Show simple document record

dc.contributor.authorCaron, Louis-Charlesfr
dc.contributor.authorMailhot, Frédéricfr
dc.contributor.authorRouat, Jeanfr
dc.contributor.otherHaene, Michiel d'fr
dc.contributor.otherSchrauwen, Benjaminfr
dc.date.accessioned2017-08-07T17:13:36Z
dc.date.available2017-08-07T17:13:36Z
dc.date.created2013fr
dc.date.issued2017-08-07
dc.identifierPMID:23522624fr
dc.identifier.urihttp://hdl.handle.net/11143/10996
dc.description.abstractAbstract : The interest in brain-like computation has led to the design of a plethora of innovative neuromorphic systems. Individually, spiking neural networks (SNNs), event-driven simulation and digital hardware neuromorphic systems get a lot of attention. Despite the popularity of event-driven SNNs in soft- ware, very few digital hardware architectures are found. This is because existing hardware solutions for event management scale badly with the number of events. This paper introduces the structured heap queue, a pipelined digital hardware data structure, and demonstrates its suitability for event management. The structured heap queue scales gracefully with the number of events, allowing the efficient implementation of large scale digital hardware event-driven SNNs. The scaling is linear for memory, logarithmic for logic resources and constant for processing time. The use of the structured heap queue is demonstrated on eld-programmable gate array (FPGA) with an image segmentation experiment and a SNN of 65 536 neurons and 513 184 synapses. Events can be processed at the rate of 1 every 7 clock cycles and a 406 x 158 pixel image is segmented in 200 ms.fr
dc.language.isoengfr
dc.relation.isversionofhttps://doi.org/10.1016/j.neunet.2013.02.005fr
dc.rightsAttribution - Pas d’Utilisation Commerciale - Pas de Modification 2.5 Canada*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/ca/*
dc.subjectNeuromorphic engineeringfr
dc.subjectField-programmable gate arrayfr
dc.subjectPipelined heap queuefr
dc.subjectEvent-driven simulationfr
dc.subjectSpiking neural networkfr
dc.titleEvent management for large scale event-driven digital hardware spiking neural networksfr
dc.typeArticlefr
udes.description.typestatusPrépublicationfr
udes.description.typepubScientifiquefr
udes.description.diffusionDiffusé par Savoirs UdeS, le dépôt institutionnel de l'Université de Sherbrookefr
dc.identifier.bibliographicCitationCaron, L.-C., Haene, M., Mailhot, F., Schrauwen, B., Rouat, J. (2013). Event management for large scale event-driven digital hardware spiking neural networks. Neural Networks Journal. Prépublication. https://doi.org/10.1016/j.neunet.2013.02.005fr
udes.autorisation.depottruefr
udes.description.ordreauteursCaron, Louis-Charles; Haene, Michiel d'; Mailhot, Frédéric; Schrauwen, Benjamin; Rouat, Jeanfr


Files in this document

Thumbnail
Thumbnail

This document appears in the following Collection(s)

Show simple document record

Attribution - Pas d’Utilisation Commerciale - Pas de Modification 2.5 Canada
Except where otherwise noted, this document's license is described as Attribution - Pas d’Utilisation Commerciale - Pas de Modification 2.5 Canada