PLANIFIER UN DÉVELOPPEMENT ADAPTÉ AUX CARACTÉRISTIQUES HYDROGRAPHIQUES ET BIOPHYSIQUES DU MILIEU POUR L’AMÉNAGEMENT D’UN QUARTIER DURABLE À WEEDON, QUÉBEC

Par
Émilie Rachiele-Tremblay

Essai présenté au Centre universitaire de formation en environnement et développement durable en vue de l’obtention du grade de maître en environnement (M. Env.)

Sous la direction de Monsieur Léo Provencher

MAÎTRISE EN ENVIRONNEMENT
UNIVERSITÉ DE SHERBROOKE

Septembre 2016
La municipalité de Weedon, en Estrie, a récemment acquis un terrain vacant à proximité du village. La municipalité désire un développement intégrant le concept de développement durable dans le plan d’aménagement du terrain et dans la construction des infrastructures. L’objectif général de ce travail est de recommander à la municipalité de Weedon des moyens pour adapter l’écoquartier aux caractéristiques hydrographiques et biophysiques du milieu.

Premièrement, le milieu biophysique et hydrographique est caractérisé grâce à l’analyse de données géospatiales et par photointerprétation de photographies aériennes. Le potentiel de développement est analysé grâce à l’outil ArcGIS afin de déterminer les zones propices à l’urbanisation ainsi que les zones à exclure. Il est recommandé de concentrer le développement du site dans la zone n’ayant aucune contrainte et de limiter la densité des habitations dans les espaces présentant des contraintes. Selon ces suggestions, il sera possible de développer environ 40 bâtiments sur le site.

Deuxièmement, les systèmes de gestion des eaux usées (le système septique individuel, le système décentralisé et le système centralisé) sont décrits en fonction de leurs avantages, de leurs inconvénients et de leurs limites. Ces points sont ensuite comparés et la création d’un arbre de décision permet de recommander le système le mieux adapté au milieu. Les zones avec contraintes de développement devraient utiliser des systèmes de traitement septiques. Pour ce qui est de la zone sans contraintes, le système de traitement septique est recommandé uniquement si la densité est égale ou inférieure à 5 unités d’habitations par hectare. Si la densité désirée par la municipalité est plus élevée pour cette zone, le raccordement au système de traitement centralisé est recommandé.

Troisièmement, les mesures de gestion des eaux pluviales sont présentées selon différentes caractéristiques adaptées au site. Leur recommandation est basée sur une analyse multicritère pondérée. Les pratiques de gestion optimales qui devraient être utilisées conjointement sur le site sont la collecte et la réutilisation de l’eau de pluie pour la gestion sur le site, la noue engazonnée avec drain pour la gestion en réseau et le marais artificiel pour la gestion en fin de réseau.

Les recommandations présentées dans ce travail visent à privilégier des modes de développement alternatifs à l’urbanisation classique afin d’établir les bases pour le développement d’un quartier durable à Weedon.
REMERCIEMENTS

Je tiens à remercier Léo Provencher pour tout le temps qu’il a investi dans mon essai, pour ses connaissances qu’il a partagées avec moi ainsi que pour sa patience et son empathie. Grâce à lui, j’ai acquis énormément de connaissances sur la géographie, la photointerprétation et la géomatique, des sujets que je ne connaissais absolument pas avant d’entreprendre ce projet.
TABLE DES MATIERES

Introduction .. 1

1. Mise en contexte ... 3
 1.1. Historique du développement urbain en Amérique du Nord dans un contexte de gestion de l’eau... 3
 1.2. Les impacts de l’urbanisation classique sur les ressources en eau .. 4
 1.3. Les impacts des changements climatiques sur les ressources en eau.. 5
 1.4. Le développement adapté aux caractéristiques biophysiques .. 7

2. Caractérisation du site ... 8
 2.1. Contexte de la municipalité de Weedon .. 8
 2.2. Limites géographiques et zonage ... 8
 2.3. Photointerprétation .. 9
 2.3.1. Objectif de la photointerprétation ... 9
 2.3.2. Planification ... 9
 2.3.3. Site à l’étude .. 9
 2.3.4. Matériel .. 10
 2.3.5. Manipulations .. 11
 2.3.6. Validation des données .. 11
 2.3.7. Résultats de la photointerprétation ... 11
 2.3.8. Historique de développement ... 12
 2.4. Milieu support ... 13
 2.4.1. Géologie et dépôts meubles .. 14
 2.4.2. Topographie .. 16
 2.5. Contexte hydrographique ... 17
 2.5.1. Bassin versant ... 17
 2.5.2. Cours d’eau et milieux humides ... 19
2.6. Végétation .. 22
 2.6.1. Nature d’utilisation du sol ... 22
 2.6.2. Données écoforestières .. 23

3. Analyse du potentiel du site .. 25
 3.1. Objectif de développement du site .. 25
 3.2. Justification des critères .. 25
 3.2.1. Nature des dépôts meubles .. 25
 3.2.2. Épaisseur des dépôts meubles ... 26
 3.2.3. Pentes ... 26
 3.2.4. Réseau hydrographique ... 27
 3.2.5. Végétation ... 28
 3.3. Évaluation des critères ... 29
 3.3.1. Nature des dépôts meubles .. 29
 3.3.2. Épaisseur du dépôt meuble .. 30
 3.3.3. Pentes ... 32
 3.3.4. Réseau hydrographique ... 33
 3.3.5. Végétation ... 35
 3.4. Résultat de l’analyse d’aptitude du site ... 36

4. Modèles de gestion des eaux usées ... 39
 4.1. Règlementation ... 39
 4.1.1. Règlement sur l’évacuation et le traitement des eaux usées des résidences isolées 39
 4.1.2. Règlement sur les ouvrages municipaux d’assainissement des eaux usées 43
 4.2. Système local individuel .. 44
 4.2.1. Avantages et inconvénients .. 44
 4.3. Système décentralisé ... 46
 4.3.1. Avantages et inconvénients .. 46
4.4. Collecteur d’eaux usées .. 47

4.4.1. Avantages et inconvénients ... 47

5. Analyse des modèles de gestion des eaux usées .. 49

5.1. Points non déterminants ... 49

5.2. Points déterminants... 50

5.2.1. Densité désirée .. 50

5.2.2. Distance du site par rapport aux services d’égouts municipaux 52

6. Pratiques de gestion optimales des eaux pluviales .. 55

6.1. Présentation des PGO de contrôle à la source ... 55

6.1.1. Toits verts... 56

6.1.2. Collecte et réutilisation de l’eau de pluie ... 56

6.1.3. Jardin de pluie .. 57

6.1.4. Pavages poreux ... 58

6.1.5. Puits et tranchée d’infiltration .. 58

6.1.6. Déconnexion de gouttières ... 58

6.1.7. Caractéristiques des PGO de contrôle à la source .. 59

6.2. Présentation des PGO en réseau .. 60

6.2.1. Bandes filtrantes .. 60

6.2.2. Fossés et noues engazonnés ... 60

6.2.3. Système d’exfiltration .. 61

6.2.4. Caractéristiques des PGO en réseau .. 62

6.3. Présentation des PGO en fin de réseau ... 62

6.3.1. Bassin de rétention sans retenue permanente .. 63

6.3.2. Bassin de rétention avec retenue permanente ... 63

6.3.3. Bassin d’infiltration .. 63

6.3.4. Marais artificiel ... 63
6.3.5. Caractéristiques des PGO en fin de réseau ... 63

7. Analyse des pratiques de gestion optimales des eaux pluviales .. 65

7.1. Description des critères ... 65

7.1.1. Contraintes biophysiques .. 65

7.1.2. Efficacité qualitative .. 66

7.1.3. Amélioration du bilan hydrique ... 67

7.1.4. Réduction des volumes de ruissellement ... 67

7.1.5. Entretien et durabilité ... 67

7.1.6. Coût ... 68

7.2. Pondération des critères .. 68

7.3. Description de l’évaluation des critères ... 68

7.3.1. Contrainte biophysiques .. 69

7.3.2. Efficacité qualitative .. 70

7.3.3. Amélioration du bilan hydrique ... 70

7.3.4. Réduction des volumes de ruissellement ... 70

7.3.5. Entretien et durabilité ... 71

7.3.6. Coût ... 72

7.4. Résultats des grilles d’analyses des PGO .. 72

Conclusion .. 74

Liste des références .. 75

Bibliographie ... 81

Annexe 1 : Photographie aérienne du vol A9370-120 ... 82

Annexe 2 : Photographie aérienne du vol 1195-101 ... 83

Annexe 3 : Photographie aérienne du vol 1196-66 ... 84

Annexe 4 : Photographie aérienne du vol Q66345-95 .. 85

Annexe 5 : Photographie aérienne du vol Q76344-221 .. 86
Annexe 6 : Photographie aérienne du vol Q80517-38.. 87
Annexe 7 : Photographie aérienne du vol Q88104-169 .. 88
Annexe 8 : Photographie aérienne du vol HMQ93-129 .. 89
Annexe 9 : Photographie aérienne du vol HMQ98-88 .. 90
Annexe 10 : Photographie aérienne du vol Q00815-97 .. 91
Annexe 11 : Photographie aérienne du vol Q07136-6 ... 92
Annexe 12 : Photographie aérienne du vol Q13007-599 .. 93
Annexe 13 : Légende de la carte écoforestière ... 94
Annexe 14 : Types de dépôts meubles et perméabilité ... 95
Annexe 15 : Tableau AHP .. 96
Annexe 16 : Tableau d’analyse multicritère des PGO sur le site ... 97
Annexe 17 : Tableau d’analyse multicritère des PGO sur en réseau ... 98
Annexe 18 : Tableau d’analyse multicritère des PGO sur en fin de réseau .. 99
LISTE DES FIGURES ET DES TABLEAUX

Figure 2.1 Limites du secteur à l'étude ... 8
Figure 2.2 Zone de travail pour la photo-interprétation .. 10
Figure 2.3 Carte morpho-sédimentologique ... 15
Figure 2.4 Carte du substrat rocheux en surface ... 15
Figure 2.5 Carte topographique .. 16
Figure 2.6 Carte des classes de pentes ... 17
Figure 2.7 Carte du bassin versant du ruisseau Weedon ... 18
Figure 2.8 Carte du bassin versant à l'étude ... 18
Figure 2.9 Carte du réseau hydrographique et des milieux humides ... 19
Figure 2.10 Caractérisation du cours d'eau #1 ... 21
Figure 2.11 Carte d'utilisation du sol en 2013 .. 22
Figure 2.12 Carte écoforestière .. 23
Figure 3.1 Opportunités et contraintes reliées à la nature des dépôts meubles 30
Figure 3.2 Opportunités et contraintes relatives aux dépôts meubles ... 31
Figure 3.3 Contraintes et opportunités topographiques ... 33
Figure 3.4 Opportunités et contraintes hydrographiques ... 35
Figure 3.5 Opportunités et contraintes en fonction de la densité de la végétation 36
Figure 3.6 Ensemble des opportunités et contraintes du site .. 37
Figure 3.7 Recommandations de densités pour le développement urbain du site 38
Figure 3.8 Ensemble des opportunités et contraintes du site .. 39
Figure 3.9 Recommandations de densités pour le développement urbain du site 40
Figure 3.10 Carte des limites de densité pour les systèmes de traitement septiques en fonction de l'épaisseur du dépôt meuble .. 51
Figure 3.11 Arbre de décision pour le modèle de gestion des eaux usées ... 54

Tableau 2.1 Liste des photographies aériennes utilisées pour la photo-interprétation 11
Tableau 3.1 Classes du coefficient de perméabilité ... 30
Tableau 3.2 Évaluation de l'épaisseur des dépôts meubles .. 31
Tableau 3.3 Évaluation des classes de pentes ... 32
Tableau 3.4 Zones composant la bande riveraine .. 34
Tableau 3.5 Évaluation du réseau hydrographique ... 34
Tableau 3.6 Évaluation de la végétation ... 36
Tableau 4.1 Technologies permises en fonction des caractéristiques du terrain récepteur 41
Tableau 4.2 Distances de recul réglementaire des systèmes septiques... 42
Tableau 4.3 Normes de rejets des systèmes de traitement septiques.. 43
Tableau 4.4 Normes de rejets pour une station d'épuration ... 44
Tableau 5.1 Limite de densité des systèmes de traitement septiques en fonction de l’épaisseur du dépôt meuble et de la vulnérabilité de la nappe phréatique ... 51
Tableau 6.1 Caractéristiques des PGO de contrôle à la source .. 59
Tableau 6.2 Caractéristiques des PGO en réseau ... 62
Tableau 6.3 Caractéristiques des PGO en fin de réseau .. 64
Tableau 7.1 Évaluation des contraintes topographiques ... 69
Tableau 7.2 Évaluation de la capacité de réduction des contaminants ... 70
Tableau 7.3 Évaluation du niveau d’intervention au sein du cycle de l’eau 70
Tableau 7.4 Évaluation de la réduction des volumes de ruissellement .. 71
Tableau 7.5 Évaluation de l’entretien ... 71
Tableau 7.6 Évaluation de la durée de vie .. 71
Tableau 7.7 Évaluation du coût des PGO sur le site et en réseau ... 72
Tableau 7.8 Évaluation du coût des PGO en fin de réseau ... 72
<table>
<thead>
<tr>
<th>Acronyme</th>
<th>Explication</th>
</tr>
</thead>
<tbody>
<tr>
<td>AHP</td>
<td>Analyse hiérarchique des procédés</td>
</tr>
<tr>
<td>ASCE</td>
<td>American Society of Civil Engineers</td>
</tr>
<tr>
<td>BNQ</td>
<td>Bureau de normalisation du Québec</td>
</tr>
<tr>
<td>cm</td>
<td>Centimètre(s)</td>
</tr>
<tr>
<td>DBO</td>
<td>Demande biochimique en oxygène</td>
</tr>
<tr>
<td>DBO₅C</td>
<td>Demande biochimique en oxygène 5 jours, partie carbonée</td>
</tr>
<tr>
<td>DMI</td>
<td>Développement à moindre impact</td>
</tr>
<tr>
<td>FISRWG</td>
<td>The Federal Interagency stream Restoration Working Group</td>
</tr>
<tr>
<td>GVRD</td>
<td>Greater Vancouver Regional District</td>
</tr>
<tr>
<td>ha</td>
<td>Hectare(s)</td>
</tr>
<tr>
<td>km</td>
<td>Kilomètre(s)</td>
</tr>
<tr>
<td>m</td>
<td>Mètre(s)</td>
</tr>
<tr>
<td>min</td>
<td>Minute(s)</td>
</tr>
<tr>
<td>MES</td>
<td>Matières en suspension</td>
</tr>
<tr>
<td>MRC</td>
<td>Municipalité régionale de comté</td>
</tr>
<tr>
<td>N</td>
<td>Azote</td>
</tr>
<tr>
<td>P</td>
<td>Phosphore</td>
</tr>
<tr>
<td>Ptot</td>
<td>Phosphore total</td>
</tr>
<tr>
<td>PGO</td>
<td>Pratique(s) de gestion optimale(s)</td>
</tr>
<tr>
<td>°C</td>
<td>Degré(s) Celsius</td>
</tr>
<tr>
<td>u.</td>
<td>Unité(s)</td>
</tr>
<tr>
<td>USEPA</td>
<td>U.S. Environmental Protection Agency</td>
</tr>
</tbody>
</table>
Lexique

<table>
<thead>
<tr>
<th>Terme</th>
<th>Définition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcaire</td>
<td>Roche sédimentaire constituée à plus de 50% de carbonate de calcium (Gouvernement du Canada, 2016).</td>
</tr>
<tr>
<td>Calcaire fossilière</td>
<td>Calcaire comportant des fossiles (Gouvernement du Canada, 2016).</td>
</tr>
<tr>
<td>Calcaire silteux</td>
<td>Calcaire comportant moins de 50% de silt (grain de 2 à 50 micromètres) (Gouvernement du Canada, 2016).</td>
</tr>
<tr>
<td>Cambrien</td>
<td>Période géologique comprise entre 541 à 485 millions d’années (Walker et Geissman, 2009).</td>
</tr>
<tr>
<td>Dévonien</td>
<td>Période géologique comprise entre 419 à 359 millions d’années (Walker et Geissman, 2009).</td>
</tr>
<tr>
<td>Ordovicien</td>
<td>Période géologique comprise entre 485 à 444 millions d’années (Walker et Geissman, 2009).</td>
</tr>
<tr>
<td>Silurien</td>
<td>Période géologique comprise entre 444 à 419 millions d’années (Walker et Geissman, 2009).</td>
</tr>
<tr>
<td>Till</td>
<td>Dépôt meuble d’origine glaciaire, constitué de particules de toutes tailles (Gouvernement du Canada, 2016).</td>
</tr>
</tbody>
</table>
INTRODUCTION

La municipalité de Weedon, en Estrie, a récemment acquis un terrain vacant à proximité du centre du village. Elle souhaite y développer une zone résidentielle et agrandir les zones commerciales et industrielles à proximité. La municipalité désire un développement intégrant le concept de développement durable dans le plan d’aménagement du terrain et dans la construction des bâtiments. Selon la définition de Vivre en Ville (2014), le développement d’un quartier durable «respecte la capacité des écosystèmes et permet d’épargner les ressources naturelles, énergétiques et financières».

Le développement de quartiers durables est aujourd’hui nécessaire afin de limiter les dommages de l’urbanisation sur les ressources naturelles et d’éviter les conséquences des changements climatiques. Afin de diminuer les risques liés à ces derniers et de limiter les dommages sur l’environnement et sur le développement, il faut maintenant adapter le cadre bâti aux caractéristiques biophysiques et hydrologiques du milieu. Ceci consiste à resserrer les critères de localisation et de conception des infrastructures, et à contrôler le ruissellement à la source.

L’urbanisation cause de nombreux problèmes liés à la gestion des eaux pluviales. L’imperméabilisation des surfaces et la gestion délocalisée de l’eau empêchent la recharge de la nappe phréatique et accentuent drastiquement les volumes d’eau de ruissellement qui, chargés de contaminants, se retrouvent soit dans les milieux naturels, où ils font augmenter soudainement le volume d’eau à traiter dans les usines d’épuration. La gestion des eaux pluviales depuis les dernières décennies est passée de l’évacuation rapide des eaux de ruissellement à la minimisation à la source et à la contention sur le site. Un quartier durable devrait donc viser à minimiser ces impacts sur le cycle hydrologique en évaluant toutes les possibilités de gestion des eaux pluviales.

La municipalité de Weedon se questionne aussi sur la façon d’approvisionner le futur quartier en eau potable et sur la façon de gérer les eaux usées. Il existe plusieurs modèles de gestion ayant tous leurs avantages et leurs inconvénients. Un quartier durable devrait prendre en compte les caractéristiques biophysiques du terrain dans le choix des systèmes les mieux adaptés.

L’objectif général de ce travail est de recommander à la municipalité de Weedon des moyens pour adapter le quartier aux caractéristiques hydrographiques et biophysiques du milieu. Ce but sera atteint en répondant à trois objectifs spécifiques. Premièrement, les milieux biophysiques et hydrographiques devront être caractérisés et analysés afin de déterminer les zones propices à l’urbanisation et les zones
à exclure. Deuxièmement, les systèmes de gestion des eaux usées seront comparés afin de recommander ceux étant le mieux adaptés au milieu. Troisièmement, les mesures de gestion des eaux pluviales seront recommandées en fonction des caractéristiques du site.

La caractérisation du site a été faite à partir de données géospatiales, de photographies aériennes et d’une visite du milieu. L’analyse des zones propices à l’urbanisation et des zones à exclure a été réalisée grâce à une évaluation du potentiel de développement en utilisant l’outil ArcGIS. Les recommandations quant au type de système de gestion des eaux usées ont été réalisées grâce à une analyse comparative des limites des systèmes et à la création d’un arbre de décision. Les mesures de gestion des eaux pluviales ont été recommandées grâce à une analyse multicritère adaptée aux caractéristiques biophysiques et hydrographiques du milieu.

Chacune des sections de ce travail comprend des types de sources totalement différentes. La caractérisation du site s’est faite à partir de données géospatiales publiées par différents ministères québécois et canadiens, dont les auteurs sont spécialisés dans le domaine. L’analyse du potentiel du site a été réalisée à partir d’ouvrages d’urbanisme et d’aménagement écrits par des auteurs reconnus dans leur domaine et référant à de nombreuses sources spécialisées. Les recommandations sur la méthode de gestion des eaux usées sont basées sur des sources primaires provenant d’articles scientifiques revus par les pairs dont l’information se recoupe. Les recommandations sur les outils de gestion des eaux pluviales s’appuient sur des guides publiés par différents ministères québécois et organismes de bassins versants, qui comportent tous de nombreuses sources crédibles.

Cet essai est divisé en sept chapitres. Le chapitre 1 est une mise en contexte qui explique les différents problèmes liés à l’urbanisation et qui démontre la nécessité de développer des quartiers durables. Le chapitre 2 présente les caractéristiques biophysiques et hydrologiques du site. Le chapitre 3 décrit le potentiel du site et explique les recommandations de développement. Le chapitre 4 présente les différents systèmes de gestion des eaux usées, alors que le chapitre 5 expose l’analyse comparative et les recommandations associées à ces systèmes. Le chapitre 6 énonce les caractéristiques des différents outils de gestion des eaux pluviales et le chapitre 7 propose l’analyse multicritère menant aux recommandations.
1. **MISE EN CONTEXTE**

La municipalité de Weedon, en Estrie, a récemment acquis un terrain vacant de 41 hectares à proximité du village (Concertaction Estrie, 2014). Elle désire y agrandir la zone industrielle et y développer une zone résidentielle intégrant le concept de développement durable dans le plan d’aménagement du terrain et dans la construction des bâtiments. Le développement durable de quartiers n’est pas simplement une idéologie ou une façon de vendre un quartier, c’est aujourd’hui une nécessité. Le présent chapitre démontre l’obligation de prendre en compte les caractéristiques biophysiques et hydrologiques du milieu lors du développement urbain par la présentation de l’historique du développement urbain et de ses impacts. L’importance de la prise en compte des changements climatiques est aussi présentée, puisque ceux-ci viendront amplifier les problèmes causés par l’urbanisation. Finalement, un modèle de développement de quartier durable est présenté afin de répondre aux problématiques de l’urbanisation.

