• Français
    • English
  • Français 
    • Français
    • English
  • Login
View Document 
  •   Savoirs UdeS Home
  • Génie
  • Génie – Mémoires
  • View Document
  •   Savoirs UdeS Home
  • Génie
  • Génie – Mémoires
  • View Document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

All of Savoirs UdeSDomains & CollectionsBy Issue DateAuthorsTitlesSubjectsDirectorsThis CollectionBy Issue DateAuthorsTitlesSubjectsDirectors

My Account

Login

Statistics

View Usage Statistics

L'hexacode, le code de Golay et le réseau de Leech construction, décodage, application en quantification

Thumbnail
View/Open
MQ67319.pdf (4.811Mb)
Publication date
2000
Author(s)
Ragot, Stéphane
Show full document record
Abstract
Ce mémoire traite spécifiquement de l'utilisation du code quaternaire [6,3,4], l' hexacode , en quantification vectorielle. Celui-ci permet de construire et surtout de décoder très efficacement le code de Golay binaire étendu [24,12,8] et le réseau de Leech tourné R ? 24 . Ces objets sont exceptionnels; ils servent tout particulièrement de base de comparaison dans l'étude des algorithmes de décodage algébrique. Le sujet est inspiré de travaux de recherche sur le codage de canal et la modulation codée, mais les résultats sont appliqués ici à la quantification uniquement. Les algorithmes proposés dans la littérature (à distance minimale et à distance bornée) sont détaillés; de nouveaux al gorithmes, fondés sur une recherche en profondeur d'abord, sont proposés. Les algorithmes de décodage algébrique sont appliqués à la quantification d'une source gaussienne sans mémoire . En effet, de par la dualité source-canal, ce qui est décodage au sens du canal peut servir au codage au sens de la source. Il ressort qu'en 24 dimensions le décodage algébrique sous-optimal offre un meilleur compromis entre performance et complexité que le décodage algébrique à distance minimale. Ce résultat incite donc à explorer les dimensions élévées de quantification au moyen de techniques algébriques et d'algorithmes de décodage sous-optimaux.
URI
http://savoirs.usherbrooke.ca/handle/11143/1118
Collection
  • Génie – Mémoires [1940]

DSpace software [version 5.4 XMLUI], copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
 

 


DSpace software [version 5.4 XMLUI], copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback