MÉTHODE D’APPLICATION DE LA RESPONSABILITÉ ÉLARGIE DES PRODUCTEURS AUX PRODUITS TIC HORS D’USAGE AU QUÉBEC

par
Dragan Ivisic

Essai présenté au Centre universitaire de formation en environnement en vue de l’obtention du grade de maître en environnement (M. Env.)

Sous la direction de Marc J. Olivier

CENTRE UNIVERSITAIRE DE FORMATION EN ENVIRONNEMENT
UNIVERSITÉ DE SHERBROOKE

Sherbrooke, Québec, Canada, 30 juin 2011
SOMMAIRE

Mots-clés : technologies de l’information et de la communication, TIC, DEEE, gestion des matières résiduelles, producteurs, responsabilité élargie des producteurs, REP, réemploi, recyclage, valorisation, 3RV-E, marché d’équipements de seconde vie

Les produits de technologies de l’information et de la communication (TIC) sont nécessaires pour plusieurs de nos tâches et activités quotidiennes. Leur omniprésence et leurs courtes durées de vie en font des matières problématiques à gérer en fin de vie utile. Il est surprenant de constater que le Québec n’a toujours pas de programme officiel pour en faire la gestion, tandis que les provinces voisines et les États-Unis gèrent ces matières de façon rationnelle depuis déjà quelques années. Cet essai explorera leurs programmes de gestion, ainsi que ceux mis en place en Europe et en Asie, pour ensuite développer une méthode d’application de cette gestion au Québec. Comme pour la plupart des programmes observés ailleurs dans le monde, la méthode proposée sera basée sur la responsabilité élargie des producteurs; celle-ci consiste à responsabiliser les producteurs pour qu’ils les prennent en charge en fin de vie utile, lorsque le consommateur désire s’en défaire. La récupération et la valorisation, au sens large, sont assurées par les producteurs de façon à minimiser les impacts sur l’environnement. En ce sens, la méthode proposée respectera la hiérarchie des 3RV-E, où le réemploi sera priorisé. En prévision des nécessités d’adaptations des producteurs face à la gestion étendue de leurs produits, des méthodes, des stratégies, des alternatives et des options de gestion et de traitement sont explorées et analysées; ceci permettra une amélioration des programmes mis en œuvre par les producteurs. Un programme de gestion de ces produits est possible au Québec et ne représenterait pas un fardeau pour les producteurs, puisque des recycleurs effectuent déjà certaines de ces activités de façon lucrative. Par ailleurs, comme la méthode proposée priorise le réemploi, une évolution du programme pourrait mener à la création d’un grand marché d’équipements TIC de seconde vie, dont les consommateurs pourraient profiter pleinement.
REMERCIEMENTS

Cet essai a été toute une aventure, qui n’aurait pas été possible sans le support et la compréhension de mon directeur d’essai, Marc Olivier. Dès le début, il a été captivé par mes idées et a su me garder motivé jusqu’à la fin. En second lieu, ma conjointe Élyz Bouchard, qui m’a encouragé et a été très compréhensive tout au long de mon cheminement académique, particulièrement durant ma maîtrise en environnement et la rédaction de mon essai. Je voudrais aussi remercier Philippe pour ses précieux conseils linguistiques. Je voudrais également remercier l’ensemble du personnel du CUFE, plus particulièrement Judith Vien et Jean-François Comeau, pour leur aide, leur compréhension et leurs judicieux conseils. De plus, je voudrais dire un petit merci à Med et Čaj.

En dernier lieu, j’aimerais surtout remercier mes parents, qui m’ont appuyé tout au long de ma vie académique. Ils ont toujours été derrière moi et m’ont encouragé dans tous les aspects de ma vie, tout particulièrement au niveau de mes études. Mon père me dit toujours, en Croate : « samo napred », ce qui veut dire « toujours vers l’avant »; c’est exactement ce que j’ai fait.
TABLE DES MATIÈRES

INTRODUCTION ... 1

1 MISE EN CONTEXTE ... 3

1.1 Les technologies de l’information et de la communication .. 3
1.2 Responsabilité élargie des producteurs .. 6

2 GESTION DANS LE MONDE ... 9

2.1 Europe .. 9
2.1.1 Champ d’application .. 10
2.1.2 Récupération .. 10
2.1.3 Traitement ... 11
2.1.4 Valorisation ... 12
2.1.5 Financement ... 12
2.1.6 Informations .. 12
2.1.7 Rapports et sanctions ... 13
2.1.8 Directive relative à l’utilisation de certaines substances dangereuses 13

2.2 Asie ... 14
2.2.1 Japon ... 14
2.2.2 Corée du Sud ... 15
2.2.3 Taiwan .. 16
2.2.4 Chine ... 17

2.3 États-Unis .. 18
2.3.1 Californie ... 19
2.3.2 Autres États ... 20

2.4 Canada ... 24
2.4.1 Colombie-Britannique ... 24
2.4.2 Alberta .. 25
2.4.3 Saskatchewan ... 25
2.4.4 Manitoba .. 26
2.4.5 Ontario ... 27
2.4.6 Terre-Neuve-et-Labrador ... 28
2.4.7 Nouveau Brunswick ... 28
2.4.8 Nouvelle-Écosse ... 28
2.4.9 Île-du-Prince-Édouard ... 29
2.4.10 Yukon .. 29
2.4.11 Territoires du Nord-Ouest .. 30
2.4.12 Nunavut .. 31
2.5 Québec .. 32
2.5.1 Initiative publique/privée ... 32
2.5.2 Initiative publique .. 33
2.5.3 Initiatives privées ... 33

3 PROPOSITION DE LA FILIÈRE TIC QUÉBÉCOISE 36
3.1.1 Problématique de la fin de vie ... 36
3.1.2 Mandats de la Filière .. 37
3.1.3 Principes du programme .. 37
3.1.4 Structure, rôle et responsabilités des intervenants 38
3.1.5 Programme proposé .. 39
3.1.6 Enjeux à venir ... 42
3.1.7 Recommandations de la Filière .. 43

4 MÉTHODE D’APPLICATION PROPOSÉE POUR LE QUÉBEC 44
4.1 Principes de base .. 44
4.1.1 Principes de la Loi sur le développement durable 44
4.1.2 Principes pancanadiens relatifs à l’intendance des produits
électroniques .. 45
4.2 Équipements inclus ... 47
4.2.1 Ordinateurs de bureau et portables .. 47
4.2.2 Écrans d’ordinateur et téléviseurs ... 48
4.2.3 Appareils accompagnant les téléviseurs 49
4.2.4 Cellulaires et petits appareils électroniques 49
4.3 Modifications règlementaires ... 50
LISTE DES FIGURES ET DES TABLEAUX

Figure 2.1 Symbole d’interdiction de jeter, utilisé sur les équipements électriques et électroniques en Europe... 13
Figure 3.1 Diagramme de la méthode d’application proposée62
Figure 3.2 Localisation des CFER effectuant le tri-démontage du matériel informatique au Québec... 66
Figure 3.3 Les principaux composants d’un tube cathodique..........................80

Tableau 2.1 Description des programmes de gestion des résidus TIC dans les États américains participants ...21
Tableau 2.2 Résumé des programmes de gestion des résidus TIC canadiens31
Tableau 3.1 Technologies de tri des plastiques ... 75
Tableau 3.2 Technologies de traitement mécanique des plastiques 76
Tableau 3.3 Technologies de traitement thermique des plastiques77
Tableau 3.4 Technologies de traitement chimique des plastiques 77
Tableau 3.5 Technologies de valorisation thermique des plastiques 84
Tableau 3.6 Coût unitaire de récupération et de valorisation pour les principales sous-catégories de produits électroniques.. 87
Tableau 3.7 Impact du coût de la REP sur le prix des principaux produits, en dollars.. 88
<table>
<thead>
<tr>
<th>Acronyme</th>
<th>Définition</th>
</tr>
</thead>
<tbody>
<tr>
<td>3R</td>
<td>Reduce, Re-use, Recycle</td>
</tr>
<tr>
<td>3RV-E</td>
<td>Réduction, réemploi, recyclage, valorisation et élimination</td>
</tr>
<tr>
<td>ABS</td>
<td>Acrylonitrile butadiène styrène</td>
</tr>
<tr>
<td>ACES</td>
<td>Atlantic Canada Electronic Stewardship</td>
</tr>
<tr>
<td>ACTS</td>
<td>Association canadienne des télécommunications sans fil</td>
</tr>
<tr>
<td>ARMA</td>
<td>Alberta Recycling Management Authority</td>
</tr>
<tr>
<td>CCME</td>
<td>Conseil canadien des ministres de l’environnement</td>
</tr>
<tr>
<td>CD</td>
<td>Disque compact</td>
</tr>
<tr>
<td>CE</td>
<td>Circular Economy (Chine)</td>
</tr>
<tr>
<td>CEPL</td>
<td>Circular Economy Promotion Law (Chine)</td>
</tr>
<tr>
<td>CFER</td>
<td>Centre de formation en entreprise et récupération</td>
</tr>
<tr>
<td>CIRAIG</td>
<td>Centre interuniversitaire de recherche sur le cycle de vie des produits, des procédés et services</td>
</tr>
<tr>
<td>CRIQ</td>
<td>Centre de recherche industrielle du Québec</td>
</tr>
<tr>
<td>CRT</td>
<td>Écran à tube cathodique - Cathode ray tube</td>
</tr>
<tr>
<td>DEEE</td>
<td>Déchets d’équipements électriques et électroniques</td>
</tr>
<tr>
<td>DEL</td>
<td>Diode électroluminescente</td>
</tr>
<tr>
<td>DVD</td>
<td>Disque optique numérique - Digital Versatile Disc</td>
</tr>
<tr>
<td>EPA</td>
<td>United States Environmental Protection Agency</td>
</tr>
<tr>
<td>EPEAT</td>
<td>Electronic Product Environmental Assessment Tool (États-Unis)</td>
</tr>
<tr>
<td>ESABC</td>
<td>Electronics Stewardship Association of British Colombia</td>
</tr>
<tr>
<td>GEEP</td>
<td>Global Electric and Electronic Processing</td>
</tr>
<tr>
<td>G.O.Q</td>
<td>Gazette officielle du Québec</td>
</tr>
<tr>
<td>ICI</td>
<td>Institutions, commerces et industries</td>
</tr>
<tr>
<td>LCD</td>
<td>Afficheur à cristaux liquides - Liquid Crystal Display</td>
</tr>
<tr>
<td>LPUR</td>
<td>Law for the Promotion of Utilization of Recyclable Resources (Japon)</td>
</tr>
<tr>
<td>LRHA</td>
<td>Law for the Recycling of Specified Kinds of Home Appliances (Japon)</td>
</tr>
<tr>
<td>MDDEP</td>
<td>Ministère du Développement durable, de l’Environnement et des Parcs</td>
</tr>
<tr>
<td>MEP</td>
<td>Ministry of Environmental Protection (Chine)</td>
</tr>
</tbody>
</table>
MP3 Codage sonore selon un standard du Moving Picture Experts Group
NB Nouveau-Brunswick
NCER National Center for Electronics Recycling (États-Unis)
OCDE Organisation de coopération et de développement économiques
OFA Organisme de financement agréé
OPEQ Ordinateurs pour les écoles Québec
PPO Oxyde de polyphényle
PRO Producer Responsibility Organization (Corée du Sud)
RCC Resource Conservation Challenge (États-Unis)
REP Responsabilité élargie des producteurs
RFMC Recycling Fund Management Committee (Taiwan)
RoHS Directive relative à l’utilisation de certaines substances dangereuses (Union européenne) - Restriction of the use of certain hazardous substances
RPEC Recyclage des produits électroniques Canada
SWEEP Saskatchewan Waste Electronic Equipment Program
TIC Technologies de l’information et de la communication
VHS Système vidéo domestique à cassettes - Video Home System
WEEE Waste Electrical and Electronic Equipment
INTRODUCTION

Les produits de technologies et de la communication (TIC) sont devenus omniprésents dans la vie de tous les jours. Plusieurs de nos tâches et activités requièrent d’utiliser ces produits; pour communiquer, pour travailler, pour se détendre et même pour se divertir. En combinaison à cette omniprésence, il y a la courte durée de vie de ces produits, par exemple l’ordinateur a une durée de vie moyenne de 3,5 ans, mais le champion de la surconsommation est le téléphone cellulaire, avec à peine 2,5 années (Potelle, 2009; La Filière, 2007). Cette courte durée de vie n’est pas caractérisée par le bris des appareils, mais plutôt par l’obsolescence technologique : il devient trop lent, il n’a pas les caractéristiques des nouveaux appareils, la capacité de stockage est trop petite, etc. Autrement dit, des produits électroniques encore fonctionnels rejoignent les matières résiduelles, leurs ressources et utilités sont perdues à jamais. S’il était possible de récupérer tous ces produits TIC, de maximiser leur réemploi et leur recyclage pour leur donner une seconde vie, la dépense énergétique et matérielle pour en fabriquer de nouveaux diminuerait, et autant le fardeau environnemental associé à ces produits TIC. Effectivement, la majorité de l’énergie utilisée par ces produits l’est au moment de leur fabrication (Kuehr and Williams, 2003; La Filière, 2007).

Cet essai a pour objectif de développer une méthode d’application basée sur la responsabilité élargie des producteurs (REP), c’est-à-dire que les producteurs sont responsables de la fin de vie utile de leurs produits TIC. Ils doivent s’assurer de faire la récupération et la valorisation (au sens large) de leurs produits, tout en respectant les lois et règlements en place, et de façon à minimiser les impacts sur l’environnement. La méthode proposée respectera la hiérarchie de la réduction, réemploi, recyclage, valorisation et élimination (3RV-E), où le réemploi sera priorisé. Des méthodes et stratégies de gestion et de traitement seront exposées, ainsi que certaines alternatives et options pour permettre une évolution dans le temps des programmes qui seront mis en œuvre.

L’essai est essentiellement divisé en deux parties, la première sert de grande mise en contexte, donc l’explication de ce que sont les TIC et la REP, suivi de la description des programmes de gestion des produits TIC dans les provinces canadiennes, aux États-Unis,
en Europe et en Asie. Les informations colligées proviennent de sites des organisations responsables de ces programmes, des gouvernements et d’intervenants impliqués dans le domaine industriel du recyclage. Pour bien situer le contexte québécois, la première partie comprend également une description de ce qui se fait présentement au Québec et la présentation des grandes lignes du contenu d’un programme de gestion des produits TIC. Cette dernière section s’appuie sur des documents développés par les fabricants, les intervenants actifs dans la récupération, le réemploi et le recyclage des produits TIC, ainsi que certaines autorités gouvernementales (p.ex. Recyc-Québec). Ce même document et le projet de règlement sur la responsabilité élargie des producteurs ont été consultés. La diversité et la crédibilité de ces informations ont permis le développement de la méthode d’application novatrice qui sera proposée au dernier chapitre de l’essai.

La deuxième partie de l’essai expose la méthode d’application proposée en présentant les principes de base, les équipements inclus, les lois et règlements applicables, ainsi que des propositions de modifications de ceux-ci. Ensuite, la structure de la méthode d’application est expliquée en détail et une grande section est dédiée aux méthodes, technologies et options pour les différents modes de gestion (réemploi, recyclage, valorisation et élimination). Cette dernière section est basée sur une monographie critique portant sur les impacts des produits TIC sur l’environnement et sur un document technique du Centre de recherche industrielle du Québec (CRIQ). De plus, des communications avec des intervenants dans le domaine ont eu lieu pour avoir des précisions au niveau de leurs procédés de récupération, de recyclage, de réemploi et de mise en marché des produits de seconde vie, ce qui bonifiait cette section et l’essai en soi. Par la suite, on aborde une analyse de rentabilité sommaire de la méthode qui est basée sur une étude d’impact économique. Finalement, un plan de mise en application est présenté pour donner les grandes lignes de déploiement d’un tel programme au Québec.
1 MISE EN CONTEXTE

Pour bien comprendre toutes les notions présentées et la méthode d’application de la gestion des technologies et de la communication (TIC) proposée, il est nécessaire de décrire ce que sont des TIC et d’expliquer le concept de la responsabilité élargie des producteurs (REP). Ceux-ci serviront de bases pour la compréhension de cet essai.

1.1 Les technologies de l’information et de la communication

Le groupe des TIC est très diversifié, de là une des raisons pourquoi il est difficile de créer un système simple de gestion de ces résidus. Comme son nom le dit, cela désigne toutes les formes de technologies servant à communiquer ou étant dans la sphère des communications et de l’information. Ce terme est communément utilisé au Québec, mais ailleurs dans le monde est utilisé l’expression déchets d’équipements électriques et électroniques (DEEE) ou son équivalent anglophone Waste Electrical and Electronic Equipment (WEEE). Il peut aussi prendre la forme d’e-waste. Tous ces termes n’ont pas exactement les mêmes limites, les TIC peuvent être considérés comme un sous-ensemble des DEEE alors que l’e-waste est un terme plutôt ambigu, puisque le « e » peut faire référence à l’électronique, à l’électrique ou aux deux. Dans le cadre de cet essai, le terme TIC est utilisé, puisqu’il portera principalement sur les hautes technologies et la gestion de ceux-ci en fin de vie utile, ou du moins de leur première vie utile.

Pour préciser ce que sont des TIC, voici une liste des groupes d’appareils de cette catégorie. Les ordinateurs de bureau et les portables, ainsi que les composantes internes qui les forment. Les périphériques de ceux-ci, comme les souris, les claviers, les imprimantes, les numérisseurs, les webcams, les télecopieurs, etc. De plus, il y a les écrans d’ordinateur et les téléviseurs, qu’il soit de technologie des écrans à tubes cathodiques (CRT), afficheur à cristaux liquides (LCD) ou écran à plasma. Les téléphones et les cellulaires, ainsi que les supports d’enregistrement (baladeurs, lecteurs de disque optique numérique (DVD), lecteurs de système vidéo domestique à cassettes (VHS), et leurs médias). Aussi, les consoles de jeux (XBOX, PlayStation 2, PlayStation 3, Nintendo Wii, GameCube, etc.) et les consoles portables (PSP, Nintendo DS, etc.) en font partie. On peut y ajouter les
appareils-photo et les caméras numériques, les chaînes stéréo, les amplificateurs, les haut-parleurs, etc.

La difficulté pour donner une seconde vie à ces produits est d’autant plus grande qu’ils deviennent désuets très rapidement. Effectivement, la loi revisitée de Moore décrit que le doublement du nombre de transistors, pour le même prix, sur un circuit imprimé se faisait tous les deux ans (Intel Corporation, 2005; Kuehr and Williams, 2003). Cette loi est applicable pour plusieurs aspects des produits électriques et électroniques, comme la vitesse de traitement de données (processeur), la capacité de stockage (disque dur), etc. (ib.) Alors, c’est une augmentation exponentielle des capacités des ordinateurs et bien entendu, le monde logiciel suit cette tendance, ce qui fait en sorte que nous avons besoin d’un système de plus en plus rapide pour pouvoir effectuer nos tâches informatiques adéquatement et sans anicroche. Ceci explique pourquoi il est si difficile de donner une seconde vie à des équipements électroniques en bon état et encore opérationnels.

En parlant de seconde vie, quelle est la durée de vie moyenne d’un produit TIC ? Par exemple, l’ordinateur a une durée de vie moyenne de 3,5 ans (la Filière, 2007). Il n’est pas surprenant de remarquer une augmentation constante de 10 % par an des ventes d’ordinateurs et de leurs périphériques, et cela depuis les années 1980 (Potelle, 2009). En fait, le nombre total d’ordinateurs vendus dans le monde est estimé à plus de 2,1 milliards d’ici la fin de 2011 (Kuehr and Williams, 2003). Qu’en est-il du taux de récupération ? Une étude de l’Agence de protection de l’environnement états-unienne (EPA) mentionne que 18 % des téléviseurs, des cellulaires et des ordinateurs en fin de vie sont récupérés et recyclés, mais que 82 % sont envoyés à un site d’enfouissement (Centre de recherche industrielle du Québec, 2009). Est-ce que ce faible taux de recyclage peut être expliqué ?

Les TIC sont des matières problématiques par leur composition diversifiée, c’est-à-dire qu’ils sont fabriqués de métaux, de plastiques et de verre, non seulement étant indépendant un de l’autre, mais aussi en tant que matériel composite, donc un savant mélange de matières donnant ainsi des caractéristiques particulières au produit final. Par exemple, le verre plombé ou celui mélangé avec du strontium ou du baryum permet de protéger les
utilisateurs des radiations dans un écran CRT, tout en permettant de voir ce qui s’affiche à l’écran (CRIQ, 2009; Kuehr and Williams, 2003; Potelle, 2009). Aussi, ce n’est pas que le mélange qui cause des problèmes pour le recyclage, mais la toxicité de certains éléments utilisés dans la fabrication des TIC. C’est le cas pour le cadmium, l’arsenic, le mercure, le plomb, le polychlorure de vinyle, les ignifuges bromés, etc. (ib.).

C’est pourquoi il est important de bien gérer et de recycler les TIC en fin de vie, puisque les impacts sur les humains et l’environnement peuvent être considérables. Surtout lorsque les mesures de sécurité sont quasi-inexistantes, comme c’est le cas dans l’exportation illégale des DEEE vers l’Asie (Bourges, s.d.). Dans ces milieux, les travailleurs retirent les métaux précieux des composantes électroniques en les faisant chauffer et fondre (ib.). Par exemple, les soudures et les cartes de circuits imprimés contiennent du plomb, au contact de ce produit (par inhalation ou digestion), les humains peuvent développer des troubles du système nerveux, des reins et de sang, ainsi que des troubles moteurs, sensitifs et intellectuels (La Filière, 2007). Pour ce qui est des résidus et des déchets ultimes, ils sont jetés dans des dépotoirs improvisés et contaminent le sol, l’eau et l’air, ce qui impacte non seulement les travailleurs, mais toute la communauté (Wang and Peiry, 2009). Les impacts ne proviennent pas seulement de leur traitement et élimination, mais aussi lors de leur production. L’énergie impliquée dans la production des produits TIC est énorme, en fait, 80 % de l’énergie utilisée par un ordinateur l’est au moment de sa fabrication (La Filière, 2007). C’est le produit d’usage domestique courant qui requiert le plus d’énergie (ib.). L’utilisation de matières premières est élevée également, pour fabriquer un ordinateur avec son écran, cela requiert 240 kg de combustibles fossiles, 22 kg de produits chimiques et une tonne et demie d’eau (ib.). Pour mieux juger de l’ampleur, comparons le ratio de combustibles fossiles nécessaire pour produire un ordinateur versus une automobile; 9 fois son poids pour un ordinateur et 2 fois son poids pour une automobile (ib.)

Voilà pourquoi la gestion adéquate de tous les produits électroniques et électriques est primordiale pour conserver notre environnement, nos ressources et la santé des humains.
1.2 Responsabilité élargie des producteurs

Un concept qui prend de l’ampleur à travers le monde est celui de la responsabilité élargie des producteurs (REP), une forme de responsabilisation des producteurs envers leurs produits, plus précisément à leur fin de vie utile, mais ne s’y limitant pas (Environnement Canada, 2007a). L’Organisation de coopération et de développement économiques (OCDE) définit la REP :

« comme une orientation environnementale où la responsabilité des producteurs à l’égard d’un produit, tant matérielle que financière, est élargie à l’étape de la postconsommation du cycle de vie du produit » (Potelle, 2009, p. 10).

En général, la gestion des produits en fin de vie utile n’est pas entièrement confiée aux producteurs, il y a toujours une participation de la part des autorités publiques (Environnement Canada, 2007a). C’est vraiment une façon d’alléger le fardeau financier et de gestion des instances publiques, généralement les municipalités (Environnement Canada, 2007b).

La REP se structure autour de quatre grands éléments-clés :

- responsabilisation et gestion assumées par les producteurs, c’est-à-dire la responsabilité matérielle et économique de la gestion des produits à la fin de leur vie utile;
- Level playing field, soit faire en sorte que tous les producteurs qui mettent en marché le même produit soient traités de la même manière au regard de leurs obligations en ce qui concerne la fin de vie utile du produit;
- reddition de comptes, c’est-à-dire que les producteurs ont l’obligation de mesurer leurs résultats et d’en rendre compte auprès des autorités publiques;
- transparence et accessibilité des résultats (La Filière, 2007; Potelle, 2009).

La responsabilité des producteurs peut être au niveau matériel et/ou financier. De plus, elle peut être complète ou partielle. C’est un système qui est flexible et qui permet de respecter les 14 principes directeurs de la REP (annexe 1). Par exemple, un des principes énonce que les programmes devraient être exécutés et conçus en évitant les dislocations économiques...
intérieures, donc lorsque la responsabilité est partielle (partagée), cela permet d’éviter ce genre de problème, tout en s’assurant de protéger l’environnement (Environnement Canada, 2007c).

Les avantages de la REP sont nombreux, surtout au niveau de la réduction de la quantité de déchets enfouis et dans la prévention de la pollution. La réduction de déchets ultimes permet une diminution du nombre de sites d’enfouissement. Le fait que les producteurs doivent réutiliser et recycler leurs produits et les composantes de ceux-ci, c’est un excellent incitatif pour rendre le désassemblage plus facile et rapide, ainsi qu’un incitatif à utiliser moins de substances toxiques dans les produits. Un des principes énonce qu’il faut mettre en place une gestion intégrée en prenant compte du cycle de vie des produits. Cela promeut une production moins polluante et puisque les procédés sont revisités, il est même possible qu’il y ait une utilisation plus efficace des matières premières, de l’énergie et une meilleure gestion des matières en général. De plus, cela encourage l’efficacité et la compétitivité dans les procédés de fabrication. Finalement, puisque la responsabilité est partagée et que les principes prônent la transparence, la communication et le partage d’information, cela améliore les relations entre les collectivités, les gouvernements et les entreprises. (Environnement Canada, 2007b)

Les approches pour la mise en œuvre de la REP sont multiples, puisque c’est un outil polyvalent. Par exemple, par la législation, les programmes de reprise peuvent être obligatoires ou volontaires, il peut y avoir des interdictions d’enfouir certains produits (p.ex. les TIC), la création d’un partenariat public/privé ou des partenariats entre plusieurs compagnies privées, des taxes spéciales, des régimes de consignation et même des subventions et crédits fiscaux pour la production et l’utilisation de produits écologiquement préférables (Environnement Canada, 2007d). Plusieurs exemples des formes de la REP seront explorés dans la prochaine section.