1.1. **Historique du développement urbain en Amérique du Nord dans un contexte de gestion de l’eau**

Dans l’histoire de l’Amérique du Nord, le développement urbain s’est principalement fait à proximité des cours d’eau, puisque ces derniers servaient de voies de transport en plus de permettre le développement de l’agriculture et de subvenir aux besoins de base des habitants. La dynamique de développement consistait à conquérir les espaces sauvages et à les aménager selon les besoins pour permettre d’y avoir une qualité de vie agréable. Cela consistait à déboiser de grands espaces, à détourner des rivières, à remblayer des cours d’eau et à construire des barrages pour laisser la place à l’agriculture et à l’urbanisation. Les villes ont été construites en fonction des besoins humains et l’environnement a été façonné en fonction des exigences, avec peu d’égards portés aux limites physiques et biologiques. Le paysage a été sculpté sans considérer la topographie, l’hydrographie et les écosystèmes. (Cahill, 2012)

Le développement traditionnel des villes a mené à un constat: la nature est difficile à contrôler à long terme. Dans les années 1960, la gestion de l’eau de pluie dans les villes est un sujet très préoccupant. À cette époque, on s’inquiète surtout de trouver des moyens pour diriger les grandes quantités d’eau de ruissellement en dehors des municipalités le plus rapidement et le plus efficacement possible. Par contre, cette façon de faire purement axée sur l’évacuation de l’eau mène à des inondations en aval ainsi qu’à la pollution et à la modification du lit des cours d’eau. (Osseyrane et al., 2012)

Aujourd’hui, les éléments de gestion de l’eau pluviale comprennent le contrôle qualitatif, le contrôle quantitatif, le contrôle de l’érosion et le contrôle de la recharge de la nappe phréatique (Osseyrane et al., 2012). Aussi, lors de la planification du développement urbain et de la gestion des eaux pluviales, on considère maintenant davantage les petits événements pluviaux très fréquents, puisqu’ils sont responsables des plus grands impacts sur la qualité de l’eau et de la recharge de la nappe phréatique. Les notions de réduction à la source de l’eau de ruissellement, dont l’évapotranspiration, l’infiltration et la réutilisation, sont aussi de plus en plus intégrées. (Osseyrane et al., 2012)

En résumé, la gestion des eaux pluviales depuis les cinquante dernières années est passée de l’évacuation rapide des eaux de ruissellement à la minimisation à la source et à la contention sur le site. La planification de la gestion de l’eau amène maintenant aussi à se demander où sont les meilleurs endroits pour le développement urbain et quels sites ne devraient pas être utilisés à cette fin (Cahill, 2012).

1.2. Les impacts de l’urbanisation classique sur les ressources en eau

L’urbanisation telle qu’elle a été réalisée historiquement a de nombreux impacts négatifs sur le cycle hydrologique, la qualité de l’eau, la géomorphologie et l’écologie des cours d’eau. Comme il en sera question dans la section suivante, ces impacts seront amplifiés par l’apparition graduelle des changements climatiques.

L’urbanisation est synonyme d’imperméabilisation du sol puisque les routes asphaltées et les bâtiments remplacent la végétation. Le coefficient de ruissellement est proportionnel au pourcentage d’imperméabilisation (quantité de ruissellement / quantité de pluie) (USEPA, 1983). Par exemple, lors d’une averse dans une forêt naturelle, il y a 40 % d’évapotranspiration, 50 % d’infiltration et seulement 10 % de ruissellement (Stephens, Graham et Reid, 2002). Suite à l’imperméabilisation de 30 % du territoire, ce qui correspond à un quartier résidentiel, il y a réduction de l’évapotranspiration à 35 %, diminution de l’infiltration à 35 % et augmentation du ruissellement à 30 % (Stephens et al., 2002). La diminution de l’infiltration cause une baisse du niveau des nappes phréatiques et de l’étioage des rivières, et par conséquent la réduction des lits des cours d’eau. L’imperméabilisation réduit également le temps
de concentration lors d’une averse et cause une augmentation du débit instantané de ruissellement, un accroissement du débit de pointe par un facteur de deux à cinq et une augmentation de la fréquence des inondations (Schueler, 1987).

Les zones résidentielles et commerciales, les rues, les stationnements, les zones gazonnées, les activités industrielles, la construction et les retombées atmosphériques sont les principales sources de pollution des eaux de ruissellement. Lorsque l’eau ruissèle sur ces espaces anthropiques, elle y emmagasine des matières en suspension (MES), des matières organiques, des métaux, des sels, des éléments nutritifs, des huiles, des graisses et des micro-organismes qui peuvent affecter la qualité de l’eau potable et nuire à l’habitat aquatique. (Osseyrane et al., 2012)

L’augmentation du débit de pointe lors d’une averse augmente l’érosion des berges des cours d’eau. Cette érosion cause l’agrandissement de la section hydraulique, la perte de végétation en berge, l’augmentation des sédiments et la modification des caractéristiques du lit. Tout cela peut mener à changer le profil longitudinal du cours d’eau. (Osseyrane et al., 2012)

L’urbanisation a pour conséquence que les ressources en eau consommées doivent être ensuite rejetées dans la nature. Ces effluents, s’ils sont partiellement traités ou pas traités du tout, peuvent contribuer à augmenter les matières organiques, la concentration d’azote (N) et la demande biochimique en oxygène (DBO), en plus d’avoir un effet sur l’écosystème vivant du milieu.

1.3. Les impacts des changements climatiques sur les ressources en eau

Selon les données du Groupe d’expert intergouvernemental sur l’évolution du climat (2007), la température de l’air à l’échelle mondiale s’est élevée de 0,74 °C entre 1906 et 2005. Cette augmentation
des températures a eu des effets notables sur différents indicateurs météorologiques : augmentation de la température et du niveau des océans, diminution de la couverture de neige dans l’hémisphère nord, diminution du pergélisol, fréquence accrue des épisodes de fortes précipitations, durée accrue des sécheresses, augmentation de la fréquence des vagues de chaleur et intensité plus élevée des tempêtes tropicales. Au Canada, l’élévation des températures de l’air s’est avérée être presque le double de la moyenne mondiale avec une augmentation de 1,3 °C depuis 1948. (Groupe d’experts intergouvernemental sur l’évolution du climat, 2007)

Au Québec, l’impact des changements climatiques sur la ressource en eau se fait autant ressentir sur sa quantité que sur sa qualité. Une augmentation des précipitations de 10 à 25 mm d’eau par an a été constatée entre 1951 et 2010 sur l’ensemble du territoire (Romero-Lankao et al., 2014). Les précipitations extrêmes ont aussi été plus fréquentes dans cette même période et on prévoit que les fortes précipitations avec une période de récurrence de 20 ans se verront augmenter de 10 à 20 % d’ici 2050 (Romero-Lankao et al., 2014). Par contre, dans la région du sud du Québec, qui englobe la majorité des centres urbains québécois, une baisse des niveaux d’eau et du débit des cours d’eau causée par l’augmentation de l’évapotranspiration engendrée par la hausse des températures est à prévoir. (Lemmen et al., 2008).

À cause des changements climatiques, les dangers de pollution de l’eau seront encore plus élevés. L’augmentation des débits de ruissellement et l’accroissement des risques de débordement des égouts unitaires feront en sorte que davantage de polluants se retrouveront dans les cours d’eau. Étant donné la baisse du niveau d’étiage des cours d’eau en période de sécheresse, les concentrations de polluants se retrouveront encore plus élevées qu’avant les changements du climat. (Lemmen et al., 2008)

L’augmentation de la fréquence, de l’intensité et de la durée des événements climatiques extrêmes, notamment les sécheresses et les précipitations, diminueront les quantités d’eau disponibles tant en surface que sous terre, et influenceront la qualité de cette eau. Autant les infrastructures municipales collectives que les équipements individuels peuvent subir les aléas des changements climatiques. La rareté de l’eau aura nécessairement aussi des impacts sur les écosystèmes, par la disparition des habitats comme les milieux humides et l’extinction d’espèces vulnérables à la température. (Osseyrane et al., 2012)
1.4. Le développement adapté aux caractéristiques biophysiques

L'urbanisation classique a créé ses propres maux en faisant fi des limites biophysiques de l'environnement. L'avènement des changements climatiques vient amplifier les conséquences de l'urbanisation à un degré tel qu'il est impossible de maintenir ce modèle de développement. Afin de diminuer le risque et de limiter les dommages sur l'environnement et sur le développement, il faut maintenant adapter le cadre bâti aux caractéristiques biophysiques du milieu. En utilisant des mesures préventives d'adaptation aux changements climatiques, les coûts économiques et environnementaux du développement pourront être réduits à long terme. Afin de créer des quartiers résilients et durables, il faut maintenant resserrer les critères de localisation et de conception des infrastructures en plus de contrôler le ruissellement à la source. (Cahill, 2012)

Le modèle le plus intéressant à utiliser concernant l'intégration des caractéristiques biophysiques à la planification du développement urbain est celui du développement à moindre impact (Low Impact Development) (DMI) (Cahill, 2012). Cet idéal de développement consiste à respecter la topographie et l'hydrographie naturelle du site, à intégrer les espaces naturels au sein des quartiers et à minimiser l'imperméabilisation du sol par différentes infrastructures et techniques.

Ainsi, les prochains chapitres exposeront la façon d’appliquer ce modèle de développement de quartier durable, et ce, afin de créer un quartier adapté aux caractéristiques biophysiques et hydrologiques du milieu que la municipalité de Weedon désire urbaniser.
2. CARACTÉRISATION DU SITE

Le site a été caractérisé afin d’obtenir les informations nécessaires à l’analyse de l’utilisation des sols. On trouve dans ce chapitre quatre parties, soit le contexte de la municipalité, la description du milieu support, le contexte hydrographique et la description de la végétation.

2.1. Contexte de la municipalité de Weedon

Le site prévu pour le développement d’un quartier durable se situe au cœur de la municipalité de Weedon. Cette section présente l’emplacement du site et l’historique de la municipalité, plus particulièrement la revue du développement du site entre 1945 et 2013.

2.2. Limites géographiques et zonage

Le site acquis par la municipalité de Weedon a une superficie de 41,13 hectares (ha). Il se situe entre la route 112, le chemin Ferry, la 9e avenue et la rue du Parc Industriel. La figure 2.1 présente le site prévu pour le développement d’un quartier durable. Ce site se situe dans le périmètre d’urbanisation prévu par la Municipalité régionale de comté (MRC) du Haut-Saint-François (Concertaction Estrie, 2014). Une partie du site est zonée Industriel et commerce en gros, alors que les espaces longeant le chemin Ferry et la 9e avenue sont zonés Commercial et services (Concertaction Estrie, 2014). Le site est déjà exclu de la zone agricole permanente (Concertaction Estrie, 2014). La fin des services municipaux est indiquée à l’aide d’une flèche.

(Compilation de Foncier Québec, 2012 et Concertaction Estrie, 2014)

Figure 2.1 Limites du secteur à l’étude
2.3. Photointerprétation

Cette section présente la méthodologie de la photointerprétation ainsi que les résultats.

2.3.1. Objectif de la photointerprétation

La problématique concernant le développement urbain est de tenir compte des contraintes du milieu pour en faire un quartier durable ayant peu d’impacts sur son environnement. L’objectif de la photointerprétation est donc de mettre en valeur les contraintes majeures et les opportunités du milieu en identifiant les principales caractéristiques biophysiques.

2.3.2. Planification

Les premières caractéristiques devant être connues sont les grands ensembles topographiques. Cela consiste à délimiter les ensembles topographiques homogènes en fonction de l’uniformité des surfaces, des pentes et de leur orientation, en plus de délimiter les différents reliefs des sols. Ensuite, le réseau hydrographique doit être identifié par observation concrète des cours d’eau ou de leur lit s’ils sont intermittents. Puis, le bassin versant doit être délimité grâce à la connaissance des altitudes et du réseau hydrographique. Finalement, les grands types d’utilisation du sol doivent être déterminés pour en déduire la nature du matériel le composant en délimitant les espaces cultivés, les prairies et les espaces boisés. (Gagnon, 1974)

Les photographies aériennes ont été choisies selon la résolution nécessaire afin de visualiser les caractéristiques visées. L’identification du milieu biophysique demande une résolution de 10 m, alors que la reconnaissance du réseau hydrographique nécessite une résolution de 0,1 à 1 m (Provencher et Dubois, 2007). Ainsi, l’échelle privilégiée est 1 : 15 000. Puisque l’objectif est de visualiser les éléments du sol et l’hydrographie, les photographies aériennes doivent idéalement avoir été prises alors que le milieu était déboisé et lorsqu’il n’y avait pas de neige.

2.3.3. Site à l’étude

Le centre du site à l’étude se trouve à latitude nord de 45° 42’ 30” et longitude ouest de 71°27’15”. La zone de travail sélectionnée pour l’identification des différents reliefs, du réseau hydrographique et de l’utilisation des sols se trouve au sud-est de la route 112, au sud-ouest du chemin Ferry, au nord-ouest de la 9° avenue et au nord-est de la rue du Parc Industriel (figure 2.2). La zone de travail pour délimiter les ensembles d’altitudes semblables utiles à la délimitation du bassin versant correspond à la totalité des photographies.
2.3.4. Matériel

Le matériel utilisé est un stéréoscope à miroir de marque Sokkia modèle MS27, un binoculaire de grossissement 3X et une table lumineuse du laboratoire de photo-interprétation de l’Université de Sherbrooke.

Le tableau 2.1 présente la liste des photographies aériennes analogiques utilisées pour la photo-interprétation par stéréoscopie. L’ensemble de ces photographies est disponible à la cartothèque de l’Université de Sherbrooke. Les photographies des vols A9370, 1195, 1196, Q66345, Q88104 ont été utilisées, car elles permettent de voir le site avec presque aucune végétation et permettent d’identifier facilement le réseau hydrographique et le substrat rocheux à la surface. Les photographies des vols Q76344 et HMQ93129 ont été principalement utilisées pour identifier le bassin versant. Les photographies du vol HMQ98122 en infrarouge permettent de bien visualiser les cours d’eau intermittents ainsi que le substrat rocheux à la surface. Les photographies des vols Q00815 et Q07136 permettent de voir le développement plus récent du site et de ses alentours.
Tableau 2.1 Liste des photographies aériennes utilisées pour la photo-interprétation

<table>
<thead>
<tr>
<th>Numéro de vol</th>
<th>No. des photographies</th>
<th>Année</th>
<th>Échelle</th>
<th>Couleur</th>
</tr>
</thead>
<tbody>
<tr>
<td>A9370</td>
<td>120-121</td>
<td>1945</td>
<td>1 : 20 000</td>
<td>Noir et blanc</td>
</tr>
<tr>
<td>1195</td>
<td>100-101</td>
<td>1959</td>
<td>1 : 31 680</td>
<td>Noir et blanc</td>
</tr>
<tr>
<td>1196</td>
<td>66-68</td>
<td>1959</td>
<td>1 : 31 680</td>
<td>Noir et blanc</td>
</tr>
<tr>
<td>Q66345</td>
<td>94-96</td>
<td>1966</td>
<td>1 : 15 840</td>
<td>Noir et blanc</td>
</tr>
<tr>
<td>Q76344</td>
<td>221-223</td>
<td>1976</td>
<td>1 : 10 000</td>
<td>Noir et blanc</td>
</tr>
<tr>
<td>Q80517</td>
<td>38-39</td>
<td>1980</td>
<td>1 : 15 000</td>
<td>Noir et blanc</td>
</tr>
<tr>
<td>Q88104</td>
<td>169-170</td>
<td>1988</td>
<td>1 : 15 000</td>
<td>Noir et blanc</td>
</tr>
<tr>
<td>HMQ93129</td>
<td>259-260</td>
<td>1993</td>
<td>1 : 15 000</td>
<td>Noir et blanc</td>
</tr>
<tr>
<td>HMQ98122</td>
<td>88-89</td>
<td>1998</td>
<td>1 : 15 000</td>
<td>Noir et blanc</td>
</tr>
<tr>
<td>Q00815</td>
<td>97-98</td>
<td>2000</td>
<td>1 : 40 000</td>
<td>Noir et blanc</td>
</tr>
<tr>
<td>Q07136</td>
<td>6-7</td>
<td>2007</td>
<td>1 : 15 000</td>
<td>Couleur</td>
</tr>
</tbody>
</table>

2.3.5. Manipulations

Les éléments à identifier sur les photographies sont :

- Le substrat rocheux à proximité de la surface (texture irrégulière);
- Les composantes topographiques (hauteur relative entre les différents ensembles);
- Le réseau hydrographique (observation du cours d’eau ou de son lit);
- La limite des bassins versants (les hauts points ont été identifiés de façon relative, puis reliés par des lignes perpendiculaires aux courbes de niveaux);
- L’utilisation du sol.

2.3.6. Validation des données

La validation des données sur le terrain a été réalisée le 23 décembre 2015 entre 9 :00 et 12 :00. Les deux journées précédentes avaient connu des températures entre 4 °C et 6 °C, ce qui avait fait fondre la neige presque en totalité et rempli le lit des cours d’eau intermittents présents sur le site.

2.3.7. Résultats de la photointerprétation

Tout d’abord, le substrat rocheux à proximité de la surface a pu être identifié sur les photographies de 1945 à 1988 puisque la majorité du milieu était déboisé à cette époque et permettait donc l’observation directe des surfaces. Le substrat rocheux en surface a pu être observé grâce à sa texture irrégulière qui se distinguait facilement des étendues lisse et homogène où les dépôts meubles sont suffisamment épais pour masquer les irrégularités du substratum rocheux.
Ensuite, les composantes topographiques ont été observées sur les photographies aériennes de 1945 à 1976. Cette période correspond au laps de temps où le sol était majoritairement défriché. Les autres photographies ne permettaient pas de faire la distinction entre l’altitude du sol à cause de la hauteur des arbres. Les composantes topographiques ont été déterminées par observation de la hauteur relative entre les différents ensembles.

Puis, le réseau hydrographique a pu être discerné sur toutes les photographies. La délimitation du tracé varie beaucoup sur chacune des images. Lorsque les clichés ont été pris après un épisode de pluie, le cours d’eau apparaît de façon nette. Il est d’autant plus facile à identifier lorsque le soleil se reflète sur l’eau. Par contre, par temps sec, le cours d’eau disparaît et le lit est plus difficile à distinguer. Au cours du temps, la végétation a poussé de part et d’autre de ces cours d’eau. Sur les photographies plus récentes, la délimitation des cours d’eau est souvent masquée.

Les limites du bassin versant ont été établies à partir des photographies de 1945 à 1976, en localisant les lignes de partage des eaux. Les plus hauts points ont été identifiés de façon relative, puis reliés par des lignes perpendiculaires aux courbes de niveau.

Le type d’utilisation du sol a été noté sur l’ensemble des photographies. Dans tous les cas, les limites sont nettes grâce à la différence de teinte et de texture entre la prairie et la forêt.

Dans tous les cas, l’identification des ensembles et des caractéristiques ont été faites par approche inductive, grâce à l’association des caractéristiques.

2.3.8. Historique de développement

Les photographies aériennes utilisées ont été prises environ 100 ans après le début de la colonisation et couvrent la période de 1945 à 2013, ce qui permet de revoir l’utilisation des surfaces sur le site sur un intervalle de 68 ans. Cette section décrit les observations faites à partir des photographies aériennes qui se trouvent aux annexes 1 à 12.

En 1945, les surfaces striées de façon parallèle et régulière ainsi que les clôtures de perches permettent de deviner que les activités principales sur le site sont l’agriculture et l’élevage d’animaux. Les surfaces sont pratiquement totalement déboisées, à l’exception de quelques arbres autour d’un cours d’eau et de ce que l’on devine être un monticule rocheux. Le site compte uniquement une maison et une grange. À cette époque, le village se trouve principalement sur la rue St-Janvier. On aperçoit sur le terrain situé au nord-est du site une gravière.
Sur les photographies de 1959, on remarque que l’agriculture se concentre davantage au sud-est du site, en bordure de la 9e avenue, et que le reste est utilisé pour le pâturage. La végétation s’intensifie autour du cours d’eau avec l’apparition d’arbustes. La gravière au nord-est s’est agrandie et la rue des Érables a été développée juste au nord-est de la rue St-Janvier.

En 1966, la végétation a repris de plus belle autour du cours d’eau et à proximité de la route 112. L’agriculture est toujours pratiquée en bordure de la 9e avenue, alors que le reste du site sert davantage au pâturage. La maison a été détruite, mais la grange subsiste encore jusqu’à aujourd’hui. La gravière au nord-est a été agrandie jusqu’au chemin Ferry, à quelques mètres du site.

