Show simple document record

dc.contributor.advisorFellouah, Hachimi
dc.contributor.advisorGalanis, Nicolas
dc.contributor.authorLimane, Abdelhakimfr
dc.date.accessioned2017-08-17T19:54:55Z
dc.date.available2017-08-17T19:54:55Z
dc.date.created2017fr
dc.date.issued2017-08-17
dc.identifier.urihttp://hdl.handle.net/11143/11060
dc.description.abstractLa piscine fait partie des établissements publics les plus fréquentés dans notre société. En effet, il ne s’agit pas uniquement d’un lieu de pratique d'activités physiques, mais également un espace de détente, de jeu, d’éducation et de lien familial. Il est de toute évidence essentiel, de fournir un environnement intérieur confortable et sain pour ses occupants. Cependant, en raison de sa dimension, son besoin excessif en énergie et la complexité des phénomènes physiques évoluant à l’intérieur, il est difficile de parvenir à un équilibre optimum entre : qualité de l’air intérieur, confort thermique des occupants et efficacité énergique du bâtiment. Il faut pour cela, parvenir à une description des mécanismes qui façonnent la structure de l’écoulement de l’air par une analyse profonde de ces phénomènes qui sont à l'origine des transferts de chaleur et de masse mis en jeu à l’intérieur. Ainsi, l’objectif visé de cette thèse est de présenter une étude numérique thermo aéraulique, par CFD en régime stationnaire et transitoire, qui permet d’évaluer le comportement dynamique, thermique et thermodynamique des différents phénomènes physiques qui évoluent à l’intérieur de la piscine intérieure semi-olympique de l’université Bishop’s (Sherbrooke, Canada) afin d’améliorer la qualité de l’air intérieur et le confort thermique ainsi que son rendement énergétique. Les simulations sont réalisées avec le logiciel libre OpenFOAM en utilisant une approche RANS. Une étude thermo-aéraulique par CFD a d’abord été réalisée sur une cavité rectangulaire avec plancher chauffé, afin d’appréhender les simulations thermo aérauliques. Cela a abouti à la détermination de la meilleure configuration d’aération pour une qualité de l’air et un confort thermique optimum. Plusieurs simulations CFD du flux d'air tridimensionnel avec transfert de chaleur et de masse ont été aussi effectuées ultérieurement pour la piscine, afin d’évaluer les effets des conditions climatiques extérieures et ceux des nageurs sur l'atmosphère intérieure. En adoptant plusieurs modèles de turbulence de type RANS, la comparaison des résultats obtenus avec les données expérimentales de référence a permis de valider le code OpenFOAM. Les données expérimentales ont été recueillies au préalable au sein de la piscine de l’Université Bishop’s à l’aide d’un dispositif conçu et adapté aux conditions internes propre à la piscine et qui est équipé de plusieurs capteurs pour la mesure de : température, humidité relative et vitesse. Enfin, une étude thermo-aéraulique de la piscine en régime turbulent transitoire pour une durée de 24 heures pour les jours typiques d'été et d'hiver a été réalisée afin de prédire l’évolution de la distribution des paramètres tels que la vitesse, la température et l'humidité relative. Une analyse statistique a permis de montrer que les conditions climatiques extérieures n'ont pas d'effet sur l'environnement interne de celle-ci. D’ailleurs, sa très bonne isolation thermique démontrée par un calcul détaillé des pertes thermiques à travers son enveloppe confirme ce constat. D’autre part, l’évaluation de la qualité de l'air intérieur et le confort thermique des occupants a révélé que ces derniers sont inacceptables. Suite auxquels, un ajustement des paramètres de conditionnement de l’air a été apporté pour fin d’amélioration.fr
dc.description.abstractAbstract : The swimming pool is one of the most popular public establishments in our society and is not just a place for physical activities but also a space for relaxation, play, education and family ties. It is therefore important to ensure a healthy and comfortable indoor environment for the occupants. However, given the size, energy requirement and complexity of the physical phenomena that take place within such space, it is difficult to achieve an optimum balance between interior air quality, thermal comfort of occupants and energy efficiency of the building. This requires a description of the mechanisms, which determine the structure of the airflow by a profound analysis of these phenomena, which are the origin of the heat and mass transfers involved inside such spaces. The objective of this thesis is to present a numerical thermo-ventilation study using CFD (computational fluid dynamic) in stationary and transient regime that allows to evaluate the dynamic, thermal and thermodynamic behaviors of the various phenomena that take place inside the semi-Olympic closed swimming pool at Bishop's University (Sherbrooke, Qc, Canada). The aim is to improve the indoor air quality and thermal comfort of occupants as well as its energy efficiency. The simulations are carried out using OpenFOAM (Open Field Operation and Manipulation) using a Reynolds-Averaged Navier-Stokes (RANS) approach. To do this, a CFD thermo-ventilation study was first carried out on a rectangular cavity with heated floor in order to understand the thermo-ventilation simulations. This has led to the determination of the best ventilation configuration for optimum air quality and thermal comfort. Several CFD simulations of the three-dimensional airflow with heat and mass transfer were also carried out later for the indoor swimming pool to evaluate the effects of outdoor climatic conditions and swimmers on the indoor atmosphere of the pool. By adopting several RANS turbulence models, the comparison of the results obtained with the experimental data allowed to validate the OpenFOAM code. The experimental data were collected in the pool at Bishop's University using a device designed and adapted to the pool’s internal conditions. The devise is equipped with several sensors to measure temperature, relative humidity and velocity. Finally, a thermo-ventilation study of the swimming pool in transient turbulent regime for a duration of 24 hours for typical days of summer and winter was conducted in order to predict the distribution of the various parameters such as velocity, temperature and relative humidity. A statistical analysis showed that the external climatic conditions have no effect on the internal environment of the swimming pool. Moreover, its good thermal insulation demonstrated by a detailed calculation of the thermal losses through building envelope confirms this observation. On the other hand, the evaluation of the indoor air quality and the thermal comfort of occupants revealed that the conditions inside the pool are unacceptable. After which, an adjustment of the air conditioning parameters was made for improvements.fr
dc.language.isofrefr
dc.language.isoengfr
dc.publisherUniversité de Sherbrookefr
dc.rights© Abdelhakim Limanefr
dc.subjectPiscine intérieurefr
dc.subjectDynamique des fluidesfr
dc.subjectOpenFOAMfr
dc.subjectModèles de turbulence RANSfr
dc.subjectEfficacité énergétiquefr
dc.subjectQualité de l'air intérieurfr
dc.subjectConfort thermique des occupantsfr
dc.subjectIndoor swimming poolfr
dc.subjectComputational fluid dynamicsfr
dc.subjectOpenFOAMfr
dc.subjectRANS turbulence modelsfr
dc.subjectEnergy efficiencyfr
dc.subjectIndoor air qualityfr
dc.subjectThermal comfort of occupantsfr
dc.titleModélisation thermo-aéraulique des écoulements d’air avec transfert de chaleur et de masse dans un milieu fermé et humide. Application à une piscine intérieurefr
dc.typeThèsefr
tme.degree.disciplineGénie mécaniquefr
tme.degree.grantorFaculté de géniefr
tme.degree.levelDoctoratfr
tme.degree.namePh.D.fr


Files in this document

Thumbnail

This document appears in the following Collection(s)

Show simple document record