DÉPLOIEMENTS DE CARQUOIS VALUÉS
DE TYPES B ET C

par

Guillaume DOUVILLE

Travail présenté au Département de mathématiques en vue de l'obtention
du grade de Maître ès sciences (M. Sc.)

FACULTÉ DES SCIENCES
UNIVERSITÉ DE SHERBROOKE

Sherbrooke, Québec, Canada, octobre 2015
Le 26 octobre 2015,

le jury a accepté le mémoire de Monsieur Guillaume Douville
dans sa version finale.

Membres du jury :

Professeur Ibrahim Assem
Directeur de recherche
Département de mathématiques

Professeure Vasilisa Shramchenko
Codirectrice de recherche
Département de mathématiques

Professeur Shiping Liu
Membre interne
Département de mathématiques

Professeur Thomas Brüstle
Président-rapporteur
Département de mathématiques
SOMMAIRE

Dans ce mémoire, après avoir défini le concept de déploiement, nous obtenons les variables des algèbres amassées et les classes de mutations associées aux carquois valués de types \mathbb{B} et \mathbb{C} en ramenant l'étude de ces concepts à celle des familles \mathbb{A} et \mathbb{D}, respectivement.

Mots-clés : Déploiements, carquois, carquois valués, triangulations, types Dynkin \mathbb{B} et \mathbb{C}, algèbres amassées, variables amassées, classes de mutations.
REMERCIEMENTS

Je remercie mes directeurs de maîtrise, M. Ibrahim Assem et Mme Vasilisa Shramchenko, pour leur supervision et leurs conseils. Je remercie également mes collègues, en particulier Mme Véronique Bazier-Matte et M. Hipolito Treffinger, pour leur soutien et les discussions intéressantes.

Je remercie finalement mes directeurs de maîtrise ainsi que le Conseil de recherche en sciences naturelles et en génie (CRSNG) et le Fonds de recherche du Québec - Nature et Technologies (FRQNT) pour leur soutien financier.

Guillaume Douville
Sherbrooke, le 26 octobre 2015
TABLE DES MATIÈRES

SOMMAIRE iii

REMERCIEMENTS iv

TABLE DES MATIÈRES v

INTRODUCTION 1

CHAPITRE 1 — Algèbres amassées 3
 1.1 Carquois et carquois valués 3
 1.2 Algèbres amassées 9
 1.3 Triangulations 18

CHAPITRE 2 — Déploiements de carquois valués de types \mathbb{B} et \mathbb{C} 30
 2.1 Déploiements de carquois valués 30
 2.2 Déploiements de carquois valués de types \mathbb{B} and \mathbb{C} et variables amassées associées 40
2.3 Classes de mutations ... 49

BIBLIOGRAPHIE ... 58
INTRODUCTION

Les algèbres amassées ont été introduites, au début des années 2000, par Sergey Fomin et Andrei Zelevinsky (voir [FZ02]) dans le but de fournir un cadre combinatoire pour étudier la positivité totale des groupes algébriques et les bases canoniques de groupes quantiques. Depuis ce temps, les algèbres amassées ont été étudiées de façon extensive, en tant que domaine en soi, mais surtout pour leurs liens avec plusieurs autres domaines, comme par exemple la combinatoire, la théorie de Lie, la géométrie de Poisson, la théorie de Teichmüller, la physique mathématique et la théorie des représentations des algèbres.

Une algèbre amassée (sans coefficients) est une \mathbb{Z}-algèbre commutative engendrée par des ensembles (non disjoints) de variables, dites variables amassées. On débute avec un carquois valué Q sans boucles ni 2-cycles, ayant n sommets, et un ensemble de n variables amassées, dites initiales, associées aux sommets de Q. Puis, on génère de nouveaux carquois valués et de nouvelles variables amassées récursivement en utilisant un procédé combinatoire appelé la mutation. Les nouveaux carquois ainsi obtenus sont dits appartenir à la classe de mutations de Q. L’algèbre amassée est finalement obtenue en tant que \mathbb{Z}-algèbre engendrée par l’ensemble de toutes les variables amassées obtenues par mutations successives.

Dans ce mémoire, nous étudions deux familles d’algèbres, celles obtenues de carquois
de types \mathbb{B} et \mathbb{C}. Ces carquois ont pour graphe sous-jacent l’un des deux suivants :

$$
\begin{align*}
\mathbb{B}_n = & 1 & 2 & \cdots & n - 1^{(1,2)}_{nn} & \geq 2, \\
\mathbb{C}_n = & 1 & 2 & \cdots & n - 1^{(2,1)}_{nn} & \geq 3.
\end{align*}
$$

Le but de ce mémoire est d’obtenir l’ensemble des variables amassées ainsi que la classe de mutations des carquois de types \mathbb{B} et \mathbb{C}. Pour ce faire, nous utilisons deux outils. Premièrement, nous étudions le déploiement de ces carquois valués. Un déploiement U d’un carquois valué Q est un carquois associé respectant certaines propriétés de sorte que les variables amassées associées à Q par mutations puissent être déduites de celles associées à U. Pour les types \mathbb{B} et \mathbb{C}, les déploiements associés sont de types \mathbb{A} et \mathbb{D} respectivement, les deux familles les plus étudiées en algèbres amassées. Deuxièmement, nous utilisons les triangulations de surfaces, qui sont munies d’une combinatoire permettant de simplifier l’étude des algèbres amassées dans certains cas.

Ce mémoire est organisé comme suit. Le premier chapitre est une introduction rappelant en détail les concepts de carquois, carquois valués, mutations, algèbres amassées et triangulations, alors que le second chapitre définit le concept de déploiement et établit ses propriétés. On termine avec les résultats donnant les variables amassées et les classes de mutations des carquois de types \mathbb{B} et \mathbb{C}.

2
CHAPITRE 1

Algèbres amassées

1.1 Carquois et carquois valués

Dans cette section, nous rappelons les définitions de carquois et carquois valués. Ces notions seront utiles pour définir la notion d’algèbre amassée.

Définition 1.1.1.
Un carquois Q est un quadruplet (Q_0,Q_1,s,t), où Q_0 est un ensemble dont les éléments sont appelés points ou sommets, Q_1 est un ensemble dont les éléments sont appelés flèches, et $s,t : Q_1 \rightarrow Q_0$ sont deux applications qui, à une flèche, lui associent deux points, appelés sa source et son but, respectivement.

Voyons quelques propriétés des carquois :

Définition 1.1.2.
Soit $Q = (Q_0,Q_1,s,t)$ un carquois.

1. Q est fini si $|Q_0| < \infty$ et $|Q_1| < \infty$;
2. Q est connexe si son graphe sous-jacent (obtenu en oubliant l'orientation des flèches) l'est ;
3. Une boucle est une flèche $\alpha \in Q_1$ telle que $s(\alpha) = t(\alpha)$;
4. Une double flèche est un couple de flèches $(\beta, \beta^*) \in Q_1 \times Q_1$ telles que $s(\beta) = s(\beta^*)$ et $t(\beta) = t(\beta^*)$;
5. Un 2-cycle est un couple de flèches $(\gamma, \gamma^*) \in Q_1 \times Q_1$ telles que $s(\gamma) = t(\gamma^*)$ et $t(\gamma) = s(\gamma^*)$:

Exemple 1.1.3.
Dans l'exemple suivant, α est une boucle, (β, β^*) est une double flèche et (γ, γ^*) est un 2-cycle

\[
\begin{array}{ccc}
1 & \beta & 2 \\
\alpha & \beta^* & \gamma \\
& 3 & \\
\end{array}
\]

On définit maintenant les carquois valués.

Définition 1.1.4.
Un carquois valué (Q,b) est une paire où Q est un carquois sans doubles flèches et b est une application

\[
b : Q_1 \rightarrow \mathbb{N}_0^2 : \alpha \mapsto (b_{s(\alpha)t(\alpha)}, b'_{t(\alpha)s(\alpha)}),
\]
telle qu'il existe des nombres naturels non nuls $(d_i)_{i \in Q_0}$ tels que

\[
d_i b_{ij} = d_j b'_{ji}.
\]

Les $(d_i)_{i \in Q_0}$ sont appelés nombres antisymétrisants. Pour $\alpha \in Q_1$, le couple de naturels $(b_{s(\alpha)t(\alpha)}, b'_{t(\alpha)s(\alpha)})$ est appelé sa valuation. S'il n'y a pas de 2-cycles, nous écrivons $(b_{s(\alpha)t(\alpha)}, b_{t(\alpha)s(\alpha)})$ puisqu'aucune confusion n'est possible.

Dans ce qui suit, on réfère souvent à un carquois valué Q, laissant l'application b implicite.
Remarque 1.1.5. Il suit de la définition que
1. les nombres antisymétrisants \((d_i)_{i \in Q_0}\) sont uniques à multiple près et
2. \(b_{ij} \neq 0\) si et seulement si \(b_{ji} \neq 0\).

Exemple 1.1.6.
Voici un carquois valué :

\[
Q = 2 \\
(3,3) \quad 1 \quad (1,4) \quad 3.
\]

Les nombres antisymétrisants associés sont \(d_1 = 4\), \(d_2 = 2\) et \(d_3 = 1\).

Les carquois (au sens de la définition 1.1.1) peuvent être vus comme des carquois valués avec valuation triviale au sens suivant :

Définition 1.1.7.
Un carquois valué \((Q,b)\) est dit à *valuation triviale* si, pour toute flèche \(\alpha \in Q_1\), on a \(b(\alpha) = (m,m)\) pour un certain \(m \in \mathbb{N}\). De façon équivalente, un carquois valué est à valuation triviale si ses nombres antisymétrisants égalent tous 1 (c’est-à-dire que la matrice correspondante est déjà antisymétrique).

Pour construire le carquois à valuation triviale correspondant à un carquois (au sens de la définition 1.1.1), on procède de la façon suivante : toute flèche simple dans le carquois est remplacée par une flèche dans le carquois à valuation triviale ayant pour valuation \((1,1)\). De façon semblable, tout ensemble (maximal par inclusion) de \(m\) flèches parallèles de \(i \rightarrow j\) dans le carquois est remplacé par une flèche de \(i \rightarrow j\) dans le carquois à valuation triviale ayant pour valuation \((m,m)\).
Exemple 1.1.8.
Un carquois Q et le carquois à valuation triviale R associé.

$$Q = 1 \rightarrow 2 \rightarrow 3 \quad R = 1 \xrightarrow{(1,1)} 2 \xrightarrow{(3,3)} 3.$$

Dans ce contexte particulier, on utilise la notation $\#Q_1(i, j)$ pour le nombre de flèches allant de i vers j.

Notation 1.1.9.
Si Q est un carquois à valuation triviale, on note

$$\#Q_1(i, j) = m \text{ et } \#Q_1(j, i) = -m$$

si la flèche allant de i à j admet pour valuation (m, m). L’expression $\#Q_1(i, j)$ est nulle s’il n’y a pas de flèches entre i et j.

La définition initiale d’algèbre amassée, de Fomin et Zelevinsky (voir [FZ02]), utilise les matrices, en particulier les matrices antisymétrisables. Une matrice carrée A est dite \textit{antisymétrisable} s’il existe une matrice diagonale d’entiers non négatifs D telle que DA soit antisymétrique. Dans ce mémoire, nous préférons utiliser les carquois valués finis sans boucles ni 2-cycles, mais ce choix est fait sans perte de généralité par rapport aux matrices antisymétrisables.

Proposition 1.1.10. 1. Il existe une bijection entre carquois valués finis sans boucles ni 2-cycles et matrices antisymétrisables d’entiers;

2. Cette bijection se restreint à une bijection entre carquois à valuation triviale finis sans boucles ni 2-cycles et matrices antisymétriques d’entiers.