Sur les photographies de 1976, on voit se dessiner les trois prairies qui sont encore présentes aujourd’hui : la première en bordure de la 9e avenue, la deuxième au nord de la grange et la troisième au sud-ouest. La végétation est toujours plus dense au centre du site, et on voit apparaître un étang artificiel juste au sud de la route 112.

En 1980, les trois prairies sont toujours présentes. Une nouvelle prairie est visible plus à l’ouest. De plus en plus d’arbres poussent entre ces prairies. Le coin nord-est du site semble faire partie de la gravière se trouvant au nord du chemin Ferry.

On remarque toujours les mêmes quatre prairies sur les photographies de 1988. Une partie du site est maintenant la propriété de Bois Weedon et commence à être développée juste au nord de l’étang artificiel.

De 1993 à 1998, il ne reste pour l’agriculture que les trois prairies actuelles. Le reste des champs où la végétation n’a pas reprise est utilisé pour le foin. La scierie, aujourd’hui Bois Weedon, s’est agrandie.

En 2000, la surface utilisée par la scierie double et s’agrandit vers le sud-est. Les trois champs sont toujours présents.

De 2007 à 2013 apparaissent des plantations de résineux dans les prairies. On observe aussi clairement que les espaces d’entreposage de la scierie ont été remblayés et que des faussés de drainages ont été creusés pour évacuer l’eau de pluie vers le cours d’eau intermittent.

2.4. Milieu support
La nature du substrat rocheux, la composition des dépôts meubles ainsi que leur répartition influencent grandement le mouvement des eaux tant en surface que sous terre. Cette section présente la composition du milieu support, soit la géologie, la composition des dépôts meubles, la topographie et les pentes du site.

2.4.1. Géologie et dépôts meubles

Le territoire de la municipalité de Weedon est entièrement compris dans la province géologique des Appalaches, dans la subdivision de la ceinture de Gaspé. Cette province géologique est caractérisée par une première couche de roches sédimentaires et volcaniques datant du Cambrien et de l’Ordovicien. Une deuxième couche de roches sédimentaires et volcaniques de l’âge silurien et dévonien se retrouve plus près de la surface. Le substrat rocheux est composé de calcaire silteux et de calcaire massif fossilifère. (Ministère de l’Énergie et des Ressources naturelles, 2016)

On trouve deux types de dépôts meubles sur le site (figure 2.3). Il y a premièremenl le till d’origine glaciaire, composé d’un mélange de fragments de roches de toutes tailles formant une matrice peu perméable (Énergie et Ressources naturelles Québec, 2016). On trouve le till en couverture continue, dont l’épaisseur moyenne est supérieure à 1 m, et le till en couverture mince et discontinue, dont l’épaisseur moyenne se situe entre 25 cm et 1 m (Énergie et Ressources naturelles Québec, 2016). L’autre type de dépôt retrouvé sur le site est constitué de sédiments glaciolacustres, caractérisés par des argiles. Ces derniers ont la capacité d’emmager l’eau, mais une très faible conductivité hydraulique, et ils ont donc la propriété d’aquitard (Ferlatte, Tremblay, Rouleau et Larouche, 2014).

Dans le secteur où l’on trouve le till en couverture mince et discontinue, le substrat rocheux composé de calcaire se trouve très près de la surface et est même parfois complètement exposé. La figure 2.4 présente la carte du substrat rocheux en surface, obtenue à partir de l’analyse des photographies aériennes.
Figure 2.3 Carte morpho-sédimentologique

Figure 2.4 Carte du substrat rocheux en surface
2.4.2. Topographie

La figure 2.5 présente la topographie du site. On trouve sur le site un dénivelé d’environ 30 m, allant de 281 m à 250 m (Gouvernement du Canada, s.d.). Cette topographie donne lieu à des pentes variant entre 9 % à 15 % au nord du site (Forêt Québec, 2008), comme présenté sur la figure 2.6. Le reste du site ne comprend que des pentes faibles ou nulles, en deçà de 8 % d’inclinaison (Forêt Québec, 2008).

(Figure 2.5 Carte topographique)
2.5. Contexte hydrographique

Cette section présente les différents niveaux de bassins versants qui alimentent les cours d’eau du site et de ses alentours. La caractérisation du réseau hydrologique ainsi que des milieux humides est aussi présentée.

2.5.1. Bassin versant

Le bassin versant du ruisseau Weedon, d’une superficie de 25 km2, fait partie du bassin versant de la rivière St-François. Le site à l’étude se situe dans le sous-bassin versant du ruisseau Weedon (bassin d’ordre 2) (figure 2.7).

La figure 2.8 présente le bassin versant formant des cours d’eau traversant le site à l’étude, obtenue à partir de l’analyse des photographies aériennes. Ce sous-bassin d’une superficie de 0,9 km2 comprend deux cours d’eau intermittents et rejoint le ruisseau Weedon juste avant son arrivée dans la rivière St-François.
Figure 2.7 Carte du bassin versant du ruisseau Weedon

Figure 2.8 Carte du bassin versant à l’étude
2.5.2. **Cours d’eau et milieux humides**

La figure 2.9 illustre le réseau hydrographique et les milieux humides présents sur le site. Le Conseil de gouvernance de l’eau des bassins versants de la rivière Saint-François (COGESAF) (COGESAF, s.d.) ainsi que Ressources naturelles Canada (Gouvernement du Canada, s.d.) ont identifié deux cours d’eau intermittents entre les rues Ferry et des Érables, respectivement numérotés 1 et 2 sur la figure 2.9. L’analyse des photographies aériennes a permis d’identifier un troisième cours d’eau, identifié 3 sur la même figure.

![Carte du réseau hydrographique et des milieux humides](image)

(Compilation d’après Gouvernement du Canada, s.d. et COGESAF, s.d.)

Figure 2.9 Carte du réseau hydrographique et des milieux humides

Le cours d’eau numéroté 1 sur la figure 2.9 est un cours d’eau intermittent qui se forme à partir des eaux qui ruissellent provenant de la scierie et de la route 112. La figure 2.10 présente l’état du cours d’eau tel qu’observé lors de la visite sur le terrain. L’image A présente l’eau turbide provenant de la scierie. L’eau est chargée de sable et de MES et le cours d’eau a une largeur d’environ 2 m. L’image B présente le lit qui se rétrécit à environ 1 m, alors que l’eau s’étend pour former un marécage. On trouve aussi à cet endroit une traverse de véhicules tout terrain et un ponceau artisanal (non visible sur la
photo). L’image C montre le talus d’environ 5 m de haut présent au sud du cours d’eau. L’image D présente un marécage caractérisé par la forte présence de roseaux et où l’on trouve beaucoup de matière organique. L’image E présente le cours d’eau qui reprend son lit après le marécage. Le lit varie entre 0,5 et 1,5 m selon l’endroit, et l’eau est devenue limpide. L’image F présente le cours d’eau qui s’étend dans la clairière, où on ne retrouve pas de lit : l’eau s’étend dans l’herbe et inonde le champ de foin sans toutefois s’infiltrer. L’image G présente le lieu où le cours d’eau se concentre avant de rejoindre le fossé en bordure du chemin de fer. Une première visite sur le site au mois d’octobre 2015 a permis de voir le lit du cours d’eau à sec. La nature du substrat était du sable et du silt, avec de la matière organique.

Le cours d’eau numéroté 3 sur la figure 2.9 est un cours d’eau qui a été identifié sur les photographies aériennes. La visite sur le site a permis de constater qu’il s’agit en fait d’un cours d’eau souterrain intermittent. Des résurgences ont pu être localisées et une partie du tracé a pu être identifié grâce à l’absence d’arbres et à la végétation significativement différente de celle environnante.
Figure 2.10 Caractérisation du cours d'eau #1

(Compilation d'après Gouvernement du Canada, s.d. et COGESAF, s.d.)
2.6. Végétation

Cette section vise à caractériser l’état de la flore et l’utilisation actuelle du sol obtenue à partir des photographies aériennes de 2013. De plus, les caractéristiques écoforestières du Service des inventaires forestiers datant de 2012 sont présentées.

2.6.1. Nature d’utilisation du sol

La figure 2.11 présente la nature d’utilisation du sol telle qu’interprétée à partir des photographies aériennes de 2013. On y voit deux espaces, l’un industriel et l’autre commercial, soit un petit commerce d’antiquités sur le chemin Ferry et une grande scierie, Bois Weedon, sur la route 112. Le nord du site est bordé de résidences et de friches. On trouve sur le site acquis par la municipalité un seul bâtiment, soit une vieille grange. La majorité du site est recouverte de boisé. Le site comprend trois grandes clairières actuellement utilisées pour y récolter du foin. Il y a une seule entrée, située sur le chemin Ferry. Le point de vue le plus intéressant se trouve au sud, où on peut apercevoir les montagnes environnantes.

Figure 2.11 Carte d'utilisation du sol en 2013
2.6.2. Données écoforestières

La figure 2.12 présente la carte écoforestière du site et sa légende se trouve à l’annexe 13. Les informations importantes à retenir au sujet de la végétation sont :

- La végétation est majoritairement constituée de résineux plantés, principalement de l’épinette blanche, du sapin baumier et du thuya occidental (cèdre), ce qui a été confirmé sur le terrain;
- La densité est généralement plus faible que 60 %;
- Selon les photographies aériennes, les boisés les plus anciens sont apparus entre 1966 et 1976, et l’âge des peuplements est d’au maximum 50 ans;
- Le type écologique prédominant est une pessière blanche ou cédrière.

(Service des inventaires Forestiers, 2012)

Figure 2.12 Carte écoforestière

Ce chapitre présentait les caractéristiques biophysiques et hydrographiques du site. Le substrat rocheux est composé de calcaire et les dépôts meubles sont composés de tills peu épais. La topographie est principalement composée de pentes douces, mais certaines de ces pentes s’inclinent jusqu’à 15 %. Le site comprend trois cours d’eau, tous intermittents, et quelques milieux humides. La végétation sur le site est constituée de grands espaces boisés résineux et de prairies. Certaines de ces caractéristiques
représentent des contraintes au développement. Le chapitre suivant constitue une analyse du potentiel du site pour le développement urbain.
3. ANALYSE DU POTENTIEL DU SITE

Une analyse du potentiel consiste à identifier les opportunités et les contraintes du site en fonction du type de développement désiré. Il s’agit d’abord de déterminer les objectifs de développement du site pour ensuite considérer quels facteurs seront pris en compte pour l’évaluation. En date d’aujourd’hui, le site à l’étude est principalement boisé avec quelques parcelles à vocation agricole. L’objectif de la municipalité est de développer un quartier à vocation résidentielle, commerciale et industrielle durable, c’est-à-dire ayant un minimum d’impacts sur les ressources naturelles, principalement les ressources en eau. Le présent chapitre présente les objectifs d’utilisation du site, la justification des critères d’évaluation et finalement le résultat de l’analyse d’aptitude.

3.1. Objectif de développement du site

La municipalité de Weedon désire principalement un développement résidentiel, commercial et industriel. La portion résidentielle comprend la construction d’habitations, d’un réseau de rues et d’infrastructures d’assainissement des eaux usées (sur le site ou hors site), d’espaces de loisir et d’agriculture urbaine et l’utilisation de services d’énergie et de communication. Le développement industriel et commercial nécessite la construction de bâtiments de plus grande envergure, de stationnements à plus grande surface et aussi d’infrastructures d’assainissement des eaux usées.

3.2. Justification des critères

L’objectif principal de cette analyse est de déterminer comment le développement urbain peut être réalisé avec un minimum d’impacts sur les ressources en eau. Les critères d’évaluation de l’analyse de potentiel ont été sélectionnés pour leur impact sur le bon fonctionnement du cycle de l’eau. Ainsi, les critères ont tous une implication relative aux taux d’évapotranspiration, d’infiltration, de ruissellement ainsi qu’à la qualité et à la quantité de l’eau.

3.2.1. Nature des dépôts meubles

Les dépôts meubles forment l’horizon C du sol et sont formés par les dépôts laissés lors du passage des glaciers et par l’altération du substratum rocheux. La nature des dépôts meubles affecte la perméabilité des surfaces ainsi que la forme des aquifères et le déplacement de l’eau de la nappe phréatique. Plus une surface est perméable, plus il y aura d’infiltration et moins il y aura de ruissellement lors de précipitations. La forme et la dimension des particules qui composent les formations meubles affectent la perméabilité : plus les particules sont grossières, comme le gravier et le sable, plus l’espace entre elles
est important et plus le matériau est perméable (Randolph, 2012). Un dépôt constitué de particules très fines, comme l’argile, est très peu perméable et forme des aquitards, qui limitent le déplacement de l’eau souterraine (Beer et Higgins, 2000). La perméabilité est un facteur très important si l’on désire traiter les eaux usées sur le site. Un sol trop perméable risquerait de permettre la contamination de la nappe phréatique, alors qu’un sol trop peu perméable pourrait donner lieu à des débordements.

3.2.2. Épaisseur des dépôts meubles

L’épaisseur des dépôts meubles est un critère important puisqu’elle influence le drainage, affecte la profondeur de la nappe phréatique et peut aussi influencer la capacité de construire en plus des coûts qui sont y associés. Une faible épaisseur de dépôt de surface réduit la capacité de drainage souterrain, puisque le mouvement vertical de l’eau est limité. Un dépôt meuble peu épais est donc rapidement saturé lors de précipitations et donne lieu à davantage de ruissellement. La nappe phréatique est définie comme la portion de dépôts de surface saturée d’eau. Lorsque ces dépôts sont peu épais, la nappe phréatique se retrouve près de la surface et est davantage exposée aux contaminants. Une faible épaisseur de dépôts de surface peut aussi limiter la construction, puisque l’excavation devient beaucoup plus difficile. Pour construire des fondations pouvant résister au gel, elles doivent se trouver à une profondeur d’au moins 1,5 m. Avec des dépôts peu épais, il faudrait alors avoir recours au dynamitage pour la construction des fondations et des services publics. (Randolph, 2012)

3.2.3. Pentes

La relation entre le gradient d’une pente et son effet sur le taux d’infiltration est toujours sujette à beaucoup de recherches. Le taux d’infiltration varie d’abord énormément selon le type de dépôt meuble, ce qui fait en sorte que les études sur le sujet sont parfois contradictoires. En général, les études démontrent que plus une pente est forte, moins l’eau peut s’infiltrer puisqu’il y a écoulement rapide en surface. Aussi, les pentes plus fortes font en sorte que l’épaisseur de la couche d’eau de ruissellement est moins grande qu’à plat et ne permet pas de submerger les espaces ayant une meilleure conductivité hydraulique. Ainsi, la relation entre l’infiltration et le gradient d’une pente est inverse : plus le gradient est fort, moins il y a d’infiltration. (Fox, Bryan et Price, 1997)

En plus d’augmenter les volumes d’eau de ruissellement, les pentes augmentent aussi la vitesse du courant d’eau. Cela augmente donc le potentiel d’érosion et charrie davantage de particules dans les cours d’eau en plus de diminuer leur qualité. Aussi, lors de l’urbanisation, l’imperméabilisation des surfaces provoque des surplus d’eau de ruissellement qui se déplacent dans des patrons modifiés, ce qui
contribue davantage à l’érosion et rend le sol instable. Selon le gradient, les pentes devraient préférentiablement être végétalisées afin que les racines permettent de retenir le sol et de prévenir l’érosion ainsi que les glissements de terrain. (Beer et Higgins, 2000)

3.2.4. Réseau hydrographique

Le réseau hydrographique est composé des milieux humides, des cours d’eau ainsi que de leur bande riveraine respective. L’importance de chacun de ces éléments est décortiquée dans cette section.

Les cours d’eau, quant à eux, évacuent l’eau de pluie, alimentent les rivières, les lacs et les aquifères. Les cours d’eau, les plans d’eau et les milieux humides représentent la majeure contrainte d’urbanisation d’un site. Les cours d’eau doivent donc être de toute évidence évités.

Une bande riveraine végétalisée de part et d’autre des cours d’eau et des milieux humides est primordiale. Les plantes permettent de stabiliser le sol avec leurs racines et évitent ainsi l’érosion des berges. La présence de végétation permet aussi de diminuer le ruissellement et d’augmenter l’infiltration en modifiant la texture et la composition des dépôts meubles grâce à la matière organique, ainsi que d’améliorer la qualité de l’eau qui rejoint les cours d’eau. La bande riveraine permet d’abriter la faune et de protéger les cours d’eau de l’augmentation de la température grâce à l’ombre. (Randolph, 2012)
3.2.5. Végétation

La végétation joue un rôle majeur d’interception des précipitations avant même qu’auraient lieu l’infiltration et le ruissellement. La végétation est un espace de stockage de l’eau de pluie à plusieurs niveaux. La canopée des plus hauts arbres intercepte les premières gouttelettes, et lorsque cet étage est complet, l’eau tombe à un niveau inférieur de végétation. Plusieurs facteurs influencent la quantité d’eau interceptée : la forme des feuilles et leur rugosité ainsi que la densité du couvert végétal. Premièrement, les conifères ont une plus grande capacité d’interception que les feuillus grâce à leurs épines. Ensuite, les feuilles rugueuses ayant beaucoup d’aspérités constituent de plus grands réservoirs que les feuilles lisses. Finalement, plus la canopée est dense et plus il y a présence de strates arborescentes, plus de grandes quantités d’eau peuvent être stockées lors de précipitations. La totalité de l’eau interceptée par la végétation lors des précipitations sera retournée à l’atmosphère sous forme de vapeur d’eau grâce à l’évaporation. (The Federal Interagency Stream Restoration Working Group [FISRWG], 1998)

La végétation est aussi utile pour sécher les sols après une averse grâce à la transpiration. L’évapotranspiration en milieu complètement végétalisé permet de retourner à l’atmosphère 40 % des volumes d’eau tombés lors d’une averse (Osseyrane et al., 2012).

La végétation permet ensuite d’améliorer la capacité d’infiltration des dépôts meubles. La présence de végétaux modifie la texture et la composition du dépôt meuble grâce à la matière organique. La texture et la composition du dépôt meuble sont aussi les facteurs influençant l’infiltration. Les plantes améliorent la porosité du dépôt meuble de nombreuses façons. Tout d’abord, le couvert végétal intercepte les gouttes d’eau qui, par leur vitesse, peuvent détruire les pores à la surface du sol. Les racines et les racines en décomposition forment des canaux au travers du dépôt meuble, ce qui permet à l’eau de s’infiltrer davantage. La présence de la flore permet aussi aux organismes tels que les vers et autres insectes de vivre et de rendre le sol plus meuble. Finalement, les acides humiques provenant de la matière organique en décomposition permettent de lier les particules fines en agrégats, ce qui rend le sol plus poreux. (FISRWG, 1998)

En forêt, 50 % de l’eau des précipitations qui n’est pas interceptée par la végétation s’infiltra dans le sol et 50 % de cette quantité ira recharger la nappe phréatique (Osseyrane et al., 2012).
En résumé, sur un sol fortement végétalisé, uniquement 10 % de l’eau d’une averse ruissellera et engendrera les problèmes qui y sont reliés, soit l’augmentation des eaux de ruissellement à gérer, la diminution de la qualité de l’eau, l’érosion du sol et la diminution de la qualité du milieu récepteur.

3.3. Évaluation des critères

Les critères sont évalués sur une échelle comportant quatre niveaux : grande opportunité, opportunité modérée, contrainte et contrainte majeure. Une grande opportunité correspond à l’absence totale d’entrave au développement. Une opportunité modérée indique que le site ne comprend pas d’entrave au développement, mais que le développement pourrait nécessiter quelques travaux supplémentaires de compensation pour la gestion des eaux. Une contrainte indique la présence d’une entrave ayant un impact non négligeable sur l’eau, mais qui pourrait toujours être compensé par certaines technologies. Finalement, une contrainte majeure correspond à une entrave ayant de grandes implications dans le cycle de l’eau ou dans sa qualité et sa quantité.

3.3.1. Nature des dépôts meubles

On trouve sur le site un seul type de dépôt meuble, soit le till. Le till est un mélange d’argile, de silt, de sable et de blocs de gravier. Sa perméabilité peut varier énormément selon le pourcentage de chacune des composantes. Les données pédologiques indiquent que les sols correspondants aux dépôts de till sont composés principalement de loam sableux et de loam (IRD, 2002) (50 à 100 % sable, 0 à 50 % silt et 0 à 75 % argile (Randolph, 2012)). Puisque le sable représente au moins 50 % du dépôt meuble, ce till pourrait être classé dans la catégorie sable et argile inorganique, ayant un coefficient de perméabilité de 5 à 10 cm / heure (annexe 14).

Les dépôts meubles ayant une perméabilité de plus de 10 cm / l’heure offrent une grande opportunité puisque le drainage est excellent (tableau 3.1). Les dépôts ayant une perméabilité de 5 à 10 cm / l’heure offrent une opportunité modérée, puisque le drainage est moyen (tableau 3.1). Les dépôts ayant une perméabilité de moins de 5 cm / l’heure présentent une contrainte, puisqu’ils limitent l’usage des ouvrages d’infiltration (tableau 3.1). Les sols n’ayant aucun coefficient de perméabilité présentent une contrainte importante puisqu’ils ne permettent aucune infiltration. La figure 3.1 illustre les opportunités et contraintes des dépôts meubles.
Tableau 3.1 Classes du coefficient de perméabilité

<table>
<thead>
<tr>
<th>Coefficient de perméabilité</th>
<th>Évaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>> 10 cm / heure</td>
<td>Grande opportunité</td>
</tr>
<tr>
<td>5 à 10 cm / heure</td>
<td>Opportunité modérée</td>
</tr>
<tr>
<td>< 5 cm / heure</td>
<td>Contrainte</td>
</tr>
<tr>
<td>Aucun</td>
<td>Contrainte majeure</td>
</tr>
</tbody>
</table>

Figure 3.1 Opportunités et contraintes reliées à la nature des dépôts meubles

Puisque le till constitue le seul dépôt meuble sur toute la surface du site et qu’il correspond à une opportunité modérée, ce critère ne permet pas de départager l’utilisation des sols et ne sera pas pris en compte dans la carte finale des opportunités et contraintes. Par contre, l’épaisseur du dépôt meuble, présentée à la prochaine section, présente des caractéristiques beaucoup plus limitantes.

3.3.2. Épaisseur du dépôt meuble

Les données présentées dans la section 2.4.1 montrent la présence de till en couverture continue, de till en couverture mince et discontinue et identifient le substrat rocheux près de la surface. Les dépôts meubles en couverture continue correspondent à une épaisseur supérieure à 1 m, ce qui est suffisant pour construire les fondations des bâtiments, et correspond donc à une grande opportunité (Beer et
La surface ayant une couverture mince et discontinue nécessite davantage de recherches pour déterminer quels endroits précis sont favorables à la construction de bâtiments et constitue donc une opportunité modérée. Finalement, le substrat rocheux identifié sur les photographies aériennes correspond à une contrainte majeure puisque la construction directement sur le substrat nécessite des travaux considérables ayant des impacts sur les ressources naturelles. Le tableau 3.2 résume l’évaluation du critère de l’épaisseur des dépôts meubles et la figure 3.2 illustre les opportunités et les contraintes relatives à l’épaisseur des dépôts meubles.

Tableau 3.2 Évaluation de l’épaisseur des dépôts meubles

<table>
<thead>
<tr>
<th>Catégorie</th>
<th>Évaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Till en couverture continue</td>
<td>Grande opportunité</td>
</tr>
<tr>
<td>Till en couverture mince et discontinue</td>
<td>Opportunité modérée</td>
</tr>
<tr>
<td>Substrat rocheux identifié</td>
<td>Contrainte majeure</td>
</tr>
</tbody>
</table>

Figure 3.2 Opportunités et contraintes relatives aux dépôts meubles
3.3.3. Pentes

L’évaluation des pentes sera réalisée à partir de la figure 2.6 tirée de Forêt Québec (2008), qui différentie les pentes en quatre catégories : [0 – 3 %], [4 – 8 %], [9 – 15 %] et [16 – 30 %]. Premièrement, les pentes trop faibles, inférieures à 1 % d’inclinaison, ne sont pas suffisantes pour permettre un bon drainage du site (LaGro, 2008). Les milieux humides ont tendance à s’y former et ces sites devraient être laissés intacts. Ainsi, les pentes inférieures à 3 % d’inclinaison nécessiteront davantage de recherches sur le terrain pour déterminer lesquelles sont propices à l’urbanisation et constituent une opportunité modérée. Ensuite, selon Beer et Higgins (2000), les pentes les plus propices à l’urbanisation sont celles situées entre 1 et 8 %. Ainsi, la classe de 4 – 8 % de gradient est considérée comme une grande opportunité. Les pentes de 9 – 15 % sont des contraintes modérées, car elles ne sont pas propices à la construction de rues sans d’importants travaux de déblai-remblai. Les pentes supérieures à 16 % peuvent comprendre des espaces gazonnés et des sentiers piétonniers, mais la construction sur des pentes de plus de 24 % est interdite dans la plupart des villes (LaGro, 2008) et constitue donc une contrainte majeure. Le tableau 3.3 résume l’évaluation des classes de pentes et la figure 3.3 illustre les opportunités et les contraintes topographiques.

Tableau 3.3 Évaluation des classes de pentes

<table>
<thead>
<tr>
<th>Catégorie</th>
<th>Évaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pente nulle [0 à 3 %]</td>
<td>Opportunité modérée</td>
</tr>
<tr>
<td>Pente faible [4 à 8 %]</td>
<td>Grande opportunité</td>
</tr>
<tr>
<td>Pente douce [9 à 15 %]</td>
<td>Contrainte</td>
</tr>
<tr>
<td>Pente modérée [16 à 30 %]</td>
<td>Contrainte majeure</td>
</tr>
</tbody>
</table>
3.3.4. Réseau hydrographique

L’évaluation de ce critère est réalisée à partir de la figure 2.9 qui représente le réseau hydrographique. Dans cette évaluation, les cours d’eau, les plans d’eau et les milieux humides représentent des contraintes majeures. La bande riveraine, quant à elle, est séparée en trois catégories présentées au tableau 3.4 (Randolph, 2012). La zone riveraine, située à moins de 10 m du cours d’eau, est une contrainte, car elle doit préférablement être végétalisée et laissée intacte. La zone intermédiaire, à une distance entre 10 et 15 m du cours d’eau, est une opportunité modérée, car elle permet l’usage récréatif et la gestion des eaux de ruissellement. La zone externe, à plus de 15 m du cours d’eau, est une grande opportunité, car l’usage n’a pas besoin d’être restreint. Le tableau 3.5 présente un résumé de l’évaluation du critère et la figure 3.4 illustre les opportunités et contraintes hydrologiques.
Tableau 3.4 Zones composant la bande riveraine

<table>
<thead>
<tr>
<th>Zone riveraine</th>
<th>Zone milieu</th>
<th>Zone externe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fonction</td>
<td>Protège l’intégrité physique de l’écosystème riverain</td>
<td>Assure une distance entre le développement et la rive</td>
</tr>
<tr>
<td>Largeur</td>
<td>Minimum de 10 m</td>
<td>10-15 m</td>
</tr>
<tr>
<td>Végétation</td>
<td>Forêt mature non perturbée; à revégétaliser si gazonné</td>
<td>Forêt gérée</td>
</tr>
<tr>
<td>Usage</td>
<td>Très restreint (ex. : contrôle des inondations, sentier piétonnier)</td>
<td>Restreint (ex. : usage récréatif, outil de gestion des eaux de pluie, sentier de vélo)</td>
</tr>
</tbody>
</table>

(Traduction libre de : Randolph, 2012)

Tableau 3.5 Évaluation du réseau hydrographique

<table>
<thead>
<tr>
<th>Catégorie</th>
<th>Évaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>> 15 m d’un cours d’eau, d’un plan d’eau ou d’un milieu humide</td>
<td>Grande opportunité</td>
</tr>
<tr>
<td>10-15 m d’un cours d’eau, d’un plan d’eau ou d’un milieu humide</td>
<td>Opportunité modérée</td>
</tr>
<tr>
<td>< 10 m d’un cours d’eau, d’un plan d’eau ou d’un milieu humide</td>
<td>Contrainte</td>
</tr>
<tr>
<td>Cours d’eau, plan d’eau, milieu humide</td>
<td>Contrainte majeure</td>
</tr>
</tbody>
</table>
3.3.5. Végétation

Les facteurs pouvant aider à classer la qualité de la végétation quant à sa capacité à diminuer l’eau de ruissellement sont divers : le type de végétation, la hauteur de la canopée, le volume de la canopée, la diversité verticale, l’âge, etc. Pour ce critère, la densité de la végétation a été sélectionnée pour prioriser les sites favorables à l’urbanisation. L’augmentation de la densité du couvert végétal accroît le taux d’évapotranspiration et d’infiltration et diminue le ruissellement. (Randolph, 2012)

Les données utilisées pour l’évaluation de ce critère sont celles présentées à la figure 2.12. Une densité plus grande ou égale à 80 % représente une contrainte majeure, puisque cette végétation intercepte énormément d’eau pluviale et permet beaucoup d’évapotranspiration. Une densité de 40 à 80 % présente une contrainte un peu moins importante, puisque l’évapotranspiration est inférieure. Une densité plus grande ou égale à 25 % et plus petite que 40 % correspond à la même densité qu’un secteur résidentiel bâti et représente une opportunité modérée puisque le taux d’évapotranspiration sera peu modifié. Une densité inférieure à 25 % représente une grande opportunité, puisque le développement de ces sites principalement herbacés modifiera peu le taux d’évapotranspiration actuel de l’eau.
Tableau 3.6 permet d’obtenir l’indice d’aptitude du site pour l’urbanisation en fonction de la densité de la végétation et la figure 3.5 illustre les opportunités et les contraintes en fonction de la densité de la végétation.

Tableau 3.6 Évaluation de la végétation

<table>
<thead>
<tr>
<th>Densité de la végétation</th>
<th>Évaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plus grande ou égale à 80 %</td>
<td>Contrainte majeure</td>
</tr>
<tr>
<td>Plus grande ou égale à 40 % et plus petit que 80 %</td>
<td>Contrainte</td>
</tr>
<tr>
<td>Plus grande ou égale à 25 % et plus petite que 40 %</td>
<td>Opportunité modérée</td>
</tr>
<tr>
<td>Moins de 25 %</td>
<td>Grande opportunité</td>
</tr>
</tbody>
</table>

Figure 3.5 Opportunités et contraintes en fonction de la densité de la végétation

3.4. Résultat de l’analyse d’aptitude du site

La figure 3.6 présente l’ensemble des opportunités et contraintes du site. Elle a été réalisée grâce à la superposition de chacune des évaluations précédentes, avec les contraintes majeures en premier plan, les contraintes en deuxième plan, les opportunités modérées en troisième plan et les grandes...
opportunités en arrière-plan. L’espace représentant une grande opportunité pour l’urbanisation couvre en tout 4,6 ha. L’aire représentant une opportunité modérée couvre 6,4 ha. Le milieu représentant une contrainte couvre 26,0 ha. L’espace représentant une contrainte majeure couvre 4,2 ha.

Figure 3.6 Ensemble des opportunités et contraintes du site

Pour qu’un développement soit adapté aux caractéristiques du milieu et soit « écologiquement responsable » (Nelessen, 1994), il est proposé que l’espace représentant une grande opportunité d’urbanisation ait cinq ou plus bâtiments / ha; que l’aire représentant une opportunité modérée devrait avoir de [0,5 à 1] bâtiment / ha; que le milieu constituant une contrainte devrait avoir de [0 à 0,5] bâtiment / ha; et que les sites avec contrainte majeure ne devraient pas être développés. La figure 3.7 résume ces recommandations (Nelessen, 1994).
Figure 3.7 Recommandations de densités pour le développement urbain du site

Il est donc recommandé de concentrer le développement principalement dans la zone 1 (figure 3.7). En respectant les recommandations pour les zones 2 et 3 (figure 3.7), cela permettrait de bâtir environ 40 bâtiments sur l’ensemble du site, sinon plus en densifiant au maximum la zone 1.
4. MODÈLES DE GESTION DES EAUX USÉES

L’approvisionnement en eau potable et la gestion des eaux usées représentent des enjeux importants pour le développement d’un nouveau quartier qui se veut durable. L’approvisionnement en eau potable dépendra du type de système de gestion des eaux usées choisi, puisque ce choix indiquera si les services publics devront être étendus jusqu’au site. Ce chapitre se concentre sur les modèles de gestion des eaux usées. Il présente les systèmes de gestion des eaux usées individuels, décentralisés et centralisés qui pourraient être mis en place. La réglementation concernant chacun de ces systèmes est tout d’abord présentée, puis les différents modèles sont expliqués avec leurs avantages, leurs inconvénients ainsi que leurs limites.

4.1. Règlementation

Deux règlements découlant de la Loi sur la qualité de l’environnement sont pertinents dans le cadre de la gestion des eaux usées, soit le Règlement sur l’évacuation et le traitement des eaux usées des résidences isolées et le Règlement sur les ouvrages municipaux d’assainissement des eaux usées.

4.1.1. Règlement sur l’évacuation et le traitement des eaux usées des résidences isolées

Au Québec, le règlement Q-2 r.22 régit l’utilisation des systèmes septiques. Ce type de système peut être utilisé pour «une habitation unifamiliale ou multifamiliale comprenant 6 chambres à coucher ou moins et qui n’est pas raccordée à un système d’égout […]» (Règlement sur l’évacuation et le traitement des eaux usées des résidences isolées). L’effluent d’eaux usées doit minimalement être traité par un système primaire et un élément épurateur, mais peut aussi subir un traitement secondaire, secondaire avancé ou tertiaire, selon les caractéristiques du terrain récepteur.

Les caractéristiques du terrain récepteur déterminant l’utilisation de l’une ou l’autre des technologies de traitement sont :

- «la capacité hydraulique du dispositif;
- la superficie disponible en fonction des normes de localisation des systèmes;
- la pente du terrain;
- la nature et la perméabilité du sol naturel;
- l’épaisseur de la couche de sol naturel par rapport au niveau des eaux souterraines, du roc ou d’une couche de sol imperméable ou peu perméable» (Règlement sur l’évacuation et le traitement des eaux usées des résidences isolées)
La superficie disponible nécessaire à la construction du champ d'épuration est définie comme un «terrain sans arbre ni arbuste ou construction et utilisé à des fins autres que la circulation ou le stationnement de véhicules automobiles» (Règlement sur l'évacuation et le traitement des eaux usées des résidences isolées). Cette superficie peut donc uniquement accueillir des plantes herbacées et peut nécessiter de la déforestation.

Les caractéristiques du terrain récepteur nécessaires pour chacune des technologies sont résumées au tableau 4.1. Les technologies présentées sont : l’élément épurateur classique, qui est constitué de tranchées d’absorption; l’élément épurateur modifié, qui ne comporte pas de tranchées et qui est composé d’un lit d’absorption; le puits absorbant, qui est constitué d’un trou creusé dans le sol; le filtre à sable hors sol, qui est construit sur le sol et qui est constitué de sable; le filtre à sable classique, qui est construit dans le sol et qui est constitué de sable; et le champ de polissage qui est «un ouvrage destiné à répartir l’effluent d’un filtre à sable classique, d’un système de traitement secondaire avancé ou d’un système de traitement tertiaire en vue d’en compléter l’épuration par infiltration dans le terrain récepteur » (Règlement sur l’évacuation et le traitement des eaux usées des résidences isolées).
Tableau 4.1 Technologies permises en fonction des caractéristiques du terrain récepteur

<table>
<thead>
<tr>
<th>Caractéristique du terrain récepteur</th>
<th>Élément épurateur classique</th>
<th>Élément épurateur modifié</th>
<th>Puits absorbants</th>
<th>Filtre à sable hors sol</th>
<th>Filtre à sable classique</th>
<th>Champ de polissage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Superficie disponible</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(traitement primaire m² / traitement secondaire m²)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 chambre</td>
<td>80/53</td>
<td>27/18</td>
<td>15</td>
<td>18/12</td>
<td>18/12</td>
<td>7</td>
</tr>
<tr>
<td>2 chambres</td>
<td>120/80</td>
<td>40/27</td>
<td>20</td>
<td>26/18</td>
<td>26/18</td>
<td>11</td>
</tr>
<tr>
<td>3 chambres</td>
<td>180/120</td>
<td>60/40</td>
<td>30</td>
<td>39/26</td>
<td>39/26</td>
<td>16</td>
</tr>
<tr>
<td>4 chambres</td>
<td>240/160</td>
<td>80/53</td>
<td>n/a</td>
<td>52/35</td>
<td>52/35</td>
<td>22</td>
</tr>
<tr>
<td>5 chambres</td>
<td>300/200</td>
<td>100/67</td>
<td>n/a</td>
<td>65/44</td>
<td>65/44</td>
<td>27</td>
</tr>
<tr>
<td>6 chambres</td>
<td>360/240</td>
<td>120/80</td>
<td>n/a</td>
<td>78/52</td>
<td>78/52</td>
<td>32</td>
</tr>
<tr>
<td>Pente du terrain</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 30%</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>≤ 10%</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>≤ 15%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perméabilité du sol naturel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Très perméable (temps de percolation < 4 min)</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Perméable (temps de percolation > 4 min, mais < 25 min)</td>
<td></td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peu perméable (temps de percolation ≥ 25 min, mais < 45 min)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Imperméable (temps de percolation ≥ 45 min)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Épaisseur de la couche de sol naturel par rapport au niveau des eaux souterraines, du roc ou d’une couche de sol contraignante (traitement primaire cm /traitement secondaire cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sol très perméable</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td>Sol perméable</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Sol peu perméable</td>
<td>≥ 120 / ≥ 90</td>
<td>≥120 / ≥ 90</td>
<td>≥300</td>
<td>≥ 60 cm du roc</td>
<td></td>
<td>n/a</td>
</tr>
<tr>
<td>Sol imperméable</td>
<td>≥ 60</td>
<td>≥60</td>
<td></td>
<td></td>
<td>≥ 60</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>≥ 30</td>
</tr>
</tbody>
</table>

(Compilation d’après le Règlement sur l’évacuation et le traitement des eaux usées des résidences isolées)

Les systèmes de traitement septiques ainsi que les champs d’épuration doivent avoir une distance de recul réglementaire par rapport à des puits, des cours d’eau et des plans d’eau, des limites de propriété, de résidence, etc. Ces distances sont indiquées au tableau 4.2.
Les normes de rejet varient en fonction du type de traitement. Un traitement primaire classique n’a qu’une seule norme qui vise les MES, alors que le système de traitement tertiaire est réglementé pour l’enlèvement des MES, la réduction de la demande biochimique en oxygène 5 jours partie carbonée (DBO₅C), les coliformes fécaux et le phosphore total (Ptot). Les normes de rejets selon le type de traitement sont résumées au tableau 4.3.
Les technologies pouvant être utilisées sont très strictement encadrées par le règlement Q.2 r.22. Les critères de construction dictent les normes pour la construction sur place, alors que les normes du Bureau de normalisation du Québec (BNQ) assurent l’efficacité des systèmes préfabriqués. (Règlement sur l’évacuation et le traitement des eaux usées des résidences isolées)

4.1.2. Règlement sur les ouvrages municipaux d’assainissement des eaux usées

Au Québec, le règlement Q-2 r.34.1 régit les ouvrages municipaux d’assainissement des eaux usées. Il stipule que « tout réseau d’égout domestique, pseudo-domestique ou unitaire doit être relié à une station d’épuration » (Règlement sur les ouvrages municipaux d’assainissement des eaux usées). Un ouvrage municipal d’assainissement des eaux usées est « utilisé pour le traitement des eaux usées avant leur rejet dans l’environnement, incluant un ouvrage connexe utilisé pour la collecte, le transport, l’entreposage et le traitement des boues, des déchets et de l’air » et est « exploité par une régie intermunicipale, une municipalité » (Règlement sur les ouvrages municipaux d’assainissement des eaux usées).

Les normes de rejets pour une station d’épuration sont toujours les mêmes, peu importe la technologie utilisée. Ces normes sont décrites au tableau 4.4. Aussi, l’effluent d’une station d’épuration ne doit pas être toxique pour la truite arc-en-ciel ou la daphnie (Règlement sur les ouvrages municipaux d’assainissement des eaux usées).

Tableau 4.3 Normes de rejets des systèmes de traitement septiques

<table>
<thead>
<tr>
<th>Traitement</th>
<th>MES (mg/L)</th>
<th>DBO₅C (mg/L)</th>
<th>Coliformes fécaux (UFC/100 mL)</th>
<th>Ptot (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primaire</td>
<td>100</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Secondaire</td>
<td>30</td>
<td>25</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Secondaire avancé</td>
<td>15</td>
<td>15</td>
<td>50 000</td>
<td>-</td>
</tr>
<tr>
<td>Tertiaire</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Déphosphotation</td>
<td>15</td>
<td>15</td>
<td>50 000</td>
<td>1</td>
</tr>
<tr>
<td>Désinfection</td>
<td></td>
<td></td>
<td>200</td>
<td>-</td>
</tr>
<tr>
<td>Déphosphotation et désinfection</td>
<td>15</td>
<td>15</td>
<td>200</td>
<td>1</td>
</tr>
</tbody>
</table>

Compilation d’après le Règlement sur l’évacuation et le traitement des eaux usées des résidences isolées.
Tableau 4.4 Normes de rejets pour une station d’épuration

<table>
<thead>
<tr>
<th>Paramètre</th>
<th>Norme</th>
</tr>
</thead>
<tbody>
<tr>
<td>DBO₅C</td>
<td>≤ 25 mg/L</td>
</tr>
<tr>
<td>MES</td>
<td>≤ 25 mg/L</td>
</tr>
<tr>
<td>pH</td>
<td>Entre 6,0 et 9,5</td>
</tr>
</tbody>
</table>

Compilation d’après le Règlement sur les ouvrages municipaux d’assainissement des eaux usées

4.2. Système local individuel

Un système de traitement septique est utilisé pour traiter les eaux usées d’une résidence isolée. Les systèmes de traitement septiques des eaux usées les plus simples sont constitués de deux composantes : la fosse septique et l’élément épurateur. La fosse septique est une large chambre souterraine où se fait le traitement primaire, c’est-à-dire l’enlèvement des graisses et de la boue par décantation. L’élément épurateur permet ensuite de répandre les eaux usées sur une grande surface pour permettre son infiltration dans le sol et sa purification par les microorganismes. Certains systèmes septiques comportent plus d’étapes d’épuration avec un traitement secondaire et tertiaire, qui visent respectivement à diminuer la DBO et à retirer des contaminants (phosphore (P), azote, microorganismes, etc.). Le choix du système se fait en fonction des caractéristiques physiques du terrain. Au Québec, les systèmes les plus couramment utilisés sont le traitement primaire avec élément épurateur et le traitement secondaire avancé avec champ de polissage (Beaudin, 2009).

4.2.1. Avantages et inconvénients

Avantages :

- Recharge de la nappe phréatique grâce à l’infiltration.