La REP est un choix de société où tous les intervenants participent, jouant un rôle chacun à son niveau : les producteurs, les importateurs, les détaillants, les consommateurs, les gouvernements, les recycleurs, etc. La responsabilité financière et organisationnelle est
clairement assumée par le producteur ou l’importateur. Les détaillants et bien sûr les consommateurs jouent un rôle pour que la reprise ait lieu. Enfin les matériaux acheminés aboutissent chez des recycleurs pour que des traitements génèrent des matières secondaires utilisables de nouveau. L’objectif ultime est de réduire le volume de résidus acheminés vers une élimination finale et de protéger l’environnement.
2 GESTION DANS LE MONDE

La gestion des résidus TIC en fin de vie utile ailleurs dans le monde est très variée. Les exemples présentés dans ce chapitre se basent sur le concept de la REP, avec des variations dans le niveau d’implication des producteurs, des consommateurs et des instances publiques. Les régions du monde explorées sont l’Europe, plus précisément les États membres de l’Union européenne, l’Asie, les États-Unis et le Canada. L’état actuel de chaque programme mis en œuvre sera décrit et les principes directeurs seront expliqués. De plus, les produits compris seront énumérés pour mieux saisir l’ampleur des activités de récupération et de recyclage, et la réglementation concernant cette gestion sera présentée. Finalement, les particularités au niveau des différents programmes seront relevées et expliquées.

2.1 Europe

La Directive relative aux déchets d’équipements électriques et électroniques (DEEE) est en vigueur depuis le 27 janvier 2003 (Europa, 2010). Cette Directive « fixe des mesures visant à prévenir la formation de déchets électriques et électroniques ainsi qu’à promouvoir leur réutilisation, leur recyclage et d’autres formes de valorisation » (ib.). Une autre Directive, la Directive relative à la limitation de certaines substances dangereuses dans les équipements électriques et électroniques (RoHS), est entrée en vigueur en même temps que la première, elle contribue à la composante de protection de la santé humaine (ib.).

Avant de procéder à une description plus détaillée de la première Directive, il est important de préciser que toute Directive de l’Union européenne ne peut être appliquée dans chacun des États membres que par l’adoption d’une législation nationale. De la sorte, les grands objectifs sont en phase dans l’Union, mais les modalités peuvent être adaptées aux particularismes nationaux (ib.).

Dans le texte de cette section, certains termes seront convertis vers ceux plus communément utilisés au Québec pour en faciliter la compréhension. Notamment, le terme « ménage » sera converti en « secteur résidentiel ».
2.1.1 Champ d’application
La Directive s’applique aux catégories suivantes (ib.) :

- gros et petits appareils ménagers;
- équipements informatiques et de télécommunications;
- matériel grand public;
- matériel d’éclairage;
- outils électriques et électroniques (excepté les gros outils industriels fixes);
- jouets, équipements de loisir et de sport;
- dispositifs médicaux (à l’exception des produits implantés et infectés) (depuis 2008);
- instruments de surveillance et de contrôle (depuis 2008);
- distributeurs automatiques.

La Directive européenne sur les DEEE semble être celle qui permet de récupérer la plus grande variété d’appareils électriques et électroniques parmi tous les programmes existants à ce jour. L’annexe 2 comprend une liste exhaustive de tous les équipements inclus dans la Directive.

2.1.2 Récupération
Les États membres doivent instaurer une collecte sélective pour les DEEE du secteur résidentiel. Par contre, la responsabilité première revient aux producteurs, car la Directive précise qu’ils doivent organiser et mettre en œuvre des systèmes de reprise individuels ou collectifs, et ce à compter du 13 août 2005. De plus, les détaillants qui vendent un produit neuf à un client doivent accepter de reprendre le vieil équipement du même type, donc celui qui se fait remplacer, sur une base d’un pour un. Les consommateurs et les détaillants peuvent se défaire de leurs DEEE gratuitement. Par contre, les déchets contaminés présentant un risque pour la santé et la sécurité du personnel ne peuvent être récupérés et doivent être mis au rebut par un autre réseau (ib.).
En ce qui trait aux DEEE semblables provenant du secteur ICI, ils bénéficient du même réseau de reprise, mais seuls les producteurs sont responsables de la récupération des DEEE spécialisés à l’usage des professionnels (ib.).

En 2016, le taux de collecte annuel atteindra 65 % par État membre, en fonction de la quantité moyenne d’équipements mis sur le marché les deux années précédentes. Ceci a été décidé en 2009, suite aux analyses des rapports de performance, parce que l’ancien objectif de quatre kilogrammes par habitant par an ne correspondait pas à la situation réelle des États membres et que cinq d’entre eux ne l’avaient pas atteint en 2006 (ib.).

2.1.3 Traitement

Le terme traitement d’après la Directive veut dire :

« toute opération suivant l'arrivée des DEEE dans des installations de dépollution, de démontage, de broyage, de valorisation ou de préparation à l'élimination, ainsi que toute autre opération effectuée en vue de la valorisation et/ou de l'élimination des DEEE. » (Directive 2002/96/CE, 2003, art. 3 (h))

Les États membres doivent veiller à ce que tous les équipements collectés soient transportés vers des installations de traitement autorisées. Les établissements chargés du traitement doivent appliquer les meilleures techniques de traitement, de valorisation et de recyclage disponibles, ainsi que détenir un permis des autorités compétentes. Contrairement au Canada, le traitement peut se faire en dehors de l’État membre ou même de l’Union européenne, pourvu que soit fournie une preuve que le traitement s’est déroulé dans des conditions équivalentes aux exigences de la Directive et de tous règlements connexes. (Europa, 2010)

Les producteurs doivent fournir des informations sur la réutilisation et le traitement de nouveaux types d’équipements électriques et électroniques, au plus un an après la mise en marché. Cela inclut les composantes et matériaux présents ainsi que l’endroit où se trouvent les substances et préparations dangereuses. (ib.)
2.1.4 Valorisation

Le terme valorisation dans les textes européens est utilisé dans le sens large de la langue française : toute forme de mise en valeur. Elle inclut le réemploi, le recyclage et la valorisation énergétique, mais il est certain que cette dernière est la dernière alternative à considérer, à cause de la nature des matériaux (Directive 2002/96/CE, 2003).

Le taux de valorisation en poids moyen par appareil doit atteindre entre 50 % et 80 %, dépendamment de la catégorie de l’appareil. Depuis 2008, la Commission inclut le réemploi des appareils entiers dans le calcul des taux de valorisation (Europa, 2010).

2.1.5 Financement

Le financement de tous les processus de récupération, de réemploi, de recyclage, de valorisation et d’élimination est assuré par les producteurs. Lorsqu’un producteur met un produit sur le marché, il doit garantir le financement de la gestion de ce produit en fin de vie. Autrement dit, les producteurs peuvent participer aux systèmes de financement, avoir une forme d’assurance-recyclage ou disposer d’un compte bancaire bloqué réservé à cette seule fin. Les produits historiques et orphelins sont pris en charge par les producteurs existants, dans ce cas la contribution de chacun est proportionnelle à sa part du marché (ib.).

Ce type de financement est le même pour le secteur ICI, à la différence des déchets historiques qui ne sont pas remplacés. Les coûts de ces derniers demeurent à la charge des utilisateurs, que des produits équivalents existent ou non. Par ailleurs, les États membres peuvent prévoir une participation partielle ou totale au financement par les utilisateurs (ib.).

2.1.6 Informations

Tous les utilisateurs doivent avoir accès aux informations nécessaires en ce qui a trait à la récupération, le réemploi, le recyclage, la valorisation, les effets de ces déchets sur l’environnement et la santé, leurs obligations, et sur la signification du symbole qui devra figurer sur l’emballage de ces équipements (Figure 2.1). Ce symbole apparaît sur tous les équipements électriques et électroniques depuis le 13 août 2005 (ib.).
2.1.7 Rapports et sanctions

En ce qui a trait aux sanctions, il n’y a pas d’instructions précises dans la Directive. Elles sont du ressort des États membres, pourvu qu’elles soient « effectives, proportionnées et dissuasives » (ib.).

2.1.8 Directive relative à l’utilisation de certaines substances dangereuses

Depuis le 1er juillet 2006, la Directive relative à l’utilisation de certaines substances dangereuses (RoHS) limite sévèrement la présence de contaminants environnementaux préoccupants. Cette Directive comporte le même champ d’application et s’applique également aux ampoules électriques et aux luminaires domestiques. C’est ainsi que le plomb, le mercure, le cadmium, le chrome hexavalent, les polybromodiphényles et polybromodiphényles éthers, présents autrefois dans les équipements électriques et électroniques, doivent maintenant être remplacés par d’autres substances. S’ils ne peuvent être remplacés, une concentration moindre peut être tolérée. Par contre, il existe des
exemptions dans l’annexe à la Directive. Pour promouvoir le progrès technique et scientifique, la Commission procède, tous les quatre ans, à un examen des exemptions pour vérifier si elles sont toujours justifiées (*ib.*).

2.2 Asie

Trois pays asiatiques mènent le changement de politique sur la gestion des produits TIC. Ce sont le Japon, la Corée du Sud et Taiwan (Chung and Murakami-Suzuki, 2008). Ces dernières années, la Chine et la Thaïlande s’y ajoutent et développent également de nouvelles politiques basées sur la REP (Chung and Murakami-Suzuki, 2008). Dans cette section sera présenté un aperçu des programmes des trois pays leaders, suivi d’une discussion sur le cas de la Chine.

2.2.1 Japon

depuis 2009 jusqu’à 60 % pour les réfrigérateurs, 65 % pour les machines à laver et 70 % pour les climatiseurs.

Il existe deux systèmes (A et B) de récupération et de recyclage. Le système A utilise les recycleurs existants comme sous-traitants pour faire le tri-recyclage des produits TIC en fin de vie, tandis que le système B a développé ses propres centres de tri, propres aux manufacturiers. Ces deux systèmes sont indépendants, dans le sens que les points de collecte et d’entreposage sont séparés. Ces points de collectes sont chez les détaillants et dans une moindre mesure, les municipalités. Dans le cas des ordinateurs, les consommateurs doivent faire affaire directement avec le manufacturier qui leur demande de leur expédier le produit ou de le déposer à un bureau de poste.

Un problème majeur dans la gestion des TIC est la non-règlementation des activités d’exportation et de recyclage, lorsqu’elles sont externes au système mis en place via la LRHA et la LPUR. Les contrevenants sont les exportateurs de produits dits de seconde main et les recycleurs indépendants des manufacturiers. C’est surtout au niveau des exportateurs qu’il y a un litige, car il est difficile de vérifier si les produits exportés sont en état de marche et souvent ils sont envoyés pour des fins de recyclage dans des conditions inacceptables. Pourtant la convention internationale de Bâle interdit l’exportation des TIC hors d’usage des pays membres de l’OCDE vers les pays non membres (Bourges, s.d.).

2.2.2 Corée du Sud

Dans l’ancien programme de REP coréen en place de 1992 à 2003, la gestion entière était effectuée par le gouvernement coréen alors que le rôle des producteurs se limitait à le financer seulement (Chung et al., 2009; Chung and Murakami-Suzuki, 2008). Par contre, le nouveau programme a fait migrer la responsabilité et la gestion vers les producteurs en s’inspirant d’un manuel sur la REP de l’OCDE (ib.). Ce nouveau programme s’organise comme ceci : le ministère de l’Environnement émet des objectifs de taux de recyclage pour les différents appareils inclus dans le programme et les fabricants doivent les atteindre (ib.). Faute de quoi, ils devront payer une amende en fonction de la différence entre l’objectif à atteindre et le taux atteint (Chung et al., 2009). Le programme inclut plusieurs types de
produits, comme le carton, les bouteilles en verres, les pneus, les piles, etc. (Chung et al., 2009; Chung and Murakami-Suzuki, 2008). En ce qui trait aux produits TIC, cela inclut les télévisions, les ordinateurs, les systèmes audio, les cellulaires, les imprimantes, les télecopieurs et les photocopieuses (Chung and Murakami-Suzuki, 2008). Les fabricants peuvent atteindre leurs objectifs de trois façons : chacun peut construire sa propre infrastructure de recyclage et s’occuper de la gestion entièrement, peut faire exécuter la récupération et le recyclage par sous-traitance ou peut faire affaire avec la Producer Responsibility Organization (PRO) en payant des frais seulement et toute la gestion sera effectuée par cet organisme (Chung et al., 2009; Chung and Murakami-Suzuki, 2008). Elle peut s’apparenter à un organisme de financement agréé (OFA). Les taux de recyclage réel pour les produits TIC ont évolué de 58 % en 2003 à 80 % en 2005, en conservant un écart positif d’environ 10 % par rapport aux objectifs énoncés par le ministère de l’Environnement (Chung et al., 2009). Comme au Japon, l’exportation des résidus TIC vers des pays en développement asiatiques est un problème important, car il n’y a rien en place pour vérifier s’ils sont recyclés ou traités convenablement (ib.).

2.2.3 Taiwan

Le programme de REP taiwanais, le Recycling Fund Management Committee (RFMC), est géré par le Environmental Protection Administration du gouvernement (Chung et al., 2009; Chung and Murakami-Suzuki, 2008). Le rôle des fabricants est seulement de payer des frais au RFMC qui lui, gère la collecte et le recyclage (ib.). En fait, des subventions sont données aux recycleurs agréés qui achètent les résidus TIC des récupérateurs aux sites d’entreposage (ib.). Pour qu’un recycleur soit agréé, un audit, organisé par le RFMC, doit être effectué dans ses infrastructures pour assurer que le recyclage respecte toutes les normes (ib.). Le montant des subventions dépend de la quantité de résidus adéquatement recyclés (ib.). Les produits TIC inclus dans le programme sont : les télévisions, les ordinateurs de bureau et leurs périphériques, les ordinateurs portables et les imprimantes (Chung et al., 2009). Les consommateurs n’ont qu’à déposer leurs résidus TIC chez les détaillants, les municipalités ou les récupérateurs participants, qui eux les envoient à des sites d’entreposage pour qu’ils soient achetés par les recycleurs (Chung et al., 2009; Chung and Murakami-Suzuki, 2008).
La participation au programme du RFMC est laissée à la discrétion des recycleurs (ib.). La conséquence d’une non-participation est que ces recycleurs n’ont pas droit aux subventions pour leurs activités de recyclage (ib.). Malheureusement, un nombre considérable de recycleurs ne participent pas aux programmes, car il y a peu d’avantages notables à participer au programme dont les subventions ne sont pas suffisamment élevées (ib.). La seule chose positive à mettre au bilan de cette initiative est que la quantité de résidus TIC adéquatement traités va en augmentant depuis 1998 (ib.).

2.2.4 Chine
La Chine est un producteur et un consommateur de produits TIC très important. Par contre, cette consommation vient avec son lot de problèmes de gestion des matières résiduelles et des impacts sur l’environnement. Effectivement, les Chinois mettent aux rebuts 5 millions de télévisions par année et reçoivent 70 % des résidus TIC du monde (Wang and Peiry, 2009). Il existe même une ville, la ville de Guiyu, qui est entièrement dévouée à recevoir ces matières résiduelles pour en extraire les métaux et pièces d’intérêts dans des conditions exécrables qui créent des risques importants pour la santé et l’environnement (ib.; Bourges, s.d.).

En réponse partielle à cette situation, le gouvernement chinois a développé un nouveau cadre économique national, le Circular Economy (CE), basé sur l’analyse de cycle de vie en considérant les impacts sur l’économie et l’environnement (Wang and Peiry, 2009). En janvier 2009, une loi basée sur ce cadre, la Circular Economy Promotion Law (CEPL), adopte le principe de REP en ce qui a trait à la gestion des matières résiduelles, incluant les résidus TIC (ib.). Pour donner suite à cette loi, en février 2009, le Regulation on the Administration of the Recovery and Disposal of Waste Electrical and Electronic Products est adopté où les grandes lignes d’un programme de gestion des résidus TIC sont énoncées (ib.). Il y est également précisé la date de début du programme, le 1er janvier 2011. Avant cette date, le gouvernement a établi une liste d’appareils qui devront être traités et les rôles des différents intervenants. De plus, un fonds de traitement des TIC a été créé pour supporter les activités de récupération et de recyclage (ib.).
Le programme cible seulement les résidus TIC hors d’usage pour en extraire toutes les ressources réutilisables (or, argent, plomb, cuivre, etc.) et impose que le traitement se fasse de façon à protéger l’environnement et la santé des travailleurs (ib.). Il est explicitement mentionné que tout le secteur du réemploi est exclu de ce règlement (ib.; Design Chain Associates, 2009; Ministry of Environmental Protection (MEP), 2011). Les recycleurs doivent tous être accrédités et une surveillance importante des activités est mise en place par le gouvernement. Des amendes s’élevant à 7 425 $ (50 000 ¥) sont prévues et le gouvernement entend éduquer et sensibiliser la population de façon importante pour mieux gérer le grand groupe des DEEE (Design Chain Associates, 2009; Wang and Peiry, 2009). Plus de détails ne sont pas accessibles, car les documents pertinents ne sont pas traduits.

Par ailleurs, la Chine s’est beaucoup basée sur la Directive DEEE de l’Union européenne et elle a même adopté une loi s’apparentant à la Directive RoHS, la Cleaner Production Promotion Law (MEP, 2011).

Ceci termine la section sur l’Asie, les programmes du Japon, de la Corée du Sud et de Taiwan ne se comparent pas facilement à la Directive sur les DEEE de l’Union européenne, mais ils sont indispensables pour assurer une meilleure gestion des ressources. En ce qui a trait à la Chine, elle se positionne très bien pour s’assurer de préserver son environnement, la santé de la population et de maximiser la réutilisation des ressources.

2.3 États-Unis

Il n’y a pas de programme uniformisé du gouvernement fédéral pour le recyclage des résidus TIC aux États-Unis (Environmental Protection Agency, 2010; Dorion, 2008). Par contre, il existe quelques initiatives pour promouvoir les 3R appliqués à ces résidus et quelques règlements visant une sélection de produits (EPA, 2010; ib., 2009). Un bref aperçu de ces initiatives sera présenté, suivi d’un résumé de la gestion des résidus TIC dans les États qui ont implanté un programme.

L’Environmental Protection Agency (EPA) vise la réduction des déchets, la réduction des substances toxiques dans les produits, la promotion de la réduction et du réemploi, le
développement de l’écocroissance des produits et la gestion efficiente et sécuritaire des produits en fin de vie utile, par le biais de l’initiative Resource Conservation Challenge (RCC) (EPA, 2010; ib., 2009; Dorion, 2008). Elle a développé des réglementations qui considèrent certains produits TIC (écrans CRT, cellulaires, cartes de circuits imprimés et autres produits portables) comme déchets dangereux s’ils remplissent certaines exigences (EPA, 2010). Lorsqu’identifiés comme déchets dangereux, ils doivent être gérés de façon différente avant d’être exportés ou envoyés à un site d’enfouissement pour déchets dangereux (ib.).

L’EPA s’est surtout concentré à informer et sensibiliser les intervenants en respectant la hiérarchie des 3R et en créant des outils et des initiatives pour l’achat éco-responsable de produits TIC (EPA, 2010; ib., 2009; Dorion, 2008). La sensibilisation et l’information visant les consommateurs sont menées grâce à la campagne Plug-In to eCycling (EPA, 2009; Dorion, 2008). Il existe également un guide d’achat éco-responsable d’ordinateurs et d’écrans, le Electronic Product Environmental Assessment Tool (EPEAT), qui classe les produits (bronze, argent, or) en fonction de leur efficacité énergétique, recyclabilité, toxicité, etc. (ib.). Finalement, pour les recycleurs, le guide de bonnes pratiques pour la gestion des produits TIC intitulé EPA’s Guidelines for Materials Management propose des bonnes pratiques aux recycleurs afin de minimiser la quantité de résidus qui se retrouveront dans les sites d’enfouissement et les incinérateurs (Dorion, 2008).

2.3.1 Californie

Pour le premier objectif, la Californie s’est inspirée de la Directive de l’Union européenne RoHS et a adopté la California RoHS Law qui est entrée en vigueur le 1er janvier 2007 (Dorion, 2008). Celle-ci interdit la vente de produits TIC prohibés au sein de l’Union européenne à cause de leur contenu en substances toxiques (ib.). Pour le deuxième objectif, la création du Advance Recycling Fee cumule des fonds destinés à financer le recyclage et la récupération, partiellement ou totalement, en subventionnant les recycleurs selon le poids de résidus TIC traités (California Departement of Toxic Substances Control, 2007; NCR Corporation, s.d.). Ces recycleurs doivent être approuvés par l’État de la Californie (California Departement of Toxic Substances Control, 2007). De plus, les recycleurs ne peuvent être subventionnés que pour les résidus TIC couverts par la loi (ib.). Ceux-ci sont décrits comme tout produit étant un CRT ou contenant un CRT, les ordinateurs portables avec écran LCD, les écrans d’ordinateur et de télévisions LCD et plasma, des lecteurs de DVD portable avec écran LCD (ib.). Le financement provient des frais environnementaux acquittés par les consommateurs lors de l’achat des produits TIC couverts, ceux-ci varient de 8 $ à 25 $ (NCR Corporation, s.d.). Les autres produits TIC ne sont pas soumis à ces frais, mais ils sont tout de même considérés comme des matières résiduelles dangereuses (hazardous waste) et ne peuvent être éliminés parmi les déchets conventionnels (California Departement of Toxic Substances Control, 2007).

2.3.2 Autres États

Dans cette section sera présenté un tableau comparant la gestion des résidus TIC dans les autres États. En 2011, 25 États appliquent un programme de gestion (National Center for Electronics Recycling (NCER), 2011). La date d’adoption est celle de la loi, tandis que la date de début précise le moment où toutes les obligations de la loi sont applicables.
Tableau 2.1 Description des programmes de gestion des résidus TIC dans les États américains participants
Inspiré de NCER, 2011.

<table>
<thead>
<tr>
<th>États</th>
<th>Type de gestion</th>
<th>Description</th>
<th>Produits inclus</th>
<th>Date adoption</th>
<th>Date de début</th>
<th>Coûts aux consommateurs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Californie</td>
<td>Publique</td>
<td>Frais environnementaux lors de l’achat des produits servant à subventionner le recyclage et la récupération par des compagnies privées.</td>
<td>Tous les produits CRT, écrans (LCD, plasma), ordinateurs portables et lecteurs DVD portables.</td>
<td>09/2003</td>
<td>09/2004</td>
<td>$ 8 à 25 $</td>
</tr>
<tr>
<td>Caroline du Sud</td>
<td>REP</td>
<td>idem</td>
<td>Ordinateurs portables et de bureau, écrans d’ordinateur, télévisions et imprimantes.</td>
<td>07/2010</td>
<td>S.O.</td>
<td>Aucun</td>
</tr>
<tr>
<td>Hawaii</td>
<td>REP</td>
<td>Les fabricants sont responsables de la récupération et du recyclage de leurs produits. Tous les producteurs ont décidé d’exporter leurs produits pour en faire le recyclage.</td>
<td>idem, idem, le réemploi, de la récupération et du recyclage des produits TIC.</td>
<td>07/2008</td>
<td>01/2010</td>
<td>Aucun</td>
</tr>
<tr>
<td>Illinois</td>
<td>REP</td>
<td>Les fabricants et détaillants sont responsables du réemploi, de la récupération et du recyclage des produits TIC.</td>
<td>idem, idem, les périphériques d’ordinateurs.</td>
<td>09/2008</td>
<td>01/2010</td>
<td>Aucun</td>
</tr>
<tr>
<td>Indiana</td>
<td>REP</td>
<td>Les fabricants sont responsables de la récupération et du recyclage de leurs produits.</td>
<td>idem, en plus de télécopieurs, lecteurs DVD et magnétoscopes.</td>
<td>05/2009</td>
<td>04/2010</td>
<td>Aucun</td>
</tr>
<tr>
<td>Maine</td>
<td>REP</td>
<td>Les fabricants sont responsables des coûts de recyclage de leurs produits. Les municipalités sont responsables de la récupération.</td>
<td>Ordinateurs de bureau et portables, cadres électroniques, écrans d’ordinateur, télévisions, consoles de jeux vidéos, lecteurs DVD portables et imprimantes.</td>
<td>2004</td>
<td>01/2006</td>
<td>Aucun</td>
</tr>
<tr>
<td>Maryland</td>
<td>REP</td>
<td>Les fabricants qui produisent plus de 1000 produits couverts par la réglementation doivent payer des frais au fonds environnemental. Ce fonds sert à subventionner les recycleurs. Si le fabricant crée un programme de récupération et de recyclage, les frais</td>
<td>Ordinateurs de bureau et portables, écrans d’ordinateur, télévisions et lecteurs DVD portables.</td>
<td>2005</td>
<td>01/2006</td>
<td>Aucun</td>
</tr>
<tr>
<td>État</td>
<td>Type</td>
<td>Description</td>
<td>Début</td>
<td>Fin</td>
<td>Frais</td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>------</td>
<td>---</td>
<td>-----------</td>
<td>---------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>Missouri</td>
<td>REP</td>
<td>Les fabricants sont responsables du réemploi, de la récupération et du recyclage des produits TIC. Des recycleurs indépendants peuvent s’enregistrer pour traiter ces résidus TIC.</td>
<td>2008</td>
<td>07/2009</td>
<td>Aucun avec les fabricants. Variable avec recycleurs indépendants</td>
<td></td>
</tr>
<tr>
<td>New Jersey</td>
<td>REP</td>
<td>Les fabricants sont responsables de la récupération et du recyclage de leurs produits.</td>
<td>2008</td>
<td>01/2010</td>
<td>Aucun</td>
<td></td>
</tr>
<tr>
<td>New York</td>
<td>REP</td>
<td>Les fabricants sont responsables de la récupération et du recyclage de leurs produits.</td>
<td>2010</td>
<td>04/2011</td>
<td>Aucun</td>
<td></td>
</tr>
<tr>
<td>Oklahoma</td>
<td>REP</td>
<td>Les fabricants, qui ont déjà vendu plus de 50 unités dans une année, sont responsables du réemploi, de la récupération et du recyclage des produits TIC.</td>
<td>05/2008</td>
<td>01/2009</td>
<td>Aucun ou frais d’expédition</td>
<td></td>
</tr>
<tr>
<td>Oregon</td>
<td>REP/ Publicité</td>
<td>Les fabricants doivent payer des frais à l’État qui organise la récupération et le recyclage des résidus TIC. Ils peuvent également faire le recyclage eux-mêmes, mais des frais sont tout de même exigés.</td>
<td>2007</td>
<td>01/2009</td>
<td>Aucun</td>
<td></td>
</tr>
<tr>
<td>Rhode Island</td>
<td>REP</td>
<td>Les fabricants sont responsables de la récupération et du recyclage de leurs produits. Interdiction d’enfouir les produits TIC depuis 07/2006 (p.ex. écrans CRT).</td>
<td>06/2008</td>
<td>02/2009</td>
<td>Aucun</td>
<td></td>
</tr>
<tr>
<td>État</td>
<td>Type</td>
<td>Description</td>
<td>Produits de récupération et de recyclage</td>
<td>Date de début</td>
<td>Date de fin</td>
<td>Exceptions</td>
</tr>
<tr>
<td>--------------</td>
<td>---------------------------</td>
<td>---</td>
<td>---</td>
<td>---------------</td>
<td>-------------</td>
<td>------------</td>
</tr>
<tr>
<td>Texas</td>
<td>REP</td>
<td>Les fabricants sont responsables de la récupération et du recyclage de leurs produits.</td>
<td>Ordinateurs de bureau et portables,</td>
<td>2007</td>
<td>09/2008</td>
<td>Aucun</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>et leurs périphériques, écrans</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>d’ordinateur et télévisions.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Utah</td>
<td>REP/Publique</td>
<td>Les fabricants sont responsables de la récupération et du recyclage de leurs produits. Ils doivent également planter un programme d’éducation national et de coopérer avec le gouvernement local pour faciliter la récupération et le recyclage.</td>
<td>Ordinateurs de bureau et portables,</td>
<td>2011</td>
<td>07/2011</td>
<td>Aucun</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>et leurs périphériques, écrans d’ordinateur, télévisions, imprimantes et numériseurs.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vermont</td>
<td>Publique</td>
<td>La récupération et le recyclage seront la responsabilité d’un sous-traitant que l’État aura sélectionné suite à un appel d’offres. Interdiction d’enfourir les produits couverts depuis 01/2011.</td>
<td>Ordinateurs de bureau et portables,</td>
<td>04/2010</td>
<td>07/2011</td>
<td>Aucun</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>et leurs périphériques, écrans d’ordinateur, télévisions et imprimantes.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Virginie</td>
<td>REP</td>
<td>Les fabricants, qui ont déjà vendu plus de 500 unités dans une année, sont responsables de la récupération et du recyclage de leurs produits. Des recycleurs indépendants peuvent s’enregistrer pour traiter ces résidus TIC.</td>
<td>Les ordinateurs de bureau et portables.</td>
<td>03/2008</td>
<td>07/2009</td>
<td>Aucun</td>
</tr>
<tr>
<td>Virginie-Occidentale</td>
<td>REP/Publique</td>
<td>Les fabricants, qui ont déjà vendu plus de 1000 unités dans une année, sont responsables de la récupération et du recyclage de leurs produits. La contribution au fonds national dépend si le fabricant a sa propre infrastructure ou fait affaire avec la municipalité ou le comté.</td>
<td>Les ordinateurs de bureau et portables, écrans d’ordinateur, télévisions, lecteurs DVD portables.</td>
<td>04/2008</td>
<td>01/2009</td>
<td>Aucun</td>
</tr>
<tr>
<td>Washington</td>
<td>REP/Publique</td>
<td>Les fabricants peuvent développer leur propre programme de récupération et de recyclage ou adhérer au programme national (géré par l’État).</td>
<td>Les ordinateurs de bureau et portables, écrans d’ordinateur et télévisions.</td>
<td>03/2006</td>
<td>01/2009</td>
<td>Aucun</td>
</tr>
</tbody>
</table>
2.4 Canada

Il n’existe pas de directive générale pour tout le territoire, comme en Europe, c’est plutôt à chaque province de développer ses propres programmes de gestion des produits TIC. Par contre, certains organismes ont été créés pour faire la promotion de certaines méthodes de valorisation, au sens large, pour les produits TIC.

L’initiative Recycle mon cell est conçu et géré par l’Association canadienne des télécommunications sans fil (ACTS) en collaboration avec les fabricants et les fournisseurs de services sans fil (ACTS, 2011). Leur but est de conscientiser les consommateurs canadiens au sujet du réemploi et du recyclage d’appareils sans fil (ib.). L’objectif est de réduire le nombre d’appareils envoyés vers les sites d’enfouissement du Canada (ib.). C’est pour cette raison que les points de collectes acceptent sans frais les appareils et leurs accessoires (ib.). C’est pour cela que la plupart des programmes de gestion des produits TIC ne les recueillent pas (ib.).

2.4.1 Colombie-Britannique
Le programme de la Colombie-Britannique est actif depuis août 2007 et est basé sur la REP (ESABC, 2009a). L’organisation qui assure la gestion du programme est le Electronics Stewardship Association of British Colombia (ESABC), créée par les producteurs, alors que la gestion des opérations a été confiée à Encorp Pacific (Canada) (ESABC, 2009b). Le financement est assuré par des frais environnementaux chargés aux consommateurs lors de l’achat des produits électroniques. Le montant des frais varie de 0,90 $ à 31,75 $ (ESABC, 2010). Les produits acceptés au programme sont : les ordinateurs de bureau et les portables, des écrans et des moniteurs (CRT, LCD, à plasma, à diodes électroluminescentes (DEL)), les imprimantes, les télécopieurs, les lecteurs portables (MP3, CD et DVD), les systèmes audio et vidéo, les systèmes de sécurité (caméras, alarmes, etc.), les appareils audio tout-en-
un, les appareils audio et vidéo automobiles, les téléphones (sauf les cellulaires) et produits associés (répondeurs) ainsi que les périphériques de base (souris et clavier, sans fil ou avec fil) (ESABC, 2010). Il y a plusieurs points de dépôt, certains chez des détaillants, tandis que la majorité est gérée par Encorp Pacific, sous la bannière Return-It. Encorp Pacific effectue seulement la récupération et expédie les produits chez des recycleurs certifiés. Le réemploi est à la discrétion du consommateur, mais ESABC propose plusieurs moyens de donner une seconde vie aux résidus TIC, par exemple pour les écoles ou même en participant à des événements d’échanges (BC Electronics Material Exchange).

2.4.2 Alberta
L’Alberta a été la première province à implanter un programme de gestion des équipements TIC hors d’usage. L’organisme paragouvernemental Alberta Recycling Management Authority (ARMA) gère, entre autres, les équipements TIC en fin de vie utile. Il a débuté ces activités le 1er octobre 2004 (ARMA, 2011a; Manitoba Association of Regional Recyclers, 2010). Il y a 260 points de dépôt sur le territoire et les produits récupérés sont envoyés aux six recycleurs approuvés (ARMA, 2011b; Dorion, 2008). Les produits acceptés sont : les télévisions, les moniteurs, les ordinateurs de bureau et les portables, leurs périphériques, les imprimantes, les télecopieurs et les photocopieuses (ARMA, 2011c). Des frais environnementaux sont facturés aux consommateurs lors de l’achat, ils varient de 5 $ à 45 $ par produit (ib.). Le dépôt des produits est sans frais pour le secteur résidentiel, tandis que le secteur ICI est référé à l’un des recycleurs pour établir une collecte spéciale (ARMA, 2011d). De plus, tous les fabricants, distributeurs, détaillants ou importateurs doivent obligatoirement faire partie de ce programme (ARMA, 2011e).

2.4.3 Saskatchewan
Depuis février 2007, le programme de REP connu sous le nom de Saskatchewan Waste Electronic Equipment Program (SWEEP), gère les équipements TIC hors d’usage sur le territoire saskatchewannais (Dorion, 2008). Tous les fabricants, distributeurs, détaillants ou importateurs doivent obligatoirement faire partie de ce programme, sinon ils ne peuvent pas vendre leurs produits dans la province (ib.). Le programme propose une liste de 13 catégories de produits qui peuvent être récupérés par 71 points de dépôt sur tout le territoire

2.4.4 Manitoba

Depuis 2007, le gouvernement provincial finance la gestion des TIC hors d’usage (Manitoba Association of Regional Recyclers, 2010). C’est l’organisme paragouvernemental, *Green Manitoba* qui en fait la gestion (ib.) dans les 29 points de dépôt de la province manitobaine (Gouvernement du Manitoba, 2010). Il n’y a aucun frais pour les citoyens du secteur résidentiel qui rapportent les équipements TIC acceptés : les télévisions, les magnétoscopes, les lecteurs DVD, les micro-ondes, les chaînes stéréo, les téléphones, les ordinateurs de bureau et leurs périphériques, les ordinateurs portables, les imprimantes, les numériseurs, les télécopieurs et les photocopieurs (ib.). Le secteur ICI est invité à faire directement affaire avec les récupérateurs et recycleurs, une liste est fournie sur le site internet de *Green Manitoba* (Green Manitoba, 2011). La compagnie en sous-traitance, qui s’occupe du réemploi, réusinage et recyclage des équipements TIC hors d’usage, est *Global Electric and Electronic Processing* (GEEP) (ib.). Il y a également un accord avec Ordinateurs pour les écoles Manitoba (Gouvernement du Manitoba, 2009). En février 2010, une réglementation encadrant la gestion du matériel a été adoptée en vue de la création d’un programme géré par la REP (Manitoba Association of Regional Recyclers,
27

2010). Au moment d’écrire ces lignes, Green Manitoba est encore responsable de la gestion des équipements TIC hors d’usage, mais un projet de programme, déposé le 17 août 2010, est en révision par le ministère de la Conservation du Manitoba. Ce document, intitulé Manitoba Product Stewardship Program for End-of-Life Electrical and Electronic Equipment, a été rédigé par le RPEC, Retail Council of Canada et Canadian Appliance Manufacturers Association (2010). Le programme proposé devrait s’harmoniser avec le présent système de gestion, donc inclure les mêmes équipements TIC hors d’usage, sauf les photocopieurs (jusqu’en avril 2012), ainsi qu’être sans frais pour les secteurs résidentiel et ICI (ib.). Le financement du programme devrait se faire par le biais de frais environnementaux lors de l’achat des produits électroniques neufs. S’ils ne sont pas visibles sur la facture, ces frais devront être communiqués aux clients par le détaillant (ib.).

2.4.5 Ontario
DEEE (Ontario Electronic Stewardship, 2011e). Par contre, si l’acheteur retourne l’équipement en fin de vie chez un détaillant, ces frais doivent lui être remboursés (ib.).

2.4.6 Terre-Neuve-et-Labrador

Il n’y a pas de programme de REP à Terre-Neuve; ce sont plutôt les autorités municipales qui font la récupération des TIC hors d’usage par le biais des écocentres selon le guide provincial *General Environmental Standards : Municipal Solid Waste Managements Facilities/Systems* (Ryan, 2010), et ce depuis juillet 2010. La population peut rapporter ses produits et c’est à la municipalité de transférer ceux-ci à des recycleurs certifiés (ib.). Le secteur résidentiel peut encore envoyer ses déchets électroniques à l’enfouissement lorsqu’il n’y a pas de programme de recyclage d’implanté dans la région (ib.). Cependant, pour des résidus commerciaux, il est obligatoire de les envoyer chez un recycleur (ib.). Il n’est pas précisé si le guide a force de loi, mais la municipalité peut faire respecter ses instructions à travers ses règlements municipaux. Les types d’équipements acceptés ne sont pas précisés, donc la municipalité décide de ce qu’elle récupère en fonction des débouchés.

2.4.7 Nouveau Brunswick

Établi le 1er mai 2008, *Recycle NB* est un organisme paragouvernemental qui a fonction d’intendance pour tous les projets de gestion des matières résiduelles (tous les types de produits) mis en place par les industries dans la province (Fishlock and Chaisson, 2009; Recycle NB, 2008). À ce jour, il n’y a pas de programme pour la gestion des TIC hors d’usage, mais il en existe un pour la récupération et la valorisation des peintures par la REP, depuis le 8 janvier 2009, et c’est le seul dans son genre (Recycle NB, 2008). Dans un communiqué de l’organisme, il exprime le souhait de voir naître un programme de gestion pour, entre autres, les déchets électroniques (Fishlock and Chaisson, 2009; Recycle NB, 2008).

2.4.8 Nouvelle-Écosse

La Nouvelle-Écosse est la première province atlantique à mettre en place un programme de récupération et de recyclage de TIC hors d’usage. En 2007, l’industrie électronique de la région a créé une organisation à but non lucratif pour gérer ce programme, l’*Atlantic*
Canada Electronic Stewardship (ACES), qui s’assure de respecter les normes établies par le RPEC, plus particulièrement au niveau de la certification des recycleurs (ACES, 2011a). Tous les propriétaires de marque qui vendent sur le territoire néo-écossais (incluant les commandes par internet) doivent participer au programme, sauf s’ils vendent leurs produits à un détaillant qui participe au programme sur le territoire (Fishlock and Chaisson, 2009). C’est à ce dernier que revient la responsabilité de faire la récupération, recyclage et de percevoir les frais environnementaux; il est en place depuis le 1er février 2008 (ib.). Les produits inclus dans le programme sont : les ordinateurs et leurs périphériques, les imprimantes, les écrans les téléviseurs (CRT, LCD, plasma), les composantes audio/vidéo d’automobile, les systèmes audio de cinéma-maison, les lecteurs CD, les radios portables, les magnétoscopes, les lecteurs DVD, les réveille-matins et tous les téléphones qui ne sont pas des cellulaires (ACES, 2011b). En ce qui a trait aux cellulaires, l’ACES demande de les déposer aux points de collecte du programme Recycle mon cell. Les frais de traitements préfacturés lors de l’achat d’équipement neufs sont bas comparativement aux autres provinces. Par exemple, pour une caméra numérique, ces frais sont de 40 cents, de 2,10 $ pour un ordinateur portable et 10,50 $ pour un ordinateur de table (ACES, 2011c). Les points de dépôts sont distribués dans toutes les régions de la province et il n’y a aucun frais pour tous les résidents, commerces et industries pour y déposer leurs équipements TIC hors d’usage (ACES, 2011b).

2.4.9 Île-du-Prince-Édouard
Géré par l’ACES (le même organisme que pour la Nouvelle-Écosse), le programme de l’Île-du-Prince-Édouard a débuté le 1er juillet 2010 (Government of Prince Edward Island, 2010). Les produits inclus dans le programme et les frais de traitement sont les mêmes que pour la Nouvelle-Écosse (ACES, 2011c). De même, plusieurs points de dépôts sont présents sur le territoire prince-édouardien (Government of Prince Edward Island, 2010).

2.4.10 Yukon
Il y a deux programmes de récupération et de recyclage des équipements TIC hors d’usage au Yukon. Les deux programmes sont localisés dans la ville de Whitehorse, un est géré par une compagnie privée, Raven Recycling, associée avec Ordinateurs pour les écoles Yukon.
Tandis que le deuxième est géré par la Ville de Whitehorse. *Raven Recycling* accepte, depuis le 25 novembre 2010, les écrans d’ordinateur plats (LCD seulement), les ordinateurs portatifs et les ordinateurs de bureau. Elle impose des frais de 5 $ pour chaque article rapporté (*Raven Recycling*, 2010). Tandis que les claviers, les souris, les barres de surtension, les câbles d’alimentation, les câbles de moniteurs et câbles de réseau sont acceptés sans frais (*ib.*). Ensuite, les ordinateurs sont vérifiés par Ordinateurs pour les écoles Yukon. S’ils fonctionnent, ils peuvent être réemployés, sinon, ils sont envoyés à un recycleur canadien (*ib.*). Ce premier programme se spécialise dans le réemploi des ordinateurs pour les écoles, par contre il n’accepte pas les écrans CRT même s’ils sont encore fonctionnels. C’est là que le deuxième programme de la Ville vient combler partiellement ce besoin. Elle accepte, pour des frais légèrement supérieurs, tous les résidus TIC communément utilisés dans le milieu résidentiel : les téléphones, les cellulaires, les télévisions, les imprimantes, les chaînes stéréo, les magnétoscopes, les moniteurs (CRT, LCD et plasma), les télécopieurs, les numériseurs, les ordinateurs de bureau et portatifs, et leurs périphériques (*City of Whitehorse*, 2011). Dans ce cas-ci, les TIC sont entreposées et éventuellement envoyées chez des recycleurs, aucun réemploi n’est effectué avec ce programme (*Raven Recycling*, 2010). Celui-ci a été mis en place spécifiquement pour les appareils hors d’usage, donc pour les équipements non fonctionnels qui ne sont pas acceptés par *Raven Recycling*. Pour ceux qui ne peuvent pas se déplacer jusqu’aux points de dépôt, situés à Whitehorse, il n’y a aucune autre alternative que de les envoyer à un site d’enfouissement (*EBA Engineering Consultants Inc.*, 2009).

2.4.11 Territoires du Nord-Ouest

Il n’y a présentement aucun programme de gestion des résidus TIC dans ces Territoires, par contre le gouvernement ténois prévoit inclure cette activité dans le programme *Waste Reduction and Recovery Program* (*Government of the Northwest Territories*, 2011). Un fonds environnemental se crée grâce aux argents amassés de la consigne publique des conteneurs de boissons gazeuses et des frais environnementaux sur les sacs de plastique ou de papier dans les commerces (*Miltenberger*, 2010). Ce fonds servira à la création de nouveaux programmes pour de nouveaux types de matières (*ib.*). Suite à des consultations
en 2008, la population priorisait d’inclure les papiers et les cartons, et les sacs de plastique dans des programmes de réduction, de réemploi et de recyclage (ib.).

2.4.12 Nunavut
Il n’y a pas de programme pour la gestion des équipements TIC hors d’usage au Nunavut. En fait, trois projets pilotes de récupération de contenants de boissons gazeuses ont été mis en œuvre de 2007 à 2010 pour en évaluer la faisabilité et la rentabilité. Malheureusement, les projets n’ont pas été un succès, seulement 2-3 % du potentiel a été récupéré. Pour le moment, le gouvernement réfléchit sur de nouvelles stratégies de gestion des matières résiduelles et prévoit faire une campagne de sensibilisation et d’éducation sur les bonnes façons de se débarrasser de ces résidus. (Department of Environment, s.d.)

Tableau 2.2 Résumé des programmes de gestion des résidus TIC canadiens

<table>
<thead>
<tr>
<th>Province ou territoires</th>
<th>Début</th>
<th>Type de gestion</th>
<th>Organisme responsable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colombie-Britannique</td>
<td>2007</td>
<td>REP</td>
<td>ESABC</td>
</tr>
<tr>
<td>Alberta</td>
<td>2004</td>
<td>Paragouvernemental</td>
<td>ARMA</td>
</tr>
<tr>
<td>Saskatchewan</td>
<td>2007</td>
<td>REP</td>
<td>SWEEP</td>
</tr>
<tr>
<td>Manitoba</td>
<td>2007</td>
<td>Paragouvernemental</td>
<td>Green Manitoba</td>
</tr>
<tr>
<td>Ontario</td>
<td>2009</td>
<td>REP</td>
<td>OES</td>
</tr>
<tr>
<td>Terre-Neuve-et-Labrador</td>
<td>2010</td>
<td>Publique</td>
<td>Municipalités</td>
</tr>
<tr>
<td>Nouveau Brunswick</td>
<td>2008</td>
<td>Paragouvernemental</td>
<td>Recycle NB</td>
</tr>
<tr>
<td>Nouvelle-Écosse</td>
<td>2008</td>
<td>REP</td>
<td>ACES</td>
</tr>
<tr>
<td>Île-du-Prince-Édouard</td>
<td>2010</td>
<td>REP</td>
<td>ACES</td>
</tr>
<tr>
<td>Yukon</td>
<td>2010</td>
<td>Privé et public</td>
<td>Raven Recycling et Ville de Whitehorse</td>
</tr>
<tr>
<td>Territoires du Nord-Ouest</td>
<td>S.O.</td>
<td>S.O.</td>
<td>S.O.</td>
</tr>
<tr>
<td>Nunavut</td>
<td>S.O.</td>
<td>S.O.</td>
<td>S.O.</td>
</tr>
</tbody>
</table>
2.5 Québec

La gestion des résidus TIC au Québec est insuffisante. Sur les 39 000 tonnes de résidus TIC générés au Québec en 2006, seulement 3 332 tonnes avaient été récupérées et mises en valeur (CRIQ, 2009; Potelle, 2009). Ce qui représente seulement 8,54 % des résidus TIC. En 2008, il y a eu une augmentation de 112 % des résidus TIC récupérés, c’est-à-dire 7 051 tonnes (Potelle, 2009). Par extrapolation, ceci représente un taux de récupération et de mise en valeur de 18,1 % sur le total généré de résidus TIC. C’est une augmentation considérable, mais il y encore beaucoup de chemin à faire.

Les initiatives québécoises publique, privée et publique/privée seront présentées pour pouvoir mieux comprendre la gestion des produits TIC en fin de vie utile.

2.5.1 Initiative publique/privée

La Mission Zéro déchet électronique est une initiative de Recyc-Québec en partenariat avec Bureau en Gros et le Réseau des Centres de formation en entreprise et récupération (CFER) (Recyc-Québec, s.d.). Cette initiative a pour but d’offrir aux consommateurs une option de récupération facile et accessible pour se défaire de leurs résidus TIC. Effectivement, des points de collectes sont présents chez tous les détaillants Bureau en Gros. Les résidus TIC collectés sont ensuite envoyés aux 11 CFER effectuant le tri et le démontage du matériel informatique (*ib.*). Cette activité est effectuée de façon sécuritaire et adéquate, tout en s’assurant de préserver l’environnement (*ib.*). Tout ce matériel démonté et trié rejoint la compagnie GEEP qui consolide les lots et les achemine par la suite vers les industries du recyclage des matières premières tels le cuivre, l’aluminium, le plastique, etc. (Anonyme, s.d.). En 2011, cela fera quatre ans que cette initiative est active et les quantités de produits TIC récupérés ne font qu’augmenter chaque année (Recyc-Québec, s.d.).

Le domaine du réemploi est dominé par Ordinateurs pour les écoles du Québec (OPEQ) qui récupère des ordinateurs principalement du secteur ICI (La Filière, 2007). Il remonte et configure les ordinateurs pour les offrir gratuitement ou à faible coût aux écoles privées et publiques, aux centres de la petite enfance, aux organismes à but non lucratif œuvrant dans le domaine de l’apprentissage ainsi qu’aux bibliothèques du Québec (OPEQ, s.d.). Les
produits électroniques provenant du secteur résidentiel sont généralement plus désuets et plus défectueux, puisque leur taux de roulement est moins élevé qu’en secteur ICI (La Filière, 2007). C’est une des raisons qui expliquent pourquoi il n’y a qu’un organisme en réemploi au Québec.

2.5.2 Initiative publique

Comme initiative purement publique, il n’y a qu’au niveau des projets de réglementation et des politiques de gestion des matières résiduelles qu’il y a du nouveau. La politique québécoise de gestion des matières résiduelles 1998-2008 responsabilisait partiellement les fabricants et les importateurs aux effets environnementaux de leurs produits tout au long de leur cycle de vie (Olivier, 2010). Par contre, dans la politique de gestion des matières résiduelles 2011-2015, les stratégies et les mesures majeures veulent appliquer la REP à différentes catégories de matières, incluant le matériel informatique (MDDEP, 2011a). Ceci se traduit par un projet de règlement de REP qui prévoit la prise en charge de la récupération et de la mise en valeur (au sens large) par les fabricants de cette matière. De façon générale, la politique veut également transférer la gestion et le financement des programmes de récupération et de mise en valeur des matières résiduelles des municipalités vers les producteurs et importateurs.

La définition des produits électroniques dans le projet de règlement est assez large :

« les appareils électroniques qui servent à transmettre, recevoir, afficher, enmagasiner ou enregistrer des informations, des images, des sons ou des ondes ainsi que leurs accessoires, à l’exception des produits conçus et destinés à être utilisés exclusivement en milieu industriel, commercial ou institutionnel. » (G.O.Q. 2009, p. 5621, art. 23)

Effectivement, cela inclut 13 sous-catégories de produits TIC, dont la liste détaillée est incluse en annexe 3.

2.5.3 Initiatives privées

Les grands producteurs de produits TIC (Sony, IBM, Dell, etc.) possèdent des systèmes de récupération. Ils peuvent récupérer soit seulement leurs marques de produit ou toutes les marques, les équipements peuvent être déposés à des points de collecte particuliers, chez un
détaillement, à l’entrepôt ou expédiés aux producteurs aux frais du client ou non. Le site de Recyc-Québec comporte la *Liste partielle des programmes privés de collecte d’équipements électroniques* (Recyc-Québec, 2009). Les conditions de récupération sont variées, ainsi IBM accepte des demandes venant d’entreprises dans le contexte d’un système de rachat de produits fonctionnels, mais peut également récupérer des produits pour le recyclage lorsque certaines conditions sont respectées (*ib.*). À l’inverse, Toshiba accepte toutes les marques d’ordinateurs (boîtiers, portables et écrans), sans frais pourvu que ce soit dans une boîte pesant au maximum 15 lb (*ib.*).

D’autres détaillants ont pris des initiatives de récupération, comme Future Shop et Best Buy, qui reprennent gratuitement les piles, les cellules, les lecteurs portatifs (MP3, CD et DVD), les DVD, CD et les cartouches d’encre. Tandis que les compagnies de cellules telles que Rogers, Espace Bell, ainsi que les caisses Desjardins, reprennent les cellules et leurs accessoires à des fins de recyclage (Potelle, 2009). En fait, les compagnies de cellules font partie du programme *Recycle mon cell* mentionné dans le chapitre précédent.