Démonstration. Soit (Q, b) un carquois valué fini sans boucles ni 2-cycles. Numérotions les sommets de $Q_0 = \{1, 2, ..., n\}$. On construit la matrice $A = [a_{ij}]_{n \times n}$ correspon-
dante :

\[
a_{ij} = \begin{cases}
0 & \text{s'il n'existe pas de flèche entre } i \text{ et } j \\
 b_{ij} & \text{s'il existe une flèche } i \xrightarrow{(b_{ij},b_{ji})} j \\
 -b_{ij} & \text{s'il existe une flèche } j \xrightarrow{(b_{ji},b_{ij})} i.
\end{cases}
\]

Comme \(Q \) n’a ni 2-cycles, ni doubles flèches. \(A \) est correctement définie. La matrice \(D \) est la matrice diagonale des nombres antisymétrisants \((d_i)_{i \in Q_0} \). Comme \(Q \) ne contient pas de boucles, \(a_{ii} = 0 \) pour tout \(i \). De plus, \(d_i b_{ij} = d_j b_{ji} \) implique que \(DA = -(DA)^t \).

Finalement, on vérifie aisément que cette application est une bijection, qui se restreint sur les carquois à valuation triviale puisque, dans ce cas, \(D = \mathbb{I}_n \).

\[\square\]

\textbf{Exemple 1.1.11.}

Soit

\[Q = \begin{array}{ccc}
1 & (1,2) & (a,b) \\
(1,4) & 3 \\
\end{array} \]

dont les nombres antisymétrisants associés sont \(d_1 = 4 \), \(d_2 = 2 \) et \(d_3 = 1 \). La matrice antisymétrisable associée est

\[
\begin{bmatrix}
0 & 1 & 1 \\
-204 & -4 & -80 \\
\end{bmatrix},
\]

et

\[
\begin{bmatrix}
400 \\
020 \\
001 \\
\end{bmatrix} \begin{bmatrix}
0 & 1 & 1 \\
-20 & -4 & -80 \\
\end{bmatrix} = \begin{bmatrix}
044 \\
0 & 4 & -80 \\
-908 \\
\end{bmatrix},
\]

qui est antisymétrique.

\textbf{Conventions 1.1.12.}

Pour simplifier les arguments utilisant des carquois valués et pour éviter toute confusion, nous respectons, dans ce mémoire, les conventions suivantes.

1. Nous écrivons les valuations comme un couple de nombres au dessus des flèches.

 Nous écrivons toujours les valuations de sorte que la valeur associée à un sommet
soit le plus près de ce sommet. Par exemple, pour la flèche $1 \xrightarrow{\alpha} 2$ et sa valuation associée $b(\alpha) = (b_{12}, b_{21})$, on écrit $1 \xrightarrow{(b_{12}, b_{21})} 2$ ou $2 \xrightarrow{(b_{21}, b_{12})}$ indistinctement ;

2. Nous omettons parfois les valuations $(1, 1)$. Ainsi, on écrit $1 \xrightarrow{(1,1)} 2$ ou $1 \xrightarrow{} 2$ indistinctement ;

3. Nous posons $(b_{ij}, b_{ji})=(0, 0)$ si et seulement s'il n'y a pas de flèches entre les points i et j ;

4. Dans une équation, nous permettons que les valeurs résultantes soit simultanément non positives. Dans ce cas, pour $b_{ij}, b_{ji} > 0$, on convient que le carquois valué résultant soit obtenu en remplaçant $i \xrightarrow{(b_{ij}, b_{ji})} j$ par $i \xrightarrow{(b_{ji}, b_{ij})}$ (on renverse l'orientation de la flèche).

Définition 1.1.13. 1. Un carquois $Q' = (Q'_0, Q'_1, s', t')$ est un sous-carquois de Q si $Q'_0 \subseteq Q_0, Q'_1 \subseteq Q_1$ sont tels que si $\alpha \in Q'_1$, alors $s(\alpha), t(\alpha) \in Q'_0$ et s', t' sont les restrictions de s, t à Q'_1 ;

2. Un carquois valué (Q', b') est un sous-carquois valué de (Q, b) si Q' est un sous-carquois de Q et b' est la restriction de b aux flèches Q'_1 du sous-carquois ;

3. Un sous-carquois valué Q' de Q est dit plein si pour tous $x, y \in Q'_0$ et toute $\alpha \in Q'_1$ telle que $s(\alpha) = x$ et $t(\alpha) = y$, on a $\alpha \in Q'_1$.

Exemple 1.1.14.

Les carquois valués Q' et Q'' ci-bas sont des sous-carquois valués du carquois Q de l'exemple 1.1.6. De plus, Q' est plein, mais Q'' ne l'est pas.

$$Q' = 1 \xrightarrow{(1,3)} 3 \quad Q'' = 2 \xrightarrow{(1,2)} 3$$
1.2 Algèbres amassées

À partir de ce moment, tous nos carquois valués sont supposés finis, sans boucles ni 2-cycles. Nous définissons maintenant la notion de mutations, de graines et finalement les algèbres amassées. Tout ce qui suit est simplement une adaptation des définitions de Fomin et Zelevinsky (voir [FZ02]) aux carquois valués.

Définition 1.2.1.
Soit \(k \) un sommet du carquois valué \(Q \). La mutation de carquois en \(k \) transforme le carquois valué en un nouveau carquois valué \(\mu_k Q = (Q', b') \) ayant les mêmes sommets que \(Q \), obtenu par la procédure suivante :

1. Pour tout chemin \(i \xrightarrow{(b_{ik}, b_{ki})} k \xrightarrow{(b_{kj}, b_{jk})} j \) dans \(Q \) de longueur deux passant par \(k \), soit \((b_{ij}, b_{ji}) \) la valuation de la flèche allant de \(i \) vers \(j \) (on applique les conventions 1.1.12 (3),(4) si requis). La nouvelle valuation de cette flèche dans \(\mu_k Q \) est \(b'_{ij} = b_{ik} b_{kj} + b_{ij} b_{ji}' = b_{ki} b_{jk} + b_{ji} \);
2. Inverser toutes les flèches incidentes à \(k \) : on remplace \(i \xrightarrow{(b_{ik}, b_{ki})} k \xrightarrow{(b_{kj}, b_{jk})} j \) par \(i \xrightarrow{(b_{ik}, b_{ki})} k \xrightarrow{(b_{kj}, b_{jk})} j \);
3. Laisser toutes les autres flèches et valuations inchangées.

Pour une illustration de l’action locale de la mutation, se référer à la figure 1.1.

![Diagram](image)

Figure 1.1 – Le résultat de la mutation \(\mu_k \) sur un sous-carquois plein contenant un chemin de \(i \) vers \(j \) passant par \(k \).

Exemple 1.2.2.
Soit

$$Q = 2$$

![Diagram](attachment:image1.png)

Alors,

$$\mu_3 Q = 2$$

![Diagram](attachment:image2.png)

Pour $k \in Q_0$, on note k^+ l'ensemble des sommets qui sont le but de flèches de source k, c'est-à-dire

$$k^+ = \{ i \in Q_0 \mid \text{il existe } \alpha \in Q_1 \text{ telle que } t(\alpha) = i \text{ et } s(\alpha) = k \}.$$

De même,

$$k^- = \{ i \in Q_0 \mid \text{il existe } \alpha \in Q_1 \text{ telle que } t(\alpha) = k \text{ et } s(\alpha) = i \}.$$

Lemme 1.2.3.

Pour tout point k de Q, le carquois valué $\mu_k Q$ a les mêmes nombres antisymétrisants $(d_i)_{i \in (\mu_k Q)_0}$ que Q.

Démonstration. En vertu de la définition, pour tous sommets $i, j \in Q_0$, on a $d_i b_{ij} = d_j b_{ji}$. Il suffit de vérifier que cette égalité est respectée par la seule étape qui modifie les
valuations, c’est-à-dire l’étape (1) de la définition 1.2.1. On a

\[d_i b'_k = d_i (b_{ik} b_{kj} + b_{ij}) \]
\[= d_i b_{ik} b_{kj} + d_i b_{ij} \]
\[= d_k b_{ki} b_{kj} + d_j b_{ji} \]
\[= d_j b_{ki} b_{jk} + d_j b_{ji} \]
\[= d_j b'_{ji} , \]

d’où l’énoncé. \qed

Soit \(Q \) un carquois valué. On note \(\{1, 2, \ldots, n\} \) ses sommets. Pour former la graine initiale, on munit les sommets d’un ensemble d’indéterminées appelées les variables amassées initiales \(x = \{x_1, x_2, \ldots, x_n\} \), où l’on convient que la variable \(x_i \) correspond au sommet \(i \). La graine initiale est donc la paire \((Q, x) \).

Définition 1.2.4.

Soit \(k \in Q_0 \). La mutation en \(k \) transforme la graine \((Q, x)\) en une nouvelle graine \(\mu_k(Q, x) = (Q', x') \). Premièrement, \(Q' = \mu_k Q \). Ensuite, \(x' = (x \setminus \{x_k\}) \cup \{x'_k\} \) où \(x'_k \in Q(x_1, \ldots, x_n) \) est définie par la relation d’échange

\[x_k x'_k = \prod_{i \in k^-} x_i^{b_{ik}} + \prod_{j \in k^+} x_j^{b_{jk}} , \]

où toutes les valuations sont positives et on convient qu’un produit vide est égal à 1. À partir de maintenant, on écrit \(\mu_k(x) \) plutôt que \(x' \).

Exemple 1.2.5.

Reprenons l’exemple 1.2.2. Prenons \((Q, x) = \{x_1, x_2, x_3, x_4\}\) comme graine initiale et effectuons la mutation en 3 de nouveau, cette fois-ci sur la graine.

\[(Q, x) = \]

\[x_1 \quad\quad (1,4)\quad\quad x_3 \]
\[\quad\quad (1,3)\quad\quad x_4 \]
\[x_2 \quad\quad (2,3)\quad\quad x_4 \]
\[(1,2)\quad\quad (4,6) \]
\[\mu_3(Q, x) = \]

\[\begin{array}{c}
(1,2) \quad x_2 \\
(1,4) \quad x_1 x_3^2 + x_3^2 \\
(2,3) \quad x_3 \\
(7,21) \quad \end{array} \]

\[x_4 \]

Si l’on calcule \(\mu_3 \mu_3(Q, x) \), le résultat est le carquois valué initial. C’est toujours le cas.

Proposition 1.2.6.

La mutation est une involution, c’est-à-dire que, pour tout carquois valué \(Q \) et pour tout sommet \(k \), on a \(\mu_k^2 Q = Q \).

Démonstration. On le vérifie pour chacune des étapes de la mutation de carquois (voir définition 1.2.1).

1. Soit \(i \xrightarrow{(b_{ik}, b_{kj})} k \xrightarrow{(b_{kj}, b_{jk})} j \) un chemin de longueur 2 passant par \(k \) dans \(Q \) et \((b_{ij}, b_{ji}) \) la valuation de la flèche allant de \(i \) vers \(j \) (on applique les conventions 1.1.12 (3)(4) au besoin). En vertu de la règle de mutation 1.2.1 (2), on a le chemin \(i \xrightarrow{(b_{ik}, b_{ki})} k \xrightarrow{(b_{kj}, b_{jk})} j \) dans \(\mu_k Q \) et la nouvelle valuation de cette flèche de \(j \) vers \(i \) dans \(\mu_k Q \) (en appliquant la convention 1.1.12 (3) pour inverser les signes) est donnée par \(b'_{ij} = -b_{ik} b_{kj} - b_{ij} \) et \(b''_{ji} = -b_{ki} b_{jk} - b_{ji} \). On applique la mutation de nouveau pour trouver la valuation \((b''_{ij}, b''_{ji}) \) de la flèche de \(j \) vers \(i \) dans \(\mu_k^2 (Q) \).

\[b'_{ij} = b_{ik} b_{kj} + (-b_{ik} b_{kj} - b_{ij}) = -b_{ij} \]
\[b''_{ji} = b_{ki} b_{jk} + (-b_{ki} b_{jk} - b_{ji}) = -b_{ji} \]

Celles-ci correspondent, après avoir appliqué la convention 1.1.12 (3) de nouveau, à la situation initiale.
2. Les flèches sont inversées deux fois, ce qui revient à l'identité.

3. Trivial.
Il reste à vérifier que $\mu_k^2 x = x$. On remarque que k^+ et k^- sont permutés sous l'action de la règle 1.2.1 (2) de la mutation, et que les autres règles laissent ces ensembles inchangés. Ainsi, en vertu de la relation d'échange, on a

$$ x_k x'_k = \prod_{i \in k^-} x_i^{b_{ik}} + \prod_{j \in k^+} x_j^{b_{jk}} \text{ et} $$

$$ x_k'' x'_k = \prod_{i \in k^-} x_i^{b_{ik}} + \prod_{j \in k^+} x_j^{b_{jk}}, $$

d'où on conclut que $x_k = x_k''$. \qed

On définit maintenant l'algèbre amassée associée à un carquois valué Q. Pour un rappel de la notion de k-algèbre, on réfère le lecteur à [Ass97], chapitre I.

Définition 1.2.7. 1. Chaque paire (\tilde{Q}, \tilde{x}) obtenue de la graine initiale (Q, x) par une suite de mutations est appelée une *graine*, et \tilde{x} est appelé un *amas* ;

2. Soit \mathcal{X} l'union de tous les amas obtenus de x par suites de mutations. Les éléments de \mathcal{X} sont appelés *variables amassées* ;

3. L'algèbre amassée, notée A_Q, est la sous-\mathbb{Z}-algèbre de $\mathbb{Q}(x_1, \ldots, x_n)$ engendrée par \mathcal{X}, ce qu'on note :

$$ A_Q = \mathbb{Z}[\mathcal{X}]. $$

Exemple 1.2.8.
Soit $(Q, x) = x_2 \xrightarrow{(1,2)} x_1$. On calcule l'algèbre amassée A_Q associée :

$$ x_2 \xrightarrow{(1,2)} x_1 \quad \xleftarrow{\mu_1} \quad 1 + x_1 x_2 \xrightarrow{(1,2)} x_1 \quad \xleftarrow{\mu_2} \quad 1 + \frac{x_1^2}{x_2} \xrightarrow{(1,2)} \frac{1 + x_2 + x_1^2}{x_1 x_2} $$

$$ \xleftarrow{\mu_2} \quad 1 + \frac{x_1^2}{x_2} \xrightarrow{(1,2)} \frac{1 + x_2 + x_1^2}{x_1 x_2} $$

$$ x_2 \xrightarrow{(1,2)} \frac{1 + x_2}{x_1} \quad \xleftarrow{\mu_1} \quad 1 + 2 x_2 + x_1^2 x_2 \xrightarrow{(1,2)} \frac{1 + x_2}{x_1} \quad \xleftarrow{\mu_2} \quad 1 + 2 x_2 + x_1^2 x_2 \xrightarrow{(1,2)} \frac{1 + x_2 + x_1^2}{x_1 x_2} $$

$$ \xleftarrow{\mu_2} \quad 1 + 2 x_2 + x_1^2 x_2 \xrightarrow{(1,2)} \frac{1 + x_2 + x_1^2}{x_1 x_2} $$
Ainsi, les amas sont

\[\{x_1, x_2\}, \left\{ \frac{1+ x_1^2}{x_2}, x_1 \right\}, \left\{ \frac{1+ x_1^2}{x_2}, \frac{1+ x_2 + x_1^3}{x_1 x_2} \right\}, \left\{ \frac{1+2 x_2 + x_1^2 + x_2^3}{x_1 x_2}, \frac{1+ x_2 + x_1^2}{x_1 x_2} \right\}, \]

\[\left\{ \frac{1+2 x_2 + x_1^2 + x_2^3}{x_1 x_2}, \frac{1+ x_2}{x_1} \right\} \]

et \(x_2, \frac{1+ x_2}{x_1} \) : les variables amassées sont

\[\mathcal{X}^- = \left\{ x_1, x_2, \frac{1+ x_2}{x_1}, \frac{1+ x_1^2}{x_2}, \frac{1+ x_2 + x_1^3}{x_1 x_2}, \frac{1+2 x_2 + x_1^2 + x_2^3}{x_1 x_2} \right\} ; \]

et, finalement, l’algèbre amassée est

\[\mathcal{H}_Q = \mathbb{Z}[\mathcal{X}^-] . \]

On remarque qu’il y a un nombre fini de variables amassées dans ce cas-ci. Ce n’est pas le cas en général. Une algèbre amassée est de type fini si elle n’a qu’un nombre fini de variables amassées. Un théorème, de Fomin et Zelevinsky, caractérise les algèbres amassées de type fini. Nous définissons préalablement les carquois de type Dynkin.

Définition 1.2.9.

Un carquois valué \(Q \) est de type Dynkin si son graphe sous-jacent (obtenu en oubliant
l’orientation des flèches) est l’un des suivants :

\[
\begin{align*}
A_n &= 1 \to 2 \to \cdots \to n n \\
B_n &= 1 \to 2 \to \cdots \to n - 1^{(1,2)} n n \\
C_n &= 1 \to 2 \to \cdots \to n - 1^{(2,1)} n n \\
D_n &= 1 \to 2 \to \cdots \to n - 2 \to n - 1 \\
E_n &= 1 \\
F_4 &= 1 \to 2^{(1,2)} \to 3 \to 4 \\
G_2 &= 1 ^{(1,3)} \to 2
\end{align*}
\]

\[n \geq 4, \quad 6 \leq n \leq 8\]

\textbf{Théorème 1.2.10 ([FZ03], Théorème 8.6).}

Une algèbre amassée \(\mathcal{A}_Q\) est de type fini si et seulement s’il existe une suite de mutations \(\mu_{k_n} \cdots \mu_{k_1}\) telle que \(\mu_{k_n} \cdots \mu_{k_1}(Q)\) soit un carquois de type Dynkin, pour \(k_1, \ldots, k_n\) des sommets et \(n \in \mathbb{N}\).

On remarque qu’il y a seulement quatre familles infinies de carquois de type Dynkin : \(A_n; \mathcal{B}_n; \mathcal{C}_n\) et \(\mathcal{D}_n\). Le théorème suivant permet de calculer les variables amassées \(A_n\) et \(\mathcal{D}_n\), alors que celles de \(B_n\) et \(C_n\) seront obtenues en utilisant l’algorithme décrit aux théorèmes 2.2.2 et 2.2.5.

\textbf{Théorème 1.2.11 ([Dou12], Propositions 2.7 et 3.9).}
Soient les deux carquois suivants :

\[
\vec{A}_n = 1 \rightarrow 2 \rightarrow \cdots \rightarrow n-1 \rightarrow n \quad \vec{D}_n = 1 \rightarrow 2 \rightarrow n \rightarrow n-1 \rightarrow 1.
\]

1. Les variables amassées de \(\vec{A}_n \) sont

\[
x_{ij} = x_i x_j \sum_{k=i}^{j-1} \frac{1}{x_k x_{k+1}}
\]

pour \(-1 \leq i < j \leq n+1\) et \(j \neq i+1\), si, après simplification des expressions pour \(x_{ij}\), on remplace \(x_{-1}\) par 0 et \(x_0\) par 1;

2. Les variables amassées de \(\vec{D}_n \) sont

\[
x_{ij} = x_i x_j \sum_{k=i}^{j-1} \frac{1}{x_k x_{k+1}}
\]

pour \(-1 \leq i < j < i+n, j \neq i+1\) et

\[
\frac{x_{l,l+n}}{x_l} = x_l \sum_{k=l}^{l+n-1} \frac{1}{x_k x_{k+1}},
\]

pour \(1 \leq l \leq n\), si, après simplification des expressions pour \(x_{ij}\), on remplace \(x_{-1}\) par 0, \(x_0\) par 1 et \(x_{i+n}\) par \(x_i\) (pour tout \(i\)).

Remarque 1.2.12. La notation \(\vec{D}_n \) est utilisée, car celui-ci appartient à la classe de mutations de \(D_n \). En effet \(\mu_{n-2} \cdots \mu_2 \mu_1(\vec{D}_n) \) a \(D_n \) pour graphe sous-jacent.

Dans l’exemple 1.2.8, on remarque aussi que toutes les variables amassées sont données par une fraction dont le numérateur est un polynôme en les variables initiales, et le dénominateur est un monôme en ces mêmes variables. C’est ce qu’on appelle un *polynôme de Laurent*.

16
Définition 1.2.13.
Soit \(x = \{x_1, x_2, \ldots, x_n\} \) un ensemble d’indéterminées.

1. L’algèbre des polynômes de Laurent en ces variables est

\[\mathcal{L}(x) = \mathbb{Z}[x_1, x_2, \ldots, x_n, x_1^{-1}, x_2^{-1}, \ldots, x_n^{-1}] \]

2. L’algèbre des polynômes de Laurent à coefficients positifs en ces variables est

\[\mathcal{L}^+(x) = \mathbb{N}[x_1, x_2, \ldots, x_n, x_1^{-1}, x_2^{-1}, \ldots, x_n^{-1}] \]

La définition de la relation d’échange ne laisse pas présupposer ce phénomène, néanmoins toutes les variables d’une algèbre amassée sont des polynômes de Laurent, et ce, exprimées en fonction de n’importe quel amas.

Théorème 1.2.14 ([FZ02], Théorème 3.1).
Soit \(\bar{x} \) un amas quelconque de l’algèbre amassée \(\mathcal{A}_Q \). Alors, toute variable amassée est un polynôme de Laurent en les variables de \(\bar{x} \). En particulier,

\[\mathcal{A}_Q \subseteq \mathcal{L}(\bar{x}) \]

De plus, toujours dans l’exemple 1.2.8, les variables amassées sont des polynômes de Laurent à coefficients positifs. Ce résultat est surprenant, puisque le quotient de deux polynômes à coefficients positifs n’a pas toujours des coefficients positifs. Par exemple,

\[\frac{x^3 + 1}{x + 1} = x^2 - x + 1 \]

Cependant, Fomin et Zelevinsky conjecturent que les variables amassées sont des polynômes de Laurent à coefficients positifs:

Théorème 1.2.15 ([GHKK14], Théorème 4.8).
Soit \(\bar{x} \) un amas quelconque de l’algèbre amassée \(\mathcal{A}_Q \). Alors, toute variable amassée est un polynôme de Laurent à coefficients positifs en les variables de \(\bar{x} \). En particulier,

\[\mathcal{A}_Q \subseteq \mathcal{L}^+(\bar{x}) \]

17
Ce théorème a été énoncé, en tant que conjecture, par Fomin et Zelevinsky (voir [FZ02]). Il a été prouvée premièrement pour les algèbres amassées provenant de carquois à valuation triviale (voir [LS15]), puis pour celles provenant de carquois valués correspondant à des « orbifolds » (par exemple, c’est le cas pour les types \mathcal{B} et \mathcal{C}, qui font l’objet de ce mémoire.) Les orbifolds dépassent le cadre de ce mémoire, voir [FST12a] pour le concept d’orbifolds et le résultat. La preuve finale repose sur les « scattering diagrams » tels que décrits dans l’article cité ci-haut.

1.3 Triangulations

Les triangulations sont une construction utile pour étudier les algèbres amassées. La notion de triangulation d’une surface présuppose quelques connaissances de géométrie et de topologie. On réfère le lecteur à [Dub92] pour un rappel de ces notions. Dans le contexte particulier des algèbres amassées, les définitions initiales sont de Fomin, Shapiro et Thurston (voir [FST08]). Nous recommandons aussi au lecteur les travaux précurseurs de Conway et Coxeter (voir [CC73]) et Schiffler (voir [Sch08]). On présente ici, après quelques rappels, la définition de triangulation (étiquetée) et le fait que toute triangulation est associée à un carquois.

Définition 1.3.1.
Soient S une surface fermée orientée avec ou sans frontière et $M \subseteq S$ un ensemble fini contenant au moins un point sur chaque composante connexe de la frontière. Les points de M qui sont sur la frontière ∂S sont appelés points marqués et ceux qui sont dans l’intérieur de S sont appelés ponctions. La paire (S,M) est appelée simplement une surface.

Pour définir des triangulations d’une surface (S,M), nous commençons par rappeler
le concept de courbe.

Définition 1.3.2.

Soit \((S,M)\) une surface. Une courbe est l’image d’une fonction continue

\[
\gamma : [0, 1] \rightarrow S \\
t \mapsto \gamma(t).
\]

Par abus de notation, on note la courbe \(\gamma\). Les points \(\gamma(0), \gamma(1) \in S\) sont ses extrémités.

Cependant, nous identifions les courbes qui sont obtenues l’une de l’autre par une transformation qui ne modifie pas la nature des courbes. Dans notre contexte, ces transformations sont les isotopies.

Définition 1.3.3. 1. Soient \(\gamma, \gamma’\) deux courbes de \((S,M)\). Une homotopie (stricte) est une famille de fonctions continues \((h_i : [0, 1] \rightarrow S)_{i \in [0,1]}\) telle que

(a) \(h_0 = \gamma\) et \(h_1 = \gamma’\);

(b) L’application \([0, 1] \times [0, 1] \rightarrow S : (i,t) \mapsto h_i(t)\) est continue ;

(c) Les extrémités sont inchangées, c’est-à-dire que \(h_i(0) = \gamma(0) = \gamma'(0)\) et \(h_i(1) = \gamma(1) = \gamma'(1)\) pour tout \(i \in [0,1]\).

2. Soit \(\mathcal{P}\) un ensemble de propriétés. Une homotopie \((h_i)_{i \in [0,1]}\) est une isotopie si, pour tous \(i \in [0,1]\), \(h_i\) respecte les propriétés de \(\mathcal{P}\).

Exemple 1.3.4.

Une illustration de l’homotopie entre deux courbes. La courbe \(\gamma\) est déformée continûment pour obtenir la courbe \(\gamma’\).
Définition 1.3.5. 1. Un arc interne γ de (S,M) est la classe d’isotopie d’une courbe pour les propriétés suivantes :

(a) Les extrémités de la courbe sont dans M ;

(b) La courbe ne s’auto-intersecte pas, à l’exception de ses extrémités qui peuvent coïncider ;

(c) La courbe est disjointe de M et de la frontière de S, à l’exception de ses extrémités ;

(d) La courbe n’est pas homotope à un point, c’est-à-dire qu’elle ne forme pas un monogone sans ponction, soit une courbe de la forme

\[\bigcirc \cdot \]

2. Deux arcs (non égaux) sont compatibles s’il existe deux représentants de leurs classes d’isotopies respectives qui ne s’intersectent pas, sauf peut-être en leurs extrémités ;

3. Une triangulation est une collection maximale d’arcs compatibles deux-à-deux

Exemples 1.3.6. 1. Soient S un disque et M un ensemble de 5 points sur ∂S. On peut visualiser S, à homéomorphisme près, comme étant un pentagone régulier.
Une triangulation possible est $T = \{\alpha_1, \alpha_2\}$, telle qu’indiquée sur la figure suivante :

2. Soit \mathbb{S}^2 une sphère et considérons la surface $S = \mathbb{S}^2 \setminus (D_1 \cup D_2)$, où D_1 et D_2 sont deux disques disjoints sur \mathbb{S}^2, et M un ensemble de 3 points sur ∂S. Une triangulation possible est :

Avec cette définition, lorsque la surface (S, M) a des ponctions, une triangulation peut contenir un monogone avec une ponction, comme

Ces arcs posent problème dans le contexte des algèbres amassées (nous verrons pourquoi plus tard), d’où la notion d’arc étiqueté.
Définition 1.3.7.

Un arc étiqueté est un triplet $(\gamma, e_{\gamma(0)}, e_{\gamma(1)})$, où γ est un arc interne qui ne forme pas un monogone pointé, et, pour $(i \in \{0, 1\})$, $e_{\gamma(i)} \in \{0, 1\}$, de sorte que :

1. Si l’extrémité $\gamma(i)$ ($i \in \{0, 1\}$) est sur la frontière de la surface, alors $e_{\gamma(i)} = 0$;
2. Si $\gamma(0) = \gamma(1)$, alors $e_{\gamma(0)} = e_{\gamma(1)}$.

Si $e_{\gamma(i)} = 0$, on dit que cette extrémité est sans étiquette. Si $e_{\gamma(i)} = 1$, on dit que cette extrémité est étiquetée. Les étiquettes sont représentées sur les arcs par des nœuds papillon (\Rightarrow) attachés aux extrémités de ceux-ci.

Exemple 1.3.8.

Une triangulation étiquetée du carré avec deux ponctions.

Définition 1.3.9. 1. Soient deux arcs étiquetés α et β. Ils sont compatibles si les arcs α^0, β^0 obtenus en oubliant les étiquettes sont compatibles et, de plus,

(a) si $\alpha^0 = \beta^0$, alors au moins une extrémité de α doit porter la même étiquette que l’extrémité correspondante de β ;

(b) si $\alpha^0 \neq \beta^0$, mais qu’ils partagent une extrémité, alors cette extrémité doit être étiquetée de la même façon pour les deux arcs.
2. Une *triangulation étiquetée* T est une collection maximale d'arcs étiquetés compatibles deux à deux.

On souhaite maintenant définir une algèbre amassée associée à une triangulation étiquetée. Pour ce faire, on lui associe un carquois.

Définition 1.3.10.

Soit T une triangulation étiquetée de (S,M), on définit le *carquois associé* Q_T comme suit :

1. les points de Q_T sont les arcs internes de T ;
2. si γ_1, γ_2 sont deux côtés d'un triangle dans T tel que γ_2 suit γ_1 selon l'orientation de S autour de leur sommet commun, alors on pose une flèche $\gamma_1 \leftarrow \gamma_2$ dans Q_T ;
3. si deux arcs, en oubliant leurs étiquettes, sont les mêmes, alors il n'y a pas de flèches entre ceux-ci et ils ont les mêmes prédécesseurs et successeurs.

Exemples 1.3.11.

On choisit l'orientation horaire pour ces exemples.

1. La triangulation du $(n+3)$-gone suivante
est associée au carquois de type A_n suivant

\[1 \rightarrow 2 \rightarrow \cdots \rightarrow i \rightarrow \cdots \rightarrow n-1 \rightarrow n : \]

2. La triangulation du n-gone avec une ponction suivante

est associée au carquois

\[1 \rightarrow 2 \rightarrow \cdots \rightarrow i \rightarrow \cdots \rightarrow n-2 \rightarrow n-1 \rightarrow n \]

24
obtenu comme illustré ci-bas

Maintenant, soit T une triangulation étiquetée. Le carquois Q_T peut être muté en tout $k \in (Q_T)_0$. Nous savons que les sommets de Q_T correspondent aux arcs de T. Nous souhaitons donc définir un analogue de la mutation directement sur les arcs, appelé le flip.

Nous commençons par un résultat qui garantit qu’il est possible de définir le flip pour les triangulations étiquetées de façon à ce que ceux-ci correspondent aux mutations, puis un exemple qui montre que ce n’est pas le cas pour les triangulations

Théorème 1.3.12 ([FST08], Théorème 7.9).

Soit T une triangulation étiquetée et $\gamma \in T$. La collection d’arcs compatibles $T \setminus \{\gamma\}$ peut être complétée en une triangulation d’exactement deux façons :

$$T \quad \text{et} \quad (T \setminus \{\gamma\}) \cup \{\gamma'\}$$

pour un certain arc $\gamma' \neq \gamma$.

Définition 1.3.13.
Avec les notations du théorème précédent, le flip en l’arc γ remplace T par la triangulation

$$\mu_\gamma(T) = (T \setminus \{\gamma\}) \cup \{\gamma'\}.$$
Exemple 1.3.14.
Le flip d’une diagonale d’un quadrilatère interne d’une triangulation donne l’autre diagonale de ce quadrilatère.

\[\gamma \quad \gamma’\]

On peut maintenant justifier l’utilisation des arcs étiquetés.

Exemple 1.3.15.
Soit \(T\) une triangulation du quadrilatère avec une ponction.

\[\includegraphics{example_graph1.png}\]

Dans cette triangulation, il est possible de muter en tous les arcs internes. Cependant, après avoir effectué \(\mu_4\), on obtient

\[\includegraphics{example_graph2.png}\]
qui contient un monogone avec une ponction (formé par l’arc 4). Maintenant, il est impossible de muter en 3, puisque la seule triangulation (non étiquetée) qui contient les arcs 1, 2 et 4 est celle-ci.

Cependant, si l’on passe à la triangulation étiquetée correspondante (c’est-à-dire celle qui correspond au même carquois)

![Diagram](image1)

on peut maintenant muter en 3 pour obtenir

![Diagram](image2)

La construction précédente de flips de triangulations étiquetées se comporte bien dans le contexte des algèbres amassées, en ce sens que les flips correspondent aux mutations

Théorème 1.3.16 ([FST08], Lemme 9.7).

Soit T une triangulation étiquetée, $\gamma \in T$ et $i \in (Q_T)_0$ le sommet correspondant à γ. Alors,

$$Q_{\mu_i T} = \mu_i(Q_T).$$
Finalement, à partir d’une triangulation étiquetée T, on définit l’algèbre amassée \mathcal{A}_T comme étant simplement l’algèbre amassée du carquois associé :

\[\mathcal{A}_T = \mathcal{A}_Q. \]

À isomorphisme près, l’algèbre amassée obtenue d’un carquois valué Q ne dépend pas de la graine initiale choisie. En effet, si $Q' = \mu_k Q$, alors $\mathcal{A}_{Q'} \cong \mathcal{A}_Q$. Ainsi, on définit une relation sur les carquois valués : $Q \sim_{\text{Mut}} Q'$ si et seulement si $Q' = \mu_{k_n} \cdots \mu_{k_1} Q$ pour k_1, \ldots, k_n des sommets et $n \in \mathbb{N}$. Il est facile de vérifier que \sim_{Mut} est une équivalence.

Définition 1.3.17.

La classe de mutations d’un carquois valué Q est l’ensemble M_Q des carquois valués obtenus de Q par mutations successives.

\[M_Q = \{ Q' \mid Q' \sim_{\text{Mut}} Q \}. \]

L’algèbre amassée \mathcal{A}_Q ne dépend pas directement de Q, mais plutôt de sa classe de mutation M_Q.

Théorème 1.3.18 ([FZ02], Définition 2.3).

Soit Q un carquois valué et $Q' \in M_Q$. Alors

\[\mathcal{A}_{Q'} \cong \mathcal{A}_Q. \]

Dans le contexte de surfaces, le concept de classe de mutations se traduit de façon élégante.

Théorème 1.3.19.

Soit (S,M) une surface, T une triangulation étiquetée de cette surface et Q_T le carquois associé. Alors, il existe une bijection entre l’ensemble des triangulations étiquetées de (S,M) et M_{Q_T} donnée par $T' \mapsto Q_{T'}$.

28
Démonstration. Cela suit directement du théorème 1.3.16.

En d’autres termes, à une surface \((S,M)\) correspond une classe de mutations donnée par toutes les triangulations de cette surface.

Finalement, dans les contextes de surfaces, le théorème 1.3.18 se reformule : l’algèbre amassée \(A_{Q_T}\) ne dépend pas directement de la triangulation \(T\), mais plutôt de la surface \((S,M)\).

Théorème 1.3.20.

Soient \(T,T'\) deux triangulations d’une surface \((S,M)\). Alors,

\[
A_T \cong A_{T'}.
\]

On peut donc noter cette algèbre \(A_{(S,M)}\).

Démonstration. C’est une reformulation du théorème 1.3.18 suivant la bijection du théorème 1.3.19.
CHAPITRE 2

Déploiements de carquois valués
de types \mathbb{B} et \mathbb{C}

2.1 Déploiements de carquois valués

Notre objectif est maintenant de voir l’algèbre amassée basée sur un carquois valué comme un quotient d’une sous-algèbre amassée basée sur un carquois à valuation triviale. Pour ce faire, nous définissons un déploiement U_Q d’un carquois valué Q, de façon semblable aux travaux de [FST12b].

Définition 2.1.1.
Soit Q un carquois valué. Un carquois à valuation triviale U_Q est un déploiement de Q si

1. il y a un épimorphisme de carquois valués $\pi : U_Q \rightarrow Q$ (notons maintenant, pour $i \in Q_0$, $\overline{i} = \pi^{-1}(i)$);
2. il n’y a aucune flèche entre les sommets de \overline{i} : si $i,j \in \overline{i}$, alors $\#U_1(i,j) = 0$.
3. pour toute flèche $i \xrightarrow{(b_{ij}, b_{ji})} j$ de Q, les conditions suivantes sont respectées dans U :
(a) pour tout sommet \(j_* \in \bar{J} \): \(\sum_{i_* \in \bar{I}} \#U_1(i_*, j_*) = b_{ij} \)

(b) pour tout sommet \(i_* \in \bar{I} \): \(\sum_{j_* \in \bar{J}} \#U_1(i_*, j_*) = b_{ji} \).

Ceci définit un concept similaire à un revêtement de \(Q \), le lecteur intéressé pourra comparer, par exemple, avec la définition 4.3 de [BL14].

Ces conditions garantissent une correspondance entre un carquois \(Q \) et son déploiement : soit \(i, j \in Q_0 \), alors pour tout \(j_* \in \bar{J} \), le nombre de flèches ayant pour source un sommet de \(\bar{I} \) et pour but \(j_* \) correspond à la valuation \(b_{ij} \). De même, pour tout \(i_* \in \bar{I} \), le nombre de flèches ayant pour source \(i_* \) et pour but un sommet de \(\bar{J} \) correspond à la valuation \(b_{ji} \).

Exemple 2.1.2.

Soit \(Q = 1 \xrightarrow{(2, 4)} 2 \). Chacun des deux carquois suivants est un déploiement de \(Q \):

![Diagramme de carquois](image)

Définition 2.1.3.

Un déploiement \(U_Q \) est admissible si la condition supplémentaire suivante est respectée :

(3) \((c) \) pour toute flèche \(i \xrightarrow{(b_{ij}, b_{ji})} j \) de \(Q \), avec \(b_{ij}, b_{ji} > 0 \), toutes les flèches entre \(i_* \in \bar{I} \) et \(j_* \in \bar{J} \) pointent dans la même direction : \(i_* \rightarrow j_* \).

Exemple 2.1.4.
Soient $I = \{1_1, 1_2\}$, $2 = \{2_1, 2_2\}$ et $3 = \{3_1\}$. Alors, pour le carquois valué

$$Q = 1 \xrightarrow{(2,2)} 2 \xleftarrow{2_2} 3 \xrightarrow{(1,2)}$$

le carquois

$$U = 1 \xleftarrow{(2,2)} 2_1 \xrightarrow{(2,2)} 2_2 \xrightarrow{2_2} 3_1$$

est un déploiement admissible. Cependant,

$$\mu_3 U = 1 \xrightarrow{(2,2)} 2_1 \xrightarrow{(2,2)} 2_2 \xrightarrow{2_2} 3_1$$

n’est pas admissible en tant que déploiement de

$$\mu_3 Q = 12 \xrightarrow{(2,1)} 3 \xrightarrow{(1,2)}$$

puisque les flèches $1_1 \rightarrow 2_1$ et $1_1 \rightarrow 2_2$ ne pointent pas dans la même direction.

Le concept de déploiement (admissible) s’étend naturellement aux graines.

Soient (Q, \mathbf{x}) la graine initiale et U un déploiement (admissible) de Q, muni de l’amas initial \mathbf{x}. Soit de plus \mathbf{x}_7 l’ensemble des variables de (U, \mathbf{x}) attachées aux sommets de 7. Alors, nous avons

$$\mathbf{x} = \bigcup_{i \in Q_0} \mathbf{x}_7.$$
Cela suit de la partition de l’ensemble des variables induite par la condition (1) de la définition 2.1.1.

Trivialement, il existe une application surjective de l’ensemble des variables de la graine initiale \((U, \tilde{x})\) vers celles de \((Q, x)\) donnée, pour \(x_{i_*} \in x_i\), par \(x_{i_*} \mapsto x_i\).

On étend cette surjection pour en faire un morphisme surjectif d’algèbres :

Définition 2.1.5.

Avec les notations précédentes, on définit

\[
\varphi_U : \mathbb{Q}(\tilde{x}) \longrightarrow \mathbb{Q}(x)
\]

comme étant l’unique morphisme surjectif d’algèbres tel que \(\varphi_U(x_{i_*}) = x_i\) pour toute variable initiale \(x_{i_*} \in x_i\). En effet, ce morphisme est unique, puisque les \(x_{i_*}\) forment une base de transcendance de \(\mathbb{Q}(\tilde{x})\).

On définit maintenant le déploiement de graines en termes de compatibilité avec \(\varphi_U\), défini pour la graine initiale \((U, \tilde{x})\).

Définition 2.1.6.

Soient \((V, \tilde{y})\) et \((R, y)\) deux graines quelconques, alors \((V, \tilde{y})\) est un déploiement de \((R, y)\) si \(V\) est un déploiement de \(R\) et les variables correspondantes satisfont à l’égalité \(\varphi_U(y_{i_*}) = y_i\) pour tout sommet \(i_* \in \tilde{i}\).

Exemples 2.1.7.

1. La graine initiale

\[
(U_Q, \tilde{x}) = \begin{array}{ccc}
 x_1 & \rightarrow & x_{21} \\
 \downarrow & & \downarrow \\
 x_{12} & \rightarrow & x_{22} \\
 \downarrow & & \downarrow \\
 x_{23} & \rightarrow & x_{23}
\end{array}
\]
est un déploiement admissible de \((Q, x) = x_1 \xrightarrow{(2,3)} x_2\), où \(\bar{I} = \{1, 1, 2\}\) and \(\bar{2} = \{2_1, 2_2, 2_3\}\). Ici, on vérifie que \(\bar{x} = \{x_{1_1}, x_{1_2}, x_{2_1}, x_{2_2}, x_{2_3}\} = x_1 \sqcup x_2\) et que \(\varphi(x_i) = x_i\) pour \(i \in \{1, 2\}\):

2. La graine

\[
(V, \bar{y}) = \begin{cases}
 y_{1_1} &= \frac{1+2x_{2_1}x_{2_3}}{x_{1_1}} \\
y_{1_2} &= \frac{1+2x_{2_1}x_{2_3}}{x_{1_2}} \\
y_{2_1} &= \frac{1+2x_{2_1}x_{2_3}}{x_{1_1}} \\
y_{2_2} &= \frac{1+2x_{2_1}x_{2_3}}{x_{1_2}} \\
y_{2_3} &= \frac{1+2x_{2_1}x_{2_3}}{x_{1_1}}
\end{cases}
\]

est un déploiement admissible de \((R, y) = y_1 \xrightarrow{(2,3)} y_2 = \frac{1+2x_{2_1}x_{2_3}}{x_{1_1}x_{1_2}}\), car \(\varphi_U\), défini en termes des variables initiales, satisfait à l’égalité \(\varphi_U(y_{i*}) = y_i\) pour tout sommet \(i_* \in \bar{I}\).

Nous avons maintenant une notion de déploiement de graines. Nous définissons une notion de mutation de déploiements dans \((U_Q, \bar{x})\), correspondant aux mutations dans \((Q, x)\), afin de pouvoir comparer les algèbres amassées correspondantes.

Définition 2.1.8.

Soit \(U\) un déploiement de \(Q\). Une *mutation de déploiement* (ou *U-mutation*) \(\mu_{i*}\) est la composition des mutations

\[
\mu_{i*} = \prod_{i_\in \bar{I}} \mu_{i_*}.
\]

Remarque 2.1.9 ([MM14], Proposition 3.1). Cette composition est correctement définie. En effet, la condition (2) de la définition 2.1.1 implique que les \(\mu_{i_*}\) commutent pour tout \(i_* \in \bar{I}\).

Nous allons vérifier la commutativité des mutations \(\mu_i \) et \(\mu_j \) pour les trois règles de mutations (voir la définition 1.2.1).

Pour la première étape de la mutation, supposons que l’on a un chemin \(a \to i \to b \) et un chemin \(c \to j \to d \) dans le carquois \(Q \). Alors, la mutation \(\mu_i \) ajoute la flèche \(a \to b \) au carquois sans modifier les flèches incidentes à \(j \). Par la suite, la mutation \(\mu_j \) ajoute la flèche \(c \to d \) sans modifier les flèches incidentes à \(i \). Si l’on décide plutôt de commencer par la mutation \(\mu_j \), une flèche \(c \to d \) sera ajoutée. Par la suite, la mutation \(\mu_i \) ajoutera une flèche \(a \to b \). Dans un cas comme dans l’autre, le résultat est le même : l’ajout des flèches \(a \to b \) et \(c \to d \).

Comme la troisième règle de mutation, effacer les cycles orientés de longueur deux, est dépendante de la création de nouvelles flèches et que la première étape est indépendante de l’ordre des mutations, alors la troisième l’est tout autant.

Pour la deuxième étape de la mutation, inverser le sens des flèches incidentes à \(i \) ou à \(j \) selon la mutation effectuée, la mutation \(\mu_i \) change tout d’abord le sens des flèches incidentes à \(i \), ce qui n’affecte pas les flèches incidentes à \(j \). Par la suite, la mutation \(\mu_j \) change le sens des flèches incidentes à \(j \), ce qui n’affecte pas les flèches incidentes à \(i \). Si l’on commence plutôt par la mutation \(\mu_j \), on change le sens des flèches incidentes à \(j \). Ensuite, la mutation \(\mu_i \) change le sens des flèches incidentes à \(i \). Dans un cas comme dans l’autre, le résultat est le même : toutes les flèches incidentes à \(i \) et à \(j \) sont changées de sens exactement une fois.

Nous discutons maintenant de la correspondance entre \(\mu_7 \) dans \(U \) et \(\mu_i \) dans \(Q \).

Lemme 2.1.10.
Soit \(k \in Q_0 \). Si \(U \) est un déploiement admissible de \(Q \), alors \(\mu_k U \) est un déploiement de
$\mu_k Q$.

Démonstration. Il faut vérifier que les conditions (1), (2) et (3) de la définition 2.1.1 sont préservées par la mutation.

Pour la condition (1), comme la mutation ne change pas les sommets, nous gardons la même correspondance entre les sommets de $U_0 = (\mu_k U)_0$ et ceux de $Q_0 = (\mu_k Q)_0$.

Pour la condition (2), supposons qu’une flèche est créée, dans $\mu_k U$, entre deux sommets $i_1, i_2 \in \tilde{\mathcal{I}}$. Ceci implique qu’avant le produit de mutations μ_k, il y avait, dans U, un chemin de longueur deux $i_1 \xrightarrow{\alpha} k_* \xrightarrow{} i_2$. Si $\tilde{k} = \tilde{i}$, l’existence de α est impossible en vertu de la condition (2) pour U. Si $\tilde{k} \neq \tilde{i}$, alors U n’était pas admissible, une contradiction. La condition (2) est donc préservée par mutation.

Pour les conditions (3)(a) et (3)(b), on considère les trois étapes de la mutation sur U :

1. Pour tout chemin $i_* \xrightarrow{m} k_* \xrightarrow{n} j_*$, on ajoute $i_* \xrightarrow{mn} j_*$. Ainsi, le nombre de flèches entre tous les sommets de \tilde{j} et i_* après mutation est donné par :

 $$
 \sum_{i_* \in \tilde{I}} \#(\mu_k U)_1(i_*, j_*) = \sum_{i_* \in \tilde{I}} \left[\left(\sum_{k_* \in \tilde{k}} \#U_1(i_*, k_*) \cdot \#U_1(k_*, j_*) \right) + \#U_1(i_*, j_*) \right]
 $$

 $$
 = \sum_{k_* \in \tilde{k}} \#U_1(i_*, k_*) \sum_{i_* \in \tilde{I}} \#U_1(k_*, j_*) + \sum_{i_* \in \tilde{I}} \#U_1(i_*, j_*)
 $$

 $$
 = b_{ik}b_{kj} + b_{ij},
 $$

alors que le nombre de flèches entre i_* et tous les sommets de \tilde{j} après mutation est
donné par :

\[
\sum_{j, j' \in J} \#(\mu_k U)_{i_*, j} = \sum_{j, j' \in J} \left[\left(\sum_{k, \in K} \#U_1(i_*, k) \cdot \#U_1(k_*, j) \right) + \#U_1(i_*, j_*) \right]
\]

\[
= \sum_{k_*, \in K} \#U_1(i_*, k) \sum_{j_*, \in J} \#U_1(k_*, j_*) + \sum_{j_*, \in J} \#U_1(i_*, j_*)
\]

\[
= b_{ki} b_{jk} + b_{ji},
\]

ce qui correspond bien à la valuation résultante dans \(\mu_k Q\). Dans la première égalité, \(\#U_1(i_*, j_*)\) correspond au nombre de flèches préexistantes entre \(i_*\) et \(j_*\) dans \(U\), et le produit \(\#U_1(i_*, k_*) \#U_1(k_*, j_*)\) correspond au nombre de flèches créées lors du produit de mutations en \(k_*\). La seconde égalité suit de manipulations algébriques.

alors que la troisième suit des conditions (3)(a) et (3)(b) pour \(U\) :

2. Toutes les flèches adjacentes à un sommet \(k_* \in k\) dans \(U\) sont inversées, comme toutes les flèches adjacentes à \(k\) dans \(Q\);

3. Toutes les autres flèches sont laissées inchangées à la fois dans \(\mu_k Q\) et dans \(\mu_k U\).

\[\square\]

Remarque 2.1.11. L’exemple 2.1.4 montre que l’admissibilité d’un déploiement n’est pas préservée par les mutations ainsi définies.

Maintenant, étant donné une graine \((Q, \mathfrak{x})\) et un déploiement \((U, \mathfrak{x})\), il est naturel de vérifier la relation entre les variables amassées obtenues par mutations d’un côté et de l’autre. Cependant, nous devons nous restreindre aux variables amassées de \(\mathcal{A}_U\) obtenues suite à des \(U\)-mutations. Ceci définit une sous-algèbre de \(\mathcal{A}_U\) :

Définition 2.1.12.

Soit \((U, \mathfrak{x})\) un déploiement de \((Q, \mathfrak{x})\). Dans chaque graine \((U', \mathfrak{x'})\) obtenue de \((U, \mathfrak{x})\) par une suite de \(U\)-mutations, \(\mathfrak{x'}\) est un \(U\)-amas. Notons \(\mathcal{E}\) l’union de tous les \(U\)-amas
obtenus de \(\mathbf{x} \) par suites de \(U \)-mutations. Alors, l'algèbre de déploiement \(\mathcal{A}_U \) est la sous-
\(\mathbb{Z} \)-algèbre de \(\mathcal{A}_U \) engendrée par \(\mathcal{X} \).

Conjecture 2.1.13.

En général, nous croyons que \(\mathcal{A}_U \neq \mathcal{A}_U \). Par exemple, soit la graine

\[
Q = x_1 \xrightarrow{(4,1)} x_2
\]

et son déploiement

\[
\begin{array}{c}
U = 1 1 \\
1_2 \xrightarrow{} 2_1 \\
1_3 \\
1_4
\end{array}
\]

Alors, nous pensons que la variable \(y \) obtenue de la suite de mutations \(\mu_2, \mu_1, \mu_1 \), n'est pas dans \(\mathcal{A}_U \) :

\[
y = \frac{1}{x_1, x_1, x_2} x_1 x_2 + 2 x_2 + x_2^2 \notin \mathcal{A}_U.
\]

Le lemme suivant donne la correspondance entre les variables amassées de \(\mathcal{A}_Q \) et celles de \(\mathcal{A}_U \).

Lemme 2.1.14.

Si \((U, \mathbf{x}) \) est un déploiement admissible de la graine \((Q, \mathbf{x}) \), alors, pour tout \(k \in Q_0 \), on a

\[
\varphi_U (\mu_k \mathbf{x}) = \mu_k \mathbf{x}.
\]

Démonstration. La nouvelle variable amassée, obtenue de \(\mu_k \), est \(x'_k \) donnée par la
relation d'échange

\[
x_k x'_k = \prod_{i \in k^-} x_i^{b_{ik}} + \prod_{j \in k^+} x_j^{b_{jk}},
\]

38
où les valuations sont positives.

De l'autre côté, les nouvelles variables amassées obtenues de $\mu_\overline{k}$ sont $\{x'_{k_\ast} \mid k_\ast \in \overline{k}\}$. Elles sont données, pour tout $k_\ast \in \overline{k}$, par

$$
x_{k_\ast}x'_{k_\ast} = \prod_{w \in U_0: w \stackrel{(m,m)}{\sim} k_\ast} x^m_w + \prod_{z \in U_0: z \stackrel{(n,n)}{\sim} k_\ast} x^n_z
= \prod_{i \in Q_0: i \in \overline{k}} \prod_{i_* \in \overline{\Pi}} x_{i_*}^{\#U_1(i_*,k_\ast)} + \prod_{j \in Q_0: j \in \overline{k}} \prod_{j_* \in \overline{\Pi}} x_{j_*}^{\#U_1(k_\ast,j_*)},
$$
où la seconde égalité suit de : la partition des variables de (U, \overline{x}) induite par la condition (1), la condition (2) qui garantit qu'aucun sommet de \overline{k} n'est un prédécesseur ou un successeur d'un autre sommet de \overline{k} et, finalement, la condition (3)(c) qui garantit que les variables appartenant à un ensemble \mathbf{x}_π apparaissent seulement dans l'un des deux termes de la somme. Finalement, comme $\varphi_U(x_{k_\ast}x'_{k_\ast}) = x_k \varphi_U(x'_{k_\ast})$, on conclut que :

$$
x_k \varphi_U(x'_{k_\ast}) = \varphi_U \left(\prod_{i \in \overline{k}^-} \prod_{i_* \in \overline{\Pi}} x_{i_*}^{\#U_1(i_*,k_\ast)} + \prod_{j \in \overline{k}^+} \prod_{j_* \in \overline{\Pi}} x_{j_*}^{\#U_1(k_\ast,j_*)} \right)
= \prod_{i \in \overline{k}^-} \prod_{i_* \in \overline{\Pi}} \varphi_U \left(x_{i_*}^{\#U_1(i_*,k_\ast)} \right) + \prod_{j \in \overline{k}^+} \prod_{j_* \in \overline{\Pi}} \varphi_U \left(x_{j_*}^{\#U_1(k_\ast,j_*)} \right)
= \prod_{i \in \overline{k}^-} x_i \sum_{i_* \in \overline{\Pi}} \#U_1(i_*,k_\ast) + \prod_{j \in \overline{k}^+} x_j \sum_{j_* \in \overline{\Pi}} \#U_1(k_\ast,j_*)
= x_k x'_{k_\ast},
$$
où la dernière égalité suit des conditions (3)(a) et (3)(b).

Notons désormais φ_U la restriction de φ_U à \mathcal{A}_U et à son image :

$$
\varphi_U : \mathcal{A}_U \longrightarrow \text{Im} \varphi_U.
$$

On obtient le résultat suivant :
Théorème 2.1.15.
Soit \((Q, x)\) une graine et \((U, \bar{x})\) un déploiement admissible. Si, pour toute suite de mutations \(\mu_i \cdots \mu_j \mu_k\) de \(Q\), \(U' = \mu_7 \cdots \mu_5 \mu_k U\) est un déploiement admissible de \(Q' = \mu_i \cdots \mu_j \mu_k Q\), alors \(\varphi_U\) est un morphisme surjectif de \(A_U\) vers \(A_Q\), et l'image d'une variable amassée est une variable amassée.

Démonstration. Le résultat suit directement de la définition 2.1.12, du lemme 2.1.14 et de la condition que pour toute suite de mutations \(\mu_i \cdots \mu_j \mu_k\) de \(Q\), \(U' = \mu_7 \cdots \mu_5 \mu_k U\) soit un déploiement admissible de \(Q' = \mu_i \cdots \mu_j \mu_k Q\). \(\square\)

Remarque 2.1.16. Par conséquent, sous les hypothèses du théorème 2.1.15, il suit du théorème d'isomorphisme de Jordan que

\[A_Q \cong A_U / \text{Ker} \varphi_U. \]

Si de plus \(A_U = \mathcal{A}_U\), alors

\[A_Q \cong A_U / \text{Ker} \varphi_U. \]

Nous verrons à la section 2.2 des exemples d’applications de ce théorème et de la remarque.

2.2 Déploiements de carquois valués de types \(\mathcal{B}\) and \(\mathcal{C}\) et variables amassées associées

En général, étant donné un déploiement admissible \(U\) d’un carquois valué \(Q\), il est difficile de déterminer si l’hypothèse du théorème 2.1.15 est vérifiée. Dans cette section, nous montrons que c’est le cas pour les carquois valués de types \(\mathcal{B}\), \(\mathcal{C}\) and \(\mathcal{G}_2\). Nous discutons aussi du cas des carquois de type \(\mathcal{F}_4\).
Soit B un carquois valué de type
\[\mathbb{B}_n = 1 \rightarrow 2 \rightarrow \cdots \rightarrow (n-1) \rightarrow (1,2) \rightarrow n \]
(où $n \geq 2$). On définit son déploiement standard $U(B)$ comme étant l’unique déploiement admissible de type
\[\mathbb{D}_{n+1} = 1 \rightarrow 2 \rightarrow \cdots \rightarrow (n-1) \rightarrow n_1. \]

En effet, les orientations des flèches peuvent être choisies d’une unique façon si l’on veut que le résultat soit un déploiement.

Théorème 2.2.1.

Soient B un carquois valué de type \mathbb{B} et $U = U(B)$ son déploiement standard. Alors, on a que $\mathcal{A}_B \cong \mathcal{A}_{U(B)}/\mathrm{Ker} \varphi_{U(B)}$.

Démonstration. Il est facile de vérifier que les conditions (1), (2) and (3)(a)(b)(c) sont vérifiées initialement. En vertu du théorème 2.1.15, il suffit de vérifier que la condition (3)(c) est respectée après toute suite de mutations.