Inconvénients :

- Limité par les caractéristiques du sol (Règlement sur l’évacuation et le traitement des eaux usées des résidences isolées);
- Émets des polluants dans l’eau : du phosphore, de l’azote, du sodium, du potassium, du chlore, du bore et du manganèse (Whiters, Jarvie et Stoate, 2011);
- Peut causer l’eutrophisation des plans d’eau, la prolifération d’algues et l’apparition de cyanobactéries (Whiters et al., 2011);
• Constitue un point très concentré en micropolluants : résidus alimentaires (sucralose, caféine), résidus pharmaceutiques (acétaminophène, ibuprofène et plusieurs autres médicaments), hormones (principalement de l’estrone et de l’estradiol), savons (plusieurs formes de parabène) et résidus de plastique (bisphénol A) (Yang, Toor, Wilson et Williams, 2016);
• Le champ d’épuration peut nécessiter de la déforestation;
• Les utilisateurs doivent éviter que les matières grasses, la peinture, les solvants, l’eau de javel et les savons avec phosphate se retrouvent dans leurs eaux usées (Beaudin, 2009);
• Les utilisateurs doivent limiter les forts volumes d’eau produits simultanément (Beaudin, 2009);
• Mène au développement de communautés à faible densité et favorise l’étalement à cause de la superficie nécessaire pour le terrain récepteur et de la distance de recul réglementaire (Harrison et al., 2011);
• La forte densité de fosses septiques dans un quartier est associée à une augmentation des risques bactériologiques et de la diarrhée virale (Borchardt, Chyou, Devries et Belongia, 2003).

Limites :
• Maximum 6 unités par hectare pour un site avec une nappe phréatique ayant une vulnérabilité faible, moyenne ou haute, et maximum 3,5 unités par hectare pour un site avec une nappe phréatique ayant une vulnérabilité extrême (Engin et Demir, 2015);
• Durée de vie d’environ 35 ans (Perrier, 2012) (Beaudin, 2009);
• Le règlement Q-2 r.22 demande à ce que la fosse septique soit vidangée tous les deux ans pour une résidence principale, et tous les quatre ans pour une résidence secondaire (Règlement sur l’évacuation et le traitement des eaux usées des résidences isolées);
• Les fosses septiques avec élément épurateur classique peuvent coûter jusqu’à 6 000$ (Beaudin, 2009) avec l’installation et la vidange coûte environ 150 $ aux deux ans. Les systèmes avec traitement secondaire avancé coûtent de 9 000 $ à 12 000 $ avec l’installation (Beaudin, 2009), en plus de l’entretien annuel (55 $ à 95 $), des frais d’énergie (0 $ à 250 $), des changements d’équipement (0 $ à 110 $) et de la vidange qui coûte environ 150 $ aux deux ans (Perrier, 2012). Les systèmes avec traitement tertiaire coûtent de 12 000 $ à 24 000 $ avec l’installation, en plus de l’entretien annuel (125 $ à 460 $), des frais d’énergie (0 $ à 70 $), des changements d’équipement (50 $ à 110 $) et de la vidange qui coûte environ 150 $ aux deux ans (Perrier, 2012).
4.3. **Système décentralisé**

Les systèmes de gestion des eaux décentralisés sont décrits comme de petites usines de traitements des eaux situées à proximité des sources d’eaux usées. (Libralato, Volpi Ghirardini et Avezzu, 2012)

Les systèmes de gestion des eaux décentralisés sont composés d’un système de traitement primaire, d’égout, d’une petite usine d’épuration et d’un espace d’infiltration d’eau dans le sol. L’eau des habitations est tout d’abord traitée dans une fosse septique (ou un autre traitement primaire) à chacune des habitations. Ensuite, l’eau de quelques maisons (de 2 à 10 habitations) est amenée par de petits égouts (gravitaire, à pression ou sous vide) jusqu’à un prétraitement (aération, marais artificiel, filtre à sable, etc.). L’eau est finalement infiltrée dans le sol. (Jones, Bauer, Wise et Dunn, 2001)

4.3.1. **Avantages et inconvénients**

Avantages :

- Permet la recharge de la nappe phréatique locale (Jones et al, 2001) ;
- Réduit l’eutrophisation des cours d’eau (Libralato et al. 2012) ;
- Permet de plus petits terrains résidentiels, donc une plus grande densité (Jones et al, 2001) ;
- Les égouts sont plus petits que ceux conventionnels et plus faciles à installer. Ils requièrent moins de construction, minimisent les travaux et les coûts par rapport aux collecteurs municipaux (Jones et al, 2001) ;
- Diminue le volume d’eau à traiter dans un système centralisé et limite les besoins d’agrandissement des usines de traitement (Libralato et al. 2012) ;
- Diminue la longueur des égouts nécessaires pour rejoindre l’usine de traitement des eaux usées (Jones et al, 2001) ;
- Permet une économie d’échelle en minimisant la longueur de l’égout en fonction des regroupements de bâtiments (Libralato et al. 2012).

Inconvénients :

- Risque de pollution de la nappe phréatique avec des phosphates, de l’azote et d’autres contaminants (Jones et al, 2001) ;
- Peut se boucher et occasionner des odeurs (Libralato et al. 2012) ;
• Nécessite un grand terrain public (pour le traitement et l’infiltration) non occupé ni boisé (Jones et al, 2001) ;
• Beaucoup de besoins en opérations et maintenance (vidange et inspection des fosses septiques, électricité, grandes distances à parcourir pour le personnel) (Jones et al, 2001) ;
• Les utilisateurs doivent limiter les forts volumes d’eau produits simultanément (Beaudin, 2009);
• La gestion, la maintenance, et la régulation deviennent très couteuses à long terme à cause des coûts de déplacement (Eggimann, Truffer et Maurer, 2016);
• Nécessite le transport des résidus (Eggimann et al. 2016).

Limites :

• Durée de vie limitée de la fosse septique de 35 ans (Beaudin, 2009) ;
• Nécessite un sol propice à l’infiltration (Jones et al, 2001).

4.4. Collecteur d’eaux usées

Dans les quartiers desservis par des équipements municipaux, les eaux usées sont transportées dans des égouts gravitaires à large diamètre jusqu’à une centrale d’épuration. L’eau y est traitée, puis rejetée dans un cours d’eau ou un plan d’eau. (Jones et al, 2001)

Les égouts classiques sont composés de tuyaux de ciment ou de PVC entourés de sable. Ils sont surmontés d’une couche de gravier et finalement recouverts par de l’asphalte ou du ciment. (Roux, Mur, Risch et Boutin, 2011)

4.4.1. Avantages et inconvénients

Avantages :

• Ne dépend pas des caractéristiques du sol;
• Permet le développement économique, puisque les commerces ne sont pas limités pour leur utilisation d’eau (Naman, MacDonald et Gibson, 2015) ;
• Permet une économie d’échelle (le prix unitaire diminue) lorsque le site a une forte densité (Libralato et al. 2012) ;
• Nécessite peu de maintenance (Libralato et al. 2012) ;
• Permet une grande densité (Libralato et al. 2012).
Inconvénients :

- Nécessite de l’excavation, apporte des changements à la topographie et de l’imperméabilisation des surfaces (Roux et al., 2011) ;
- Crée une déséconomie d’échelle (augmentation du prix unitaire) lorsque la densité de branchement est faible sur de grandes distances (Libralato et al. 2012) ;
- Peut provoquer l’eutrophisation dans le cours d’eau récepteur parce que l’effluent est très concentré en nutriments (Libralato et al. 2012) ;
- Nécessite la consommation d’énergie (Libralato et al. 2012) ;
- De très grands volumes d’eau sont nécessaires pour nettoyer le système d’égout (Libralato et al. 2012) ;
- Nécessite d’importants travaux d’excavation, de remplissage et de compaction (Risch, Gutierrez, Roux, Boutin et Corominas, 2015) ;
- La maintenance et le remplacement sont très couteux (Risch et al., 2015 et Eggiman, Truffer et Maurer, 2015) ;
- Émet des polluants dans l’air : méthane, sulfite d’hydrogène, azote, oxyde nitreux et dioxyde de carbone (Risch et al. 2015) ;
- Émet des polluants dans l’eau : phosphate dissout, phosphore, azote, ammonium, nitrites et nitrates (Risch et al. 2015) ;
- Les égouts peuvent avoir des fuites et contaminer l’eau de surface, principalement avec l’azote (Risch et al. 2015) ;
- 80 à 90 % des coûts monétaires et environnementaux sont reliés à la construction des égouts (Libralato et al. 2012).

Limites

- En moyenne 25 000 $ par branchement (Jones et al, 2001) ;
- Durée de vie de 50 à 60 ans (Libralato et al. 2012).

Ce chapitre présentait les avantages et les inconvénients des différents modèles de gestion des eaux usées. Le choix de la méthode influencera grandement la densité des habitations pouvant être construites par la suite. Le chapitre suivant constitue l’analyse qui permettra de choisir le type de système.
5. **ANALYSE DES MODÈLES DE GESTION DES EAUX USÉES**

Le chapitre 4 présentait les différents modèles de gestion des eaux usées pouvant être utilisés sur le site avec leurs points positifs et négatifs. Le présent chapitre constitue une analyse comparative des avantages et des inconvénients de chacun de ces modèles de traitement des eaux usées. Les avantages, les inconvénients et les limites de chacun des systèmes sont comparés afin de déterminer le meilleur choix pour le quartier. La première section rappelle des points importants, mais qui ne permettent pas d'arrêter le choix sur une option en particulier. La deuxième section discute des points décisifs qui permettront de mieux éclairer la municipalité quant au choix du système de gestion des eaux usées.

5.1. **Points non déterminants**

Tout d'abord, certains des points de comparaison ne sont pas utiles pour discriminer les différents types de modèles. Il s'agit des effets environnementaux et de la recharge de la nappe phréatique.

Premièrement, les effets environnementaux ne sont pas négligeables, mais sont semblables dans chacun des modèles. Tous ont des risques de contaminer la nappe phréatique et de causer l'eutrophisation des cours d'eau. Ce point ne permet pas de prioriser aucun des modèles.

Deuxièmement, la recharge de la nappe phréatique n’est pas un moyen de comparaison pertinent, puisque la provenance de l’eau potable entre aussi en jeu. Pour le système individuel et le système décentralisé, l’eau potable doit provenir d’un puits sur le site et l’eau usée est ensuite retournée à la nappe phréatique. Pour le système centralisé, la construction d’égouts permettrait aussi l’installation de canalisation amenant l’eau potable municipale jusqu’aux habitations. Dans cette situation, l’eau ne provient donc pas du site et ne retourne pas au site, ce qui n’influence pas le niveau de la nappe phréatique. Ainsi, ce point ne permet pas de prioriser aucun des modèles.

Ensuite, certains points de comparaison permettent de favoriser un modèle, mais ne sont pas décisifs. Il s’agit de l’entretien et de la durée de vie. Les systèmes individuels et décentralisés nécessitent l’utilisation d’une fosse septique et celle-ci comporte plusieurs désavantages. Premièrement, elle nécessite un entretien régulier et la responsabilité incombe au citoyen. Deuxièmement, les utilisateurs doivent prendre des précautions quant aux produits qui se retrouvent dans les eaux usées et dans les volumes d’eau qu’ils génèrent. Troisièmement, la fosse septique a une durée de vie limitée et doit être remplacée après une trentaine d’années. Tous ces désavantages permettent de pencher en faveur du système centralisé selon ces points de comparaison. Par contre, ils ne constituent pas des critères limitatifs et n’influenceront pas le choix de la méthode.
5.2. Points déterminants

Les limites de chacun des modèles sont comparées et permettent de créer un arbre de décision permettant de facilement identifier le modèle de gestion des eaux usées idéal selon les aspirations de la municipalité. L’arbre de décision montré à la fin de ce chapitre représente un résumé de cette section.

Le choix du système de gestion des eaux usées dépend de deux limites principales. La densité des habitations ainsi que la distance par rapport au système de gestion municipal sont les deux critères les plus importants pour ce choix.

5.2.1. Densité désirée

La densité des habitations désirée constitue le premier élément qui permettra de faire un choix entre le système individuel et les systèmes avec égout (centralisé ou décentralisé). Deux facteurs sont en jeu : la limite associée à la contamination de la nappe phréatique par les systèmes individuels et la limite permettant l’économie d’échelle pour les systèmes avec égout.

Premièrement, la limite associée à la contamination de la nappe phréatique réfère à la densité maximale de systèmes de traitement individuels pouvant se trouver sur un site donné sans contaminer la nappe phréatique. Cette limite varie en fonction de la vulnérabilité de la nappe phréatique, qui est déterminée par la constitution du substrat rocheux et la nature du dépôt meuble, mais surtout par l’épaisseur de celui-ci (Morrissey, Johnston et Gill, 2015). Le tableau 5.1 décrit les classes de vulnérabilité de la nappe phréatique en fonction de l’épaisseur du dépôt meuble. Pour les sites ayant une vulnérabilité faible, moyenne ou élevée, Morrissey et al. (2015), Yates (1985), et Gardner et al. (1997) ont respectivement proposé un maximum de 6, 5 et 4 unités par hectare. Pour la suite de l’analyse, la moyenne de ces limites sera utilisée, c’est-à-dire que 5 unités de traitement individuel par hectare constituent la limite de densité pour les aires ayant une vulnérabilité faible, modérée ou élevée (tableau 5.1). Pour les sites ayant une vulnérabilité extrême, Morrissey et al. (2015) suggère un maximum de 3,5 unités de systèmes septiques par hectare pour ne pas contaminer la nappe phréatique. La figure 5.1 illustre les limites de densité pour les systèmes de traitement septiques en fonction des données d’épaisseur de dépôts meubles montrées aux figures 2.3 et 2.4. Si l’on fait un parallèle avec la figure 3.7, la zone 1 (figure 3.7) devrait se limiter à un maximum de 5 unités de systèmes septiques / ha (figure 5.1) et les zones 2 et 3 (figure 3.7) devraient avoir un maximum de 3,5 unités de systèmes septiques / ha (5.1), ce qui est au-dessus de la densité d’habitation proposée (figure 3.7).
Tableau 5.1 Limite de densité des systèmes de traitement septiques en fonction de l’épaisseur du dépôt meuble et de la vulnérabilité de la nappe phréatique

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Vulnérabilité de la nappe phréatique</td>
<td>Faible</td>
<td>Modérée</td>
<td>Élevée</td>
<td>Extrême</td>
</tr>
<tr>
<td>Limite de densité</td>
<td>5 unités / ha</td>
<td>5 unités / ha</td>
<td>5 unités / ha</td>
<td>3.5 unités / ha</td>
</tr>
</tbody>
</table>

(Inspiré de Morissey et al., 2015)

Figure 5.1 Carte des limites de densité pour les systèmes de traitement septiques en fonction de l’épaisseur du dépôt meuble

Deuxièmement, la limite permettant l’économie d’échelle pour les systèmes avec égout n’est pas constituée d’un chiffre précis, mais se définit comme ceci : le coût par habitation diminue en fonction du nombre de connexions au réseau, lorsque la densité est suffisante (Eggiman et al. 2015). Par contre, le contraire est tout aussi possible : lorsque les habitations connectées au réseau sont trop dispersées, une déséconomie d’échelle survient et le coût augmente pour chacune des habitations ajoutées (Eggiman et al. 2015).

Ainsi, afin de pouvoir choisir un système de traitement des eaux usées, la première question à laquelle il faille répondre est : quelle est la densité désirée ?
• Si la densité désirée est égale ou moindre à 5 unités / ha dans la zone 1 (figure 3.7), le système de traitement septique des eaux usées sur le site constitue la plus simple solution ;
• Si la densité désirée est supérieure à 5 unités / ha dans la zone 1 (figure 3.7), un système de collecte avec égout (centralisé ou décentralisé) serait préférable pour éviter la contamination de l’eau souterraine ;
• Pour les zones 2 et 3 (figure 3.7), les limites de densité proposées, respectivement de 0,5 - 1 unité d’habitation / ha et de 0 – 0,5 unité d’habitation / ha, sont en dessous de la limite de densité de systèmes de traitement septiques et ces derniers devraient être utilisés.

5.2.2. Distance du site par rapport aux services d’égouts municipaux

Si la densité désirée est de plus de plus de 5 unités / ha pour la zone 1 (figure 3.7), la deuxième limite qui permettrait de déterminer s’il est préférable de construire un système d’égout centralisé ou décentralisé est la distance du site par rapport aux services d’égouts déjà en place. En effet, cette distance influence directement le coût de construction, d’opération et de maintenance pour chacun des modèles.

Les égouts étant connectés à un système centralisé ont un coût de construction très élevé, ont une durée de vie très longue et un système de gestion peu couteux, puisqu’il est centralisé. Les systèmes décentralisés coûtent moins cher par habitation à construire, mais l’opération et la maintenance nécessitent de nombreux déplacements qui font vite augmenter les coûts à long terme. De plus, leur durée de vie est moins longue, puisqu’ils comportent des fosses septiques qui doivent être entretenues et vidangées tous les deux ans et remplacées aux 35 ans. Ainsi, la distance augmente le coût de construction du système d’égout centralisé, tandis qu’elle accroit les coûts d’opération et de maintenance du système décentralisé. (Libralato et al. 2011)

Une étude d’Engin et Demir (2005), évaluant le meilleur système de traitement des eaux usées pour de petits villages de moins de 2 000 habitants, a établi qu’à moins de 16 km de distance, les égouts centralisés sont les moins couteux sur une période de 25 ans. À plus de 16 km de distance, les coûts de construction devenaient si importants qu’ils constituaient une déséconomie d’échelle, ce qui favorise l’utilisation d’un système décentralisé. Malgré le contexte différent, cette distance indique que nonobstant les coûts de construction importants des systèmes centralisés, il faut tout de même plus de 16 km de distance entre les habitations et le système de traitement centralisé pour qu’un système décentralisé soit économique.
Ainsi, afin de pouvoir choisir entre un système centralisé ou décentralisé, la deuxième question à laquelle il faut répondre est : quelle est la distance séparant le site du système de traitement centralisé ? Les services publics s’arrêtent sur la route 112 (figure 2.1). Pour rejoindre les aires de développement de la zone 1 (figure 3.7) au sud-est du site en passant par le Chemin Ferry et la 9e Avenue, ils devraient être allongés d’environ 2 km. Le système centralisé est donc l’option la plus économique étant donné la très courte distance.

De plus, même si le système décentralisé avait été plus économique, deux autres limites physiques se dressent : les systèmes de traitement décentralisés nécessitent un dépôt meuble propice à l’infiltration et demandent de très grandes surfaces. Pour qu’un sol soit propice à l’infiltration, il doit avoir une bonne perméabilité et une grande épaisseur, ce qui n’est pas le cas sur le site en question comme démontré aux sections 3.3.1 et 3.3.2. Ensuite, une très grande surface de terrain public est nécessaire pour la construction de bassins d’aération et d’espace d’infiltration. Puisqu’il est proposé de concentrer les habitations dans la clairière du sud, qui est la plus propice au développement, l’espace disponible est limité et ne pourrait servir à d’autres fins.

La figure 5.2 illustre un résumé des différents points discutés précédemment. En bref, si la densité du développement désirée est moindre que la limite de densité pour le système de traitement septique en fonction de la vulnérabilité de la nappe phréatique, ces derniers devraient être utilisés. Par contre, si la densité désirée dépasse les limites de densité pour les systèmes de traitement septiques, un égout connecté au système centralisé constitue la meilleure option.
Figure 5.2 Arbre de décision pour le modèle de gestion des eaux usées
6. PRATIQUES DE GESTION OPTIMALES DES EAUX PLUVIALES

L’utilisation d’égouts pluviaux sur le site ne permet pas à l’eau de s’infiltrer dans le sol et de recharger la nappe phréatique. Ces égouts servent uniquement à acheminer l’eau en dehors du site, la plupart du temps sans traitement. Cette façon de faire nécessite des égouts surdimensionnés pour répondre aux besoins des plus grosses précipitations. Les pratiques de gestion optimales (PGO) visent tout à fait le contraire. Leur objectif est de minimiser le ruissellement à la source, tout en décontaminant l’eau sur place, afin de conserver les ressources en eau sur le site.

Par contre, aucun type de PGO n’est utile s’il est utilisé seul. Une technique doit être utilisée à la source de l’espace imperméable pour permettre une meilleure couverture spatiale du bassin versant. Ensuite, les PGO en réseau sont utiles pour gérer les volumes d’eau qui sont trop importants pour être contenus à la source et l’eau de ruissellement provenant des rues. Tout en maximisant leur gestion locale, les techniques de contrôle en réseau permettent d’acheminer les volumes d’eau trop importants vers un contrôle en fin de réseau, qui permettra un traitement final avant la relâche dans le milieu récepteur. (Osseyrane et al., 2012)

Les technologies de PGO de chacune de ces catégories sont tout d’abord présentées dans ce chapitre. À la fin de chacune des catégories se trouve un tableau faisant un résumé de plusieurs caractéristiques relatives au PGO: l’étape d’intervention au sein du cycle de l’eau, les contraintes physiques, les besoins d’entretien et la durabilité, les coûts, l’efficacité à contrôler la quantité d’eau de ruissellement et l’efficacité à améliorer la qualité de l’eau.