Finalement, il y a des recycleurs indépendants qui récupèrent les produits TIC pour en extraire les matières premières (acier, aluminium, cuivre) et qui ne précisent pas leur gestion des autres composantes. Il est possible qu’ils soient envoyés en Asie ou chez un autre recycleur qui en fait la transformation, ou encore qu’ils deviennent des déchets ultimes.

Un recycleur privé, la compagnie GEEP, fait le recyclage des produits TIC démantelés provenant des CFER, mais il possède aussi un système de récupération et de réemploi des ordinateurs (GEEP, s.d.). Ses points de collecte sont distribués à travers le pays, nommés *e-ColleX*, et permettent le réusinage et la vente, par le biais de leurs détaillants Microsys, des ordinateurs et leurs périphériques, ainsi que les appareils téléphoniques (*ib.*).
La situation au Québec est assez divisée, sauf pour l’initiative Mission Zéro déchet électronique qui couvre une bonne partie du territoire et qui prend de l’ampleur avec les années. Dans le domaine du réemploi, l’OPEQ ainsi que le recycleur GEEP participent à cet aspect des 3RV-E
3 PROPOSITION DE LA FILIÈRE TIC QUÉBÉCOISE

Une proposition sur la gestion des résidus de produits issus des technologies de l’information et des communications (TIC) par la responsabilité élargie des producteurs (REP) a été déposée en août 2007 au ministère du Développement durable, de l’Environnement et des Parcs (MDDEP). Elle a été développée par la Filière des technologies de l’information et des communications (la Filière). Celle-ci regroupe 28 organismes membres, représentant les fabricants, les détenteurs de marques, les distributeurs de produits électroniques, les détaillants, les entreprises de récupération, de mise à niveau et de réemploi, les entreprises de recyclage et de transformation, les municipalités, l’organisme Ordinateurs pour les écoles du Québec (OPEQ), le MDDEP, Environnement Canada et Recyc-Québec (Filière TIC, 2007). La Filière a débuté ses travaux en juin 2003, donc ce projet a été en développement pendant plus de trois ans (ib.). La proposition traduit les consensus établis par la Filière sur les diverses composantes pouvant faire partie d’un programme québécois de gestion des produits TIC en fin de vie utile (ib.). Autrement dit, cette proposition est importante à prendre en considération lors du développement d’une méthode d’application plus précise, comme dans cet essai, car cela représente l’avis et les idées de tous les intervenants du domaine.

La proposition énonce la problématique, les mandats de la Filière, les principes du programme, la structure et les rôles des intervenants, le programme proposé, les enjeux àvenir et les recommandations.

3.1.1 Problématique de la fin de vie

La problématique générale est que les produits TIC sont devenus des outils incontournables dans la vie professionnelle et personnelle de la population québécoise. Cela conduit à de lourds tributs sociaux et environnementaux. Effectivement, plusieurs matières toxiques composent les TIC et c’est souvent un aspect négligé par les producteurs, qui ne pensent qu’à améliorer la performance de leurs produits. Les matières toxiques peuvent rejoindre l’environnement par lixiviation lorsque les produits TIC rejoignent les lieux d’enfouissement canadiens. L’estimation des volumes vendus, générés, récupérés, recyclés et réemployés est très difficile à faire. Même si la Filière a colligé l’information de
plusieurs rapports canadiens et de sondages québécois, il n’a pas été possible d’assembler des données fiables. Il aurait été possible de demander ces informations aux producteurs et aux détaillants, mais ces informations sont considérées confidentielles. De plus, un grand volume d’ordinateurs désuets est exporté vers le Nigeria, la Chine, le Pakistan et l’Inde, notamment. En fait, 80 % des appareils récupérés en Amérique du Nord pour des fins de recyclage sont exportés en Asie. Finalement, la fabrication d’un ordinateur demande énormément d’énergie et de matières premières. Tout ceci forme la problématique des produits de TIC en fin de vie. (ib.)

3.1.2 Mandats de la Filière

Le mandat général de la Filière est « de formuler les principes et modalités attendues pour le développement d’un programme de récupération et de traitement des produits TIC au Québec » (ib., p. 10). La Filière s’est dotée de trois comités pour investiguer les éléments-clés à mettre en place : le comité Objectifs, le comité Récupération et le comité Tri-démontage et recyclage. Le comité Objectifs a suggéré des principes fondateurs, une structure et des mandats. Il a également proposé des mesures pour évaluer le niveau de performance et bâtir une nomenclature de produits visés pour la première phase du programme, pour suggérer des délais d’application et répertorier des moyens de contrôle d’application des normes et des sanctions. Le comité récupération a proposé des modalités de récupération (lieux, destinations, responsabilités, services offerts). Le dernier comité s’est orienté à comprendre la structure, la composition et les enjeux des entreprises œuvrant dans le réemploi, le recyclage, le démantèlement et la transformation des produits TIC et de leurs pièces (ib.).

3.1.3 Principes du programme

La Filière énonce quatre principes pour développer un programme au Québec : la REP, le développement durable, la hiérarchisation des 3RV et l’harmonisation pancanadienne. Ce dernier principe reconnaît que les provinces sont indépendantes pour encadrer la REP, mais que les éléments-clés des programmes devraient être les mêmes à travers le Canada.
3.1.4 Structure, rôle et responsabilités des intervenants
Le rôle et les responsabilités des intervenants sont précisés dans la proposition contenue au rapport de la Filière. Les producteurs sont les entreprises qui mettent en marché les produits TIC au Québec. Ils « sont en charge de la mise en œuvre, de la gestion et du financement d’un système de récupération et de recyclage des produits TIC sur le territoire québécois » (ib., p. 12). Selon le principe de la REP ils ont le choix de mettre en place leur propre système ou d’adhérer au programme d’un organisme de financement agréé (OFA) (ib.). Ce dernier est un organisme d’agrément qui reçoit un financement des producteurs pour ensuite faire la gestion des produits TIC hors d’usage des seuls producteurs qui y ont souscrit.

Ensuite, il y a le MDDEP, qui élabore les projets de règlements, puis voit à l’application de la réglementation et à l’interprétation de ses modalités. Les responsabilités proposées en propre dans le rapport pour Recyc-Québec, sont de coordonner les activités des OFA et d’assurer la mise en œuvre et le suivi de toute entente d’agrément. De plus, il « est en charge de vérifier les résultats des taux atteints selon les objectifs fixés, de l’analyse et de la validation des informations transmises par les OFA » (ib., p. 13).

Pour ce qui est des organismes de réemploi, ceux-ci font la mise à niveau pré-réemploi d’équipements informatiques. Les recycleurs et les entreprises de transformation sont des contractants du programme. Ils devront recevoir une qualification et une accréditation pour fournir des services. Les détaillants peuvent devenir des points de dépôts des appareils hors d’usage et être aussi des informateurs pour les consommateurs. Finalement, les municipalités sont des partenaires potentiels et leurs rôles et responsabilités sont multiples, notamment elles contribuent à la récupération, la sensibilisation, l’information, etc. (ib.).

Les intervenants avec un rôle d’arrière-plan sont : Environnement Canada, Transport Canada, Transport Québec et l’Agence des services frontaliers du Canada. Ceux-ci pourront agir pour la surveillance, le contrôle et le suivi des déplacements intérieurs et transfrontaliers de déchets dangereux, non dangereux et des matières recyclables. Ils peuvent aussi participer à l’information et à la sensibilisation (ib.).
3.1.5 Programme proposé

Le programme proposé par la Filière couvre plusieurs points structurels et décrit l’essentiel du développement d’un système de REP ciblant la récupération et la valorisation des produits TIC. La fixation des objectifs est jugée primordiale, mais se baser sur les ventes ou sur les volumes résiduels générés est une lourde tâche qui ne permettra pas de déterminer des objectifs justes. Alors, la Filière suggère que les objectifs de récupération et de mise en valeur soient déterminés périodiquement par décret gouvernemental, par le biais d’une réglementation, plutôt que de les établir préalablement. Cela permettra d’évoluer avec l’état du marché et de bénéficier des données recueillies au fil du temps. Par contre, dans le secteur du réemploi, il a été entendu que les attentes devraient être comblées autrement que par des objectifs quantifiables, mais pas plus de précision n’est donnée à ce sujet. L’important est de prioriser le réemploi selon le potentiel des produits récupérés (ib.).

Produits visés et particularités

La liste des produits TIC visés par le programme devrait se restreindre aux équipements informatiques les plus communs, afin d’assurer le succès au début du programme. Plusieurs facteurs ont été pris en compte pour déterminer la liste initiale d’équipements, comme le niveau de toxicité, le volume de matières résiduelles générées, etc. Ceux-ci ont permis de dresser la liste proposée de mise en œuvre du programme dans sa première phase :

- Ordinateurs personnels et portatifs*;
- Écrans à tubes cathodiques (CRT) et plats (LCD et plasma)*;
- Périphériques (souris, clavier, câble et autre composant de l’ordinateur)*;
- Imprimantes et imprimantes comportant des dispositifs de télécopie et de photocopie*;
- Lecteurs ou numériseurs optiques;
- Télécopieurs;
- Téléviseurs (CRT et plats) et téléviseurs dotés de lecteurs DVD et/ou VHS*;
- Téléphones cellulaires.

Les astérisques réfèrent aux produits dont l’accord est unanime. Les producteurs préfèrent que les téléphones cellulaires, les numériseurs et les télécopieurs soient ciblés dans une
phase ultérieure pour concorder avec les listes des autres provinces. La deuxième phase débuterait un an après le début du programme (ib.).

Lors du démarrage d’un tel programme, se pose toujours le cas des produits historiques ou orphelins. Les produits historiques correspondent aux équipements parvenus en fin de vie avant le début d’un programme officiel de récupération et de valorisation. Les produits orphelins sont ceux autrefois mis en marché par des producteurs ne détenant pas d’enregistrement ou n’étant plus en opération. La charge des coûts de récupération et de traitement revient au collectif des producteurs enregistrés au programme. La Filière a avancé trois options pour résoudre ce problème : fixer un taux de financement pour les producteurs équivalent à leur mise en marché historique respective, établir un taux proportionnel au ratio récupéré par producteur et type d’équipements, ou encore constituer une réserve d’argent commune pour assurer la gestion de ces produits. Ce sont aux OFA d’en fixer les modalités d’application (ib.).

Finalement, les produits usagés mis en marché par des entreprises sont une préoccupation de la Filière (p.ex. revendeurs de jeux vidéo et de consoles), faut-il les inclure dans la définition des producteurs? S’appuyant sur l’exemple albertain, puisque le programme finance les produits neufs, il n’est pas avisé de prélever un montant une seconde fois. De plus, certains membres ont noté la perte financière que représente la recherche de tous ces producteurs d’équipements usagés pour percevoir leur cotisation (ib.).

Services offerts
Trois services se doivent être offerts : la récupération, le réemploi et le tri-démantèlement. Le système de récupération doit être sans frais pour les consommateurs des secteurs résidentiel et ICI. De même, les points de récupération sont fixés en fonction des points de vente et du nombre d’habitants d’une municipalité ou d’une ville. Aussi, un service de ramassage sans frais est suggéré lorsqu’une collecte de plus de 30 ordinateurs est à faire. Les intervenants possibles pour faire la récupération sont les municipalités et les détaillants, ainsi que le réseau des CFER, les ressorteries, Poste Canada et les entreprises lucratives. En ce qui a trait au réemploi, la Filière convient de cibler davantage le secteur ICI, car leurs
produits sont moins désuets, technologiquement parlant, et parce que généralement la quantité et l’homogénéité sont nettement plus élevées. Troisièmement, la Filière recommande la création de centre de tri pour recevoir les ordinateurs récupérés. Il pourrait y avoir un ou deux centres de tri par région administrative, en fonction de la population à desservir. Le nombre « devra être déterminé de façon à assurer l’efficience, la rentabilité économique et la conformité des services rendus » (ib., p. 16). Une accréditation de ces centres permettrait d’assurer que le tri et le démantèlement des matières mènent effectivement à un centre de réemploi ou à la bonne destination de recyclage (ib.).

Étapes de développement
La Filière suggère sept étapes en cascade pour la création d’un programme :
1. Production et adoption de la règlementation-cadre sur la REP incluant les produits TIC;
2. Délai d’un an prévu au règlement pour permettre aux producteurs de créer des OFA ou opter pour la création d’un programme, négocier les ententes d’agrément avec Recyc-Québec, soumettre leur plan d’affaires et mettre en œuvre leur programme;
3. Début de la première phase du programme;
4. Adoption d’une règlementation visant à bannir l’enfouissement des TIC visés par la règlementation;
5. Entrée en vigueur de nouvelles catégories d’appareils;
6. Mise en vigueur d’incitatifs économiques ou politiques pour stimuler les opérations en amont (analyse de cycle de vie, éco-conception, etc.);
7. Financement des secteurs de recherche et de développement.

Autres démarches
Un dilemme soulevé par la Filière concerne les informations transmises au consommateur sur sa facture. Faut-il afficher explicitement les coûts associés à la récupération et au traitement? L’objectif de l’affichage est d’éduquer (sic) et d’informer les consommateurs de l’existence d’un programme. Par contre, plusieurs membres perçoivent l’affichage des coûts associés comme une taxe, c’est-à-dire que le consommateur pourrait croire qu’il paye le produit plus cher à cause de ce nouveau programme; ce serait un non-sens de l’afficher,
puisque la gestion environnementale du produit est comme la gestion des ressources humaines ou de la publicité et ne devrait pas figurer sur les factures. La Filière a décidé de ne pas se prononcer sur le sujet et de laisser les producteurs et les organismes agréés prendre la décision (*ib.*).

La Filière aborde aussi le mode d’attribution de contrats pour la récupération, le réemploi et le recyclage. Les contrats peuvent être conclus avec un usager souhaitant se départir de ses biens informatiques ou avec une entreprise fournissant des services de récupération, de transport, de réemploi ou de recyclage. Les deux modes possibles sont le libre-marché et le processus d’appel d’offres. Ce premier est régi par les prix et les normes de qualité, tandis que le dernier est un mécanisme pour encadrer le libre-marché afin d’obtenir le meilleur rapport qualité-prix. La Filière a retenu le libre-marché comme mode d’attribution de contrats. Ceci à l’avantage d’encourager, de maintenir ou de développer un marché concurrentiel, donc de favoriser des tarifs et des services concurrentiels. Il est proposé que le prix soit fixé selon la masse des composantes des produits TIC livrés au centre de tri accrédité de la région (*ib.*).

Finalement, la Filière se prononce sur les sanctions en cas de contournement par certains producteurs lors de l’enregistrement d’un programme. Cette préoccupation concerne les entreprises qui vendent leurs produits sur Internet ou ceux qui reconstituent des équipements avec des composantes multimarques. Ces sanctions vont de l’amende fiscale, passant par la peine pénale ou l’interdiction de faire de la mise en marché jusqu’à ce qu’ils corrigent la situation (*ib.*).

3.1.6 Enjeux à venir

Les membres de la Filière estiment que le système d’accréditation doit être crédible, rigoureux, indépendant et national. Sans aller dans les détails, voici quelques points supplémentaires retenus dans le rapport. Le maintien du réemploi en amont du recyclage, tel qu’appliqué au Québec dans la priorisation au sein des 3RV. De plus, le projet s’accompagne d’une traçabilité du matériau recyclé ou réemployé, par la recension des sous-traitants. Également, chaque entreprise doit être accréditée au moment de son entrée.
en opération et vérifiée périodiquement selon un protocole de certification et de vérification. Enfin, le financement de ce programme d’accréditation doit être fait à même les coûts du programme de récupération et de valorisation (*ib.*).

En lien avec les deux derniers points, le RPEC propose un projet de qualification des fournisseurs de services de recyclage qui comprend une norme industrielle et un guide d’orientation. La Filière reconnaît l’intérêt de ces documents, mais reporte leur analyse pour les remanier s’ils s’avèrent utiles (*ib.*).

3.1.7 Recommandations de la Filière

4 MÉTHODE D’APPLICATION PROPOSÉE POUR LE QUÉBEC

4.1 Principes de base

La méthode d’application proposée se base sur des principes importants pour assurer la meilleure gestion des produits TIC en fin de vie utile. Ceux-ci seront brièvement présentés dans cette section. Un simple rappel que la gestion des produits TIC par les producteurs, la REP, part de la conception jusqu’à leurs fins de vie utile, autant au niveau matériel que financier. Tel que vu dans le chapitre sur la REP, la méthode d’application se structurera autour des quatre grands éléments-clés de celle-ci.

4.1.1 Principes de la Loi sur le développement durable

Production et consommation responsables

Ce principe édicte qu’il faut changer nos habitudes de production et de consommation pour en assurer la pérennité et qu’elles soient plus responsables sur les plans social et environnemental (ib.). Cela peut être atteint, entre autres, en évitant le gaspillage et en optimisant l’utilisation de nos ressources, c’est ce qu’on appelle l’écoefficience (ib.). En plus des producteurs qui changeront leurs méthodes et façons de faire, des programmes de sensibilisation, d’information et d’éducation ciblant les consommateurs peuvent être développés.

Pollueur-payeur

Les coûts des mesures de prévention, de réduction et de contrôle des atteintes à la qualité de l’environnement sont assumés par les pollueurs (ib.). Même si ceux-ci se définissent comme les personnes qui génèrent de la pollution ou dont les actions dégradent l’environnement (ib.), ce principe prend une couleur différente lorsque seul le
consommateur est considéré comme un pollueur ou selon que ce soit plutôt le couple consommateur-fabricant qui est le pollueur.

Internalisation des coûts
Traditionnellement, la valeur des biens et des services est fonction du coût de production ou du travail effectué. L’internalisation signifie d’inclure les coûts, qu’ils occasionnent à la société durant tout leur cycle de vie, à la valeur de ces biens et services (*ib.*). Cela veut dire une augmentation générale du coût des produits TIC, mais cela devient un partage de la responsabilité et rejoint les deux principes précédents, la consommation responsable et le pollueur-payeur.

4.1.2 Principes pancanadiens relatifs à l’intendance des produits électroniques
Ces 16 principes ont été proposés par le CCME en 2004 pour répondre à un urgent besoin de gérer correctement les résidus TIC, puisque leurs quantités sont toujours croissantes dans les matières résiduelles du Canada (La Filière, 2007). L’urgence d’une correction de gestion est plus grande encore lorsqu’ils contiennent des substances toxiques. Ces principes pourront servir de guide pour l’élaboration de programmes de gestion par les gouvernements et par tous les autres intervenants, pour promouvoir le plus possible l’harmonisation des démarches et empêcher une distorsion des marchés sur le territoire (*ib.*). Quelques-uns seront soulignés pour la méthode d’application proposée.

Respect de la hiérarchisation des 3RV-E
La hiérarchie des 3RV est à respecter pour la gestion des produits TIC en fin de vie utile. La première considération est la réduction, cela peut s’appliquer à la consommation, mais aussi à la toxicité, mener à une reformulation du produit pour lui donner une recyclabilité plus élevée (*ib.*).

Ensuite vient le réemploi de ces produits, qui confère une seconde vie, soit entièrement ou partiellement par ses composantes. Puisque la croissance de la consommation et des besoins en produits TIC ne fait qu’augmenter, le réemploi est le mode de gestion cible de cette méthode d’application.
Lorsque le réemploi n’est pas possible, il y a le recyclage : traitement des résidus TIC pour en extraire les matières premières telles que les métaux ferreux et non ferreux, le verre, les plastiques, pour ensuite les réintroduire dans de nouveaux procédés (Olivier, 2010).

Finalement la valorisation des matériaux et/ou de l’énergie contenus dans le flux de résidus TIC. Les types de valorisation comprennent la valorisation biologique et la thermique, la première étant prioritaire. Vu la nature des résidus, la valorisation biologique est peu probable, par contre la valorisation thermique des matières plastiques peut être un traitement valable, pourvu qu’il n’y ait pas d’émission massive de gaz acides et qu’un contrôle environnemental des gaz et poussières soit approprié (Olivier, 2010; La Filière, 2007).

L’élimination n’est pas souhaitable, mais lorsqu’il n’y a pas d’autres alternatives, les matières résiduelles ne peuvent qu’être enfouies. C’est un peu à cause de l’espace requis que l’enfouissement est un problème, mais c’est surtout à cause du danger que causent les matières dangereuses dans l’environnement et de la perte de ressources, puisque cette matière ne peut plus retourner dans un cycle de production.

Programmes pour les produits résidentiels et ICI

L’inclusion du domaine ICI est importante puisqu’il génère des volumes très importants. La version du CCME n’inclut que le secteur commercial, mais pour cette méthode d’application, le secteur ICI est inclus pourvu que ce soient les équipements visés qui rejoignent le point de collecte.

Les produits historiques et orphelins doivent être inclus, ce n’est pas leur âge ou la disparition du fabricant du produit qui justifie qu’ils ne soient pas traités correctement. Ils devront être pris en charge par les producteurs actuels.
Performance, objectifs et cibles
La performance doit être rapportée au ministère et au public et, les objectifs et cibles doivent être définis et clairs (La Filière, 2007). La transparence est impérative, surtout au niveau de la gestion financière.

Meilleure gestion économique et logistique
Une gestion performante au niveau économique et de la logistique est essentielle. Alors, il ne doit pas y avoir de pertes de ressources inutiles. Dans le même sens, il doit y avoir une optimisation des avantages économiques et sociaux à l’échelle locale. Tous les acteurs locaux doivent profiter de cette gestion.

Exportation des résidus TIC pour le recyclage
Les résidus TIC peuvent être exportés hors du Canada pour se faire recycler, mais seulement dans des installations qui se sont officiellement engagées à assurer une gestion soucieuse de l’environnement et en ayant des pratiques équitables en matière d’emploi (ib.).

4.2 Équipements inclus
Pour conserver l’harmonisation de la méthode d’application proposée avec le projet de Règlement sur la récupération et la valorisation de produits par les entreprises, les équipements inclus devraient être les mêmes. Pour mieux comprendre l’application des différents modes de gestion (réemploi, recyclage, etc.) pour les produits TIC, la composition de ceux-ci sera décrite dans cette section, lorsque disponible. En ce qui concerne les substances chimiques ou toxiques, seulement les produits d’intérêts du recyclage ou présentant des risques pour la santé seront énumérés.

4.2.1 Ordinateurs de bureau et portables
Cet appareil comprend un boitier, en métal ou en plastique, contient plusieurs cartes de circuits imprimés et des périphériques, comme des lecteurs ou graveurs de CD et/ou DVD, et des disques durs. Les cartes de circuits imprimés sont des cartes-mères, des cartes graphiques, des cartes de son, des barrettes mémoires, des cartes réseau et des cartes d’expansion de prises USB. D’autres cartes permettent de brancher des joysticks, des
caméras vidéo de surveillance et plusieurs autres types de périphériques, ou même avoir des fonctions plus spécialisées. Ces cartes sont principalement faites en plastique, sont composées de soudures, de cuivre, d’aluminium, de plomb, de chrome hexavalent, de cadmium, de bérium et des retardateurs de flamme (p.ex. agent ignifuge bromé, antimoine, etc.) (Kuehr and Williams, 2003; La Filière, 2007). En termes de recyclage, plusieurs matières premières s’y retrouvent, mais elles sont difficilement extractibles car présentes sous forme de nombreuses pièces composites. Tout de même, des méthodes d’extraction permettant le recyclage seront présentées dans une autre section, ainsi que des approches permettant le réemploi.

Les boîtiers d’ordinateurs sont accompagnés de périphériques, comme les claviers, les souris, les webcams, les routeurs, les imprimantes, etc. Ceux-ci peuvent être facilement réemployés, car la majorité d’entre eux sont compatibles avec tous les types de systèmes. Il suffit que leurs prises soient les mêmes, comme pour les câbles réseau et ceux d’alimentation. Les imprimantes, les cartouches d’encre, les numériseurs, les télécopieurs et les photocopieurs peuvent également être réemployés, sinon rejoindre un traitement de recyclage.

En ce qui concerne les ordinateurs portables, la composition est très similaire, mais en version plus compacte. La capacité de réemploi est néanmoins moins élevée, puisque les composantes sont généralement limitées à quelques modèles spécifiques.

Des exemples d’ordinateurs de poche sont les agendas électroniques, les calculatrices portatives, etc.

4.2.2 Écrans d’ordinateur et téléviseurs
Les écrans d’ordinateur sont des périphériques d’ordinateurs, mais leur technologie, leur composition et donc leur recyclage s’apparentent plutôt à celui des téléviseurs. Bien entendu, le réemploi pour ces deux types de produits est très facile. Il est vrai que l’ancienne technologie CRT fait en sorte que le produit est volumineux, cela ne l’empêche pas d’avoir une durée de vie fonctionnelle bien longue (Kuehr and Williams, 2003). Ces
CRT sont composés de cartes de circuits imprimés, de verre et de verre plombé. Alors, les moniteurs qui les contiennent sont composés principalement de plomb, de verre, de plastique contenant un retardateur de flamme, de cadmium, de beryllium et de chrome hexavalent (La Filière, 2007). Les écrans LCD contiennent du mercure, en lien avec les lampes fluorescentes servant à la technologie du rétroéclairage (ib.).

4.2.3 **Appareils accompagnant les téléviseurs**
Les téléviseurs sont souvent accompagnés de lecteurs DVD, de magnétoscopes, d’amplificateurs, de haut-parleurs, de récepteurs numériques, etc. Ceux-ci sont dans le projet de règlement et devront être réemployés et recyclés. De même que pour les consoles de jeux et leurs périphériques. Par contre, ces derniers ont une valeur de revente plus élevée qu’un lecteur DVD, donc ils sont souvent rapportés à un revendeur de consoles et de jeux aux fins de réemploi. La composition de ces appareils est très similaire à ceux d’un ordinateur : cartes de circuits imprimés, des câbles, et les boîtiers peuvent être en plastique ou en métal.

