• Français
    • English
  • Français 
    • Français
    • English
  • Login
View Document 
  •   Savoirs UdeS Home
  • Sciences
  • Sciences – Thèses
  • View Document
  •   Savoirs UdeS Home
  • Sciences
  • Sciences – Thèses
  • View Document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

All of Savoirs UdeSDomains & CollectionsBy Issue DateAuthorsTitlesSubjectsDirectorsThis CollectionBy Issue DateAuthorsTitlesSubjectsDirectors

My Account

Login

Statistics

View Usage Statistics

Estimation d'une densité prédictive avec information additionnelle

Thumbnail
View/Open
Document principal (3.548Mb)
Publication date
2017
Author(s)
Sadeghkhani, Abdolnasser
Subject
Additional information
 
Bayes estimator
 
Dominance
 
Duality
 
Kullback-Leibler loss
 
Plug-in Predictive densities
 
Restricted parameters
 
Skew-normal
 
Variance expansion
Show full document record
Abstract
Dans le contexte de la théorie bayésienne et de théorie de la décision, l'estimation d'une densité prédictive d'une variable aléatoire occupe une place importante. Typiquement, dans un cadre paramétrique, il y a présence d’information additionnelle pouvant être interprétée sous forme d’une contrainte. Cette thèse porte sur des stratégies et des améliorations, tenant compte de l’information additionnelle, pour obtenir des densités prédictives efficaces et parfois plus performantes que d’autres données dans la littérature. Les résultats s’appliquent pour des modèles avec données gaussiennes avec ou sans une variance connue. Nous décrivons des densités prédictives bayésiennes pour les coûts Kullback-Leibler, Hellinger, Kullback-Leibler inversé, ainsi que pour des coûts du type $\alpha-$divergence et établissons des liens avec les familles de lois de probabilité du type \textit{skew--normal}. Nous obtenons des résultats de dominance faisant intervenir plusieurs techniques, dont l’expansion de la variance, les fonctions de coût duaux en estimation ponctuelle, l’estimation sous contraintes et l’estimation de Stein. Enfin, nous obtenons un résultat général pour l’estimation bayésienne d’un rapport de deux densités provenant de familles exponentielles.
 
Abstract: In the context of Bayesian theory and decision theory, the estimation of a predictive density of a random variable represents an important and challenging problem. Typically, in a parametric framework, usually there exists some additional information that can be interpreted as constraints. This thesis deals with strategies and improvements that take into account the additional information, in order to obtain effective and sometimes better performing predictive densities than others in the literature. The results apply to normal models with a known or unknown variance. We describe Bayesian predictive densities for Kullback--Leibler, Hellinger, reverse Kullback-Leibler losses as well as for α--divergence losses and establish links with skew--normal densities. We obtain dominance results using several techniques, including expansion of variance, dual loss functions in point estimation, restricted parameter space estimation, and Stein estimation. Finally, we obtain a general result for the Bayesian estimator of a ratio of two exponential family densities.
 
URI
http://hdl.handle.net/11143/11238
Collection
  • Moissonnage BAC [4115]
  • Sciences – Thèses [776]

DSpace software [version 5.4 XMLUI], copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
 

 


DSpace software [version 5.4 XMLUI], copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback