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Résumé

La caractérisation des tissus est une étape majeure dans les études mécanobiologiques.
En effet, a I'aide des méthodes de caractérisation, la qualité des tissus, soit la
combinaison des propriétés structurelles, compositionnelles et mécaniques, peut étre
déterminée. Ce projet de maitrise focalise sur les méthodes de caractérisation
mécanique pour les études in vitro en bioréacteur. A travers toutes les méthodes de
caractérisation mécanique, nous proposons l'utilisation de celles qui sont: 1) non-
destructives (i.e. qui offrent la possibilité de réaliser d’autres essais de caractérisation
apres les essais de caractérisation mécaniques) et 2) en-ligne (i.e. qui permettent
I'observation de la progression des tissus durant I'expérimentation, et ce, sans devoir
déplacer les spécimens d’'une machine vers une autre). Toutefois, la caractérisation
mécanique non-destructive en-ligne souléve la question a savoir si cette méthode
d’observation utilisée durant I'expérimentation modifie I'évolution des tissus dans le
temps.

Ainsi, le but de ce projet de maitrise était d’approfondir nos connaissances sur les
parametres qui pourraient affecter la qualité des tissus conjonctifs mous durant une
expérimentation in vitro en bioréacteur. Ceci passe par une meilleure compréhension
de la viscoélasticité et viscoplasticité, deux comportements clés des tissus, qui affectent

I'impact de ces parametres sur la réponse des tissus vivants a des stimuli
biophysiques. Donc, les deux objectifs de ce projet étaient :

1. De revoir la littérature portant sur deux comportements mécaniques des tissus,
soient la viscoélasticité et la viscoplasticité, et la fagon avec laquelle ils affectent
I'évolution des tissus sous stimuli biophysiques;

2. D’investiguer si l'utilisation d’essais diagnostiques d’amplitude physiologique
pour quantifier les propriétés mécaniques des tissus peut affecter leur évolution
dans le temps.

Dans ce mémoire, nous expliquons que la viscoélasticité et la viscoplasticité des tissus
proviennent de la structure et de la composition de la matrice extracellulaire. Nous
décrivons également la fagon avec laquelle ces comportements affectent la compétition
dynamique entre la réparation, la dégradation enzymatique et la dégradation
mécanique de la matrice extracellulaire sous stimuli biophysiques. De plus, nous
spécifions des parametres de stimulation, tels que le type de contrdle ou I’histoire des

stimuli, qui pourraient affecter I'évolution des tissus en réponse a des stimuli
biophysiques a cause de la viscoplasticité et viscoélasticité.

Aussi, nous relatons les résultats d’'une expérimentation de trois jours réalisées sur des
tendons fraichement extraits pour investiguer si I'application d’'essais de relaxation de
contrainte d’amplitude physiologique affecte I'évolution des tissus sous stimuli
mécaniques. Nous avons regroupé les tendons selon le protocole de caractérisation (0
ou 24 essais de relaxation d’amplitude physiologique chaque jour) et nous avons
comparé I'évolution des groupes dans le temps. Les essais de relaxation de contraintes
d’amplitude physiologique ont modifié I'évolution des tendons en réponse aux stimuli
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mécaniques in vitro. De fagon générale, le module pointe a augmenté dans le temps
pour le groupe de 0 essai de relaxation de contrainte alors qu'’il a d'abord diminué puis
légérement augmenté pour le groupe de 24 essais de relaxation de contrainte chaque
jour. La différence entre les deux groupes était significative. Donc, I'insertion d’essais de
relaxation de contrainte d’amplitude physiologique pendant les périodes de repos entre
les stimuli mécaniques peut influencer I'évolution des tissus dans le temps.

Nous concluons qu’il importe de tenir compte de la viscoélasticité et de la
viscoplasticité des tissus lors du développement d’'un protocole de stimulation pour une
étude en bioréacteur ou encore pour une application clinique.

