de quelques définitions, notions de bases et résultats fondamentaux de l'analyse réelle et fonctionnelle que nous allons utiliser tout au long des chapitres 2 et 3. Au deuxième chapitre, on étudie l'existence d'une solution $T$-anti-périodique dans le sens que $\theta(0)= -\theta(T)$. Les conditions que nous imposons nous permettent d'utiliser le théorème du point fixe de Banach. Cette méthode nous donne non seulement l'existence d'une solution, mais aussi un moyen de trouver la solution numériquement ainsi qu'une majoration de la vitesse de convergence uniforme, d'une suite d'itérations de Picard vers la solution. Les résultats obtenus dans ce chapitre sont publiés dans \cite{BelleyGueye17}. Au troisième chapitre, on étudie l'existence d'une solution T-périodique pour la même équation. On utilise encore le théorème du point fixe de Banach pour garantir l'unicité de la solution. L'unicité est nécessaire pour que la fonction moyenne $M(\mu)$ que nous introduirons plus tard soit bien définie. Cette méthode nous donne également, non seulement l'existence d'une solution, mais aussi un moyen de trouver la solution numériquement ainsi qu'une majoration de la vitesse de convergence uniforme d'une suite d'itérations de Picard, vers la solution.fr
dc.language.isofrefr
dc.publisherUniversité de Sherbrookefr
dc.rights© Abdoul Aziz Dab Gueyefr
dc.subjectAbelfr
dc.subjectPériodiquefr
dc.subjectAnti-périodiquefr
dc.subjectÉquation différentiellefr
dc.subject16e Problème de Hilbertfr
dc.titleSolution périodique et solution anti-périodique de l'équation différentielle d'Abelfr
dc.typeThèsefr
tme.degree.disciplineMathématiquesfr
tme.degree.grantorFaculté des sciencesfr
tme.degree.levelDoctoratfr
tme.degree.namePh.D.fr


Files in this document

Thumbnail

This document appears in the following Collection(s)

Show simple document record