Nous procédons en examinant la triangulation du $(n+1)$-gone avec une ponction correspondante à $U(B)$. Les arcs correspondant aux sommets n_1 et n_2 sont ceux allant à la ponction, comme illustré (localement) ici

![Diagramme](image)

Comme les U-mutations possibles sont $\mu_1, \ldots, \mu_{(n-1)}$, et le produit $\mu_n = \mu_{n_1}\mu_{n_2}$, il y a toujours deux arcs allant d’un sommet à la ponction après n’importe quelle suite de ces U-mutations. Donc, la condition (3)(c) est toujours respectée.
Finalement, en vertu de la remarque 2.1.16, il reste à montrer que \(A_V = A_U \). Soit \(x \in A_U \). Alors,

\[
x = \sum_{\gamma \in \Gamma} k_{\gamma} x_{\gamma},
\]

où \(k_{\gamma} \in \mathbb{Z} \) et les \(x_{\gamma} \) sont des variables amassées.

À chaque variable \(x_{\gamma} \) correspond un arc \(\gamma \) d’une triangulation du \(n \)-gone avec une ponction. Comme chaque arc, individuellement, peut être complété en une triangulation ayant deux arcs allant d’un sommet à la ponction, chaque \(x_{\gamma} \) appartient à \(A_U \) et ainsi \(x \in A_U \).

Suite à ce travail, nous pouvons aisément obtenir les variables amassées de \(B_n \)

Soit \((B, x) = x_n \rightarrow x_{n-1} \rightarrow \cdots \rightarrow x_2 \overset{(1,2)}{\rightarrow} x_1 \) (où \(n \geq 2 \)).

Théorème 2.2.2.

L’ensemble \(A \) des variables amassées de \((B, x) \) est obtenu grâce à l’algorithme suivant :

\[
(a) \quad \text{Poser} \quad x_{n+1} = 1 \quad \text{et} \quad y_i = \begin{cases}
0 & \text{si} \ i = -1 \\
1 & \text{si} \ i = 0 \\
x_1 & \text{si} \ i = 1 \\
x_1 + x_2 & \text{si} \ i = 2 \\
x_1 + x_i y_{i-1} & 3 \leq i \leq n + 1 \\
y_{i-(n+1)} & n + 1 \leq i \leq 2n + 1;
\end{cases}
\]

\[
(b) \quad \text{Calculer}
\]

\[
A = \left\{ y_{ij} = y_i y_j \sum_{k=i}^{j-1} \frac{1}{y_k y_{k+1}} \mid i = -1, j \in \{1, 2, \ldots, n + 1 \} \right\}
\]

\[
\cup \left\{ y_{ij} = y_i y_j \sum_{k=i}^{j-1} \frac{1}{y_k y_{k+1}} \mid i \in \{1, 2, \ldots, n + 1 \}, j \in \{i + 2, \ldots, i + n \} \right\}
\]

en fonction des variables amassées initiales de \(x \).
Démonstration. Soit \(y = \{y_1, y_2, \ldots, y_{n+1}\} \) l'amas initial associé au carquois

\[\frac{D_{n+1}}{n+1} \rightarrow 2 \rightarrow \frac{n}{n} \rightarrow 1 \]

On a, à numérotation des sommets près, que \(\mu_{(n+1)} \cdots \mu_3, \mu_2, \mu_1 (U(B)) = \frac{D_{n+1}}{n+1} \). Alors, pour obtenir l'ensemble des variables amassées de \(\mathcal{A}_{U(B)} \), il suffit de calculer chaque variable \(y_i \) en fonction des variables initiales \(x \) de \(U(B) \) (en utilisant les mutations entre ces deux graines), puis de calculer les variables de \(\mathcal{A}_{\frac{D_{n+1}}{n+1}} \) en termes de \(y_i \) et de substituer.

Nous avons montré (voir le théorème 1.2.11) que les variables amassées de \(\mathcal{A}_{\frac{D_{n+1}}{n+1}} \) sont données par l'ensemble

\[\mathcal{Y} = \{y_{ij} \mid 1 \leq i < j \leq 2n + 2 \text{ et } j \neq i + 1\} \],

si, après simplification des expressions pour \(y_{ij} \), on remplace \(y_{-1} \) par 0, \(y_0 \) par 1 et \(y_{i+n+1} \) par \(y_i \) (pour tout \(i \)).

On remarque que certains indices sont inclus dans \(\mathcal{Y} \) mais pas dans \(\mathcal{X} \). Cette omission d'indices sert seulement à éviter des redondances dans l'ensemble \(\mathcal{X} \) après substitution.

Le système (a) est obtenu en calculant les relations d'échange récursivement.

\[\square \]

Exemple 2.2.3.

Calculons les variables de \((B, x) = x_2 \xrightarrow{(1,2)} x_1 \) en appliquant l'algorithme. Ici, \(n = 2 \).

(a) On pose \(x_3 = 1, y_{-1} = 0, y_0 = 1, y_1 = x_1, y_2 = \frac{1+x_2}{x_1} \),

\[y_3 = \frac{x_1 + x_3 y_2}{x_2} = \frac{x_1 + \left(\frac{1+x_2}{x_1} \right)}{x_2} = 1 + \frac{x_1^2 + x_2}{x_1 x_2}, \]

et \(y_4 = y_1, y_5 = y_2 \).
(b) On calcule les éléments de \mathcal{R}^- :

\[
y_{-1,1} = \frac{y_1 + y_{-1}}{y_0}
\]

\[
y_{-1,2} = \frac{y_{-1}y_0 + y_{-1}y_2 + y_2y_1}{y_0y_1}
\]

\[
y_{-1,3} = \frac{y_{-1}y_0y_1 + y_{-1}y_3y_0 + y_{-1}y_3y_2 + y_3y_1y_2}{y_0y_1y_2}
\]

\[
y_{1,3} = \frac{y_3 + y_1}{y_2}
\]

\[
y_{2,4} = \frac{y_4 + y_2}{y_3}
\]

\[
y_{3,5} = \frac{y_5 + y_3}{y_4},
\]

puis on substitue en termes de variables initiales seulement

\[
y_{-1,1} = x_1
\]

\[
y_{-1,2} = \frac{1 + x_2}{x_1}
\]

\[
y_{-1,3} = \frac{1 + x_1^2 + x_2}{x_1x_2}
\]

\[
y_{1,3} = \frac{1 + x_1^2}{x_2}
\]

\[
y_{2,4} = x_2
\]

\[
y_{3,5} = \frac{1 + 2x_2 + x_1^2 + x_2^2}{x_1^2x_2}.
\]

On obtient bien toutes les variables amassées (comparer à l’exemple 1.2.8).

Soit C un carquois valué de type

\[C_n = 1 \quad 2 \quad \cdots \quad (n-1) \quad (2,1) \quad n\]

(avec $n \geq 2$). On définit son déploiement standard $U(C)$ comme étant l’unique déploiement admissible de type

\[A_{2n-1} = 1_1 \quad 2_1 \quad \cdots \quad (n-1)_1 \quad n_1.
\]

\[1_2 \quad 2_2 \quad \cdots \quad (n-1)_2
\]

44
En effet, les orientations des flèches peuvent être choisies d’une unique façon si l’on veut que le résultat soit un déploiement.

Théorème 2.2.4.

*Soient C un carquois valué de type C et $U = U(C)$ son déploiement standard. Alors, on a que $\mathcal{A}_C \cong \mathcal{A}_{U(C)}/\ker \varphi_{U(C)}$.**

Démonstration. On procède de nouveau comme à la démonstration du théorème 2.2.1. On doit vérifier que la condition (3)(c) est respectée après toute suite de mutations et que $\mathcal{A}_U = \mathcal{A}_U$. Comme les orientations des deux branches de $U(C)$ coïncident initialement, la triangulation du $(2n+2)$-gone correspondante est invariante par rotation de π radians autour du centre de l’arc correspondant au sommet n. De plus, comme les U-mutations possibles sont $\mu_1 = \mu_i, \mu_2$ (où $1 \leq i \leq n - 1$) et μ_{n1}, cette invariance est préservée par U-mutations. Voici une illustration de la situation :

![Diagramme](image)

où $h = 1$ et $k = 2$, ou bien $h = 2$ et $k = 1$. On remarque qu’il est impossible d’avoir simultanément une flèche de i_1 vers j_k et de i_2 vers j_k, ou encore de i_l vers j_1 et de i_l vers j_2 (où $l \in \{1, 2\}$), puisque les arcs correspondants sont séparés par l’arc n_1, donc la condition (3)(c) est respectée pour ces arcs. De plus, la condition (3)(c) est aussi respectée pour les flèches de source ou de but n_1. En conclusion, la condition (3)(c) est toujours respectée et on applique le théorème 2.1.15.
Pour vérifier que $\overline{\mathcal{A}}_U = \mathcal{A}_U$, encore une fois, tous les arcs, considérés individuellement, d’une triangulation du $(2n+2)$-gone peuvent être complétés en une triangulation invariante par rotation de π radians autour du centre d’un arc choisi. On conclut que les variables amassées sont les mêmes, d’où l’énoncé.

On obtient l’ensemble des variables amassées de C_n de la façon décrite au théorème suivant.

Soit $(C, x) = x_n \rightarrow x_{n-1} \rightarrow \cdots \rightarrow x_2 \rightarrow (2,1) x_1$ (où $n \geq 2$).

Théorème 2.2.5.

L’ensemble \mathcal{X} des variables amassées de (C, x) est obtenu grâce à l’algorithme suivant :

(a) Poser $x_0 = 1$ et $y_i = \begin{cases}
0 & i = -1 \\
1 & i = 0 \\
x_i & 1 \leq i \leq n \\
x_{i-n-1,n} = x_{i-n-1} x_n \sum_{k=i-n-1}^{n-1} \frac{1}{x_k x_{k+1}} & n+1 \leq i \leq 2n-1 \\
1 & i = 2n;
\end{cases}$

(b) Calculer

$$\mathcal{X} = \left\{ y_{ij} = y_i y_j \sum_{k=1}^{j-1} \frac{1}{y_k y_{k+1}} \left| -1 \leq i \leq n-1 \text{ et } i+2 < j \leq i + n + 1 \right. \right\}$$

en fonction des variables amassées initiales de x.

Démonstration. Soit $y = \{y_1, y_2, \ldots, y_{2n-1}\}$ l’amas initial associé au carquois

\[
\overline{A}_{2n-1} = 1 \rightarrow 2 \rightarrow \cdots \rightarrow n - 1 \rightarrow n. \\
2n - 1 \rightarrow n - 2 \leftarrow \cdots \leftarrow n + 1
\]

On a que, à numérotation des sommets près, $U(C) = \mu_{n+1} \mu_{n+2} \cdots \mu_{2n-1} (\overline{A}_{2n-1})$.

Alors, pour obtenir l’ensemble des variables amassées de \mathcal{A}_C, il suffit de calculer chaque
variable y_i en fonction des variables initiales x de $U(C)$ (en utilisant les mutations), puis
de calculer les variables de \mathcal{A}_{2n-1} en termes de y_i et substituer.

Nous avons montré (voir le théorème 1.2.11) que les variables amassées de \mathcal{A}_{2n-1} sont
données par l’ensemble

$$\{y_{ij} \mid -1 \leq i < j \leq 2n \text{ et } j \neq i + 1\},$$

si, après simplification des expressions pour y_{ij}, on remplace y_{-1} par 0 et y_0 par 1. Encore
une fois, l’omission d’indices sert seulement à éviter des redondances dans l’ensemble \mathcal{A}
après substitution.

Le système (a) est obtenu en utilisant la correspondance des variables associées aux
sommets de \tilde{t} (pour tout i) dans $U(C)$.