6.1. Présentation des PGO de contrôle à la source

Les PGO de contrôle à la source sommairement présentées dans cette section sont les toits verts, la collecte et la réutilisation de l’eau de pluie, les jardins de pluie, les pavages poreux, les puits et tranchées d’infiltration et la déconnexion de gouttières.
6.1.1. Toits verts

Les toits verts sont composés d’une couche de terre et de plantes sur un toit. Ils sont généralement constitués d’une membrane imperméable, d’un écran anti-racines, d’un système de drainage, d’une membrane géotextile et d’un milieu de croissance et de plantations (Osseyrane et al., 2012). Il existe deux types de toits verts, soit extensifs et intensifs, qui sont décrits dans les paragraphes suivants. Cette technique est utile dans les espaces densément urbanisés puisqu’elle ne nécessite pas d’espace au sol. Les grands toits plats industriels, commerciaux, institutionnels et multirésidentiels sont particulièrement propices à l’utilisation de toits verts. Outre leur utilité pour la gestion de l’eau de pluie, les toits verts permettent aussi la conservation de l’énergie, la diminution des îlots de chaleur et l’augmentation de la longévité des toits (Dhalla et Zimmer, 2010).

Les toits verts extensifs sont constitués d’un substrat mince (moins de 15 cm), sans réseau d’irrigation et ils ont une faible diversité de plantes. Ces toits sont faciles d’entretien, coûtent peu cher comparé à la technique intensive et peuvent être réalisés sur des toits en pente ayant jusqu’à 30 degrés d’inclinaison. Ce genre de toit est relativement léger et ne nécessite pas de renforcement de la structure. (Osseyrane et al., 2012)

Les toits verts intensifs comportent une plus grande épaisseur de substrat (plus de 15 cm), un système d’irrigation, une grande diversité de plantes et d’usages (ils peuvent être utilisés comme jardins ou comme espaces verts). Cette technique nécessite un toit plat et représente une forte charge pour le bâtiment qui doit être conçu en conséquence. La construction et l’entretien sont couteux, mais ce type de toit vert permet une meilleure efficacité énergétique du bâtiment. (Osseyrane et al., 2012)

Les toits verts permettent l’évapotranspiration d’une partie de l’eau de pluie en diminuant la surface imperméabilisée par la construction de bâtiments. Ils ne constituent par contre pas un espace de stockage et dès que le sol est saturé, l’eau s’écoule en dehors du toit. Ils réduisent ainsi le ruissellement et retardent les débits de pointes de 20 à 40 minutes. (Dhalla et Zimmer, 2010)

6.1.2. Collecte et réutilisation de l’eau de pluie

La collecte et la réutilisation de l’eau de pluie sont faites à l’aide de réservoirs qui récoltent l’eau de ruissellement des toits. Cette technique peut s’ajuster pour un contrôle des volumes d’eau provenant de bâtiments résidentiels, commerciaux ou industriels en modifiant les volumes de stockage et le contenant utilisé (Osseyrane et al., 2012). Les barils (190 L à 400 L) sont utiles pour les espaces résidentiels alors que de larges citernes (750 L à 40 000 L) sont utilisées pour les espaces commerciaux.
et industriels (Dhalla et Zimmer, 2010). Les citernes peuvent être utilisées tout au long de l’année puisqu’elles peuvent être enfouies ou situées à l’intérieur, alors que les barils ne peuvent pas être utilisés pendant l’hiver (Dhalla et Zimmer, 2010). Une fois l’eau collectée, elle peut être réutilisée pour des usages extérieurs, comme l’arrosage des plantes et l’irrigation d’un jardin, ou pour des usages intérieurs, comme eau non potable pour les toilettes (Osseyrane et al., 2012). Les différentes composantes du réservoir sont une grille pour filtrer l’eau, un espace de stockage en surface ou souterrain, une relâche graduelle qui permet de vider le réservoir entre les averse et un trop-plein pour évacuer les débits trop imposants vers une autre PGO (Osseyrane et al., 2012).

La collecte et la réutilisation de l’eau de pluie permettent de réduire les volumes de ruissellement et les débits de pointes des petits événements pluviaux. Cette technique permet d’augmenter l’évapotranspiration et l’infiltration sur le site si l’eau est réutilisée pour des usages extérieurs. (Dhalla et Zimmer, 2010)

6.1.3. Jardin de pluie

Les jardins de pluie permettent de recueillir l’eau de ruissellement. Ils permettent aussi d’augmenter l’infiltration et rechargent la nappe phréatique. Lorsqu’ils ne comportent pas de drain, ils contribuent à l’évapotranspiration. Les jardins de pluie aident aussi au contrôle de la qualité de l’eau. Les plantes présentes dans les bassins sont sélectionnées pour leur capacité à filtrer certains types de contaminant. Ainsi, par les mécanismes d’adsorption, de filtration, de volatilisation, d’échange d’ions et de décomposition, les plantes peuvent enlever les sédiments, des métaux, les surplus de nutriments, les bactéries et la matière organique. (Osseyrane et al., 2012)
6.1.4. **Pavages poreux**

Les pavages poreux sont utilisés pour permettre à des surfaces habituellement imperméables d’être perméables. Les pores permettent à l’eau de s’infiltrer et de rejoindre la nappe phréatique ou bien d’être interceptée par un drain et redirigée vers un réseau de drainage (Osseyrane et al., 2012). Il existe trois types de pavages poreux : le béton poreux ou mélange d’asphalte poreux, les blocs préfabriqués ou coulés et les systèmes en plastique recouvert de sol et de végétaux (Osseyrane et al., 2012). En hiver, ces technologies permettent une moindre utilisation de sels de déglaçage puisqu’ils réduisent la formation de glace et permettent une fonte plus rapide de la neige grâce à l’infiltration. La technologie la plus adaptée aux conditions hivernales serait les blocs poreux puisque l’eau s’infiltra à l’entour des blocs et il subissent moins les conséquences du gel-dégel (Greater Vancouver Regional District [GVRD], 2005). Les pavages poreux sont utiles dans les espaces avec une faible circulation automobile comme les entrées de garage, les aires de stationnement, les cours d’entreposage, les pistes cyclables, les sentiers piétonniers et les aires de jeux. Ils permettent l’infiltration de l’eau de ruissellement provenant des toits résidentiels, des routes peu fréquemtées et des stationnements (Osseyrane et al., 2012).

6.1.5. **Puits et tranchée d’infiltration**

Les puits et les tranchées d’infiltration sont des fosses souterraines comportant un revêtement filtrant comme un puisard, un regard ou un géotextile, ainsi qu’un matériau de drainage, constitué de sable ou de gravier (Osseyrane et al., 2012). Cette technique est utile dans les secteurs où l’espace est limité, car elle se situe sous la surface du sol et ne nécessite pas un grand espace. Les puits et tranchées d’infiltration peuvent remplacer un égout pluvial si la capacité d’infiltration est suffisante. Les puits et tranchées d’infiltration accumulent l’eau de ruissellement provenant des bâtiments et permettent de réduire le débit de pointe des averses et d’augmenter l’infiltration sur le site. (Osseyrane et al., 2012)

6.1.6. **Déconnexion de gouttières**

Cette technique consiste simplement à ne pas connecter les gouttières au réseau de drainage et à laisser l’eau de pluie s’écouler sur une surface perméable, comme du gazon. Cette technique favorise l’infiltration sur le site, ce qui diminue les volumes d’eau de ruissellement.
6.1.7. Caractéristiques des PGO de contrôle à la source

Le tableau 6.1 résume les caractéristiques des PGO de contrôle à la source.

Tableau 6.1 Caractéristiques des PGO de contrôle à la source

<table>
<thead>
<tr>
<th>Cycle hydrologique</th>
<th>Toit vert</th>
<th>Collecte et réutilisation</th>
<th>Jardin de pluie</th>
<th>Pavage Poreux</th>
<th>Puits et tranchées d’infiltration</th>
<th>Déconnexion de gouttières</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Extensif</td>
<td>Intensif</td>
<td>Réservoir en ciment</td>
<td>Réservoir en plastique</td>
<td>Sans drain</td>
<td>Avec drain</td>
</tr>
<tr>
<td>Augmentation de l’évapotranspiration</td>
<td>Oui²</td>
<td>Oui²</td>
<td>Oui²</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Augmentation de l’infiltration</td>
<td>Oui²</td>
<td>Oui²</td>
<td>Oui³</td>
<td>Oui⁴</td>
<td>Oui⁴</td>
<td></td>
</tr>
<tr>
<td>Diminution du débit de pointe</td>
<td>Oui²</td>
<td>Oui²</td>
<td>Oui³</td>
<td>Oui³</td>
<td>Oui³</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Contraintes biophysiques</th>
<th>Pente maximum</th>
<th>n/a</th>
<th>n/a</th>
<th>5 %²</th>
<th>5 %p (pente maximum de l’aire tributaire est de 20 %)</th>
<th>15 %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nappe phréatique et roc à plus de 1 m</td>
<td>n/a</td>
<td>n/a</td>
<td>Oui³</td>
<td>Oui³</td>
<td>Oui³</td>
</tr>
<tr>
<td></td>
<td>Taux d’infiltration minimum</td>
<td>n/a</td>
<td>n/a</td>
<td>15 mm/h</td>
<td>n/a</td>
<td>15 mm/h</td>
</tr>
<tr>
<td></td>
<td>Distance des puits</td>
<td>n/a</td>
<td>n/a</td>
<td>15 mm/h³</td>
<td>n/a</td>
<td>15 mm/h³</td>
</tr>
</tbody>
</table>

Contrôle qualitatif	Phosphore	+248 %²	-20-60 %²	-40 %²	n/a	-50-70 %²	-20-60 %²
	Azote total	-91 %²	-20-60 %²	-40 %²	n/a	-40-70 %²	-20-60 %²
	MES	-89 %²	-20-80 %²	-80 %²	-50 %²	-70-90 %²	-20-80 %²

| Réduction du ruissellement (maximum) | 45 - 55 % | 60 % | 40 %² | 85 %³ | 45 %² | 89 %² | 45 %² | 85 %³ | 25-50 %² |

<table>
<thead>
<tr>
<th>Coût ($/m² pour 50 ans)</th>
<th>303,46 d</th>
<th>544,08 d</th>
<th>23,99³</th>
<th>23,63³</th>
<th>23,96¹</th>
<th>28,71 d</th>
<th>85,86 s</th>
<th>91,79 d</th>
<th>12,81³</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Entretien et durabilité</th>
<th>Inspection et entretien</th>
<th>2 fois par an³</th>
<th>2 fois par an³</th>
<th>2 fois par an³</th>
<th>Après chaque événement majeur (plus de 25 mm de pluie)³</th>
<th>Après chaque événement majeur (plus de 25 mm de pluie)³</th>
<th>n/a</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dans le cas contraire</td>
<td>2 fois par an³</td>
<td>2 fois par an³</td>
<td>2 fois par an³</td>
<td>Après chaque événement majeur (plus de 25 mm de pluie)³</td>
<td>Après chaque événement majeur (plus de 25 mm de pluie)³</td>
<td>n/a</td>
</tr>
</tbody>
</table>

| Durabilité | 40 ans³ | 50 ans³ | 40 ans³ | 25 ans³ | 30 ans³ | plus de 50 ans³ | n/a |

6.2. Présentation des PGO en réseau

Les PGO en réseau présentées dans cette section sont les bandes filtrantes, les fossés et les noues engazonnées ainsi que les systèmes d’exfiltration.

6.2.1. Bandes filtrantes

Les bandes filtrantes sont des zones avec une pente douce recouvertes de gazon ou de plantations d’arbustes ou d’arbres qui filtrent l’eau, en ralentissent l’infiltration tout en en permettant un peu. La technique consiste à créer une nappe d’eau uniforme et bien répartie qui s’écoule au travers d’une surface végétalisée. Les bandes filtrantes sont utilisées pour filtrer l’eau provenant des routes et des autoroutes, des toits et des petits stationnements. (Osseyrane et al., 2012)

Les bandes filtrantes sont utilisées principalement pour filtrer l’eau fortement chargée en sédiments et constituent donc un contrôle qualitatif de l’eau de pluie provenant des routes. Elles permettent aussi une faible infiltration dépendamment de la constitution du sol. Les bandes filtrantes ne sont pas utilisées pour un stockage prolongé, et elles servent de traitement primaire avant que l’eau ne se retrouve dans un égout, une noue ou un fossé. (Osseyrane et al., 2012)

6.2.2. Fossés et noues engazonnés

Les fossés et les noues engazonnés se distinguent des fossés de drainage par un canal plus large dont les côtés sont en pente moins prononcée. La noue quant à elle comporte un espace d’infiltration composé de matériaux perméables et d’un drain qui recueille les surplus d’eau. Pour les fossés et les noues engazonnées, on trouve à l’entrée une cellule de prétraitement qui permet d’enlever les gros débris grâce à un barrage perméable. Cette technique s’adapte bien dans les quartiers résidentiels à faible densité, au drainage des stationnements et en bordure des routes et autoroutes. Ces techniques permettent dans certains cas de remplacer totalement les égouts pluviaux. (Osseyrane et al., 2012)

Les noues et les fossés engazonnés permettent de contrôler les débits de pointe en réduisant la vitesse d’écoulement grâce à la très faible pente et en augmentant l’infiltration. Les noues, puisqu’elles sont aménagées avec des plantations, permettent aussi l’évapotranspiration. (Osseyrane et al., 2012)
6.2.3. Système d’exfiltration

Un système d’exfiltration ressemble à un système d’égout pluvial traditionnel, à l’exception que certaines ou toutes les conduites sont perforées. L’eau pluviale est donc récoltée par les puisards jusque dans ces conduites perforées où l’eau peut être exfiltrée. L’espace autour des conduites perforées est constitué de pierres lavées entourées d’une membrane géotextile. L’eau percole sur la pierre nette jusqu’aux côtés ou au fond de la tranchée et s’infiltre finalement dans le dépôt meuble. Les conduites mènent ensuite les volumes d’eau trop importants pour s’infilttrer à une autre PGO, à un cours d’eau récepteur ou à une centrale d’épuration. Les conduites perforées sont utiles pour les chemins piétonniers, les stationnements et les routes peu fréquentées. Les systèmes d’exfiltration permettent de réduire l’eau de ruissellement qui devra être traitée en aval en augmentant l’infiltration tout au long de son trajet. (Osseyrane et al., 2012)
6.2.4. Caractéristiques des PGO en réseau

Le tableau 6.2 présente les caractéristiques des PGO en réseau pour la tranchée d’infiltration, la bande filtrante, le fossé engazonné, la noue engazonnée et le système d’exfiltration.

Tableau 6.2 Caractéristiques des PGO en réseau

<table>
<thead>
<tr>
<th></th>
<th>Tranchée d’infiltration</th>
<th>Bande filtrante</th>
<th>Fossé engazonné</th>
<th>Noue engazonnée</th>
<th>Système d’exfiltration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cycle de l’eau</td>
<td></td>
<td></td>
<td></td>
<td>Oui</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Augmentation de l’évapotranspiration</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Oui</td>
<td></td>
</tr>
<tr>
<td>Augmentation de l’infiltration</td>
<td>Oui</td>
<td>Oui</td>
<td>Oui</td>
<td>Oui</td>
<td>Oui</td>
</tr>
<tr>
<td>Diminution du débit de pointe</td>
<td>Oui</td>
<td>Oui</td>
<td>Oui</td>
<td>Oui</td>
<td>Oui</td>
</tr>
<tr>
<td>Contraintes biophysiques</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pente maximum</td>
<td>15 %</td>
<td>5 %</td>
<td>6 %</td>
<td>6 %</td>
<td>15 %</td>
</tr>
<tr>
<td>Nappe phréatique et roc</td>
<td>1 m</td>
<td>0,5 m</td>
<td>Non</td>
<td>Non</td>
<td>1 m</td>
</tr>
<tr>
<td>Taux d’infiltration minimum</td>
<td>15 mm/h</td>
<td>n/a</td>
<td>n/a</td>
<td>15 mm/h</td>
<td>n/a</td>
</tr>
<tr>
<td>Distance des puits</td>
<td>2 ans</td>
<td>n/a</td>
<td>n/a</td>
<td>2 ans</td>
<td>2 ans</td>
</tr>
<tr>
<td>Contrôle qualitatif</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phosphore</td>
<td>-50-70 %</td>
<td>-20-60 %</td>
<td>55 %</td>
<td>-34 %</td>
<td>-50-70 %</td>
</tr>
<tr>
<td>Azote total</td>
<td>-40-70 %</td>
<td>-20-60 %</td>
<td>50 %</td>
<td>-31 %</td>
<td>-40-70 %</td>
</tr>
<tr>
<td>MES</td>
<td>-70-90 %</td>
<td>-20-80 %</td>
<td>76 %</td>
<td>-80 %</td>
<td>-70-90 %</td>
</tr>
<tr>
<td>Réduction du ruissellement (maximum)</td>
<td>85 %</td>
<td>25-50 %</td>
<td>10-20 %</td>
<td>85 %</td>
<td>45-85 %</td>
</tr>
<tr>
<td>Coût ($/m² pour 50 ans)</td>
<td>12,81$</td>
<td>2,50 $/m² de semences</td>
<td>9,42$</td>
<td>23,96$</td>
<td>28,71$</td>
</tr>
<tr>
<td>Entretien et durabilité</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inspection et entretien</td>
<td>Après chaque événement majeur (plus de 25 mm de pluie)**</td>
<td>Après chaque événement majeur (plus de 25 mm de pluie)**</td>
<td>Après chaque événement majeur (plus de 25 mm de pluie)**</td>
<td>Après chaque événement majeur (plus de 25 mm de pluie)**</td>
<td></td>
</tr>
<tr>
<td>Durabilité</td>
<td>plus de 50 ans</td>
<td>n/a</td>
<td>plus de 50 ans</td>
<td>25 ans</td>
<td>20 ans</td>
</tr>
</tbody>
</table>

6.3. Présentation des PGO en fin de réseau

Les PGO en fin de réseaux présentées dans cette section sont les bassins de rétention sans retenue permanente, les bassins de rétention avec retenue permanente ainsi que les bassins d’infiltration et les marais artificiels. Le tableau 6.3 présente un résumé des caractéristiques importantes de chacune de ces PGO.
6.3.1. Bassin de rétention sans retenue permanente

Le bassin de rétention sans retenue permanente, ou bassin sec, accumule temporairement les eaux pluviales pour les relâcher à un débit contrôlé. Ce bassin s’assèche normalement en quelques heures. Ce bassin ne comporte pas de plantation particulière et représente davantage une mesure de contrôle du débit. Le bassin sec est utile dans les développements résidentiels, les secteurs industriels et les espaces commerciaux. (Osseyrane et al., 2012)

6.3.2. Bassin de rétention avec retenue permanente

Le bassin de rétention avec retenue permanente, ou bassin humide, est constitué d’un fond imperméabilisé à l’aide d’une couche d’argile ou d’un textile imperméable. Un certain volume d’eau est constamment présent au fond du bassin et permet que les sédiments décantés ne soient pas remis en suspension lors des pluies. La présence d’eau en permanence permet aussi d’avoir des plantes aquatiques qui jouent un rôle dans le contrôle qualitatif de l’eau. Le volume supplémentaire permet de stocker l’eau de pluie sur une période prolongée de 24 à 48 heures. Ce bassin humide est utile pour toutes les sortes de développements, qu’ils soient résidentiels, industriels ou commerciaux. (Osseyrane et al., 2012)

6.3.3. Bassin d’infiltration

Un bassin d’infiltration sert à l’accumulation et à l’infiltration des surplus d’eau de ruissellement sur plusieurs heures. Ce bassin consiste en une série de drains perforés enfouis de façon parallèle et surmontés de plantes à racines profondes. Ce type de bassin nécessite un dépôt meuble très perméable, et il n’est pas applicable pour les sites à forte charge de sédiments et où la nappe phréatique est exposée à la contamination. Ce type de bassin est applicable uniquement en secteur résidentiel unifamilial. (Osseyrane et al., 2012)

6.3.4. Marais artificiel

Les marais artificiels sont des espaces d’eau stagnante de faible profondeur ayant une abondance de plantes aquatiques spécifiques. L’eau y est stockée sur de longues périodes et les plantes sont sélectionnées pour leur capacité à filtrer et décontaminer l’eau. (Osseyrane et al., 2012)

6.3.5. Caractéristiques des PGO en fin de réseau

Le tableau 6.3 présente les caractéristiques des PGO en fin de réseau.
Tableau 6.3 Caractéristiques des PGO en fin de réseau

<table>
<thead>
<tr>
<th></th>
<th>Bassin sec</th>
<th>Bassin avec retenue permanente</th>
<th>Bassin d’infiltration</th>
<th>Marais artificiel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cycle de l’eau</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Augmentation de l’évapotranspiration</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Augmentation de l’infiltration</td>
<td></td>
<td>-</td>
<td>Oui*</td>
<td>-</td>
</tr>
<tr>
<td>Diminution du débit de pointe</td>
<td></td>
<td>Oui*</td>
<td>Oui*</td>
<td>Oui*</td>
</tr>
<tr>
<td>Cycle de l’eau</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pente maximum</td>
<td>25 %*</td>
<td>25 %*</td>
<td>15 %*</td>
<td>25 %*</td>
</tr>
<tr>
<td>Nappe phréatique et roc a plus de 1 m</td>
<td>-</td>
<td>-</td>
<td>Oui*</td>
<td>-</td>
</tr>
<tr>
<td>Taux d’infiltration minimum</td>
<td>-</td>
<td>-</td>
<td>60 mm/h*</td>
<td>-</td>
</tr>
<tr>
<td>Distance des puits</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Contraintes biophysiques</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phosphore</td>
<td>20b</td>
<td>52c</td>
<td>65c</td>
<td>45c</td>
</tr>
<tr>
<td>Azote total</td>
<td>0b</td>
<td>31c</td>
<td>0c</td>
<td>65c</td>
</tr>
<tr>
<td>MES</td>
<td>60b</td>
<td>80c</td>
<td>85c</td>
<td>70c</td>
</tr>
<tr>
<td>Réduction du ruissèlement</td>
<td>0-15</td>
<td>0</td>
<td>50-90</td>
<td>0</td>
</tr>
<tr>
<td>Coût (pour 100,000 pieds cube d’eau traité)</td>
<td>200 000$*</td>
<td>260 000$*</td>
<td>1 500 005$*</td>
<td>140 000$*</td>
</tr>
<tr>
<td>Inspection et entretien</td>
<td>Après chaque événement majeur (plus de 25 mm de pluie)*</td>
<td>2 fois par an*</td>
<td>Après chaque événement majeur (plus de 25 mm de pluie)*</td>
<td>Moins d’une fois par an*</td>
</tr>
</tbody>
</table>

Compilation d’après *Osseyrane et al., 2012, †Toronto Water Infrastructure Management, 2006, ‡CWP, 2007 et §Weiss, Gulliver, et Erickson, 2005

Les PGO présentées dans ce chapitre ont toutes des caractéristiques bien spécifiques qui font en sorte qu’elles s’appliquent mieux à certains projets. Le chapitre suivant permettra de sélectionner les PGO étant le mieux adaptées aux besoins du site.
7. **ANALYSE DES PRATIQUES DE GESTION OPTIMALES DES EAUX PLUVIALES**

L'utilisation des PGO a pour objectif principal de conserver les caractéristiques qualitatives et quantitatives des ressources en eau sur le terrain. Contrairement à l’utilisation des systèmes d’égouts pour l’eau de pluie, l’eau doit être gérée à son origine pour tenter de reproduire les conditions hydrologiques qui prévalaient avant le développement. Les objectifs secondaires de l’utilisation de PGO sont d’empêcher les changements géomorphologiques des cours d’eau, de ne pas augmenter le potentiel d’inondation et de conserver la diversité d’usage des ressources. (Osseyrane et al., 2012)

Ce chapitre est une analyse multicritère pour chacun des types de PGO pouvant être utilisés. Ainsi, chacune des catégories de PGO sera analysée séparément dans cette section, mais toujours selon les mêmes critères. On retrouve donc dans ce chapitre l’explication des critères, la justification de la pondération des critères, le système d’évaluation de chacun des critères, les grilles d’analyse pour chacun des types de PGO et finalement les recommandations quant aux types de PGO devant être utilisées.