Mots clés : tissus conjonctifs mous, mécanobiologie, évolution des tissus, propriétés des
tissus, protocole de caractérisation, viscoélasticité, viscoplasticité, en-ligne, non-
destructif
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Abstract

Tissue characterization is a major step in tissue mechanobiological studies. By
characterization methods, tissue quality i.e. the combination of tissue structural,
compositional and mechanical properties, is determined. This research focuses on
mechanical characterization methods. Among all mechanical characterization methods,
we propose those ones which are: 1) Non-destructive, (i.e. that reserves the capability
of doing other characterization tests at the end of mechanical test; and, 2) In-line, (that
enables tissue progression observation during experiment, and without transferring the
specimen from one apparatus to another). However, in-line characterization raises the
question of whether conducting tissue observation methods during experimentation
modifies tissue progression over time.

Therefore, the purpose of this study was to deepen our knowledge about the
parameters which could affect tissue quality during mechanical testing. This requires a
better understanding of viscoelasticity and viscoplasticity, two key behaviors of tissue,
affecting the impact of these parameters (e.g. tissue quality, stimulation parameters) on
the response of live tissue to biophysical stimuli. Thus, the objectives of this study were:

1. To review the literature to find information about two mechanical behaviors of
tissue i.e. viscoelasticity and viscoplasticity, and the way they affect tissue
properties

2. To investigate whether diagnostic tests, as mechanical characterization tests to
observe tissue properties, affect tissue progression

We explain that viscoelasticity and viscoplasticity of tissue originate from structure and
components of the extracellular matrix. We also describe the way they affect tissue
dynamic competition between repair, enzymatic degradation and mechanical
degradation of the extracellular matrix. Moreover, we specify some tissue stimulation
parameters, such as stimulation control type or stimulus history, which could affect
tissue progression in response to biophysical stimuli because of viscoelasticity and
viscoplasticity. ’

Moreover, by conducting a series of 3-day experiments on freshly extracted tendons, we
investigated whether applying “stress relaxation” tests at physiological amplitudes
affects tissue response. We divided the tendons into two groups based on the
characterization protocol (24 and 0 stress relaxation tests each day), and compared the
progression of these groups over time. The stress relaxation tests at physiological
amplitude modified tissue response to mechanical stimuli in vitro. In general, the
modulus increased for 0 stress relaxation tests, while it first decreased and then
increased slightly for 24 stress relaxation tests each day. The difference of mechanical
properties between the two groups was significant. Therefore, applying stress
relaxation tests at physiological amplitude during the rest periods between mechanical
stimuli can affect live tissue progression over time.



Therefore, it is essential to take into account the viscoelasticity and viscoplasticity of
tissue while developing a stimulation protocol for bioreactor studies or clinical
applications.

Keywords: mechanobiology, tissue progression, tissue properties, characterization
protocol, mechanical characterization, viscoelasticity and viscoplasticity, in-line, non-
destructive.
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1. Introduction

Mechanobiology is the science studying tissue remodeling in response to
physical/mechanical environmental stimulation (van der Meulen and Huiskes 2002).
The major contributors to mechanobiology are: mechanical loading, the mechanisms by
which cells could sense mechanical loading (mechanotransduction), cell response to
received biophysical signals, and tissue progression based on mechanical loading and

cell response.

Mechanobiology may play a major role in preventing and healing mechanically based
tissue disorders. In addition, improvement of the function of engineered tissues

depends on progress in mechanobiology (van der Meulen and Huiskes 2002).

A major step in mechanobiological studies is tissue characterization. Tissue
characterization includes the methods which extract information about tissue quality
i.e. compositional, structural, and mechanical properties of tissue. As it is observed in
Chapter 2 (literature review), different characterization methods exist and are used in
different laboratories. Unfortunately, most laboratories use destructive methods for
mechanical characterization at the end of the experimental protocol. Therefore, by the
end of experiment, no complementary characterization of compositional and structural

properties can be conducted on tissue.

In our view, among all available methods for tissue mechanical characterization, in-line
non-destructive tests have more advantages. With in-line monitoring, the data during
experimentation are available at regular intervals thus tissue progression over time can
be monitored. Moreover, since the stimulation and characterization methods are
conducted inside the same apparatus (for in vitro studies), the errors and damages
which may occur with transferring the samples from one apparatus to another are
eliminated. In addition, in non-destructive tests conducted at regular intervals, samples
can be self-compared, thus reducing the number of samples and animals are needed.

The data acquired from these self-compared samples are thus more reliable because



there is no intra-sample variability. Finally, at the end of non-destructive tests, other

complementary characterization tests can be conducted.

All the bioreactor experimentations at Biometiss! have been carried out based on in-
line non-destructive characterization protocols. For most of them, tissue stimulation
protocols {a series of operations applied on tissue during experiment including:
preloading, preconditioning, cyclic loading-unloading, resting, etc.) have been designed
based on the same standards. For example preconditioning, amplitude and duration of
preloading and stress-relaxation tests and mechanical stimuli, duration of resting

between mechanical stimuli, etc are standardized.

Although it is very useful to have the information of tissue progression over time, it
raises a concern. Does tissue react to our characterization method and does it alter its
progression over time? In other words, does the method used to observe tissue during

the experiment affects experimental results?

These concerns were questioned in the cell mechanics field by (Bao and Suresh 2003).
The authors asked this paradox: “how can we measure the mechanical behaviour of
living cells if they react to our measurement tools? To our knowledge, this is the first
time this topic was discussed at the tissue level. This issue is very important because
the effect, of methods used to characterize tissue, on tissue response, could make the

experimental result un-reliable.
The objectives of this research project were:

1. To review the literature about two key behaviors of fibrous load bearing
tissues (i.e. viscoelasticity and viscoplasticity) and explain how they affect

live tissue response to mechanical characterization;

The effect of viscoelasticity and viscoplasticity on tissue response is a very important
subject which must be taken into account for treating and preventing tissue disorders

and improving tissue quality based on mechanobiology. For example, since fibrous load

1 The laboratory at University of Sherbrooke working in the field of Mechanobiology.
2



bearing tissues are viscoelastic and viscoplastic, the response of these tissues with two
different qualities (e.g. healthy vs. damaged) to an identical mechanical stimulation
could be different (e.g. constructive vs. destructive). Moreover, because of
viscoelasticity and viscoplasticity of tissues, changes in stimulation parameters, (e.g.
changes in nature of loading: stress vs. strain or static vs. cyclic) could make an

essential difference in tissue responses.

2. To investigate if diagnostic tests conducted at regular intervals affect live

tissue response or not.

Either “stimulation protocol” or “diagnostic test”, i.e. mechanical tests interspersed at
time intervals during the stimulation protocol used to 6bserve tissue progression over
time, could be used as tissue mechanical characterization test. In either of these
methods, some mechanical variables are measured (e.g. load and/or displacement) or
calculated (e.g. stiffness and/or hysteresis). These variables represent the tissue
mechanical quality. If we measure or calculate these variables at regular intervals, we

will have tissue progression over time.

Using diagnostic tests to evaluate tissue progression over time has an advantage over
using stimulation protocols in which parameters such as frequency or amplitude could
change between different experiments, in different laboratories, in different days, and
on different tissues. Using diagnostic tests (e.g. stress relaxation tests) makes it possible
to define the “diagnostic test”, in which parameters such as frequency or amplitude
remain constant between different experiments, as a “reference’ standard” in all
experiments. However, there is a concern whether diagnostic tests affect tissue

response or not.

With these objectives in view, the thesis contains two articles, one for each objective,
and is divided into six Chapters. In Chapter 2, compositional, structural, and mechanical
tendon properties are briefly explained. It is worth noting that the hypotheses and the
discussions are not limited to tendons but are attributed to all fibrous-load- bearing

tissues. Some methods used in literature for compositional, structural, and mechanical



characterization are then presented to have an overview of the characterization

methods used in tissue quality.

In Chapter 3, the origin of viscoelasticity and viscoplasticity in tissues and the way they
affect live tissue properties are explained. This chapter has been submitted as a review

article.

Another article has been written to fulfill objective 2 and is presented in Chapter 4. As
reported in this manuscript, live healthy tendons were subjected to physical stimuli at
physiological amplitude in vitro. Stress-relaxation tests were conducted at regular
intervals to observe tissue progression over time. We investigated if stress-relaxation

tests affect tissue progression or not.

In Chapter 5, unpublished results are presented. These results include methods we used
at Biometiss to characterize tendon structural ECM and cellular quality using

microscopic images.

Finally, a discussion is presented in Chapter 6 (in both English and French), drawing

conclusions about this work and proposing future studies.