Soit G un carquois valué de type

$$\mathbb{G}_2 = 1^{1,3} \rightarrow 2.$$

On définit son déploiement standard $U(G)$ comme étant l’unique déploiement admissible
de type

$$\mathbb{D}_4 = 2 \rightarrow_{1} 1 \rightarrow_{2} 2 \rightarrow_{3} 2.$$

En effet, les orientations des flèches peuvent être choisies d’une unique façon si l’on veut
que le résultat soit un déploiement.

Proposition 2.2.6.

Soient G un carquois valué de type \mathbb{G}_2 et $U(G)$ son déploiement standard. Alors, on a
que $\mathcal{A}_G \cong \mathcal{A}_{U(G)}/\text{Ker}\varphi_{U(G)}$.
Démonstration. Encore une fois, on doit vérifier que la condition $(3)(c)$ est respectée après toute suite de mutations. Cependant, dans ce cas particulier, c’est trivial. La règle (1) de mutation (voir définition 1.2.1) n’est jamais appliquée, parce qu’il n’y a pas de chemins de longueur 2 dans G et $U(G)$. On peut donc appliquer le théorème 2.1.15.

De plus, chaque arc d’une triangulation du carré à une ponction peut être complété en une triangulation correspondant aux graines de \mathcal{A}_U, donc, le résultat suit de la remarque 2.1.16 comme précédemment.

□

Remarque 2.2.7. Le déploiement de \mathbb{G}_2 se généralise : soient

$$Q = 1 \xrightarrow{b_{12}, b_{21}} 2$$

et $U(Q)$ un carquois ayant b_{12} sommets dans \mathbb{I}, b_{21} sommets dans \mathbb{I} et toutes les flèches allant d’un sommet de \mathbb{I} vers un sommet de \mathbb{I} (celui construit un déploiement admissible). Alors, la première partie de la preuve de la proposition 2.2.6 reste identique et $\mathcal{A}_Q \cong \mathcal{A}_{U(Q)}/\ker \varphi_{U(Q)}$.

Remarque 2.2.8. Pour les carquois de type \mathbb{F}_4, un candidat naturel pour un déploiement admissible est de type \mathbb{E}_6. Cependant, comme les carquois de type \mathbb{E}_6 ne correspondent pas à des triangulations d’une surface, nous ne pouvons pas réutiliser la technique de preuve présentée aux théorèmes 2.2.1 et 2.2.4 pour prouver que le théorème 2.1.15 s’applique. Pour l’instant, nous n’avons pas d’autre preuve de ce résultat, ni de contre-exemple.

Finalement, nous obtenons une preuve simple de la conjecture de positivité pour les types \mathbb{B}, \mathbb{C}, et \mathbb{G}_2. C’est une conséquence de l’existence des déploiements et du fait, déjà connu (voir [Sch08] et [MSW11]), que les variables de types \mathbb{A} and \mathbb{D} sont positives. Ce résultat est obtenu, en utilisant des orbifolds, dans l’article [FST12a].
Théorème 2.2.9.
Les variables amassées de types \(\mathbb{B}_n, \mathbb{C}_n \) and \(\mathbb{G}_2 \) sont des polynômes de Laurent à coefficients positifs.

Démonstration. Soit \(x \) une variable amassée de \(\mathcal{A}_Q \), où \(Q \) est de type \(\mathbb{B}, \mathbb{C} \) ou \(\mathbb{G}_2 \). Alors, la proposition 2.2.1, 2.2.4 ou 2.2.6 fournit un déploiement admissible \(U(Q) \) et le morphisme \(\varphi_U \) associé. Alors \(x = \varphi_U(x') \), avec \(x' \) un polynôme de Laurent à coefficients positifs d’une algèbre amassée de type \(\mathbb{A} \) ou \(\mathbb{D} \). Ceci implique que \(x \) est aussi un polynôme de Laurent à coefficients positifs, puisque \(\varphi_U \) est un morphisme envoyant les monômes vers des monômes. \(\square \)

2.3 Classes de mutations

Notre objectif est maintenant de décrire les classes de mutations des carquois valués de types \(\mathbb{B}_n \) et \(\mathbb{C}_n \). Pour ce faire, nous utilisons de nouveau les triangulations associées. Premièrement, nous introduisons le concept de collage de blocs de construction, qui sera utilisé dans les preuves de cette section.

Définition 2.3.1.
La paire \((Q,c) \) est un bloc de construction si \(Q \) est un carquois valué et \(c : Q_0 \to \{0,1\} \) est une application.

Pour un sommet \(i \in Q_0 \), on dit que \(i \) est noir si \(c(i)=0 \) et blanc si \(c(i)=1 \). Les sommets noirs sont représentés par \(\bullet \) et les blancs, par \(\circ \).

Définition 2.3.2.
Un collage des deux blocs de construction \((Q,c) \) et \((Q',c') \) est un bloc de construction obtenu en identifiant un sommet blanc de \((Q,c) \) et un sommet blanc de \((Q',c') \), puis en coloriant le sommet résultant en noir.
Exemple 2.3.3.
Le collage des deux blocs de constructions suivants aux sommets 2 et 2'

\[\begin{array}{cc}
 1 & 2 \\
 \bullet & \bullet \\
 & 3 \\
\end{array} \quad \begin{array}{cc}
 2' & 4 \\
 \bullet & \bullet \\
\end{array} \]

donne le bloc

\[\begin{array}{cc}
 1 & 2 \\
 \bullet & \bullet \\
 & 3 \\
\end{array} \quad \begin{array}{cc}
 2' & 4 \\
 \bullet & \bullet \\
\end{array} \]

On rappelle maintenant la description de la classe de mutations des carquois de type \(\mathbb{A}_n \).

Proposition 2.3.4 ([ABCJP10], Proposition 2.8).

Soit \(Q \) le carquois infini suivant

\[Q = \begin{array}{ccccccc}
 & & & & & & \\
 & & & & & & \\
 & & & & & & \\
\end{array} \]

Alors, un carquois est dans la classe de mutations de \(\mathbb{A}_n \) si et seulement s'il est un sous-carquois plein et connexe de \(Q \) ayant \(n \) sommets.
Notation 2.3.5.
Notons A_i une triangulation quelconque du $(i+3)$-gone, où $i \geq 0$. Notons aussi, comme cas particuliers, $A_{-1} = \bullet \bullet \bullet \bullet$ et $A_0 = \bullet \bullet$.

Soit B un carquois de type \mathbb{B}_n. On rappelle, de la preuve du théorème 2.2.1, que son déploiement standard $U(B)$ est de type \mathbb{D}_{n+1}.

Lemme 2.3.6.
Une triangulation du $(n+1)$-gone avec une ponction est dans la classe de mutations de $U(B)$ si et seulement si elle est de la forme suivante

\[
\begin{align*}
A_t & \\
A_m &
\end{align*}
\]

où $n = m + l + 3$. Ici, A_t et A_m représentent des triangulations de polygone, tel que décrit précédemment.

Démonstration. La triangulation associée à $U(B)$ est une triangulation du $(n+1)$-gone avec une ponction. Afin de respecter les conditions d’un déploiement, la triangulation contient toujours
Nous pouvons maintenant calculer la classe de mutations des carquois de type B_n.

Théorème 2.3.7.

Soit Q le carquois valué infini suivant.

\[
Q = \begin{array}{c}
\vdots & \vdots \\
\end{array}
\]

Alors, un carquois valué est dans la classe de mutations de type B_n si et seulement s’il s’il est un sous-carquois valué plein et connexe S de Q contenant le sommet V et ayant n sommets.

Démonstration. Posons

\[
A_I = \circ \rightarrow \circ \quad \text{et} \quad A_{II} = \circ \rightarrow \circ , \text{ et}
\]

52
\[
B_I = \circ \xrightarrow{(1,2)} \bullet, \quad B_{II} = \bullet \xrightarrow{(2,1)} \circ \quad \text{et} \quad B_{III} = \circ \xleftarrow{(1,2)} \bullet \xrightarrow{(2,1)} \circ.
\]

Alors, on vérifie aisément que \(S \) respecte les conditions du théorème si et seulement s’il peut être obtenu en choisissant un carquois parmi \(B_I, B_{II}, \) et \(B_{III} \) et un certain nombre de copies de carquois parmi \(A_I \) et \(A_{II} \) et en les collant ensemble, c’est-à-dire, en associant un sommet blanc d’un carquois et un sommet blanc d’un autre, de façon à ce que le nombre de sommets du carquois résultant soit \(n. \)

Cependant, un carquois est obtenu d’un tel collage si et seulement si sa triangulation correspondante est de la forme présentée au lemme 2.3.6. Le résultat suit maintenant de ce lemme.

\[\square\]

Exemple 2.3.8.

Le carquois valué

\[
S = 1 \xrightarrow{(1,2)} 2 \xrightarrow{(2,1)} 4 \xrightarrow{(2,1)} 5 \xrightarrow{(1,2)} 3 \xrightarrow{(2,1)} 6 \xrightarrow{(1,2)} 7
\]

respecte les conditions du théorème précédent, nous savons donc qu’il est dans la classe de mutation de type \(\mathbb{B}_7. \)

Vérifions le tout de même selon la méthode utilisée dans la preuve de ce théorème. \(S \) est obtenu en collant les carquois \(A_I, B_{III}, A_{II} \) et \(A_I \) de nouveau.
Les triangulations correspondantes aux déploiement de ces blocs sont

ce qui, une fois recollés, donne la triangulation
Cette triangulation correspond bien à un déploiement d’un carquois valué de type \mathbb{B}_7.

On calcule maintenant la classe de mutations des carquois de type \mathbb{C}_n.

Soit maintenant C un carquois valué de type \mathbb{C}_n. On rappelle cette fois de la preuve du théorème 2.2.4 que son déploiement standard $U(C)$ est de type A_{2n-1}.

Lemme 2.3.9.

Une triangulation du $(2n+2)$-gone appartient à la classe de mutation de $U(C)$ si et seulement si elle est de la forme suivante.

\[A_{n-1} \]

\[n \]

\[\pi A_{n-1} \]

où A_{n-1} représente une triangulation du polygone tel que décrit précédemment et πA_{n-1} est la même triangulation que A_{n-1}, après une rotation de π radians autour du centre de l’arc n.

Démonstration. La triangulation associée à $U(C)$ est une triangulation du $(2n+2)$-gone, et, afin de respecter les conditions d’un déploiement, est invariante par rotations de π radians autour du centre de l’arc n.

Théorème 2.3.10.
Soit maintenant Q le carquois valué infini suivant.

\[Q = \]

\[(2,1) \rightarrow V \]

Alors, un carquois valué est dans la classe de mutations de type C_n si et seulement s'il est un sous-carquois valué plein et connexe S de Q contenant le sommet V et ayant n sommets.

Démonstration. Posons

\[A_I = \circ \rightarrow \circ \quad \text{et} \quad A_{II} = \circ \rightarrow \circ \]

\[C_I = \circ (2,1) \rightarrow \bullet \quad \text{et} \quad C_{II} = \bullet (1,2) \rightarrow \circ \]

\[(2,1) \rightarrow (1,2) \]

Alors, on vérifie aisément que S respecte les conditions du corollaire si et seulement s'il peut être obtenu en choisissant un carquois parmi C_I, C_{II} et C_{III} et un certain nombre de copies de carquois parmi A_I et A_{II} et en les collant ensemble, c'est-à-dire, en associant un sommet blanc d'un carquois et un sommet blanc d'un autre, de façon à ce que le nombre de sommets du carquois résultant soit n.

56
Cependant, un carquois est obtenu d’un tel collage si et seulement si sa triangulation correspondante est de la forme présentée au lemme 2.3.9. Le résultat suit de ce lemme. □
Bibliographie