7.1. **Descriptions des critères**

7.1.1. **Contraintes biophysiques**

Le critère des contraintes physiques est le plus limitant de tous les critères et c’est pourquoi celui-ci est évalué en premier. En effet, certains types de PGO nécessitent des caractéristiques physiques bien précises et le site doit être prédisposé à les accueillir. Les principales caractéristiques sont en lien avec le taux de percolation du sol, la présence de substrat rocheux à la surface, la topographie et la profondeur de la nappe phréatique. Bien que certaines contraintes physiques ne fassent qu’augmenter le prix de construction, la plupart empêchent totalement l’utilisation de certains types de PGO.

Premièrement, la perméabilité du sol est le critère le plus contraignant. Puisque la perméabilité du site est évaluée à 5-10 cm/heure selon la caractérisation faite au chapitre 2, les PGO nécessitant une perméabilité plus élevée seront automatiquement rejetées pour la suite de l’analyse, à moins qu’une alternative soit possible (par exemple, les PGO utilisant l’infiltration peuvent être parfois utilisées avec
un drain). Dans ce cas, c’est seulement l’alternative nécessitant un moindre taux de percolation qui sera évaluée pour la suite de l’analyse.

Deuxièmement, du roc près de la surface a été dénoté lors de la caractérisation du site. Puisqu’il se peut que le roc soit fracturé, l’eau pourrait s’y infilttrer directement, sans pouvoir être filtrée par les différents organismes du sol et rejoindre directement un aquifère ou la nappe phréatique. Parce que la présence de substrat rocheux à la surface peut compromettre la capacité des PGO à maintenir une bonne qualité de l’eau, cette contrainte ne permettra pas l’utilisation de certains PGO sur l’entièreté du site.

Troisièmement, la topographie est très variable sur le site : on y trouve des pentes ayant de 0 à 15 % d’inclinaison. L’efficacité ou l’utilisation de certaines PGO étant limitée par le degré d’inclinaison des surfaces, la topographie représente donc une limite importante pour la sélection des technologies appropriées.

7.1.2. Efficacité qualitative

Le critère d’efficacité qualitative réfère au pourcentage d’enlèvement de polluants. Ce critère est important, car l’urbanisation et le ruissellement polluent énormément les cours d’eau. Il est donc impératif que les PGO contribuent à diminuer les charges de polluants afin de permettre de conserver la qualité de l’eau. Ces polluants peuvent être la présence de débris qui modifient la DBO, de la matière en suspension (MES), des nutriments dont l’azote et le phosphore, des bactéries ainsi que des métaux lourds (Osseyrane et al., 2012). Le plan directeur de l’eau du COGESAF (2015) énonce plusieurs objectifs pour améliorer la qualité de l’eau au sein du bassin versant duquel fait partie la municipalité de Weedon. Aucun objectif ne concerne directement le sous-bassin de Weedon, mais trois objectifs généraux peuvent s’y appliquer :

- Atteindre en tout temps une concentration d’azote inférieure à 1 mg/L dans tous les cours d’eau;
- Réduire l’apport de 50 % des sources de phosphore ciblées dans le bassin versant de la rivière Saint-François;
- Atteindre, en tout temps, une concentration de MES d’eau plus 25 mg/L supérieure à la concentration naturelle des cours d’eau. (COGESAF, 2015)

L’efficacité des PGO en termes d’amélioration de la qualité de l’eau portera donc un intérêt particulier à la capacité d’enlèvement de l’azote, du phosphore et des MES.
7.1.3. Amélioration du bilan hydrique

Les objectifs d’utilisation des PGO sont de ne pas augmenter ni diminuer les volumes d’eau présents dans les cours d’eau identifiés et de conserver les milieux humides présents sur le site. Afin de minimiser l’augmentation du ruissellement, il faut utiliser des PGO qui ont une méthode d’intervention permettant d’imiter le cycle de l’eau qui prévalait avant le développement.

L’étape d’intervention au sein du cycle de l’eau est un critère qui sert à indiquer à quel point le PGO permet d’imiter ou de rétablir le cycle naturel de l’eau après les modifications apportées par l’urbanisation. Sur un site à l’état naturel, comme celui à l’étude, les précipitations sont retournées à 40 % sous forme d’évapotranspiration, alors que 40 % s’infiltrait et que 10 % de l’eau ruissèle (Osseyrane et al., 2012). L’urbanisation, en plus d’augmenter les quantités d’eau de ruissellement, augmente de 2 à 5 fois les débits de pointes (Osseyrane et al., 2012). Puisque le site à l’étude est principalement boisé, les étapes d’implications sont privilégiées dans l’ordre suivant afin d’imiter le cycle naturel de l’eau : l’évapotranspiration, l’infiltration, l’interception de l’eau de ruissellement et la réduction du débit de pointe.

7.1.4. Réduction des volumes de ruissellement

Puisqu’un des effets majeurs de l’urbanisation est l’augmentation des volumes d’eau de ruissellement, il est nécessaire qu’un des critères soit la capacité d’un PGO à les réduire. L’augmentation des volumes d’eau de ruissellement est à la base de plusieurs problèmes en gestion de l’eau, dont l’augmentation du débit de pointe, l’érosion, l’augmentation de la charge de contaminants, la baisse du niveau de la nappe phréatique et des cours d’eau en dehors des débits de pointe, etc. L’efficacité à réduire les volumes d’eau de ruissellement est donc un des critères.

7.1.5. Entretien et durabilité

Le critère d’entretien et de durabilité permet de différencier les différents types de PGO selon le nombre d’interventions que la municipalité ou le citoyen doit faire chaque année pour veiller au bon fonctionnement des installations. Certaines PGO ne nécessitent qu’une ou deux visites par années alors que d’autres nécessitent parfois des réorganisations complètes, ce qui demande énormément d’implication. Aussi, la durée de vie de chacun des PGO est très variable. Étant donné que les réhabilitations sont très couteuses, et parfois même plus chères que la construction, la longévité des installations est un critère très important.
7.1.6. Coût

Le critère associé aux coûts permet à la municipalité et aux propriétaires de sélectionner les PGO et d’évaluer le rapport d’efficacité en fonction du prix. Certains PGO peuvent avoir des coûts très élevés alors que leur efficacité est moins importante que d’autres ayant un moindre coût. Les coûts pour les technologies sur le site et en réseau sont présentés en dollars canadiens par mètre carré de surface tributaire, évalués selon une surface tributaire de 2000 m² (Van Seters et al., 2013). Les coûts pour les technologies en fin de réseau sont présentés en dollars américains pour un volume de 100 000 pieds cubes d’eau traité par année.

7.2. Pondération des critères

Les critères ont été pondérés grâce à une analyse hiérarchique des procédés (AHP) qui permet d’obtenir une pondération en fonction de l’importance accordée à chacun des critères. La matrice des critères de décision et de leur classement en importance est disponible à l’annexe 15. Les critères des contraintes biophysiques et de l’efficacité qualitative sont considérés comme étant les plus importants, puisqu’ils sont spécifiques aux caractéristiques et aux besoins du site. C’est pourquoi la pondération est de 26 % pour chacun de ces critères (annexe 15). Les critères d’amélioration du bilan hydrique et de réduction du volume de ruissellement sont les deuxièmes en importance puisque chacun de ces critères tente de répondre à l’objectif principal de l’utilisation des PGO, soit de reproduire les conditions hydrologiques préalables au développement. Leur pondération est donc de 17 % (annexe 15). Ensuite, le critère d’entretien est considéré comme ayant une importance moindre, car il influence davantage la capacité des utilisateurs (la ville ou les résidents) à s’occuper du bon fonctionnement. Sa pondération est de 9 % (annexe 15). Finalement, le critère du coût est le critère le moins important, car les informations sur les budgets alloués aux installations ne sont pas connus pour le moment, et ils servent davantage à tenir compte de l’efficacité en fonction du prix. La pondération de ce critère est donc de 5 % (annexe 15).

7.3. Description de l’évaluation des critères

Chacun des six critères énoncés à la section 7.1 sont évalués d’une façon différente. Cette section présente le procédé d’évaluation ainsi que les notes qui peuvent être attribuées.
7.3.1. Contrainte biophysiques

Il y a trois contraintes biophysiques principales sur le site, soit la perméabilité du sol, la présence de roc près de la surface et la topographie. Chacun des PGO sera évalué selon les trois contraintes et une note finale sera attribuée pour l’ensemble des contraintes physiques.

Les PGO nécessitant une infiltration de plus de 10 cm/heure ne seront pas considérés pour la suite de l’analyse. Lorsque l’utilisation d’une alternative est possible, l’alternative ayant un moins grand besoin d’infiltration sera utilisée pour la suite de l’analyse. Aucune note n’est donc attribuée pour le coefficient de perméabilité.

Une PGO ayant comme contrainte la présence de roc à moins de 1 m de la surface pourra être utilisée uniquement sur certains espaces spécifiques du site. Une note de 0 sera attribuée, et une recommandation quant au lieu de l’utilisation sera émise. L’absence de contrainte pour la présence de roc donnera une note de 1.

Une PGO ayant comme contrainte les pentes pourra être utilisée uniquement sur certains espaces spécifiques du site. Il existe trois types de classes topographiques sur le site :

- Les pentes nulles ayant de 0-3 % d’inclinaison;
- Les pentes légères ayant de 4-8 % d’inclinaison;
- Les pentes douces ayant de 9-15 % d’inclinaison.

Les PGO ayant des contraintes topographiques seront évaluées selon le tableau 7.1. Ainsi, si une PGO n’est absolument pas contrainte par la topographie, elle obtiendra la note de 2. Si la PGO est contrainte par une seule classe de pentes, elle obtiendra la note de 1. Finalement, si la PGO est contrainte par deux classes de pentes, elle obtiendra la note de 0. Par exemple, si une PGO requiert un maximum de 5 % d’inclinaison, elle ne peut être utilisée ni sur les pentes légères ni sur les pentes douces et obtient donc la note de 0.

Tableau 7.1 Évaluation des contraintes topographiques

<table>
<thead>
<tr>
<th>Contraintes topographiques</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pas de contrainte</td>
<td>2</td>
</tr>
<tr>
<td>Une classe de contrainte topographique</td>
<td>1</td>
</tr>
<tr>
<td>Deux classes contraintes topographiques</td>
<td>0</td>
</tr>
</tbody>
</table>
7.3.2. **Efficacité qualitative**

La capacité des PGO à retirer les contaminants est évaluée au tableau 7.2. La note est donnée en fonction du pourcentage de contaminants retirés. Plus la PGO est efficace pour retirer un contaminant, meilleure est la note attribuée. Les pourcentages de contaminant retirés ont été divisés en cinq classes, de 0 à 100 %. Les notes de chacun des contaminants sont ensuite additionnées pour donner la note finale.

<table>
<thead>
<tr>
<th>Pourcentage de contaminant retiré</th>
<th>P</th>
<th>N</th>
<th>MES</th>
</tr>
</thead>
<tbody>
<tr>
<td>[80 % - 100 %]</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>[60 % - 80 %]</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>[40 % - 60 %]</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>[20 % - 40 %]</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>[0 % - 20 %]</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>< 0 %</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Tableau 7.2 Évaluation de la capacité de réduction des contaminants

7.3.3. **Amélioration du bilan hydrique**

Le niveau d’intervention au sein du cycle de l’eau est évalué grâce au tableau 7.3. Si une PGO permet d’augmenter l’évapotranspiration, elle obtient un point. Si une PGO permet d’augmenter l’infiltration, elle obtient également un point. Si la PGO permet de réduire uniquement le débit de pointe et le ruissellement, la note est de 0, car cette caractéristique est commune à tous les PGO. Ces points sont ensuite additionnés. Les PGO permettant de réduire le débit de pointe n’obtiennent aucun point.

<table>
<thead>
<tr>
<th>Amélioration du bilan hydrique</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Augmentation de l’évapotranspiration</td>
<td>1</td>
</tr>
<tr>
<td>Augmentation de l’infiltration</td>
<td>1</td>
</tr>
<tr>
<td>Diminution du débit de pointe</td>
<td>0</td>
</tr>
</tbody>
</table>

Tableau 7.3 Évaluation du niveau d’intervention au sein du cycle de l’eau

7.3.4. **Réduction des volumes de ruissellement**

La capacité des PGO à diminuer l’eau de ruissellement est évaluée au tableau 7.4. La note est donnée en fonction du pourcentage de diminution des volumes de ruissellement. Plus la PGO est efficace pour
diminuer les volumes de ruissellement, meilleure est la note attribuée. Les pourcentages de réduction du ruissellement ont été divisés en cinq classes, de 0 à 100 %.

Tableau 7.4 Évaluation de la réduction des volumes de ruissellement

<table>
<thead>
<tr>
<th>Pourcentage de réduction du volume de ruissellement</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>[80 % - 100 %]</td>
<td>5</td>
</tr>
<tr>
<td>[60 % - 80 %]</td>
<td>4</td>
</tr>
<tr>
<td>[40 % - 60 %]</td>
<td>3</td>
</tr>
<tr>
<td>[20 % - 40 %]</td>
<td>2</td>
</tr>
<tr>
<td>[0 % - 20 %]</td>
<td>1</td>
</tr>
<tr>
<td>[0 %]</td>
<td>0</td>
</tr>
</tbody>
</table>

7.3.5. Entretien et durabilité

Ce critère est évalué selon le nombre d’entretiens nécessaire par année et selon la durée de vie avant la nécessité d’une réhabilitation. L’entretien est d’abord évalué au tableau 7.5. Plus la fréquence d’entretien est élevée, moins la note est haute. Ensuite, la durée de vie est évaluée au tableau 7.6. Plus la longévité avant la réhabilitation est élevée, plus la note est grande.

Tableau 7.5 Évaluation de l’entretien

<table>
<thead>
<tr>
<th>Nombre d’inspection et d’entretien par année</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 fois par an ou moins</td>
<td>2</td>
</tr>
<tr>
<td>2 fois par an</td>
<td>1</td>
</tr>
<tr>
<td>Plus de 2 fois par an</td>
<td>0</td>
</tr>
</tbody>
</table>

Tableau 7.6 Évaluation de la durée de vie

<table>
<thead>
<tr>
<th>Durée de vie avant la réhabilitation</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>[50 ans et plus]</td>
<td>3</td>
</tr>
<tr>
<td>[25 ans - 50 ans]</td>
<td>2</td>
</tr>
<tr>
<td>[1 an - 25 ans]</td>
<td>1</td>
</tr>
<tr>
<td>Moins d’un an</td>
<td>0</td>
</tr>
</tbody>
</table>
7.3.6. Coût

Pour les PGO sur le site et en réseau, ce critère est évalué en fonction du coût par m² d’aire tributaire par année sur 50 ans. Ce coût inclut la construction, l’opération et la réhabilitation au cours d’un cycle de vie de 50 ans. Pour les PGO en fin de réseau, le coût est évalué en fonction du prix de construction, d’opération et de maintenance pour 100 000 pieds cubes d’eau traitée par année. Comme présenté au tableau 7.7 et 7.8, plus le coût est élevé, moins la note est grande.

Tableau 7.7 Évaluation du coût des PGO sur le site et en réseau

<table>
<thead>
<tr>
<th>Coût</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>$0 - 100$</td>
<td>5</td>
</tr>
<tr>
<td>$100 - 200$</td>
<td>4</td>
</tr>
<tr>
<td>$200 - 300$</td>
<td>3</td>
</tr>
<tr>
<td>$300 - 400$</td>
<td>2</td>
</tr>
<tr>
<td>$400 - 500$</td>
<td>1</td>
</tr>
<tr>
<td>500 <</td>
<td>0</td>
</tr>
</tbody>
</table>

Tableau 7.8 Évaluation du coût des PGO en fin de réseau

<table>
<thead>
<tr>
<th>Coût</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>$0 - 100 000$</td>
<td>5</td>
</tr>
<tr>
<td>$100 000 - 200 000$</td>
<td>4</td>
</tr>
<tr>
<td>$200 000 - 300 000$</td>
<td>3</td>
</tr>
<tr>
<td>$300 000 - 400 000$</td>
<td>2</td>
</tr>
<tr>
<td>$400 000 - 500 000$</td>
<td>1</td>
</tr>
<tr>
<td>$500 000$ <</td>
<td>0</td>
</tr>
</tbody>
</table>

7.4. Résultats des grilles d’analyses des PGO

Les grilles d’analyse sont présentées aux annexes 16 à 18 pour les PGO sur le site, en réseau et en fin de réseau, respectivement.

Pour les PGO sur le site, la collecte et la réutilisation de l’eau de pluie avec réservoir en plastique ou en ciment est la meilleure option avec des notes de 88 % et 86 % respectivement. Le deuxième meilleur
Les choix sont l'utilisation de toits verts, extensifs ou intensifs, avec des notes de 70 % et 71 % respectivement. Les jardins de pluie avec drain et les pavages poreux avec drains sont peu recommandables avec des notes de 54 % et 24 % respectivement. Les jardins de pluie sans drain, le pavage poreux sans drain, les puits et tranchées d’infiltration et la déconnexion de gouttières ont été éliminés.

Pour les PGO en réseau, la noue engazonnée avec drain est la meilleure option avec une note 60 %. La bande filtrante et le fossé engazonné sont le deuxième choix, avec des notes de 48 % pour les deux. La tranchée d’infiltration, la noue engazonnée sans drain et le système d’exfiltration ont été éliminés.

Pour les PGO en fin de réseau, le marais artificiel est la meilleure option avec une note de 53 %. Le bassin avec retenue permanente et le bassin sec sont de moins bonnes options, avec des notes de 49 % et 43 % respectivement. Le bassin d’infiltration a été éliminé.
CONCLUSION

L’objectif général de ce travail était de recommander à la municipalité de Weedon des moyens pour adapter l’écoquartier aux caractéristiques hydrographiques et biophysiques du milieu. Ce but a été atteint en répondant aux trois objectifs spécifiques.

Premièrement, le milieu biophysique et hydrographique a été caractérisé par l’analyse de données géospatiales, complétée par la photointerprétation. Le potentiel de développement a été analysé grâce à l’outil ArcGIS afin de déterminer les zones propices à l’urbanisation et les zones à exclure. Les recommandations quant au développement des différentes zones du site sont présentées à la figure 3.7. En résumé, il est recommandé de concentrer le développement du site dans la zone n’ayant aucune contrainte et de limiter la densité des habitations dans les espaces présentant différentes contraintes. Selon ces suggestions, il sera possible de développer environ 40 bâtiments sur le site.

Deuxièmement, les systèmes de gestion des eaux usées ont été décrits grâce à leurs avantages, leurs inconvénients et leurs limites. Ces points ont ensuite été comparés et ont mené à la création d’un arbre de décision permettant de recommander le système étant le mieux adapté au milieu. En résumé, les zones 2 et 3 (figure 3.7) devraient utiliser des systèmes de traitement septiques puisque la densité est faible. Pour ce qui est de la zone 1 (figure 3.7) où la forte densité est recommandée, les systèmes de traitement septiques devraient être utilisés seulement si la densité est égale ou moindre à 5 unités d’habitations par hectare. Si la densité désirée par la municipalité est plus élevée, le raccordement au système de traitement centralisé est recommandé.