2. State-Of-The-Art

This chapter reviews important literature relative to the presented master’s project. It

is divided in two sections.

In the first section, we will introduce compositional, structural and mechanical
properties of tendons. A combination of these properties could be defined as tissue
quality. In the study of tendon physiology, pathology, or healing an important step is
determining tissue quality. One of the most important fields of tissue study which needs
tissue quality information is mechanobiology. We will therefore end the first section
with a brief explanation of mechanobiology but also of mechanotransduction, the

important mechanisms which are involved in mechanobiological remodeling of tissue.

In the second section, we will review some literature to highlight the methods of
gathering information regarding tissue quality, i.e. characterization methods. The
mentioned characterization methods are the ones which have been mostly used in the

literature.

2.1 Tendon compositional properties

Tehdons are those connective tissues which connect muscle to bone. Tendons generally
consist of the ECM and cells (tenocytes) which are, respectively, inert and active
components of tendons. Although these two components are in a closed and
bidirectional interaction together, we can devote the mechanical behavior of the tendon
mostly to the ECM, and consider cells as responsible for remodeling of tissue {or mainly
the ECM) (Kalson, Holmes et al.).

The ECM contains almost 70% water and 30% solid (Margareta Nordin and L. 2001).
Solid part contains mostlycollagen fiber, some elastin, as well as ground substance
(Margareta Nordin and L. 2001).

Collagen and elastin are structural proteins of the ECM. In fact, the biomolecules in the
ECM could be divided into three subgroups: 1) structural proteins like collagen and
elastin, 2) specialized proteins like fibronectin, and 3) proteoglycans (Xu 2008).



Collagen is the most important component and provides the strength of tendons against
applied tensile loads. There are 19 different kinds of collagens of which the most
abundant type in tendons are type I collagens. Their parallel alignment along the

tendons let them resist tensile load in this direction.

Elastin fibers , the smallest representatives of the ECM, represent 1-2% of dry weight of
tendon. These proteins are associated with collagen fibers not only to withstand tensile
loads, but to provide elasticity to tendons (Margareta Nordin and L. 2001; Sharma P
2006).

Ground substance constitutes the remainder. It consists mainly of proteoglycans, matrix
glycoproteins and water (Chun k 2003). Glycosaminoglycans, a major component of
proteoglycans, are large negatively charged and hydrophilic molecules. Because of the
repulsive force between two negative charges, glycosaminoglycans offer tissue
resistance to compression (Chun k 2003) and may play a role in the spacing of collagen
fibres (Hansen, Weiss et al. 2002). They also capture the majority of the extracellular
water (Margareta Nordin and L. 2001)and create a gel-like substance in the
collagenous matrix (Margareta Nordin and L. 2001). Finally, it is believed that
molecules from the ground substance play an important role in relative motions of
collagen fibrils in mechanically loaded tendons [(Mosler, Folkhard et al. 1985); (H R C
Screen 2004)].

2.2 Tendon structural properties

The hierarchical structure of a healthy tendon is shown in Figure 2-1. Tropocollagens
(collagen molecules) unite into collagen fibrils, collagen fibers?, subfascicles (primary
bundles), and fascicles (secondary bundles). Several fascicles constitute tertiary
bundles (Liu, Ramanath et al. 2008).

2 There have been some misunderstandings in literature regarding using “fiber” and “fibril”. In some
texts, these two terms have been used interchangeably.
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Primary, secondary and tertiary fiber bundles are covered by a thin layer called
endotenon and the whole tendon is surrounded by another thin layer called epitenon

(Sharma P 2006).

Tendon cells (tenocytes), which are responsible for production of collagen fibers and
of ground substance, are located between fibers. They have an elongated shape when
observed in the tendon’s longitudinal orientation (Margareta Nordin and L. 2001).
Whereas in cross-section, they appear as star-shaped cells (C M McNeilly 1996).

Some structural criteria to classify the quality include cell shape, collagen organization,
cell-ECM interaction, cell density, etc. Methods could be divided into three groups:
qualitative, semi-quantitative, and quantitative which are introduced in the three

following sections.

We explain these methods, since they are used in clinical applications. Moreover, in our
in vitro experimentations, we use these methods to compare the structural quality of

different groups of samples.






















































































































































































































































































































