4.2.4 **Cellulaires et petits appareils électroniques**
Cette catégorie est très large, mais pour mentionner les groupes principaux, il y a les téléphones, téléphones cellulaires et leurs accessoires. Les baladeurs numériques, les lecteurs de livres électroniques, récepteurs radios, cadres numériques, systèmes de localisation GPS, etc. Une liste détaillée des équipements visés par le projet de Règlement sur la récupération et la valorisation de produits par les entreprises à l’annexe 3. En ce qui concerne leur composition, elle est très similaire aux autres produits électroniques.

Plusieurs États américains n’acceptent pas les produits électroniques provenant de véhicules, par exemple les récepteurs radios et lecteurs CD, mais le projet de règlement québécois ne fait pas cette différence et ils devraient être inclus également. Les composantes sont les mêmes et le réemploi est tout aussi possible, le marché est peut-être moins grand, mais pourrait tout de même être significatif.
Il n’y a pas de nécessité d’ajouter d’autres produits TIC que ceux énumérés dans le projet de règlement, la liste est suffisamment exhaustive. Pour ce qui est des produits principalement retrouvés dans le secteur ICI, ils sont généralement récupérés par les compagnies qui les manufacturent aux fins de réemploi ou de recyclage. La Directive européenne sur les DEEE les inclut elle aussi, mais puisque la rentabilité économique compte aussi dans la méthode développée dans cet essai, il est préférable de les exclure. Enfin, en conformité avec le projet de règlement québécois, les produits TIC conçus et destinés à être utilisés exclusivement en milieu ICI ne sont pas inclus.

4.3 Modifications règlementaires

Ce qui peut déterminer le succès d’un programme, surtout lorsque la gestion est laissée à des intervenants du domaine privé, est que des contraintes légales fassent respecter le programme ou que les conséquences pénales et/ou monétaires soient assez importantes pour qu’il n’y ait pas de contrevenant ou le moins possible. Les conventions, les lois et les règlements déjà en place, pertinents pour la gestion des résidus TIC, seront exposés et des propositions de modifications ou d’ajouts à ceux-ci seront présentées.

4.3.1 Convention internationale de Bâle

La convention internationale de Bâle, telle que présentée dans le chapitre sur l’Asie, interdit l’exportation des déchets dangereux des pays membres de l’OCDE vers les pays non membres (Bourges, s.d.). Autrement dit, cette convention a pour but de restreindre la gestion de ces déchets à l’intérieur des nations qui les utilisent, et ainsi de ne pas transposer les impacts environnementaux et de santé vers les pays plus pauvres (ib.; La Filière, 2007). Cette convention a été adoptée en 1989 et est entrée en vigueur en 1992 (La Filière, 2007). Un des plus grands producteurs et consommateurs de produits TIC, les États-Unis, n’a pas ratifié la Convention de Bâle, donc celle-ci n’a pas encore force de loi (ib.). Au Canada, la convention a été ratifiée, pour contrôler l’exportation de ce type de matière, et elle est complétée par la Loi canadienne sur la protection de l’environnement et le Règlement sur l’exportation et l’importation des déchets dangereux et de matières recyclables dangereuses qui interdisent l’exportation vers des pays qui prohibent l’importation (ib.). D’après la Convention cela est suffisant, mais il est clair qu’il y a des faiblesses. Par
exemple, les pays qui n’interdisent pas l’importation de déchets dangereux sont facilement exploitables. De plus, les exportateurs peuvent prétendre que les résidus TIC sont exportés à des fins de réemploi, mais en absence de document qui atteste que ces systèmes sont fonctionnels, la majeure partie est généralement défectueuse (ib.). En fait, la Basel Action Network note que 75 % des ordinateurs expédiés dans ces pays sont irrécupérables ou indémontables (ib.). La Filière, dans leur proposition, recommande que les DEEE destinés à être recyclés soient exportés dans des installations certifiées, c’est-à-dire qui se sont engagées à assurer une gestion soucieuse de l’environnement et de pratiques équitables en terme d’emploi (ib.). La recommandation est très bonne, mais l’exportation devrait être considérée seulement dans le cas où il n’y a pas d’autre alternative pour adéquatement réemloyer ou recycler ce type d’équipement dans le même pays. Effectivement, le Règlement devrait inclure des conditions en ce qui concerne l’exportation de DEEE à des fins de réemploi (ib.). C’est-à-dire stipuler que chaque appareil soit testé et qu’une preuve de fonctionnalité soit présentée pour en prouver le bon usage (ib.).

4.3.2 Projet de règlement sur la récupération et la valorisation de produits par les entreprises

Les buts du règlement sont de « réduire les quantités de matières résiduelles à éliminer en responsabilisant les entreprises » et « en favorisant la conception de produits plus respectueux de l’environnement » (G.O.Q. 2009, p. 5621, art. 1).
Le terme « entreprise » englobe toutes les entreprises qui mettent en marché un produit visé par le règlement, ainsi que les premiers fournisseurs d’un de ces produits au Québec. Pour clarifier, le terme « entreprise » est synonyme de « producteur », tel qu’utilisé ailleurs dans cet essai. Ces entreprises doivent mettre en place un programme de récupération et de valorisation (au sens large) de « tout produit de même type que celui qu’elle met en marché » (G.O.Q. 2009, p. 5621, art. 2). Donc, une entreprise qui fabrique des télévisions doit accepter de gérer toute télévision en fin de vie, peu importe sa marque de commerce. Si elles le désirent, les entreprises peuvent se regrouper pour en faire la gestion, mais il est important que tous les consommateurs qui retournent leurs résidus TIC, par exemple, n’aient pas d’obstacle pour choisir un point de collecte où ils devront se rendre. Un paragraphe précise qu’une entreprise peut être exemptée de ses obligations en vertu du règlement (G.O.Q. 2009). Dans ce dernier cas, rien ne précise que ces entreprises doivent développer un programme dans un délai quelconque, mais cela serait un amendement recommandé. Le délai devrait être de 1 à 2 ans, dépendamment de la nature des produits TIC.

Il est prescrit que la prise en charge des produits récupérés doit assurer un traitement de valorisation (au sens large) en respectant la hiérarchie des 3RV-E (ib.). Autrement dit, en considérant le réemploi en premier lieu, suivi du recyclage alors que la valorisation énergétique et l’élimination (lorsque nécessaire) arrivent en dernier lieu. Cela aura comme effet de faire exploser le domaine du réemploi au Québec, et ainsi de minimiser les pertes de ces matières précieuses. Par exemple, les disques durs sont des pièces électroniques très durables et nécessaires dans un ordinateur. Présentement, ils sont la plupart du temps démontés, réduits en pièces et séparés par types de matériaux pour en refaire des matières premières. La perte en énergie, temps, et matériaux est beaucoup plus grande lors d’un tel recyclage que lors du réemploi (Kuehr and Williams, 2003). De plus, une analyse de cycle de vie respectant les normes ISO applicables, est nécessaire lorsque le respect de cette hiérarchie 3RV-E présente un non-sens (G.O.Q., 2009). Ces deux dispositions sont probablement les plus importantes de ce règlement, car elles vont permettre une meilleure gestion de nos ressources et de nos matières résiduelles, qui peuvent être vues comme des ressources également.
Il y a place à réflexion au sujet de l’analyse de cycle de vie. Ne devrait-elle pas être obligatoire? Pour le moment, il n’est pas recommandé de l’exiger puisque c’est coûteux et peu populaire en Amérique du Nord. Par contre, cela pourrait être un amendement intéressant à intégrer à ce règlement dans un futur proche.

Les entreprises doivent être transparentes lors de la création et de la gestion de leur programme (*ib.*). Effectivement, il faut que toutes les étapes de la gestion, incluant les noms et adresses de toutes les parties concernées, soient documentées jusqu’à la destination de la valorisation finale (*ib.*). Ceci permet le suivi rigoureux des produits et des matières, très utile pour le Ministère et pour les entreprises lors de l’évaluation de l’efficacité de leurs programmes. Particularités intéressantes, les entreprises doivent prévoir la gestion des contenants ou autres emballages qui viennent avec les produits lorsqu’ils sont apportés à un point de collecte (*ib.*). En plus, ils doivent développer des programmes d’information, de sensibilisation et d’éducation afin de renseigner la clientèle adéquatement (*ib.*). Aussi, il doit comporter un volet recherche et développement en ce qui a trait aux méthodes de récupération et de valorisation (*ib.*). Finalement, les entreprises doivent déterminer les coûts réels de leurs activités et ceux-ci doivent être inclus dans les rapports annuels remis au Ministère (*ib.*).

Les coûts associés à la mise en œuvre d’un programme doivent être internalisés dans le prix demandé pour ce type de produits TIC (*ib.*). Donc, cela veut dire qu’il n’y aura pas de taxe environnementale qui apparaîtra sur nos factures. Est-ce que cela est un avantage? Cela dépend de chacun, mais il est certain qu’il doit y avoir un partage des coûts reliés à cette gestion. Dans ce cas-ci, les coûts ne seront pas visibles, donc le consommateur sera moins en opposition à ce type de programme (La Filière, 2007).

Qu’arrive-t-il aux produits d’importation qui n’ont pas de manufacturier sur le territoire et pour lesquels aucune méthode de collecte n’a été prévue? Par exemple, un produit électronique acheté lors d’un voyage à l’extérieur du pays qui n’est pas disponible au Québec ou même des produits artisanaux. Il est prévu que des entreprises, incluant les
municipalités, doivent reprendre ces résidus et en faire la gestion conforme au règlement (G.O.Q., 2009).

Le suivi de performance prévu est très élevé. Une entreprise doit compléter un rapport du programme prévu et le soumettre trois mois avant le début de celui-ci (ib.). Ensuite, des rapports pour chaque année sont envoyés au Ministère (ib.). Finalement, produire un bilan quinquennal de la mise en œuvre et de l’efficacité du programme des cinq années précédentes, ainsi que des orientations et les priorités pour les cinq années suivantes (ib.).

Un registre, mis à jour mensuellement, des quantités pour les différents types de produits mises en marché et visé par règlement doit être tenu et conservé pendant cinq ans, à partir de la dernière inscription (ib.). Le Ministre peut, à tout moment, en faire la demande (ib.).

Des versements de pénalités au Fonds vert sont prévus lorsque les entreprises n’atteignent pas les taux minimaux de récupération prévus au règlement (ib.). Ces taux seront implantés trois ans après la mise en œuvre d’un programme, afin que les entreprises s’adaptent à leurs nouvelles activités. Ils se situent entre 25 % et 40 %, et augmentent de 5 % par année jusqu’à 65 % (ib.). Ces taux représentent le pourcentage de produits récupérés et traités sur le potentiel de produits récupérables. Le Fonds vert sert à financer des mesures pour lutter contre les changements climatiques (Société Radio-Canada, 2007). Les pénalités au Fonds vert devraient être suffisamment incitatives pour que les taux de récupération soient respectés. Par exemple, prenons une différence de 5 % entre le taux atteint et le taux à atteindre, combiné à une quantité de 10 000 produits mis en marché pour l’année avec un montant de calcul prévu par règlement de 20 $. En multipliant tous ces termes, tel que prévu par le règlement, cela atteint un versement d’un million de dollars au Fonds vert (Bosnjak, 2011; G.O.Q., 2009). Ces versements semblent être suffisamment élevés pour promouvoir l’atteinte des objectifs.

Les points de collecte peuvent être permanents ou saisonniers (G.O.Q., 2009). Ces points de collectes peuvent être aux mêmes endroits que la mise en marché, comme chez les détaillants, ou des points de collecte spécifiques en fonction de la population à desservir.
L’objectif est de minimiser la distance à parcourir pour s’y rendre, tout en maximisant l’accès aux plus grand nombre. Un seuil maximal de produits rapportés à un lieu de collecte peut s’appliquer au secteur ICI, l’entreprise doit prévoir une alternative dans ce cas (ib.). Pour les produits nécessitant la livraison chez le consommateur en raison des dimensions, le détaillant doit offrir un service de collecte pour ce produit (ib.). Le seul contexte où la mise en place des points de collecte n’est pas nécessaire est lorsque l’entreprise fournit un service de collecte sur demande, au moins mensuellement ou un service par retour postal (ib.). La collecte de produit, peu importe la méthode, doit être gratuite pour toute la clientèle tant du secteur résidentiel que ICI (ib.).

La mise en œuvre des programmes de récupération et de valorisation se fera en deux phases (ib.). La première phase aura lieu un an après l’entrée en vigueur du règlement et inclura les huit premières sous-catégories de produits (ib.). La deuxième phase aura lieu deux ans après l’entrée en vigueur du règlement et inclura les sous-catégories neuf à 13 (ib.). De même pour les appareils de poche dont l’une des fonctions est celle de téléphone (ib.).

Pour les produits mis en marché après l’entrée en vigueur du règlement, le programme de gestion doit être opérationnel dès la mise en marché du produit (ib.). Une note importante dans la liste de produits mentionne un terme ambigu : connecteur, ce terme est défini dans le Grand dictionnaire terminologique comme suit : « Composant placé à l'extrémité de conducteurs afin de permettre de réaliser leur connexion ou déconnexion avec un autre composant approprié » (Anonyme, 1982). Ceci peut décrire une vaste gamme de produits, mais dans notre contexte, il semble faire plutôt référence aux cartes de circuits imprimés.

En ce qui concerne les renseignements personnels et confidentiels contenus dans les produits électroniques, ils doivent être détruits et les mesures pour y parvenir doivent être transmises au Ministère (G.O.Q., 2009).

Une disposition intéressante est l’âge moyen des produits récupérés et l’inscription de cette information dans les rapports annuels (ib.). Pour faire une gestion efficace d’un programme de ce type et l’ajuster aux tendances du marché et des comportements humains, il est
essentiel de récolter le maximum d’information sur les habitudes de consommation et d’élimination. Cette disposition permettra plus tard d’adapter la réglementation ainsi que la gestion par les entreprises de leurs programmes.

Les dispositions pénales en cas de non-respect de ce règlement semblent suffisamment élevées pour dissuader les contrevenants. Les amendes varient de 2 000 $ à 10 000 $ pour une personne physique, et de 2 000 $ à 250 000 $ pour une personne morale (ib.). En cas de récidive, les montants sont doublés (ib.). Une inquiétude relevée dans la proposition de la Filière est le cas des resquilleurs et des sanctions prévues pour ceux-ci (La Filière, 2007). Ces resquilleurs risquent d’être des entreprises distantes qui vendent leurs produits par Internet. Puisque la gestion proposée se fait par type de produits, les consommateurs pourront tout simplement les déposer dans des points de collecte des autres entreprises.

Il n’y a pas de disposition abordant la réduction des substances toxiques incluses. La gestion par les entreprises de leurs produits en fin de vie utile devrait progressivement mener à une réduction et/ou une élimination des substances toxiques dans les produits électroniques et électriques. Une disposition obligeant la réduction de ces substances serait plus efficace encore. Elle pourrait être associée à un système de redevances en fonction de la quantité de substances toxiques dans les produits d’une entreprise, agissant ainsi comme un levier majeur pour changer la composition de ces produits.

4.4 Rôles des différents intervenants

Dans la création d’une méthode d’application pour la gestion des résidus TIC, il est important de bien définir les rôles de chacun des intervenants. Les rôles peuvent cibler la mise en place des programmes, du suivi règlementaire, des opérations et même en tant que simple conseiller. Et ces rôles ne sont pas nécessairement statiques dans le temps, ni indépendants. Par exemple, un intervenant peut simultanément avoir un rôle opérationnel ainsi que faire le suivi règlementaire.

4.4.1 Producteurs

Le cœur de cette méthode d’application est le producteur, celui pour qui la responsabilité sur les produits mis en marché est élargie pour inclure la gestion de la fin de vie utile. Toute entreprise qui met en marché au Québec, à l’état neuf, des produits visés par la méthode d’application, et dont elle est la propriétaire, première importatrice, fournisseuse, détenteur ou utilisatrice de marque, est considérée un producteur (G.O.Q.; 2009; La Filière, 2007). Ces produits peuvent être issus d’un assemblage (p.ex. ordinateur) et distribuées ou non sous une marque de commerce. Une entreprise qui fait affaire au Québec, mais sans domicile ou établissement, est aussi visée par le règlement et doit prévoir ou participer à un programme de gestion (p.ex. OFA).

Les producteurs doivent mettre en place un programme de récupération et de valorisation (au sens large) de leurs produits TIC, plus précisément du même type de produits, peu importe leurs marques. Ils sont également responsables de sa gestion et de son financement. Dans la même optique que le projet de règlement et des propositions de la Filière, les producteurs peuvent faire leur propre programme individuellement. Sinon, plusieurs producteurs peuvent se regrouper pour créer un organisme qui s’occupera de la mise en place d’un programme de gestion. Finalement, un producteur peut simplement adhérer à un organisme de ce type et financer la mise en œuvre d’un programme de gestion agréé qui accueille ses produits.

L’implantation des points de collecte est déterminée par les fabricants. Ceux-ci doivent être en nombre suffisant pour couvrir les besoins du territoire. Deux options sont possibles :
tous les détaillants servent de point de collecte transmarques, ou des points de collecte indépendants sont implantés par le producteur. La première option est l’alternative la plus simple et la moins coûteuse, mais si une récupération de produit « exclusive » est recherchée, la seconde alternative est possible. C’est aux fabricants de sélectionner, qualifier et traiter avec les différents organismes de récupération et de recyclage. De plus, il faut prévoir le transport des produits TIC des points de collecte vers les différents lieux de traitement.

Les fabricants doivent s’organiser pour atteindre les objectifs de récupération définis par règlement, en travaillant de concert avec les détaillants, municipalités, entreprises, recycleurs ou d’autres intervenants, et tenir compte des opportunités de réemploi et de recyclage actuelles (La Filière, 2007).

Le programme développé devra être évalué pour sa performance financière, opérationnelle (efficacité, santé et sécurité) et environnementale. Les producteurs devront faire rapport aux autorités tel que prévu au règlement et faire un suivi rigoureux de la vente, de la récupération et du traitement de leurs produits TIC. Finalement, ils doivent respecter les principes de cette méthode d’application (hiérarchie 3RV-E, sensibilisation et information, etc.).

4.4.2 Détailleurs
Le rôle des détaillants est de servir de points de collecte. Ils reçoivent les résidus TIC, prennent en note les informations sur l’état de l’appareil et les entreposent. Par la suite, ils seront acheminés aux centres de tri-réemploi régionaux. Les activités d’information et de sensibilisation prévues par les fabricants peuvent se dérouler chez les détaillants, c’est en fait le meilleur endroit pour en faire la promotion. S’il y a d’autres points de collecte, les détaillants doivent informer les consommateurs sur ceux-ci (La Filière, 2007).

Présentement, les magasins Bureau en Gros récupèrent des résidus TIC à leurs succursales et les acheminent aux CFER. Puisqu’ils commercialisent déjà des objets de seconde vie tels les cartouches à jet d’encre et les cartouches pour imprimante laser, ce détaillant pourrait
créer un département pour la vente des produits TIC réusinés, prêts pour le réemploi. Donc, leur rôle de récupérateur peut s’élargir davantage. Ce détaillant bien implanté au Québec est déjà spécialisé dans la vente de produits électroniques et de bureau.

4.4.3 CFER et recycleurs

Les activités des CFER restent les mêmes, c’est-à-dire faire le tri-démontage du matériel informatique destiné au recyclage. Ce flux de matières démontées est ensuite acheminé à des recycleurs. Ces derniers devront traiter les différentes matières et composantes de façon adéquate, respectueuse de l’environnement et en utilisant les technologies les mieux adaptées pour chaque type de matière.

L’entreprise GEEP est au premier plan pour participer à cette méthode d’application et effectuer une gestion adéquate des produits TIC. Effectivement, elle a déjà des points de collecte en place sur le territoire canadien, elle effectue des activités de réemploi et traite les matières pour leur recyclage et leur valorisation (GEEP, s.d.). C’est une compagnie qui est active depuis 1996, possède une certification ISO 14001 et 9001, et fait un chiffre d’affaires de plus de 50 millions par année (Industrie Canada, 2010). Déjà elle effectue la vente de marchandises réusinées pour le réemploi orienté vers les secteurs résidentiel et ICI dans ses magasins Microsys, situés à même son usine de traitement à Dorval.

Deux entreprises localisées en Ontario, Greentec et Sims Recycling Solutions œuvrent dans le même domaine que GEEP. Cependant, Greentec est plus spécialisée dans le réemploi des cartouches d’encre et des téléphones cellulaires, c’est un des partenaires de Recycle mon cell (La Flèche, 2011; CRIQ, 2009). Sims Recycling Solutions se concentre plutôt sur le recyclage seulement (CRIQ, 2009).

Il est fort probable que GEEP sera l’entreprise de prédilection pour les fabricants comme sous-traitant pour la récupération et le traitement adéquat des produits TIC au Québec. Bien entendu, GEEP devra prendre de l’expansion en construisant plus d’infrastructures et travailler de concert avec les autres intervenants majeurs québécois qui œuvrent dans ce secteur (OPEQ, CFER, etc.). Cependant cette entreprise pourrait monopoliser le marché du
réemploi et du recyclage, par ses infrastructures et processus déjà en place. Par contre, son association avec les CFER démontre une attitude positive face au développement d’accords entre plusieurs entreprises et intervenants pour assurer la meilleure gestion des produits TIC en fin de vie.

4.4.4 Municipalités
Les responsabilités municipales en gestion des matières résiduelles sont diminuées pour chacun des appareils soumis à une REP. Autrement dit, le fardeau financier et de gestion est redirigé vers les fabricants. Les municipalités peuvent avoir des points de collecte pour les résidus TIC à leurs centres de tri et devront noter les informations sur l’état des appareils tout comme les détaillants. Cependant la récupération requiert un lieu d’entreposage intérieur pour éviter d’endommager les produits TIC.

4.4.5 Gouvernement
Le gouvernement assume son rôle pour les lois et les règlementations touchant les activités de récupération, de réemploi, de recyclage, de valorisation et d’élimination des produits TIC. De plus, ils doivent effectuer le suivi et la surveillance des rapports et documents préparés par les fabricants et agir en cas d’infraction. Le gouvernement peut aussi agir à titre de référence, de conseiller et d’éducateur pour tous les autres intervenants.

4.4.6 Autres intervenants
Les consommateurs sont responsables de l’acheminement de leurs produits TIC en fin de vie aux points de collectes, le plus rapidement possible pour éviter leur obsolescence. De plus, ils sont encouragés à consommer de façon responsable et à prioriser l’achat de produits du marché de seconde vie prévu par la méthode d’application.

L’OPEQ continuera ces activités, mais devra s’harmoniser à la méthode proposée et aux programmes des fabricants.
Le programme *Recycle mon cell* sera partiellement responsable de la récupération et du traitement des cellulaires et devra s’harmoniser à la méthode proposée. Bien entendu, ce programme est géré par l’ACTS et représente les compagnies de cellulaire.

Un rôle possible du RPEC serait de mettre en place un programme basé sur la méthode d’application proposée dans cet essai. Leurs objectifs pourraient s’élargir et inclure le réemploi et dans une certaine mesure, la valorisation. Cet organisme, dirigé par les fabricants, a déjà aidé à la mise en œuvre des programmes dans d’autres provinces canadiennes (Ontario, Colombie-Britannique, Alberta, etc.) et est amplement qualifié pour effectuer la même chose au Québec. Les fabricants qui ne sont pas encore représentés par cet organisme pourront le faire lors de la mise en place du programme.

4.5 Structure de la méthode d’application

Cette section est le cœur de la méthode d’application proposée, puisqu’elle y est décrite. Un diagramme a été réalisé pour simplifier la compréhension de la structure et donner un aperçu de son fonctionnement (Figure 3.1). La méthode sera expliquée en exposant le cheminement d’un produit TIC en fin de vie utile jusqu’à la fin du traitement.

La première étape dans la mise en place d’un programme de récupération et de valorisation (au sens large) est d’informer les consommateurs sur la bonne gestion de leurs produits TIC en fin de vie utile. Le succès d’un programme dépend de la connaissance de celui-ci par la population. Donc, ces informations devraient être disponibles chez les détaillants, sur les sites internet de ceux-ci, ainsi que sur les sites de Recyc-Québec et des recycleurs. De plus, une campagne de publicité à grande échelle dans les médias électroniques (télévision, radio) et les médias conventionnels (journaux, pages jaunes, etc.) serait primordiale.

Un produit TIC atteint une fin de vie utile chez un consommateur. S’il est encore fonctionnel, celui-ci peut tenter de le vendre ou de le donner. Si le produit est non opérationnel, le consommateur peut tenter la réparation de son appareil. Qu’il soit fonctionnel ou non, le produit peut être rapporté chez un détaillant ou à un point de collecte
spécifique. À l’évidence, les possibilités de réemploi augmentent lorsque le point de collecte est spécialisé et dispose des équipements de vérification.

Figure 4.1 Diagramme de la méthode d’application proposée

Les écocentres des municipalités peuvent également faire partie des points de collectes, mais le flux sera redirigé au programme prévu par les fabricants. Ceci permet d'augmenter le nombre de points de collecte, rendant le retour aux fabricants plus facile pour les consommateurs, et ainsi augmentant le potentiel de récupération.
Les consommateurs complètent une fiche d’information sur leur produit TIC. Cette étape permet d’identifier le matériel pour le réemploi certain versus le réemploi incertain. L’objectif de la méthode est de maximiser le réemploi de l’appareil et/ou de ses composantes, tout en minimisant les manipulations au centre de tri-réemploi. L’information demandée est la date d’achat ou l’âge estimatif de l’appareil, les caractéristiques techniques si elles sont connues. La fiche peut être complétée par le préposé si les informations sont disponibles sur internet ou dans une base de données particulière, ou peuvent être déterminées en observant l’ordinateur de bureau. Aussi, inscrire si l’appareil est fonctionnel, incertain ou non fonctionnel. Si le problème est connu, le noter, seulement pour le secteur ICI, prendre en note le nom du propriétaire de l’appareil.

Les consommateurs qui rapportent des produits TIC encore fonctionnels pourraient recevoir une somme d’argent en échange. Ceci n’est pas précisé dans le projet de règlement, mais il est fortement recommandé par la Filière et par Kuehr et Williams (2003). C’est un excellent incitatif pour le consommateur de rapporter ces biens tout de suite plutôt que de les conserver à la maison inutilement (ib.). Effectivement, les consommateurs résidentiels ont tendance à conserver leurs biens en fin de vie, au cas où cela pourrait leur servir de nouveau, mais la plupart du temps ces équipements TIC tardent et finissent aux rebuts après quelques années (id.). Pour inciter davantage les consommateurs à rapporter leurs produits, la somme d’argent devrait être en lien avec le prix de revente sur le marché.

Une fois les appareils reçus au point de collecte et la fiche d’information remplie, les appareils sont entreposés et lorsqu’une quantité suffisante est accumulée, ils sont acheminés vers un centre de tri-réemploi régional. Le nombre de centres dépendra de la localisation géographique et de la population à desservir. Les activités qui ont lieu au centre de tri-réemploi sont la vérification des produits TIC et de leur tri pour les débouchés correspondants.

Les appareils identifiés pour le réemploi certain complètent une série de tests pour en vérifier le bon fonctionnement. Un vérificateur général mandaté par l’ensemble des fabricants ou un pour chaque fabricant pourra effectuer des contrôles de qualité pour
permettre la certification du produit et même offrir une garantie. Sinon, une certification « maison » peut donner confiance aux consommateurs pour qu’ils achètent ces produits de seconde vie.

Pour les appareils classés comme réemploi incertain, ils subiront des tests orientés pour trouver la source du dysfonctionnement. Les appareils qui peuvent être réparés à prix raisonnable seront réparés, subiront des tests pour vérifier leur bon fonctionnement et recevront une certification. Ceux ne pouvant pas être réparés seront mis de côté pour le recyclage. Bien entendu, les pièces pouvant servir à réparer ou mettre à jour d’autres produits TIC seront conservées. C’est surtout le cas pour les ordinateurs de bureau où la capacité de mise à jour est élevée, mais ces besoins spécifiques pourront être évalués lors de la mise en place de la méthode et aussi évoluer avec le temps et l’expérience.

L’étape des tests d’inspection des produits requiert du personnel très qualifié. Celui-ci doit bien comprendre le fonctionnement de tous les appareils et les méthodes pour faire les vérifications. De plus, comme ils sont en lien avec les fabricants, ils peuvent avoir accès aux documents internes des entreprises pour bien comprendre le fonctionnement des produits TIC. Une base de données des défaillances et des méthodes de réparation serait très utile pour maximiser le réemploi. Les composantes reconnues comme défectueuses pourront être remplacées. Par exemple, un ordinateur pourrait posséder une carte graphique reconnue comme ayant des problèmes de refroidissement et de bris fréquents. Cette pièce pourrait être remplacée par une autre carte équivalente.

Le flux de produits TIC pour le réemploi est destiné à la commercialisation sur le marché de seconde vie. Pour le début du programme, comme la rentabilité est un facteur important, les ventes seront faites par commande par les consommateurs. Les trois types de consommateurs sont : le résidentiel, le secteur ICI et l’OPEQ. La raison de ce troisième type sera expliquée un peu plus loin. Un formulaire électronique de commande sera disponible sur le site internet du programme. Dans le cas des ordinateurs, les formulaires demanderont la fonction principale utile de l’ordinateur et d’identifier les besoins spécifiques. Comme ceci, les systèmes montés et vendus correspondront aux besoins du
client. Ce type de formulaire est plus utile pour le secteur ICI et l’OPEQ. Ce type de système de vente est déjà mis en œuvre par certains recycleurs, comme Greentec et GEEP, qui tentent de faire du réemploi avec les systèmes recueillis et vérifiés.

Les données contenues sur les disques durs seront complètement effacées par la méthode la plus sécuritaire connue à ce jour. Il s’agit de remplacer tout le contenu du disque par des 0 ou des 0 et des 1 de façon aléatoire (Kissel et al., 2006). Par la suite, il faut installer un système d’exploitation correspondant à la puissance de l’ordinateur et aux besoins du client. Dans ce cas-ci, un engagement peut s’établir avec Microsoft pour installer leurs systèmes d’exploitation, ainsi qu’avec Apple pour les ordinateurs Macintosh. Les données sur les cellulaires et les tablettes électroniques peuvent aussi être effacées, dans ce cas-ci les fabricants possèdent les instructions spécifiques pour chaque type d’appareil (ReCellular, 2011).

Dans le cas de la vente des autres types de produits TIC, un formulaire sera également disponible, mais la procédure sera moins complexe parce que les besoins sont moins spécifiques. Dans le cas d’une télévision, il ne faut préciser que le type (CRT, LCD ou plasma), la dimension et d’autres spécifications (sortie S-vidéo, sortie HDMI, etc.). Bien entendu, s’il y a plusieurs appareils qui correspondent aux mêmes critères, le client pourra choisir l’appareil désiré, ou l’appareil peut être sélectionné aléatoirement.

L’inclusion de la troisième sortie du flux des produits TIC destinés pour le réemploi a pour but de préserver l’OPEQ. C’est un organisme reconnu, très performant et qui possède un rôle social important au Québec. De plus, cela respecte un des principes de la méthode, qui est l’optimisation économique et sociale à l’échelle locale. Un certain pourcentage du réemploi peut être réservé pour le domaine de l’OPEQ, soit offrir du matériel informatique gratuitement ou à faibles coûts aux écoles privées et publiques, aux centres de la petite enfance, aux organismes à but non lucratif reliés à l’apprentissage et aux bibliothèques du Québec (OPEQ, s.d.).
Les clients peuvent recueillir leurs produits à un comptoir de service du centre de tri-réemploi régional ou se les faire expédier par la poste chez eux. Si les quantités le justifient, les produits peuvent être livrés par camion chez les clients. Ceci sera plutôt le cas du secteur ICI et les organismes avec qui l’OPEQ fait affaire.

En complément au réemploi, les produits TIC ne pouvant pas être réemployés sont envoyés aux CFER faisant le tri-démontage du matériel informatique en prévision du recyclage des matières brutes (Figure 3.2).

![Figure 4.2 Localisation des CFER effectuant le tri-démontage du matériel informatique au Québec](image)

Plutôt que de créer de nouveaux organismes, conserver et appuyer les organismes déjà en place évite des coûts inutiles, et de la gestion supplémentaire. Comme l’OPEQ, les CFER sont très efficaces et possèdent un rôle social et environnemental fameux. Ceux-ci sont déjà partenaires avec un important recycleur, GEEP, qui possède un établissement à Montréal pour le recyclage des pièces en matières premières de seconde vie. Ces matières seront vendues sur le marché. Si des plastiques ne peuvent pas être recyclés, ils pourront servir à la valorisation thermique. Finalement restent les résidus ultimes, donc les produits et les matières qui ne peuvent être réemployés, recyclés ou valorisés. Ceux-ci seront acheminés à l’enfouissement.
Est-ce qu’une méthode de ce type peut minimiser l’enfouissement et maximiser le réemploi et le recyclage? Un projet de recherche sur le transport et le recyclage de 179 tonnes de résidus TIC, effectué par le RPEC en 2004, a démontré que 98 % de cette matière a pu être traitée adéquatement à travers la reprise du matériel ou la valorisation thermique, et que seulement 2 % fut envoyé à l’enfouissement (La Filière, 2007). Cela prouve que le Canada a une option pour le recyclage des produits électroniques en fin de vie utile (ib.).

Ceci termine l’explication de la structure de la méthode proposée pour la gestion des résidus TIC en fin de vie utile. La prochaine section détaillera les différentes méthodes, options et technologies à notre disposition pour traiter les produits TIC en fin de vue utile.

4.6 Description et analyse des méthodes, des options et des technologies

4.6.1 Critères de comparaison

4.6.2 Réemploi

Un sondage mené par Recyc-Québec en 2004 auprès de 19 entreprises, dont cinq des plus grands recycleurs du Québec, nous révèle que 37 % d’une sélection de produits TIC (ordinateurs de bureau, portables et écrans CRT) ont été remis à neuf et offerts sur le marché, tandis que le reste était bon pour le recyclage (La Filière, 2007). Cela représente un taux de réemploi fort intéressant, il est à noter que 95 % du flux de résidus TIC provenait du secteur ICI, tandis que l’autre 5 % provenant du secteur résidentiel (ib.). De plus, le projet pilote CFER – 3RV ordinateurs, mené en 2006 par quatre CFER, révèlent que le taux de réemploi, tous secteurs confondus, était d’environ 29 % (ib.). Cette valeur inclut les données de l’OPEQ, qui joue un rôle majeur dans le domaine du réemploi. Effectivement,
lorsque l’OPEQ est exclu des calculs, le taux de réemploi descend à 2,29 % seulement (ib.).

Premièrement, il faut faire attention à ce type d’analyse, car des données importantes sont manquantes. Effectivement, des données provenant de la vente de produits usagés en ligne ou chez des revendeurs permettraient un schéma plus réaliste du réemploi. Deuxièmement, il y a un manque d’harmonisation des activités de récupération de produits TIC au Québec.

Le consommateur peut envoyer son produit TIC à son fabricant pour qu’il soit recyclé, il peut le déposer à un magasin Bureau en Gros, il peut, dans certains cas, le rapporter à un écocentre, il peut aussi l’envoyer à l’enfouissement ou il peut l’envoyer chez un recycleur. Puisque les flux sont dispersés, il n’est pas possible de maximiser les opérations de réemploi. C’est pour cette raison, qu’une seule voie serait préférable pour les résidus TIC, ainsi permettant au marché du réemploi de prendre son essor.

En ce qui concerne la gestion du réemploi dans la méthode proposée, quelques alternatives et options sont possibles. Effectivement, dans le modèle il est proposé de vendre des produits TIC par commande. Cette option est un point de départ, car elle est la plus simple et la moins coûteuse. Par contre, lorsque le marché le permettra, des détaillants de produits de seconde vie pourraient développer un réseau. Au début, avec l’aide des détaillants-récupérateurs, un département « seconde vie » pourrait vendre de ces produits en les sortant des entrepôts des centres de tri-réemploi. Les détaillants participants seront sélectionnés sur plusieurs facteurs, comme la population à desservir, l’intérêt de la population suite à des études de marché, les quantités et variétés de produits TIC disponibles, etc. D’autres détaillants ou même des recycleurs peuvent prendre l’initiative de ce « marché de seconde vie », par exemple les revendeurs, qui ont déjà un inventaire de produits de seconde vie. Avec l’évolution des programmes, les revendeurs pourraient recevoir une attestation gouvernementale comme détaillant officiel faisant la vente de seconde vie d’une grande gamme de produits TIC. Pour le moment, les entreprises GEEP et Greentec offrent des produits TIC de seconde vie, soit par commande ou dans le cas de GEEP, à leur magasin Microsys situé à même l’usine (Buchanan and Stepaniuk, 2011; GEEP, s.d.).
L’intérêt pour les produits de seconde vie pourrait augmenter grâce à un système de certification et de garantie tel que proposé dans la méthode. Effectivement, les produits vérifiés, testés et approuvés par les fabricants deviennent plus intéressants pour le consommateur, qui recherche toujours des produits de qualité à bas prix. La méconnaissance de l’état d’un appareil, donc le risque, est ce qui dissuade le plus un consommateur d’en faire l’acquisition (Kuehr and Williams, 2003). Alors, un système de garantie ne fait qu’accroître l’intérêt du consommateur et par le fait même, le marché des produits TIC de seconde vie, donc la rentabilité et le succès de cette méthode.

Le réemploi chez les ordinateurs est relativement facile, toutes les cartes peuvent être réutilisées. Cependant, il faut tenir compte des compatibilités entre les pièces assemblées pour s’assurer que l’ordinateur fonctionnera. De plus, la fonction recherchée permettra de choisir les pièces appropriées, différentes dans le contexte d’un ordinateur de bureau versus un ordinateur familial. La seule limitation au réemploi est que les composantes deviennent obsolètes assez rapidement (Kuehr and Williams, 2003; La Filière 2007). Par contre, il semble y avoir un ralentissement dans l’évolution de certaines technologies, dû aux limitations physiques (miniaturisations), ce qui donnera une chance au réemploi de croître (Agarwal et al., 2000).

Le réemploi des composantes chez les ordinateurs portables est plus difficile, puisque la disposition de ceux-ci est différente dépendamment du modèle de l’ordinateur portable. C’est pour cette même raison que la réparation d’un ordinateur portable est souvent plus compliquée et plus coûteuse. Par contre, les disques durs de portables sont généralement plus faciles à réemployer, même qu’ils peuvent être utilisés dans les ordinateurs de bureau, puisque les prises de contrôle et de courant sont les mêmes. Dans ce cas-ci le réemploi par assemblage est plus difficile, mais il est toujours possible de réemployer les ordinateurs portables directement ou de les recycler lorsqu’il n’y a pas d’autre alternative.

Le réemploi des téléviseurs est facile, cela exige de vérifier le bon fonctionnement de l’appareil. Parfois, la télécommande manquante d’origine sera remplacée par une télécommande universelle programmable. Il est possible de réutiliser des télécommandes
récupérées par le biais de la collecte des résidus TIC ou de faire l’achat en gros de ces télécommandes pour les inclure avec les téléviseurs de seconde vie. Comme pour les ordinateurs, il serait souhaitable de vérifier et certifier les téléviseurs et même d’inclure une garantie. Cette dernière peut surtout être pertinente pour les téléviseurs LCD, plasma ou DEL de type écran géant, étant des produits plus récents et plus dispendieux.

Les cellulaires sont déjà récupérés par les producteurs par le biais du programme national *Recycle mon cell*. Les appareils récupérés encore fonctionnels qui rencontrent certains critères sont déjà réemployés, incluant leurs accessoires (La Flèche, 2011).

Le réemploi des autres appareils peut se faire comme pour les téléviseurs, c’est-à-dire d’abord les vérifier. S’ils fonctionnent correctement, ceux-ci peuvent être réemployés sans aucune autre modification. De plus, les producteurs désirant faire certifier leurs produits peuvent le faire et même offrir des garanties, la durée étant fonction du type de produits.

Le réemploi, comme première méthode de gestion des résidus TIC, est une garantie d’économie d’énergie et de ressources. Effectivement, 80 % des ressources utilisées le sont lors de la fabrication de ces produits (La Filière, 2007). Des études démontrent que si seulement 10 % des ordinateurs sont réemployés directement ou mis à jour, cela sauve 8,6 % et 5,2 %, respectivement, d’énergie dans le cycle de vie versus 0,43 % lors du recyclage pour produire des matières premières secondaires (Kuehr and Williams, 2003). Donc au niveau environnemental, le réemploi est un excellent mode de gestion. Le marché du réemploi commence à prendre de l’importance dû à la consommation rapide des produits TIC. Comme ils sont encore fonctionnels, plusieurs consommateurs réduisent leur perte financière en revendant leur vieux produit, au lieu de tout simplement s’en débarrasser (Kuehr and Williams, 2003). La rentabilité du réemploi est difficile à déterminer puisqu’il y a peu de données, par contre, l’implantation d’une méthode à grande échelle augmente les quantités acheminées au centre de tri-réemploi et ainsi, le potentiel de réemploi. Pour l’opérationnalisation, il est certain que cela demande un effort important pour répandre ce mode de gestion. Des campagnes d’information et de sensibilisation encourageant les consommateurs à rapporter tous leurs produits aux points de collectes.
seraient nécessaires. Par ailleurs, la main d’œuvre pour ce type d’activité est disponible, on parle ici d’électroniciens, d’informaticiens, d’ingénieur électrique, etc.

4.6.3 Recyclage
Dans cette section, les technologies disponibles pour le recyclage des métaux, des plastiques et du verre seront exposées. Les technologies ne seront pas développées de façon exhaustive puisque l’essentiel est de pouvoir discerner les méthodes qui répondent le mieux aux critères, ainsi que comprendre les avantages, inconvénients et limitations de chacune d’elle.

Métaux
Les résidus TIC sont composés de divers métaux qui peuvent être recyclés, certains sont facilement extractibles, tandis que d’autres demandent des manipulations plus complexes. Ces métaux sont : l’acier, l’aluminium, le cuivre et les métaux précieux des cartes de circuits imprimés et des cartes électroniques. Environ 57 % des résidus TIC sont des métaux (Kuehr and Williams, 2003).

Les boîtiers d’ordinateurs de bureau sont généralement en acier, les châssis des autres appareils de grandes et moyennes tailles le sont aussi (ib.). Par exemple, environ 30 % d’un ordinateur ou d’une tour de serveur est composé d’acier (ib.). Ce matériau est facilement séparé des autres composantes lors du démantèlement manuel des résidus TIC, ainsi que lors du déchiquetage en petits morceaux; ils sont facilement séparables par leurs propriétés magnétiques (ib.). Par la suite, cet acier est vendu à des fonderies pour en refaire de nouveaux produits.

L’aluminium est un produit très recherché, car il vaut beaucoup sur le marché (ib.). Le pourcentage d’aluminium dans les produits TIC est généralement faible, mais certaines composantes, comme les disques durs, peuvent en contenir une quantité significative (ib.). En général, il y a deux types d’extrants, de basse et de haute qualité. La basse qualité d’extrait a un niveau d’impureté d’environ 10 à 20 %, tandis que l’extrait de haute qualité à seulement 2 % d’impureté (ib.). Pour ce dernier, il peut être raffiné et permettre de
produire des produits de qualité industrielle. Pour le mélange moins pur, l’aluminium peut en être retiré en utilisant des courants de Foucault (ib.). Par contre ce procédé est lent et dispendieux, c’est pour cette raison qu’il a une valeur moins élevée sur le marché (ib.).

Le cuivre est un matériau courant dans les produits TIC, surtout pour les câbles, où il est difficile de l’isoler complètement (ib.). Comme pour l’aluminium, il y a deux types d’extrants, de basse et de haute qualité. Cette dernière requiert un niveau d’impureté de 1 %, tandis que la basse qualité a 20 à 30 % d’impureté (ib.). La valeur du cuivre plus pur est beaucoup plus élevée puisqu’il peut être directement fondu en cuivre de qualité A (ib.). Les prix sur le marché pour le cuivre de basse qualité varient grandement (ib.).

Les métaux précieux se retrouvent dans les cartes de circuits imprimés et les cartes électroniques. Environ 25 % de ces cartes ont un contenu élevé de métaux précieux, principalement de l’or, de l’argent et des éléments du groupe du platine (ib.). En fait, une tonne de cartes électroniques contient 80 à 1 500 grammes d’or, cette concentration est 40 à 800 fois plus élevée que celle qu’on retrouve dans le minerai d’or (ib.). D’où l’intérêt du recyclage de ces composantes. Ils sont envoyés chez des raffineurs de métaux précieux pour extraire ces derniers. Au Québec, la fonderie Horne, à Rouyn-Noranda, reçoit les déchiquetures de cartes électroniques qui sont fondues avec du minerai de cuivre pour former des anodes de cuivre (Dorion, 2008). Ceux-ci sont acheminés chez CCR, à Montréal, où les métaux précieux seront extraits par électrolyse (ib.).

La rentabilité du recyclage des métaux est très variable, cela dépend des infrastructures en place, de la localisation dans le monde (pays développés versus en développement) et de l’état du marché (Kuehr and Williams, 2003). Au Québec, cette industrie jouit d’une stabilité marquée, malgré les fluctuations importantes de prix sur le marché (Olivier, 2010). Les infrastructures pour traiter ce type de résidus sont très bien implantées, il y a environ une quarantaine de fonderies et de manufacturiers sur le territoire québécois (ib.). De plus, des infrastructures spécialisées sont actives dans le reste du Canada et aux États-Unis. La proximité de ces infrastructures permet d’éviter l’exportation hors du continent américain pour faire traiter nos matières (CRIQ, 2009; Dorion, 2008). Le recyclage des résidus
métalliques permet des gains énergétiques importants par rapport à l’extraction des minéraux à l’état naturel, ainsi qu’une de réduction de la pollution (Olivier, 2010). De plus, cela assure une conservation des ressources naturelles et limite la dégradation des paysages due aux activités minières (ib.).

Plastiques

Les matériaux plastiques représentent environ 20 % des résidus TIC (Potelle, 2009). Les plastiques sont probablement les plus difficiles à trier puisque leur composition est très variée et non indiquée sur les appareils (CRIQ, 2009). En plus de retrouver plusieurs types de plastiques et de mélanges, 48 % des résidus TIC contiennent des retardateurs de flammes qui rendent la ségrégation des plastiques encore plus difficile et leur vente sur le marché devient limitée (ib.). D’après une étude faite au Minnesota en 1999, 76 % des plastiques utilisés dans les produits TIC étaient de deux types : le polystyrène choc (56 %) et l’acrylonitrile butadiène styrène (ABS) (20 %) (ib.). Le troisième type de plastique en importance, qui comptait pour 11 %, était l’oxyde de polyphénylène (PPO) (ib.). La majorité des composantes contenant des retardateurs de flammes sont les boitiers (59 %) et les cartes de circuits imprimés (30 %) (ib.).

Au Québec, le traitement des plastiques des résidus TIC est relativement bien établi. La majorité du démantèlement et une partie du tri se font dans la province (ib.). Le plus gros récupérateur de plastique est FCM recyclage, il fait un premier tri et l’exporte en Chine (ib.). Malgré cette pratique qui semble douteuse, cette compagnie est la seule au Québec à être accréditée par le RPEC, ce qui veut dire qu’il y a certaines contraintes à respecter lors de l’exportation; le plastique ignifugé exporté est généralement utilisé dans la fabrication de nouvelles composantes plastiques de produits TIC (ib.). D’après le programme de qualification des recycleurs du RPEC, l’installation importatrice doit avoir des procédés de transformation adéquats pour que la matière soit gérée de façon sûre et écologique (RPEC, 2010). Une autre partie du plastique québécois est envoyée en Ontario, chez GEEP et Knor Plast (CRIQ, 2009).
Les débouchés pour les plastiques ne contenant pas de retardateurs de flammes se retrouvent sur le marché des matières premières secondaires traditionnel (p.ex. CD, DVD et leurs boîtiers). Pour ceux qui en contiennent, deux scénarios de mise en valeur sont observés. Le premier consiste en recyclage des plastiques dans des utilisations similaires, tel que mentionné précédemment et le deuxième consiste à extraire les substances ignifuges des plastiques pour les réutiliser dans une plus grande gamme d’applications (ib.). Le premier est nettement plus simple et moins couteux, mais ne change pas le fait que ces plastiques contiennent des substances souvent dangereuses pour la santé et l’environnement. D’autant plus que certains retardateurs halogénés sont interdits depuis quelques années en Europe, aux États-Unis et en Asie, c’est le cas des pentabromodiphényles éthers, des octabromodiphényles éthers et les polybromodiphényles (ib.). Ceci fait en sorte que le marché pour la réutilisation de ces plastiques sans extraction des retardateurs devient extrêmement limité (ib.). Pour les autres plastiques ignifugés, le marché des États-Unis est petit, mais l’Asie accepte d’emblée ces matières, puisque la majorité des boîtiers d’équipements TIC y sont fabriqués (ib.).

Il y a trois types de traitement pour les plastiques : mécanique, thermique et chimique. Il existe de nombreuses méthodes et technologies pour trier, recycler et extraire les substances ignifuges de ces plastiques, mais la plus commune est la séparation par densité lors d’une flottation après granulation (ib.). Il existe aussi la séparation électrostatique et l’identification des types de plastiques par spectrométrie infrarouge ou à rayons X (ib.). Un résumé de ces différentes technologies est regroupé au tableau 3.1, les avantages et les inconvénients y sont exposés, ainsi que les types plastiques compatibles.
Tableau 4.1 Technologies de tri des plastiques
Tiré de CRIQ, 2009, p. 43

<table>
<thead>
<tr>
<th>Technique employée</th>
<th>Plastiques</th>
<th>Avantages</th>
<th>Inconvénients</th>
<th>Statut</th>
<th>Intervenant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tri par spectromètre à infrarouge</td>
<td>ABS</td>
<td>Séparation de l’ignifuge du plastique</td>
<td>Besoin de plus de développement pour obtenir une séparation complète</td>
<td>Développement</td>
<td>CTTÉI</td>
</tr>
<tr>
<td>Solubilisation et extraction</td>
<td>Ignifuges bromés</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>des ignifuges</td>
<td>Tous les plastiques et</td>
<td>Versatile</td>
<td>Les traceurs ne peuvent pas être enlevés du plastique</td>
<td>Recherche et Développement</td>
<td>ENSAM</td>
</tr>
<tr>
<td></td>
<td>ignifuges</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marqueurs et traceurs</td>
<td>Tous les plastiques et</td>
<td>Commercialisé</td>
<td>Ne fonctionne pas pour séparer : Caoutchouc/plastiques Nylon/acétal</td>
<td>Commercialisé</td>
<td>MBA Polymers</td>
</tr>
<tr>
<td></td>
<td>ignifuges</td>
<td>Procédé simple</td>
<td>Basse efficacité pour les plastiques retardateurs de flammes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Séparation électrostatique</td>
<td>Tous les plastiques</td>
<td>Commercialisé</td>
<td>Doit trouver un marché pour chaque combinaison de plastique et ignifuge</td>
<td>Commercialisé</td>
<td>MBA Polymers</td>
</tr>
<tr>
<td>Séparateur tribo-électrique</td>
<td></td>
<td>Procédé simple</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>de Plas-Sep, Ltd</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spectroscopie</td>
<td>Tous les plastiques et</td>
<td>Commercialisé</td>
<td>Doit trouver un marché pour chaque combinaison de plastique et ignifuge</td>
<td>Commercialisé et en développement</td>
<td>Recovery Plastics International (RPI)</td>
</tr>
<tr>
<td>Infra rouge (IR) proche et moyen</td>
<td>ignifuges</td>
<td>Procédé simple</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tous les plastiques</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flotation pelliculaire</td>
<td>Ignifuges bromés et</td>
<td>Procédé versatile et commercialisé</td>
<td>Doit trouver un marché pour chaque combinaison de plastique et ignifuge</td>
<td>Commercialisé et en développement</td>
<td>Ti Tech</td>
</tr>
<tr>
<td></td>
<td>phosphatés</td>
<td>Fonctionne pour différents ignifuges</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Le traitement de l’image de la</td>
<td>Tous les plastiques</td>
<td>Procédé commercialisé pour</td>
<td>Doit trouver un marché pour chaque combinaison de plastique et ignifuge</td>
<td>Commercialisé</td>
<td>Galloo Plastics</td>
</tr>
<tr>
<td>transmission par rayons X permet la</td>
<td>ignorifuges bromés</td>
<td>les ignifuges bromés</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>séparation par densité atomique et peut</td>
<td></td>
<td>Procédé simple</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>être utilisé pour isoler</td>
<td>Tous les plastiques</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>différents métaux ou pour</td>
<td>Ignifuges</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>trier les plastiques avec ignifuges</td>
<td>bromés</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>À partir de résidus de broyage, séparation du polyéthylène et du polypropylène, du polystyrène et de l’ABS</td>
<td>Tous les plastiques</td>
<td>Procédé industriel ne nécessitant pas d’intervention manuelle</td>
<td>Investissements importants. Nécessité de traiter des volumes importants pour être économiquement intéressant</td>
<td>Commercialisé et en développement</td>
<td>Galloo Plastics</td>
</tr>
</tbody>
</table>
Il est difficile d’identifier la technologie qui répond à tous les critères puisqu’il manque certaines données, mais il semble que la flottation pelliculaire semble la plus simple et peut permettre la ségrégation de presque tous les types ignifuges. La seule chose est le manque de marché pour chaque spéciation de plastiques.

Tableau 4.2 Technologies de traitement mécanique des plastiques
Tiré de CRIQ, 2009, p. 46.

<table>
<thead>
<tr>
<th>Technique employée</th>
<th>Plastiques</th>
<th>Avantages</th>
<th>Inconvénients</th>
<th>Statut</th>
<th>Intervenant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planche bois/plastique</td>
<td>ABS</td>
<td>Procédé simple et versatile</td>
<td>Séquestration à très long terme n’est pas prouvée</td>
<td>Commercialisé</td>
<td>APR2, France</td>
</tr>
<tr>
<td>Mélange composé de 50 % de plastiques micronisés et de 50 % de farine de bois avec additifs pour la stabilisation qui permet à la séquestration du produit ignifugeant</td>
<td></td>
<td>Obtenion d’un produit fini</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conforme au RoHS</td>
<td></td>
<td>Nom commercial : Premix</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recyclage interne de polystyrène avec ignifuge pour BRAVIA LCD TV</td>
<td>Polystyrène</td>
<td>Recyclage du polystyrène sous forme plastique et mousse.</td>
<td>Seulement pour les télévisions à tube cathodique Sony pour le marché japonais</td>
<td>Commercialisé</td>
<td>Sony Green Cycle Corporation (Nagoya City)</td>
</tr>
<tr>
<td>Ajout d’un additif pour augmenter la résistance au feu et aux chocs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EW ood : nouveau produit australien fabriqué à 100 % à partir de PS recyclé et d’autres produits plastiques styréniques.</td>
<td>Polystyrène et autres produits styréniques</td>
<td>Produit ayant les mêmes caractéristiques que le bois.</td>
<td>Peu d’information sur la durabilité du produit et sur son innocuité</td>
<td>Commercialisé</td>
<td>Close The Loop</td>
</tr>
<tr>
<td>La compagnie se spécialise dans le recyclage des DEEE</td>
<td></td>
<td>Produit résistant à l’eau, les racines, les UV, les bactéries, les insectes.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Réduit la demande en bois.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Les procédés de recyclage mécanique consistent à porter les plastiques à leur température critique de ramollissement pour permettre une nouvelle extrusion et moulage (CRIQ, 2009). Les plastiques contenant des retardateurs de flammes sont compatibles avec ce type de procédé. De plus, les propriétés physiques et ignifuges des plastiques sont conservées, même après cinq recyclages (ib.). Aussi, les concentrations de dioxines et de furanes formés lors de ces procédés respectent les limites maximales admissibles des pays concernés, pourvu que cela est effectué correctement (ib.). Le traitement le plus commun est de granuler les plastiques ignifuges, avant l’étape de ramollissement, pour refaire des
produits TIC, mais la réutilisation du plastique pour former d’autres produits, comme du bois/plastique est possible.

Tableau 4.3 Technologies de traitement thermique des plastiques
Tiré de CRIQ, 2009, p. 49.

<table>
<thead>
<tr>
<th>Technique employée</th>
<th>Plastiques</th>
<th>Avantages</th>
<th>Inconvénients</th>
<th>Statut</th>
<th>Intervenant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gazéification en deux étapes</td>
<td>Tous les plastiques, Ignifuges bromés</td>
<td>Récupération de plus de 95 % du brome</td>
<td>Accumulation de poussières dans les installations</td>
<td>Développement</td>
<td>Energy research Centre of the Netherlands (ECN) Pyromaat</td>
</tr>
<tr>
<td>Extraction de l’ignifuge bromé dans un solvant chauffé juste en dessous du point de fusion du polymère dans un « mélangeur/ extrudeuse »</td>
<td>Tous les plastiques, Ignifuges bromés</td>
<td>Extrusion est faite à même le procédé</td>
<td>Le procédé peut difficilement passer à une échelle commercialisable, Coût en capital élevé</td>
<td>Développement</td>
<td>Mitsubishi, Japan</td>
</tr>
<tr>
<td>Hydrolyse et pyrolyse</td>
<td>PVC</td>
<td>Pourrait être traité dans leur usine de traitement de PVC (50 000 t/an de PVC recyclé)</td>
<td>Pas encore prouvé</td>
<td>Développement</td>
<td>RGS90, Stigsnaes, Danemark</td>
</tr>
</tbody>
</table>

Le traitement thermique dans cette section exclut la valorisation thermique, celle-ci sera couverte dans la prochaine section. En termes de traitement thermique, la gazéification en deux étapes semble être la plus prometteuse avec la récupération de 95 % du brome. Comme toutes ces méthodes sont encore en développement, ce ne sont peut-être pas les meilleures technologies pour retirer les retardateurs de flamme des résidus plastiques de TIC pour le moment. La technique employée pour le PVC peut être intéressante puisqu’il n’y a pas encore eu d’inconvénient d’observé, mais c’est seulement pour un seul type de matière.

Tableau 4.4 Technologies de traitement chimique des plastiques
Tiré de CRIQ, 2009, p. 53.

<table>
<thead>
<tr>
<th>Technique employée</th>
<th>Plastiques</th>
<th>Avantages</th>
<th>Inconvénients</th>
<th>Statut</th>
<th>Intervenant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centrevap Solubilisation</td>
<td>Tous les plastiques, Ignifuges bromés</td>
<td>Procédé flexible, Rendement élevé, Technologie simple</td>
<td>Problème technique encore à résoudre</td>
<td>Développement</td>
<td>Axion</td>
</tr>
<tr>
<td>Méthode</td>
<td>Matériau</td>
<td>Procédé flexible</td>
<td>Technologie assez simple</td>
<td>D’autres additifs insolubles pourraient être enlevés</td>
<td>Plusieurs recherches nécessaires pour obtenir un procédé commercialisable</td>
</tr>
<tr>
<td>--</td>
<td>---------------------------</td>
<td>------------------</td>
<td>--------------------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Solubilisation sélective du polymère suivi par une filtration pour récupérer l’ignifuge</td>
<td>Tous les plastiques, Ignifuges bromés</td>
<td>Procédé flexible</td>
<td>Technologie assez simple</td>
<td>D’autres additifs insolubles pourraient être enlevés</td>
<td>Plusieurs recherches nécessaires pour obtenir un procédé commercialisable</td>
</tr>
<tr>
<td>Débromination par hydroxyde de potassium</td>
<td>Tous les plastiques, Ignifuges bromés</td>
<td>Le bromure d’octyle est un produit commercialisé</td>
<td>Haute formation de dioxine, réaction incomplète avec le polymère bromé</td>
<td>Haute formation de dioxine, réaction incomplète avec le polymère bromé</td>
<td>Haute formation de dioxine, réaction incomplète avec le polymère bromé</td>
</tr>
<tr>
<td>Solubilisation dans un liquide ionique</td>
<td>Tous les plastiques, Ignifuges bromés</td>
<td>Solvant très sélectif</td>
<td>Excellent rendement</td>
<td>Il est difficile de récupérer tous les solvants</td>
<td>Il est difficile de récupérer tous les solvants</td>
</tr>
<tr>
<td>Débromination dans l’eau chaude à haute température</td>
<td>Tous les plastiques, Ignifuges bromés</td>
<td>L’eau est un solvant propre et facilement traitable</td>
<td>Formation de dioxine, dégradation du polymère</td>
<td>Formation de dioxine, dégradation du polymère</td>
<td>Formation de dioxine, dégradation du polymère</td>
</tr>
<tr>
<td>Tri par spectromètre à infrarouge</td>
<td>ABS, Ignifuges bromés</td>
<td>Séparation de l’ignifuge du plastique</td>
<td>Besoin de plus de développement pour obtenir une séparation complète</td>
<td>Besoin de plus de développement pour obtenir une séparation complète</td>
<td>Besoin de plus de développement pour obtenir une séparation complète</td>
</tr>
<tr>
<td>Solubilisation et extraction des ignifuges</td>
<td>Tous les plastiques, Ignifuges bromés</td>
<td>Faible consommation d’énergie</td>
<td>Les étapes finales de nettoyage du polymère sont encore en développement</td>
<td>Les étapes finales de nettoyage du polymère sont encore en développement</td>
<td>Les étapes finales de nettoyage du polymère sont encore en développement</td>
</tr>
<tr>
<td>Creasolv, solubilisation</td>
<td>Tous les plastiques, Ignifuges bromés</td>
<td>Faible consommation d’énergie</td>
<td>Les dioxines sont enlevées</td>
<td>Les dioxines sont enlevées</td>
<td>Les dioxines sont enlevées</td>
</tr>
<tr>
<td>Extraction par CO$_2$ supercritique</td>
<td>Tous les plastiques, Tous les ignifuges</td>
<td>CO$_2$ est un solvant propre, peu dispendieux et facilement retiré par diminution de la pression</td>
<td>La séparation est encore difficile, le procédé nécessite plus de développement.</td>
<td>La séparation est encore difficile, le procédé nécessite plus de développement.</td>
<td>La séparation est encore difficile, le procédé nécessite plus de développement.</td>
</tr>
<tr>
<td>Précipitation dans un antisolvant par CO$_2$ supercritique</td>
<td>Tous les plastiques, Ignifuges bromés</td>
<td>CO$_2$ est un solvant propre, peu dispendieux et facilement retiré par diminution de la pression</td>
<td>Utilise des membranes sophistiquées pour la séparation des solvants pour ensuite les récupérer</td>
<td>Utilise des membranes sophistiquées pour la séparation des solvants pour ensuite les récupérer</td>
<td>Utilise des membranes sophistiquées pour la séparation des solvants pour ensuite les récupérer</td>
</tr>
</tbody>
</table>
Les technologies de traitement chimique sont toutes en développement. L’avantage de ce type de traitement est de séparer complètement les plastiques des substances ignifuges. Cela génère deux types d’extraits purs qui ont une meilleure valeur sur le marché. Par contre, les ignifuges bromés sont toxiques et le marché pour ceux-ci devient de plus en plus limité avec l’interdiction de les incorporer dans les plastiques de nos produits de consommation (CRIQ, 2009). En général, les technologies de traitement chimique sont plus coûteuses, ce qui limite leur commercialisation (ib.). Par contre, avec l’augmentation du prix du pétrole, ce coût de traitement pourrait possiblement se justifier dans les années à venir (ib.).

En observant toutes les technologies exposées, les technologies de tri semblent répondre à relativement tous les critères. La rentabilité est difficile à déterminer, puisque ce type d’information est considéré confidentiel, mais c’est présentement le traitement le plus commercialisé, c’est sans doute la filière la plus rentable. Les opérations sont généralement simples et l’impact environnemental semble être moindre que pour les traitements thermiques et chimiques qui nécessitent la capture de solvants, de poussières et autres substances. Seul le marché est limité, à cause des différentes spéciations, mais cela peut être compensé en combinant le tri à un traitement mécanique où les plastiques peuvent être réutilisés pour produire d’autres produits comme le bois/plastique. Ce dernier requiert cependant certains types de plastique spécifiques.

Verre

Le verre dans les résidus TIC est utilisé pour les écrans d’ordinateur et de téléviseurs. Pour le moment, le verre récupéré provient majoritairement des écrans de technologie CRT. Il totalise environ 19 % du flux de résidus TIC, mais cette technologie est remplacée peu à peu par les écrans plats (Kuehr and Williams, 2003). La proportion de verre dans un écran CRT moyen est de 60 %, de 8 % dans un écran LCD et de 37 % dans un écran plasma (CRIQ, 2009). La difficulté du recyclage du verre des écrans CRT est doublée par la présence de deux types de verre, chacun ayant une composition chimique particulière (ib.). Le verre de la dalle contient du baryum et du strontium qui font écran aux faisceaux d’électrons, tandis que le verre du cône et du collet contient du plomb (Figure 3.1). Les
nombreuses technologies pour traiter les tubes cathodiques des téléviseurs et des écrans d’ordinateur sont décrites ci-dessous.

Deux avenues de traitement sont utilisées pour ces écrans. La première consiste à séparer la dalle du cône et du collet par découpage. La performance de cette méthode est de 40 à 100 tubes par heure (ib.). Il est nécessaire d’extraire les poudres luminescentes déposées sur la face interne de la dalle en utilisant des brosses et un système d’aspiration (ib.). La deuxième avenue consiste à broyer le tube entier et de séparer les agrégats par tri-optique (ib.). La performance de celle-ci est de 800 tubes par heure (ib.). Malgré cette meilleure performance, la matière est un peu moins pure, sa valeur sur le marché du recyclage sera moindre (CRIQ, 2009; Kuehr and Williams, 2003). Alors, la décision de prendre une méthode ou une autre dépendra de divers facteurs, comme l’état du marché, les infrastructures et technologies locales, etc.

Le découpage de la dalle du cône est un procédé délicat puisqu’il faut séparer le verre contenant du plomb de celui qui n’en a pas et qu’il y a des risques d’éclatements du tube. Il existe quatre technologies de découpage. La première est l’utilisation d’un fil de nichrome chauffant le tour de la dalle du CRT pour causer un différentiel thermique du verre. Le refroidissement subséquent cause un choc thermique qui fait craquer le verre, et permet la séparation des deux parties. L’autre méthode se base sur le même principe, mais le chauffage de l’écran à lieu localement puis cette partie est refroidie sous un courant d’air.
La troisième méthode est le découpage au laser. Un rayon laser chauffe le verre et cette même partie est refroidie par un jet d’eau froide qui engendre le craquage du verre. Finalement, la quatrième méthode est une avancée récente dans le domaine : le découpage par disques diamantés. Ces scies dé coupent le verre au point très précis du raccord entre les deux types de verre. Cette technique est la seule qui évite les risques d’éclatement et qui assure une séparation adéquate de la dalle et du cône (CRIQ, 2009).

Il y trois méthodes d’ex extractions des métaux contenus dans le verre. La première méthode insère le verre plombé dans une fonderie de plomb (p.ex. Xstrata, Boliden, Umicore) (Potelle, 2009). Le verre est alors un fondant qui remplace le sable, à la fin du procédé celui-ci intègre les scories et peut alors être recyclé dans des agrégats routiers. Mais la quantité de verre provenant des CRT pouvant intégrer cette application et la quantité de fonderies pouvant tolérer ce type de verre sont limitées. Alors, les deux autres méthodes sont préférées et mènent à la production d’un verre pur pour de nouvelles utilisations. La deuxième méthode fait fondre le verre contaminé dans un milieu réducteur, en utilisant le carbone ou l’aluminium pour réduire les oxydes métalliques en métaux. Ceux-ci tombent sous forme de billes dans le fond du bain, alors que le verre reste liquide. La troisième méthode est une séparation par procédé électrolytique. Ceci consiste à appliquer un courant dans un bain fondant de verres mélangés, où les métaux seront attirés par l’anode (ib.).

Le taux de réintégration du verre recyclé dans la même chaîne de fabrication demeure très limité et cela demeurera le cas pour les prochaines décennies (Kuehr and Williams, 2003). Par contre, il existe de nouveaux débouchés pour le verre, qu’il soit pollué ou non. C’est dans le domaine de la construction que ce verre peut se faire recycler, comme dans la fabrication de nattes isolantes en fibre de verre; il peut aussi servir dans la fabrication de carrelage en céramique ou de briques décoratives (CRIQ, 2009). Enfin, il peut servir d’adjuvant dans des ciments ou tout simplement comme agrégats (ib.).

Le marché du traitement des écrans plats est en pleine croissance, mais les technologies de traitement en sont encore au stade de développement. Il existe quelques installations en fonction en Angleterre et en France. Pour l’instant, le démantèlement des écrans plats est
manuel, il en prend environ 20-25 minutes versus 5 minutes pour un écran CRT, ce qui rend leur coût de traitement plus élevé. Les étapes de traitement d’un écran LCD sont aux nombres de trois. Premièrement, il faut démanteler la coque en plastique, ensuite démonter les éléments électroniques. Finalement, extraire manuellement les lampes au mercure pour les diriger vers une filière de traitement de ces lampes. Il reste à traiter la dalle LCD et les métaux ferreux et non ferreux. La dalle LCD contient les cristaux liquides et ne nécessite pas d’extraction avant la fusion pour récupérer le verre. Cependant l’oxyde d’indium-étain est disponible en quantité limitée dans les réserves naturelles, il est préférable de le séparer et de le récupérer. En attendant de nouvelles technologies de traitement efficaces, les recycleurs stockent provisoirement les dalles. Une nouvelle méthode moins coûteuse et plus respectueuse de l’environnement a été mise au point au Japon en 2007. Elle consiste à utiliser un plasma d’air à pression atmosphérique pour graver (sic) la couche d’indium-étain et condenser ensuite l’indium sur une plaque de verre. Environ 80 % de l’indium des écrans a pu être récupéré en 30 secondes (ib.). Cette technologie s’insère bien dans la démarche de chimie verte concernant la récupération des métaux critiques.

Le recyclage des écrans CRT présente une perte financière généralement; le coût net de l’extraction et de la vente des matières est négatif (Kuehr and Williams, 2003). Par contre, plusieurs recycleurs à travers le monde pouvant recevoir des quantités considérables de verre de CRT et le marché est disponible. En ce qui concerne l’impact environnemental du recyclage du verre, il n’est pas considérable puisque les contaminants du verre sont des métaux facilement extractibles qui peuvent rejoindre une autre chaîne de production. La situation n’est pas la même pour les écrans plats. Le marché est en émergence et quelques technologies existent, mais plusieurs sont encore en développement (CRIQ, 2009). Par contre, si ces produits ne sont pas traités correctement, il peut y avoir des conséquences environnementales plus importantes. Par exemple, la contamination du sol ou des eaux par le mercure contenu dans les lampes de rétroéclairage. De plus, les cristaux liquides sont des substances difficilement biodégradables et potentiellement bioaccumulable, dont les effets sur l’environnement ne sont pas encore connus, alors il vaut mieux faire preuve de prudence (CRIQ, 2009).
Les métaux sont les matières les plus facilement recyclables, les propriétés physicochimiques et les technologies permettent une séparation de chacun d’eux. Par ailleurs, le grand marché des métaux accorde une valeur élevée à plusieurs d’entre eux. Les plastiques, lorsque purs, sont également assez facilement recyclables, mais lorsqu’ils sont mélangés à des ignifuges, les procédés d’extraction rendent leur recyclage plus compliqué et plus couteux. Par contre, puisqu’ils proviennent de ressources naturelles non renouvelables, l’idéal est de recycler ces matières le mieux possible. Finalement, le traitement du verre contenant des métaux est relativement complexe et couteux. Le verre est fabriqué à partir du calcin, de la silice finement broyée. C’est une ressource très abondante sur la Terre, alors est-il justifiable de recycler le verre dopé par des métaux? Tout dépend de la lixiviation des métaux qui se retrouvent dans le verre, si elle est importante, le verre contaminé enfoui peut contaminer les sols et potentiellement les aquifères (Kuehr and Williams, 2003). C’est pour cette raison que le verre doit aussi être traité adéquatement.

4.6.1 Valorisation énergétique
<table>
<thead>
<tr>
<th>Technique employée</th>
<th>Plastiques</th>
<th>Avantages</th>
<th>Inconvénients</th>
<th>Statut</th>
<th>Intervenant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Convertir le plastique en diesel par pyrolyse</td>
<td>Tous les plastiques</td>
<td>Production d’énergie</td>
<td>Risque de contaminants dans le diesel qui sera brûlé.</td>
<td>En développement et commercialisé</td>
<td>GEEP (Ontario), Canada</td>
</tr>
<tr>
<td></td>
<td>Tous les ignifuges</td>
<td></td>
<td></td>
<td></td>
<td>Biossyn d’Enerkem (Québec), Canada</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ozmotech, Australie et autres</td>
</tr>
<tr>
<td>Incinération pour génération d’énergie</td>
<td>Tous les plastiques</td>
<td>En Europe on peut brûler jusqu’à 3 % de plastiques TIC avec les déchets domestiques 50-130 €/T</td>
<td>Non acceptable pour le Québec selon les présentes législations.</td>
<td>Commercialisé</td>
<td>Plusieurs pays d’Europe</td>
</tr>
<tr>
<td></td>
<td>Tous les ignifuges</td>
<td></td>
<td>Si mal contrôlé, peut produire des dioxines et furanes.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pyrolyse, 450-750 °C, absence d’O₂</td>
<td>Tous les plastiques</td>
<td>Extraction du brome, de monomères et autres composés chimiques</td>
<td></td>
<td>Commercialisé</td>
<td>TIC en fin de vie comme remplacment partiel de combustible dans l’industrie cimentaire</td>
</tr>
<tr>
<td></td>
<td>Tous les ignifuges</td>
<td>Métaux précieux</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CaCO₃ diminue l’émission de dioxines de la combustion de PVC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Production de dibenzodioxines et de dibenzofuranes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Combustion</td>
<td>Tous les plastiques</td>
<td>Remplace de la matière première (~6 %)</td>
<td>Augmentation possible de la production de dibenzodioxines et de dibenzofuranes</td>
<td>Commercialisé et en développement</td>
<td>Umicore (fonderie de métal intégrée), Belgique</td>
</tr>
<tr>
<td></td>
<td>Tous les ignifuges</td>
<td>Récupère 70 % de l’antimoine</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Les composés organiques, incluant les ignifuges bromés, sont presque totalement détruits (température > 1 100 °C)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Utilise du plastique avec métaux (75 % plastique), donc moins de tri nécessaire</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

La valorisation thermique des plastiques semble être une activité en hausse (CRIQ, 2009). Effectivement, ils peuvent remplacer le charbon et servir d’agent réducteur dans des aciéries et dans des fonderies (ib.). Au Québec et au Canada, la technique de conversion du plastique en diesel par pyrolyse est en démarrage.
La rentabilité de l’incinération n’est pas évidente. Cette option pour le Québec n’est pas avantageuse, puisqu’il y a très peu d’incinérateurs sur le territoire et que les coûts associés sont généralement élevés. Le problème environnemental majeur demeure les risques de production de dioxines et de furanes. En ce qui concerne la rentabilité pour la technologie de conversion en diesel, l’information n’est pas disponible, mais parmi les avantages environnementaux intéressants figurent une meilleure qualité possible du diesel (moins de contaminants que le diesel conventionnel) et la réutilisation d’une ressource fossile.

4.6.2 Élimination

L’élimination est le dernier mode de gestion dans la hiérarchie des 3RV-E, c’est la dernière alternative pour la fin de vie d’un bien. Ironiquement, aux États-Unis, 82 % des téléviseurs, cellulaires et ordinateurs sont envoyés à un site d’enfouissement (CRIQ, 2009). Le danger est que ces déchets émettent des substances toxiques dans l’environnement, comme le plomb, le mercure, les retardateurs de flammes, le cadmium, le zinc, le nickel, etc. Par exemple, une étude a démontré que le niveau d’émission de plomb des écrans CRT était trois fois plus élevé que les normes maximales des États-Unis (Kuehr and Williams, 2003). Une autre étude a démontré que l’émission de plomb provenant d’autres produits TIC dépassait ces mêmes normes (Tsydenova and Bengtsson, 2011). Le mercure représente un autre problème, pas seulement au niveau de la contamination du sol, mais aussi de l’air. Une étude a mesuré des concentrations de mercure gazeux augmentées d’un facteur 1 000 sur un site d’enfouissement (ib.).

Dans ces lieux d’enfouissement, la contamination du sol et des eaux souterraines est un problème sensiblement moins grave au Québec qu’aux États-Unis. Effectivement, depuis 2009, nous devons mettre en place des lieux d’enfouissement techniques sur fond imperméabilisé, capturer et traiter le lixiviat et les biogaz (Olivier, 2010). Par contre, les résidus TIC représentent un problème pour les anciens lieux d’enfouissements sanitaires au Québec. Par ailleurs, même si des mesures sont prises pour prévenir la pollution de l’environnement, l’enfouissement des TIC est une perte massive de ressources qui ne peuvent plus servir à d’autres procédés. Par exemple, d’après des calculs du National Institute for Materials Science à Tsukuba, au Japon, un grand pourcentage des réserves
connues de métaux dorment dans les sites d'enfouissement japonais, dont l'or (16 % des réserves connues), l'argent (22 %), l'indium (61 %), l'étain (11 %) et une quantité considérable de platine (National Institute for Materials Science, 2008). Ce sont de véritables gisements de matières secondaires!

Le coût de l’enfouissement au Québec pour les produits TIC s’élève à 160 $ par tonne (MDDEP, 2009). En comparant au coût moyen du traitement d’un seul ensemble informatique qui s’évalue autour de 12,20 $, donc 1 017 $ par tonne, l’enfouissement est une méthode très peu coûteuse (ib.). Au niveau des opérations tout est déjà en place, par contre le critère environnemental est très négatif. D’un point de vue élargi, c’est une perte directe de ressources et une perte indirecte d’énergie, alors que des impacts environnementaux nombreux seront associés à l’extraction de ces ressources des différents minerais et la production de nouveaux équipements. En général, les hautes technologies demandent beaucoup de manipulations, d’énergie et de coûts. De cet angle, la rentabilité est négative, donc l’enfouissement est probablement le mode de gestion des produits TIC le moins favorable.

4.7 Analyse de rentabilité

Pour qu’une méthode d’application de la REP au niveau des produits TIC en fin de vie utile soit acceptée, il est primordial que les fabricants conservent un bilan positif. Si le fardeau de la protection de l’environnement et de la conservation des ressources est trop lourd, aucune entreprise n’adhérera à cette méthode. La partie quantitative de cette section se basera sur l’étude d’impact économique du projet de règlement sur la REP du MDDEP, suivi d’une présentation des limitations de celle-ci et d’une opposition aux coûts présentés dans l’étude économique. Finalement, il y aura une discussion sur les bénéfices d’un tel programme pour la société et de la réduction du fardeau de ces matières pour les municipalités.

L’étude d’impact économique du MDDEP estime l’impact que le projet de Règlement sur la récupération et la valorisation de produits par les entreprises aura sur la société québécoise (MDDEP, 2009).
Tableau 4.6 Coût unitaire de récupération et de valorisation pour les principales sous-catégories de produits électroniques
Tiré de MDDEP, 2009, p. 33.

<table>
<thead>
<tr>
<th>Équipement</th>
<th>Coût unitaire ($)</th>
<th>Poids unitaire (kg)</th>
<th>Coût à la tonne ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ordinateur de bureau</td>
<td>12,20</td>
<td>12,0</td>
<td>1 017</td>
</tr>
<tr>
<td>Ordinateur portable</td>
<td>2,95</td>
<td>2,9</td>
<td>1 017</td>
</tr>
<tr>
<td>Écran d’ordinateur</td>
<td>19,20</td>
<td>15,6</td>
<td>1 231</td>
</tr>
<tr>
<td>Imprimante, télecopieur, numériseur</td>
<td>8,46</td>
<td>7,1</td>
<td>1 191</td>
</tr>
<tr>
<td>Téléviseur</td>
<td>54,58</td>
<td>44,1</td>
<td>1 237</td>
</tr>
<tr>
<td>Périphériques</td>
<td>1,31</td>
<td>1,1</td>
<td>1 191</td>
</tr>
<tr>
<td>Téléphone</td>
<td>0,74</td>
<td>0,6</td>
<td>1 343</td>
</tr>
</tbody>
</table>

Les coûts unitaires présentés dans le tableau sont les coûts nets, autrement dit, les bénéfices liés au réemploi, au recyclage et à la valorisation ont été soustraits du coût brut de traitement (*ib.*). Il semble que le traitement de tous ces produits TIC coûte quelque chose à l’entreprise et ne présente que des déficits. Alors, pour compenser, les coûts seront internalisés aux prix des produits TIC vendus sur le marché (Tableau 3.6). Cependant ce sont des données d’économie traditionnelle, sans internalisation des coûts environnementaux présentement non estimés.
Tableau 4.7 Impact du coût de la REP sur le prix des principaux produits, en dollars
Tiré de MDDEP, 2009, p. 35.

<table>
<thead>
<tr>
<th>Équipement</th>
<th>Coût par unité vendue ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ordinateur de bureau</td>
<td>9,27</td>
</tr>
<tr>
<td>Ordinateur portable</td>
<td>2,24</td>
</tr>
<tr>
<td>Écran d’ordinateur</td>
<td>14,59</td>
</tr>
<tr>
<td>Imprimante, télecopieur, numériseur</td>
<td>6,43</td>
</tr>
<tr>
<td>Téléviseur 18 pouces ou moins</td>
<td>10,15</td>
</tr>
<tr>
<td>Téléviseur de 19 à 29 pouces</td>
<td>32,62</td>
</tr>
<tr>
<td>Téléviseur de 30 à 45 pouces</td>
<td>49,92</td>
</tr>
<tr>
<td>Téléviseur 46 pouces ou plus</td>
<td>88,08</td>
</tr>
<tr>
<td>Téléphone</td>
<td>0,42</td>
</tr>
</tbody>
</table>

Cette internalisation démontre que celui qui finit par payer pour la gestion des produits TIC en fin de vie est le consommateur. Il est normal que ça soit le cas, puisque c’est lui qui décide de la fin de vie de son produit, jusqu’à une certaine limite bien entendu. Cela correspond au principe du pollueur-payeur, puisqu’il y a une surconsommation de ce type d’équipements. De plus, le terme « consommateurs » représente tout le monde, donc c’est justement tout le monde qui va payer pour assurer la gestion adéquate des produits TIC en fin de vie utile.

L’étude du MDDEP comporte plusieurs limitations. Premièrement, les coûts unitaires sont basés sur les coûts estimés dans les programmes de récupération existants ou sur ceux d’entreprise de recyclage du Québec ou ailleurs au Canada (MDDEP, 2009). Les programmes de récupération de ce premier groupe consistent souvent en collecte spéciale quelques fois par année ou de récupération à des écocentres, qui sont généralement des activités déficitaires. Puisque l’objectif d’une municipalité n’est pas de faire du profit, mais d’assurer une bonne gestion de son territoire et d’offrir des services pour satisfaire les citoyens et de protéger l’environnement, il est possible que ces valeurs soient surestimées.
En fait, il est possible que les estimations des coûts unitaires soient non valides, puisque la compagnie Greentec, effectue la récupération et la valorisation (au sens large) des produits TIC et ne semble pas être en déficit. Même qu’elle mentionnait que ses activités étaient profitables, que la compagnie était en croissance, que les quantités récupérées augmentaient ainsi que la demande pour le matériel de seconde vie (Buchanan and Stepaniuk, 2011). Soit dit en passant, cette entreprise ne vend pas de produits neufs ou autres services pour compenser les coûts, elle ne fait que l’activité de récupération et de valorisation de produits TIC en fin de vie utile. Des données supplémentaires n’ont pu être recueillies, puisque la compétition dans ce domaine d’activité est très élevée présentement et ces informations sont considérées comme des secrets industriels (ib.)

Il est certain qu’il y a des coûts reliés à l’administration, au volet information, éducation et sensibilisation, au volet recherche et développement, mais cela représente environ 19% du coût total d’un tel programme (MDDEP, 2009). Par contre, pour la récupération et la valorisation, ce n’est pas aussi clair. Des études supplémentaires seraient nécessaires pour mieux comprendre ces activités.

En avril 2011, le Rapport d’analyse du cycle de vie environnementale et sociale de deux options de gestion du matériel informatique en fin de vie, démontre que globalement les bénéfices sociaux et économiques sont supérieurs pour le réemploi pour l’ensemble des parties prenantes (CIRAIG et Groupe AGECO, 2011). Donc, pour la société, il y a des bénéfices positifs (p.ex. création d’emplois) et surtout une diminution du fardeau financier et de la gestion de ces produits par les municipalités. Par exemple, juste pour l’enfouissement, cela coûte 160 $/tonne, incluant la collecte et le transport (MDDEP, 2009). Alors, avec un taux de valorisation de 10%, la moyenne nationale, il reste 90% (29 200 tonnes) des produits TIC qui se dirigent à l’enfouissement et cela coûte 4,7 millions par année aux municipalités du Québec (ib.). Ce montant pourrait servir pour d’autres services grâce à la REP. Cette valeur serait même une sous-estimation, puisque dans les matières récoltées, certaines peuvent être considérées comme matière dangereuse (p.ex. écrans CRT), et cela coûte environ 2 500 $/tonne pour les éliminer adéquatement (ib.).
Par ailleurs, il est important de prendre en compte les limitations de l’ACV du CIRAIG et du Groupe AGECO; seulement deux options ont été étudiées : le réemploi (avec mise à jour des pièces si nécessaire) d’un ordinateur pour une seconde vie pour ensuite être envoyé au recyclage en fin de seconde vie utile, et l’envoi d’un ordinateur en fin de première vie vers le recyclage (ib.). C’est dans ces deux scénarios qu’il y a des bénéfices économiques au niveau de la société. Les résultats de l’analyse nous donnent une idée générale du potentiel de rentabilité à réemployer les produits TIC pour une seconde vie.

La rentabilité d’une méthode d’application de la sorte semble incertaine, vu les données et les informations conflictuelles et manquantes. Par contre, l’exemple réel, Greentec, qui est en pleine expansion et voit son marché s’élargir ajoute à l’argument que ces activités sont lucratives (Buchanan and Stepaniuk, 2011). Il peut être facile de croire que GEEP, le compétiteur principal de Greentec, est dans la même situation favorable vu son chiffre d’affaires de plus de 50 millions par année (Industrie Canada, 2010).
CONCLUSION

Il est surprenant qu’aujourd’hui il n’y ait pas au Québec un programme national de gestion des produits TIC en fin de vie utile; plusieurs autres provinces du pays ont débuté leurs programmes dans les années 90 et les années 2000, de même que certains États des États-Unis, des pays d’Europe et d’Asie. Cet essai tente de faciliter la création d’un tel programme, surtout que le règlement sur la responsabilité élargie des producteurs (REP) vient tout juste d’être adopté. Dans la même optique que plusieurs des programmes existant ailleurs dans le monde, la méthode d’application proposée est basée sur la REP, avec la particularité que le réemploi y prend une place beaucoup plus importante (notamment par la création d’un marché de seconde vie). Dorénavant, les producteurs feront la gestion de la récupération, du réemploi, du recyclage, de la valorisation énergétique et de l’élimination, tout en respectant la hiérarchie des 3RV-E. De plus, ces activités seront faites en assurant la protection de l’environnement et évolueront au cours du temps en intégrant les différentes options, méthodes et technologies proposées. Bien entendu, la méthode proposée prend en considération les lois et règlements en place, ainsi que les points couverts dans la proposition de la Filière TIC. À cause des contradictions entre une étude d’impact économique sur la REP et les dires d’une entreprise (Greentec) de récupération, de réemploi et de recyclage des produits TIC, il n’était pas possible d’effectuer une analyse de rentabilité fiable. Ce dernier thème pourrait être un sujet d’essai intéressant à développer pour compléter ce travail.

La REP comme base de gestion pour non seulement les produits TIC, mais pour tous les produits, rend la consommation et la gestion des matières résiduelles bien particulière. Effectivement, lorsque la REP est poussée à son extrême (ce qu’on peut appeler du take-back), les producteurs ne vendent plus de produits, mais bien les fonctions de ce produit. Ils gèrent leurs produits tout au long de leur cycle de vie, de façon adéquate et sécuritaire, évitant ainsi qu’ils deviennent des déchets ultimes et libérant le consommateur des préoccupations liées à ses produits (tels les bris et l’atteinte de la fin de vie utile) (Olivier, 2010).
Même si la responsabilité revient au producteur pour la gestion des produits en fin de vie, tous les intervenants ont leurs rôles dans cette méthode d’application. Mais des 3RV-E, le mode de gestion le plus important reste le premier « R », la réduction. Ceci est difficile à accomplir pour les produits TIC, puisqu’ils sont devenus indispensables dans toutes les sphères de notre société. Cela dit, ces produits rendent notre vie plus facile, optimisent nos activités personnelles et professionnelles, rendent l’éducation et la recherche plus accessibles et interactives, etc. Ce qu’il est important de retenir est que lorsqu’on se procure un bien, on fait le choix de devenir un acquéreur des ressources de cette Terre, et que cette acquisition vient avec un prix : sa gestion responsable. Si on ignore ces deux aspects, le choix et sa finalité, on devient un handicap à sa propre existence.
RÉFÉRENCES

http://www.esabc.ca/cfm/index.cfm?It=100&Id=52 (Page consultée le 03 avril 2011).

http://www.esabc.ca/cfm/index.cfm?It=100&Id=12 (Page consultée le 03 avril 2011).

Environmental Protection Agency (EPA) (2010). Regulations/Standards. In Environmental Protection Agency. eCycling, [En ligne].

GEEP (s.d.). GEEP Services. In GEEP. Services. [En ligne].

http://www.greenmanitoba.ca/cim/1001C7_1T1T19T768T3T123T12T753T13T760.dhtml (Page consultée le 03 avril 2011).

Ordinateurs pour les écoles du Québec (OPEQ) (s.d.). Organisme. *In* OPEQ. Le programme OPE, notre organisme, nos partenaires, nos ateliers, des témoignages, [En ligne].

Recyclage des produits électroniques Canada (RPEC) (2011). À propos de RPEC. *In* RPEC. À notre sujet, [En ligne].

Recyclage des produits électroniques Canada (RPEC) (2010). Programme de qualification des recycleurs pour le recyclage de produits électroniques en fin de vie utile. *In* RPEC. Normes du recyclage, [En ligne].

http://www.sweepit.ca/consumer-information/what-can-you-recycle (Page consultée le 03 avril 2011).
http://www.sweepit.ca/consumer-information/recycling-process (Page consultée le 03 avril 2011).

ANNEXE – 1
LES PRINCIPES DIRECTEURS DE LA RESPONSABILITÉ ÉLARGIE DES PRODUCTEURS (REP)
Tiré d’Environnement Canada, 2007c.

Selon l'OCDE, un bon programme de REP doit reposer sur les principes directeurs suivants :

1. « Les politiques et les programmes de REP devraient être conçus de façon à inciter les producteurs à incorporer des modifications en amont, soit à l'étape de la conception, pour mieux respecter l'environnement.

2. Les politiques devraient stimuler l'innovation en privilégiant davantage les résultats que les moyens d'atteindre ces résultats, ce qui laisse ainsi aux producteurs une latitude dans la mise en œuvre.

3. Les politiques devraient tenir compte d'une approche de cycle de vie, pour éviter d'accentuer les effets environnementaux ou de les transférer ailleurs dans la chaîne de production.

4. Les responsabilités devraient être bien définies et non diluées par la présence de multiples acteurs tout au long de la chaîne de production.

5. Les caractéristiques et les propriétés uniques d'un produit, d'une catégorie de produits ou d'un flux de déchets devraient être prises en compte dans les décisions d'orientation. Étant donné la diversité des produits et l'hétérogénéité de leurs caractéristiques, il n'existe pas un type particulier de programme ou de mesure qui s'applique à la totalité des produits, des catégories de produits ou des flux de déchets.

6. Il faut retenir des instruments de politique flexibles, qui soient choisis au cas par cas, au lieu d'établir une politique pour l'ensemble des produits et des flux de déchets.

7. L'élargissement des responsabilités du producteur à l'ensemble du cycle de vie du produit devrait être fait de façon à accroître la communication parmi les acteurs tout au long de la chaîne de production.
8. Il faudrait concevoir une stratégie de communication pour faire connaître le programme à tous les intervenants de la chaîne de production, y compris les consommateurs, et obtenir leur appui et leur coopération.

9. Pour accroître l'acceptabilité et l'efficacité d'un programme, il faudrait consulter les parties concernées pour discuter des buts, des objectifs, des coûts et des avantages.

10. Il faudrait consulter les gouvernements locaux pour clarifier leur rôle et connaître leur point de vue sur le fonctionnement du programme.

11. Pour déterminer la meilleure façon de se conformer aux priorités, aux buts et aux objectifs nationaux en matière d'environnement, il faudrait envisager aussi bien les approches volontaires que les approches prescriptives.

12. Il faudrait faire une analyse exhaustive du programme de REP (quels produits, catégories de produits et flux de déchets conviennent au concept de REP; opportunité d'inclure les produits historiques; rôles des acteurs dans la chaîne de production).

13. Les programmes de REP devraient faire l'objet d'évaluations périodiques, afin de s'assurer qu'ils fonctionnent adéquatement et qu'ils sont suffisamment flexibles pour donner suite aux constatations de telles évaluations.

14. Les programmes devraient être conçus et exécutés de façon à engendrer des avantages environnementaux tout en évitant les dislocations économiques intérieures.

Le processus d'élaboration et de mise en œuvre des politiques et des programmes de REP devrait reposer sur la transparence. »

1
<table>
<thead>
<tr>
<th>Type</th>
<th>Liste de produits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gros appareils ménagers</td>
<td>Gros appareils frigorifiques
Réfrigérateurs
Congélateurs
Autres gros appareils pour réfrigérer, conserver et entreposer les produits alimentaires
Lave-linge
Séchoirs
Lave-vaisselle
Cuisinières
Réchauds électriques
Plaques chauffantes électriques
Fours à micro-ondes
Autres gros appareils pour cuisiner et transformer les produits alimentaires
Appareils de chauffage électriques
Radiateurs électriques
Autres gros appareils pour chauffer les pièces, les lits et les sièges
Ventilateurs électriques
Appareils de conditionnement d’air
Autres équipements pour la ventilation, la ventilation d'extraction et la climatisation</td>
</tr>
<tr>
<td>Petits appareils ménagers</td>
<td>Aspirateurs
Aspirateurs-balais
Autres appareils pour nettoyer
Appareils pour la couture, le tricot, le tissage et d'autres transformations des textiles
Fers à repasser et autres appareils pour le repassage, le calandrage et d'autres formes d'entretien des vêtements
Grille-pain
Friteuses
Moulin à café, machines à café et équipements pour ouvrir ou sceller des récipients
ou pour emballer
Couteaux électriques
Appareils pour couper les cheveux, sèche-cheveux, brosses à dents, rasoirs, appareils
pour le massage et pour d'autres soins corporels
Réveils, montres et autres équipements destinés à mesurer, indiquer ou enregistrer le temps
Balances</td>
</tr>
<tr>
<td>Équipements informatiques et de télécommunications</td>
<td>Traitement centralisé des données :
Unités centrales
Mini-ordinateurs
Imprimantes
Informatique individuelle :
Ordinateurs individuels (unité centrale, souris, écran et clavier)
Ordinateurs portables (unité centrale, souris, écran et clavier)
Petits ordinateurs portables
Tablettes électroniques
Imprimantes
Photocopieuses
Machines à écrire électriques et électroniques
Calculatrices de poche et de bureau et autres produits et équipements pour collecter,</td>
</tr>
<tr>
<td>Categorie</td>
<td>Description</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
</tr>
</tbody>
</table>
| stocker, traiter, présenter ou communiquer des informations par des moyens électroniques | Terminaux et systèmes pour les utilisateurs
| | Télécopieurs
| | Telex
| | Téléphones
| | Téléphones payants
| | Téléphones sans fil
| | Téléphones cellulaires
| | Répondeurs
| et autres produits ou équipements pour transmettre des sons, des images ou d'autres informations par télécommunication |
| Matériel grand public | Postes de radio
| | Postes de télévision
| | Caméscopes
| | Magnétoscopes
| | Chaînes haute fidélité
| | Amplificateurs
| Instruments de musique et autres produits ou équipements destinés à enregistrer ou reproduire des sons ou des images, y compris des signaux, ou d'autres technologies permettant de distribuer le son et l'image autrement que par télécommunication |
| Matériel d'éclairage | Appareils d'éclairage pour tubes fluorescents à l'exception des appareils d'éclairage domestique
| | Tubes fluorescents rectilignes
| | Lampes fluorescentes compactes
| | Lampes à décharge à haute intensité, y compris les lampes à vapeur de sodium haute pression et les lampes aux halogénures métalliques
| | Lampes à vapeur de sodium basse pression
| | Autres matériels d'éclairage ou équipements destinés à diffuser ou contrôler la lumière, à l'exception des ampoules à filament |
| Outils électriques et électroniques (à l'exception des gros outils industriels fixes) | Foreuses
| | Scies
| | Machines à coudre
| | Équipements pour le tournage, le fraisage, le ponçage, le meulage, le sciage, la coupe, le cisaillement, le perçage, la perforation de trous, le poïonçonnage, le repliage, le cintrage ou d'autres transformations du bois, du métal et d'autres matériaux
| | Outils pour river, clouer ou visser ou retirer des rivets, des clous, des vis ou pour des utilisations similaires
| | Outils pour soudier, braser ou pour des utilisations similaires
| | Équipements pour la pulvérisation, l'étendage, la dispersion ou d'autres traitements de substances liquides ou gazeuses par d'autres moyens
| | Outils pour tondre ou pour d'autres activités de jardinage |
| Jouets, équipements de loisir et de sport | Trains ou voitures de course miniatures
| | Consoles de jeux vidéo portables
| | Jeux vidéo
| | Ordinateurs pour le cyclisme, la plongée sous-marin, la course, l'aviron, etc.
| | Équipements de sport comportant des composants électriques ou électroniques
| | Machines à sous |
| Dispositifs médicaux (à l'exception de tous les produits implantés ou infectés) | Matériel de radiothérapie
| | Matériel de cardiologie
| | Dialyseurs
| | Ventilateurs pulmonaires
| | Matériel de médecine nucléaire
| | Équipements de laboratoire pour diagnostics in vitro
| | Analyseurs
<p>| | Appareils frigorifiques |</p>
<table>
<thead>
<tr>
<th>Tests de fécondation</th>
<th>Autres appareils pour détecter, prévenir, surveiller, traiter, soulager les maladies, les blessures ou les incapacités</th>
</tr>
</thead>
</table>
| **Instruments de contrôle et de surveillance** | **Détecteurs de fumée**
Régulateurs de chaleur
Thermostats
Appareils de mesure, de pesée ou de réglage pour les ménages ou utilisés comme équipement de laboratoire
Autres instruments de surveillance et de contrôle utilisés dans des installations industrielles (par exemple dans les panneaux de contrôle) |
| **Distributeurs automatiques** | **Distributeurs automatiques de boissons chaudes**
Distributeurs automatiques de bouteilles ou canettes, chaudes ou froides
Distributeurs automatiques de produits solides
Distributeurs automatiques d'argent
Tous appareils qui fournissent automatiquement toutes sortes de produits |
ANNEXE – 3
LISTE DES PRODUITS ÉLECTRONIQUES DU PROJET DE RÈGLEMENT SUR LA RÉCUPÉRATION ET LA VALORISATION DE PRODUITS PAR LES ENTREPRISES
Tiré de G.O.Q., 2009, p. 5621

1° les ordinateurs de bureau;
2° les ordinateurs portables;
3° les ordinateurs de poche et les tablettes PC;
4° les écrans d’ordinateur;
5° les téléviseurs;
6° les imprimantes;
7° les téléphones cellulaires ou satellitaires, sans fil ou conventionnel ainsi que leurs dispositifs mains-libres, les télécopieurs et les répondeurs téléphoniques;
8° les claviers, souris, câbles, connecteurs et télécommandes et cartouches d’encre conçus pour être utilisés avec un produit visé à la présente section;
9° les numériseurs, télécopieurs et photocopieurs;
10 les consoles de jeux vidéo et leurs périphériques;
11° les lecteurs, enregistreurs, graveurs ou emmagasineurs de sons, d’images et d’ondes, amplificateurs, égaliseurs de fréquences et récepteurs numériques;
12° les baladeurs numériques, lecteurs de livres électroniques, récepteurs radios, émetteurs-recepteurs portatifs, appareils photo numériques, cadres numériques, caméscopes et systèmes de localisation GPS;
13° les routeurs, serveurs, disques durs, cartes mémoires, clés USB, haut-parleurs, webcams, écouteurs et autres dispositifs sans fil conçus pour être utilisés avec un produit visé par la présente section.

Pour les fins de l’application de la présente section, un appareil de poche dont l’une des fonctions est celle de téléphone est assimilé à ce type de produit électronique.
ANNEXE – 4
RECOMMANDATIONS DE LA PROPOSITION DE LA FILière
Tiré de Filière TIC, 2007, p. 21

La Filière recommande au ministre du MDDEP l’élaboration d’un programme basé sur les éléments suivants :

1. La hiérarchie des 3RV : Réduction, réemploi, recyclage et valorisation énergétique;
2. Les principes de responsabilité élargie des producteurs et de développement durable;
3. La reconnaissance de l’autonomie de chaque province à encadrer leur système de gestion tout en permettant l’harmonisation pancanadienne des éléments-clés des programmes à mettre en place;
4. La mise en œuvre, la gestion et le financement d’un système de récupération et de recyclage des produits TIC incombe aux producteurs par le biais ou non d’organismes de financement agrées selon le choix de chaque producteur;
5. Les produits qui ont fait consensus pour la première phase du programme :
 • ordinateur personnel et portatif;
 • moniteur à tube à rayons cathodiques et plat;
 • imprimante;
 • téléviseur.
 Une majorité de membres suggèrent d’inclure les numériseurs, les télécopieurs et les téléphones cellulaires dans la première phase du programme;
6. Outre les objectifs initiaux, que la réglementation offre la possibilité que les objectifs de récupération et de valorisation soient déterminés périodiquement par décret gouvernemental plutôt qu’établis préalablement et à long terme dans la réglementation, de manière à bénéficier des données recueillies au fil du temps et d’ainsi pouvoir évoluer avec l’état du marché;
7. Les attentes pour le secteur du réemploi sont exprimées autrement que par des objectifs chiffrables;
8. Le réemploi doit être ciblé pour les secteurs institutionnel, commercial et industriel;
9. La présence d’un programme de qualification indépendant et impartial pour les fournisseurs de service de recyclage servant à encadrer leurs opérations de recyclage et de transformation des produits TIC.

10. La Filière endosse le principe du CCME suivant : « Les déchets électriques et électroniques sont exportés du Canada pour recyclage seulement dans des installations qui se sont officiellement engagées à assurer une gestion soucieuse de l’environnement et des pratiques équitables en matière d’emploi »;

11. La cohabitation des centres de réemploi, de démantèlement, de recyclage et de valorisation doit être encouragée dans la mesure où ils assurent l’efficience, la rentabilité économique et la conformité des services rendus;

12. Le mode d’attribution des contrats de récupération, de réemploi et de recyclage est basé sur le libre-marché;

13. La reprise des appareils listés en première phase du programme est gratuite pour tous les citoyens, les institutions, les commerces et les industries;

14. Les points de récupération sont constitués d’une variété d’intervenants volontaires capables d’offrir un service adapté en fonction du nombre d’habitants d’une municipalité régionale ou d’une grande ville (ex. municipalités, détaillants, Réseau des CFER, récupérateurs privés ou sans but lucratif);

15. L’incitation aux projets de recherche et de développement sur divers enjeux de conception et de recyclage des produits TIC.