Troisièmement, les mesures de gestion des eaux pluviales ont été présentées selon différentes caractéristiques adaptées au site. Leur recommandation est basée sur une analyse multicritère pondérée. En résumé, les PGO qui devraient être utilisés conjointement sur le site sont la collecte et la réutilisation pour la gestion sur le site, la noue engazonnée avec drain pour la gestion en réseau et le marais artificiel pour la gestion en fin de réseau.

La faisabilité d’implantation des systèmes recommandés nécessitera davantage de tests faits par des professionnels. Les recommandations présentées dans ce travail consistent en une analyse préliminaire qui visait à présenter et privilégier des modes de développement alternatifs à l’urbanisation classique.
LISTE DES RÉFÉRENCES

COGESAF (s.d.) *Outil de cartographie dynamique du COGESAF*. Repéré sur le site du COGESAF, section Outil de cartographie : http://cogesaf.sigmont.org/cogesaf/cogesaf.php

Concertaction Estrie (2014). *Déploiement d’un concept de développement industriel et résidentiel durable* (Rapport interne pour la municipalité de Weedon), East Angus, Québec : Concertaction Estrie.

Gouvernement du Québec (1976). Photographie aérienne Q76344 (221-223) Gouvernement du Québec, 1 :10 000.

Institut de recherche et développement en agroenvironnement (IRDA) (2004). Cartes des sols [Données géospatiales]. 1 : 20 000, 21e11201, Québec, IRDA.

Règlement sur les ouvrages municipaux d’assainissement des eaux usées, RLRQ c. Q-2, r. 34.1

Règlement sur l’évacuation et le traitement des eaux usées des résidences isolées, RLRQ c. Q-2, r. 22

BIBLIOGRAPHIE

ANNEXE 1 : PHOTOGRAPHIE AÉRIENNE DU VOL A9370-120

(Ministère de l’énergie, des mines et des ressources du canada, 1945)
ANNEXE 2 : PHOTOGRAPHIE AÉRIENNE DU VOL 1195-101

(Ministère des terres et forêts, Service de la Photogrammétrie et de la Cartographie, 1959a)
ANNEXE 3 : PHOTOGRAPHIE AÉRIENNE DU VOL 1196-66

(Ministère des terres et forêts, Service de la Photogrammétrie et de la Cartographie, 1959b)
ANNEXE 4 : PHOTOGRAPHIE AÉRIENNE DU VOL Q66345-95

(Ministère des terres et des forêts, 1966)
ANNEXE 5 : PHOTOGRAPHIE AÉRIENNE DU VOL Q76344-221

(Gouvernement du Québec, 1976)
ANNEXE 6 : PHOTOGRAPHIE AÉRIENNE DU VOL Q80517-38

(Ministère de l’Énergie et des Ressources, 1981)
ANNEXE 7 : PHOTOGRAPHIE AÉRIENNE DU VOL Q88104-169

(Gouvernement du Québec, 1988)
ANNEXE 8 : PHOTOGRAPHIE AÉRIENNE DU VOL HMQ93-129

(Hauts-Monts Inc., 1993)
ANNEXE 9 : PHOTOGRAPHIE AÉRIENNE DU VOL HMQ98-88

(Hauts-Monts Inc., 1998)
ANNEXE 10 : PHOTOGRAPHIE AÉRIENNE DU VOL Q00815-97

(Ministère des Ressources naturelles du Québec., 2000)
ANNEXE 11 : PHOTOGRAPHIE AÉRIENNE DU VOL Q07136-6

(Ministère des Ressources naturelles et de la Faune du Québec, 2007)
ANNEXE 12 : PHOTOGRAPHIE AÉRIENNE DU VOL Q13007-599

(Conférence régionale des élus de l’Estrie., 2013)
ANNEXE 13 : LÉGENDE DE LA CARTE ÉCOFORESTIÈRE

(Service des inventaires Forestiers, 2012)

<table>
<thead>
<tr>
<th>Type de couvert</th>
<th>R</th>
<th>Les résineux constituent plus de 75 % de la surface terrière du peuplement</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPI</td>
<td>Coupe partielle</td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>Plantation</td>
<td></td>
</tr>
<tr>
<td>Groupement d’essence</td>
<td>EB</td>
<td>Épinette blanche</td>
</tr>
<tr>
<td></td>
<td>RX</td>
<td>Résineux indéterminé</td>
</tr>
<tr>
<td></td>
<td>RZ</td>
<td>Résineux planté indéterminé</td>
</tr>
<tr>
<td></td>
<td>SB</td>
<td>Sapin baumier</td>
</tr>
<tr>
<td></td>
<td>TO</td>
<td>Thuya occidental</td>
</tr>
<tr>
<td>Classe de densité</td>
<td>A</td>
<td>Plus grand ou égal à 80 %</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>Plus grand ou égal à 40 % et plus petit que 60 %</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>Plus grand ou égal à 25 % et plus petit que 40 %</td>
</tr>
<tr>
<td>Classe de hauteur</td>
<td>3</td>
<td>Plus grande ou égale à 12 m et plus petite que 17 m</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Plus grande ou égale à 7 m et plus petite que 12 m</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>Plus grande ou égale à 2 m et plus petite que 4 m</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>Plus petite que 2 m</td>
</tr>
<tr>
<td>Classe d’âge</td>
<td>10</td>
<td>de 0 à 20 ans</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>de 21 à 40 ans</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>de 41 à 60 ans</td>
</tr>
<tr>
<td>Classe de pente</td>
<td>B</td>
<td>Faible, de 4 à 8 %</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>Douce, de 9 à 15 %</td>
</tr>
<tr>
<td>Dépôt de surface</td>
<td>1A</td>
<td>Till indifférencié</td>
</tr>
<tr>
<td></td>
<td>4GS</td>
<td>Glaciolacustre</td>
</tr>
<tr>
<td>Classe de drainage</td>
<td>20</td>
<td>Bon, aucun modificateur</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>Modéré, aucun modificateur</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>Imparfait, aucun modificateur</td>
</tr>
<tr>
<td>Type écologique</td>
<td>MJ21</td>
<td>Bétulaie jaune à sapin</td>
</tr>
<tr>
<td></td>
<td>RB11</td>
<td>Pessière blanche ou cédrière issue d’agriculture, station au dépôt minéral de mince à épais, de texture grossière, de drainage xérique ou mésique</td>
</tr>
<tr>
<td></td>
<td>RB12</td>
<td>Pessière blanche ou cédrière issue d’agriculture, station au dépôt minéral de mince à épais, de texture moyenne, de drainage mésique</td>
</tr>
<tr>
<td></td>
<td>RB15</td>
<td>Pessière blanche ou cédrière issue d’agriculture, station au dépôt minéral de mince à épais, de texture moyenne, de drainage subhydrique</td>
</tr>
<tr>
<td>Catégorie de terrain</td>
<td>ANT</td>
<td>Milieu très perturbé par l’activité humaine</td>
</tr>
</tbody>
</table>
ANNEXE 14 : TYPES DE DÉPÔTS MEUBLES ET PERMÉABILITÉ

<table>
<thead>
<tr>
<th>Symbole (Unified Soil Classification System)</th>
<th>Description</th>
<th>Perméabilité</th>
</tr>
</thead>
<tbody>
<tr>
<td>GW</td>
<td>Gravier, grosseur des particules uniforme</td>
<td>> 10 cm / heure</td>
</tr>
<tr>
<td>GP</td>
<td>Gravelle, grosseur des particules non uniforme</td>
<td>> 10 cm / heure</td>
</tr>
<tr>
<td>SW</td>
<td>Sable, grosseur des particules uniforme</td>
<td>> 10 cm / heure</td>
</tr>
<tr>
<td>SP</td>
<td>Sable, grosseur des particules non uniforme</td>
<td>> 10 cm / heure</td>
</tr>
<tr>
<td>GM</td>
<td>Gravier, sable et limon inorganique fin</td>
<td>> 10 cm / heure</td>
</tr>
<tr>
<td>SM</td>
<td>Sable et silt inorganique fin</td>
<td>> 10 cm / heure</td>
</tr>
<tr>
<td>GC</td>
<td>Gravier et argile inorganique</td>
<td>5 à 10 cm / heure</td>
</tr>
<tr>
<td>SC</td>
<td>Sable et argile inorganique</td>
<td>5 à 10 cm / heure</td>
</tr>
<tr>
<td>ML</td>
<td>Sable et silt organique fin, faible plasticité</td>
<td>5 à 10 cm / heure</td>
</tr>
<tr>
<td>CL</td>
<td>Argile inorganique, faible plasticité</td>
<td>5 à 10 cm / heure</td>
</tr>
<tr>
<td>CH</td>
<td>Argile inorganique, forte plasticité</td>
<td>< 5 cm / heure</td>
</tr>
<tr>
<td>MH</td>
<td>Silt inorganique fin, forte plasticité</td>
<td>< 5 cm / heure</td>
</tr>
<tr>
<td>OL</td>
<td>Silt et argile organique, faible plasticité</td>
<td>< 5 cm / heure</td>
</tr>
<tr>
<td>OH</td>
<td>Silt et argile organique, forte plasticité</td>
<td>Aucun</td>
</tr>
<tr>
<td>PT</td>
<td>Tourbe</td>
<td>Aucun</td>
</tr>
</tbody>
</table>

(Tiré de Randolph, 2012)
ANNEXE 15 : TABLEAU AHP

Échelle

1. Importance égale
2. Importance modérée
3. Importance forte
4. Importance très forte

<table>
<thead>
<tr>
<th></th>
<th>Contraintes biophysiques</th>
<th>Efficacité qualitative</th>
<th>Amélioration du bilan hydrique</th>
<th>Réduction des volumes de ruissellement</th>
<th>Entretien et durabilité</th>
<th>Coût</th>
<th>Pourcentage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contraintes biophysiques</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Efficacité qualitative</td>
<td>1.00</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Amélioration du bilan hydrique</td>
<td>0.50</td>
<td>0.50</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Réduction des volumes de ruissellement</td>
<td>0.50</td>
<td>0.50</td>
<td>1.00</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Entretien et durabilité</td>
<td>0.33</td>
<td>0.33</td>
<td>0.33</td>
<td>0.33</td>
<td>1</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Coût</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>3.58</td>
<td>3.58</td>
<td>6.58</td>
<td>6.58</td>
<td>13.25</td>
<td>21.00</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Contraintes biophysiques</th>
<th>Efficacité qualitative</th>
<th>Amélioration du bilan hydrique</th>
<th>Réduction des volumes de ruissellement</th>
<th>Entretien et durabilité</th>
<th>Coût</th>
<th>Pourcentage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contraintes biophysiques</td>
<td>0.28</td>
<td>0.28</td>
<td>0.30</td>
<td>0.30</td>
<td>0.23</td>
<td>0.19</td>
<td>26</td>
</tr>
<tr>
<td>Efficacité qualitative</td>
<td>0.28</td>
<td>0.28</td>
<td>0.30</td>
<td>0.30</td>
<td>0.23</td>
<td>0.19</td>
<td>26</td>
</tr>
<tr>
<td>Amélioration du bilan hydrique</td>
<td>0.14</td>
<td>0.14</td>
<td>0.15</td>
<td>0.15</td>
<td>0.23</td>
<td>0.19</td>
<td>17</td>
</tr>
<tr>
<td>Réduction des volumes de ruissellement</td>
<td>0.14</td>
<td>0.14</td>
<td>0.15</td>
<td>0.15</td>
<td>0.23</td>
<td>0.19</td>
<td>17</td>
</tr>
<tr>
<td>Entretien et durabilité</td>
<td>0.09</td>
<td>0.09</td>
<td>0.05</td>
<td>0.05</td>
<td>0.08</td>
<td>0.19</td>
<td>9</td>
</tr>
<tr>
<td>Coût</td>
<td>0.07</td>
<td>0.07</td>
<td>0.04</td>
<td>0.04</td>
<td>0.02</td>
<td>0.05</td>
<td>5</td>
</tr>
<tr>
<td>Total</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>100</td>
</tr>
</tbody>
</table>
ANNEXE 16 : TABLEAU D’ANALYSE MULTICRITÈRE DES PGO SUR LE SITE

<table>
<thead>
<tr>
<th>Critère</th>
<th>Note</th>
<th>pondération (%)</th>
<th>Test de l'état en place</th>
<th>Gestion et réutilisation</th>
<th>Jardin de pluie</th>
<th>Paysage forestier</th>
<th>Réservoir en plastique</th>
<th>Réservoir en ciment</th>
<th>Déconnexion de goutières</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contraintes biophysiques</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Infiltration de plus de 10 cm/h</td>
<td></td>
<td></td>
<td></td>
<td>Eliminé</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contraintes de la nappe phréatique et du roc</td>
<td></td>
<td></td>
<td></td>
<td>Eliminé</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contrainte par rapport au roc ou à la nappe phréatique</td>
<td>7 1 1 1</td>
<td></td>
<td></td>
<td>Eliminé</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contrainte par rapport à la nappe phréatique</td>
<td></td>
<td></td>
<td></td>
<td>Eliminé</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contrainte par rapport à la nappe phréatique et du roc</td>
<td>7 1 1 1</td>
<td></td>
<td></td>
<td>Eliminé</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contraintes topographiques</td>
<td></td>
<td></td>
<td></td>
<td>Eliminé</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pas de contrainte</td>
<td>2</td>
<td></td>
<td></td>
<td>Eliminé</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 classe de contrainte topographique</td>
<td>1</td>
<td></td>
<td></td>
<td>Eliminé</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 classes de contraintes topographiques</td>
<td>1</td>
<td></td>
<td></td>
<td>Eliminé</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Note partielle (%)</td>
<td></td>
<td>100 100 100 100</td>
<td>0 0 0 0 0 0 0 0 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Efficacité qualitative

<table>
<thead>
<tr>
<th>Pourcentage de chaque état retiré</th>
<th>Note partielle (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[80 % - 100 %]</td>
<td>5 5 5 5 5 5 5 5 5 5</td>
</tr>
<tr>
<td>[60 % - 80 %]</td>
<td>4 4 4 4 4 4 4 4 4 4</td>
</tr>
<tr>
<td>[40 % - 60 %]</td>
<td>3 3 3 3 3 3 3 3 3 3</td>
</tr>
<tr>
<td>[20 % - 40 %]</td>
<td>2 2 2 2 2 2 2 2 2 2</td>
</tr>
<tr>
<td>[10 % - 20 %]</td>
<td>1 1 1 1 1 1 1 1 1 1</td>
</tr>
<tr>
<td>< 0 %</td>
<td>0 0 0 0 0 0 0 0 0 0</td>
</tr>
</tbody>
</table>

Amélioration du bilan hydrique

<table>
<thead>
<tr>
<th>Amélioration de l’évapotranspiration</th>
<th>Note partielle (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eliminé</td>
<td>1 1 1 1 1 1 1 1 1 1</td>
</tr>
</tbody>
</table>

Réduction des volumes de ruissellement

<table>
<thead>
<tr>
<th>Réduction des volumes de ruissellement</th>
<th>Note partielle (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eliminé</td>
<td>1 1 1 1 1 1 1 1 1 1</td>
</tr>
</tbody>
</table>

Entretien et durabilité

<table>
<thead>
<tr>
<th>Nombre d'inspection et d'entretien par année</th>
<th>Note partielle (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 fois par an ou moins</td>
<td>2 2 2 2 2 2 2 2 2 2</td>
</tr>
<tr>
<td>2 fois par an</td>
<td>1 1 1 1 1 1 1 1 1 1</td>
</tr>
<tr>
<td>Plus de 2 fois par an</td>
<td>0 0 0 0 0 0 0 0 0 0</td>
</tr>
</tbody>
</table>

Chronologie

<table>
<thead>
<tr>
<th>Chronologie</th>
<th>Note partielle (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 5 ans</td>
<td>5 5 5 5 5 5 5 5 5 5</td>
</tr>
<tr>
<td>5 - 10 ans</td>
<td>4 4 4 4 4 4 4 4 4 4</td>
</tr>
<tr>
<td>10 - 25 ans</td>
<td>3 3 3 3 3 3 3 3 3 3</td>
</tr>
<tr>
<td>25 - 50 ans</td>
<td>2 2 2 2 2 2 2 2 2 2</td>
</tr>
<tr>
<td>50 ans et plus</td>
<td>1 1 1 1 1 1 1 1 1 1</td>
</tr>
</tbody>
</table>

Total pondéré (%)

<table>
<thead>
<tr>
<th>Total pondéré (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>70 71 88 88 66 0 54 0 24 0 0</td>
</tr>
</tbody>
</table>
ANNEXE 17 : TABLEAU D’ANALYSE MULTICRITÈRE DES PGO SUR EN RÉSEAU

<table>
<thead>
<tr>
<th>Critère</th>
<th>Note</th>
<th>Pondération (%)</th>
<th>Tranche de filtration</th>
<th>Fossé engazonné sans drain</th>
<th>Fossé engazonné Avec drain</th>
<th>Note partielle (%)</th>
<th>Efficacité qualitative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contraintes biophysiques</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Infiltration de plus de 10 cm/h</td>
<td>Eliminé</td>
<td>Eliminé</td>
<td>Eliminé</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contrainte de la nappe phréatique et du roc</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Absence de contrainte par rapport au roc ou la nappe phréatique</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contrainte par le roc ou la nappe phréatique près de la surface</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contraintes topographiques</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pas de contrainte topographique</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 classe de contrainte topographique</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 classes de contraintes topographiques</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Note partielle (%)</td>
<td>0</td>
<td>0</td>
<td>33</td>
<td>0</td>
<td>33</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Efficacité qualitative</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pourcentage de phosphore retiré</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 % - 20 %</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>> 0 %</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pourcentage d’a ozone retiré</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 % - 20 %</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>> 0 %</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pourcentage de MES retiré</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 % - 20 %</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>> 0 %</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Note partielle (%)</td>
<td>0</td>
<td>50</td>
<td>50</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Amélioration du bilan hydrique</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Augmentation de l’évapotranspiration</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Augmentation de l’infiltration</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diminution du débit de pointe</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Note partielle (%)</td>
<td>0</td>
<td>50</td>
<td>50</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Réduction des volumes de ruissellement</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 % - 20 %</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>> 0 %</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Note partielle (%)</td>
<td>0</td>
<td>40</td>
<td>20</td>
<td>0</td>
<td>60</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Entretien et durabilité</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nombre d’inspection et d’entretien par année</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 fois par an ou moins</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 fois par an</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plus de 2 fois par an</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Note partielle (%)</td>
<td>0</td>
<td>60</td>
<td>60</td>
<td>0</td>
<td>40</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Coût</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 $ - 100 $</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100 $ - 200 $</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>200 $ - 300 $</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>300 $ - 400 $</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>400 $ - 500 $</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>> 500 $</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Note partielle (%)</td>
<td>0</td>
<td>100</td>
<td>100</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Total pondéré (%)</td>
<td>0</td>
<td>48</td>
<td>48</td>
<td>0</td>
<td>60</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
ANNEE 18 : TABLEAU D'ANALYSE MULTICRITÈRE DES PGO SUR EN FIN DE RÉSEAU

<table>
<thead>
<tr>
<th>Critère</th>
<th>Note</th>
<th>Pondération (%)</th>
<th>Bassin sec</th>
<th>Bassin avec retenue permanente</th>
<th>Bassin d'infiltration</th>
<th>Marais artificiels</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contraintes biophysiques</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Infiltration de plus de 10 cm/h</td>
<td>Eliminé</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contrainte de la nappe phréatique et roc</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Absence de contrainte par rapport au roc ou la nappe phréatique</td>
<td>1</td>
<td>1 1 1 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contrainte par le roc ou la nappe phréatique à moins de 1 m</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contraintes topographiques</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pas de contrainte</td>
<td>2</td>
<td>2 2 2 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 classe de contrainte topographique</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 classes de contraintes topographiques</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Note partielle (%)</td>
<td></td>
<td>100 100 0 100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Efficacité qualitative</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pourcentage de phosphore retiré</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[80 % - 100 %]</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[60 % - 80 %]</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[40 % - 60 %]</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[20 % - 40 %]</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[0 % - 20 %]</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><0 %</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Note partielle (%)</td>
<td>17</td>
<td>40 67 0 73</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amélioration du bilan hydrique</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Augmentation de l'évapotranspiration</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Augmentation de l'infiltration</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diminution du débit de pointe</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Note partielle (%)</td>
<td>0</td>
<td>0 0 0 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amélioration des volumes de ruissellement</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[80 % - 100 %]</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[60 % - 80 %]</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[40 % - 60 %]</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[20 % - 40 %]</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[0 % - 20 %]</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><0 %</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Note partielle (%)</td>
<td>20</td>
<td>0 0 0 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Entretien et durabilité</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nombre d'inspection et d'entretien par année</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 fois par an ou moins</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 fois par an</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plus de 2 fois par an</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Durée de vie avant la réhabilitation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25 ans et plus</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 an - 25 ans</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moins d'un an</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Note partielle (%)</td>
<td>0</td>
<td>20 0 40</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coût</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[0 $ - 50 000 $]</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[100 000 $ - 200 000 $]</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[200 000 $ - 300 000 $]</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[300 000 $ - 400 000 $]</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[400 000 $ - 500 000 $]</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 500 000 $ <</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Note partielle (%)</td>
<td>60</td>
<td>60 0 80</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total pondéré (%)</td>
<td>43</td>
<td>40 0 53</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>