Fabrication et étude de composants micro-ondes planaires supraconducteurs

par

Stéphane Savard

mémoire présenté au Département de physique en vue de l'obtention du grade de maître ès sciences (M.Sc.)

FACULTÉ DES SCIENCES
UNIVERSITÉ DE SHERBROOKE

Sherbrooke, Québec, Canada, janvier 2004
The author has granted a non-exclusive license allowing the Library and Archives Canada to reproduce, loan, distribute or sell copies of this thesis in microform, paper or electronic formats.

The author retains ownership of the copyright in this thesis. Neither the thesis nor substantial extracts from it may be printed or otherwise reproduced without the author's permission.

In compliance with the Canadian Privacy Act some supporting forms may have been removed from this thesis.

While these forms may be included in the document page count, their removal does not represent any loss of content from the thesis.

Conformément à la loi canadienne sur la protection de la vie privée, quelques formulaires secondaires ont été enlevés de cette thèse.
Bien que ces formulaires aient inclus dans la pagination, il n'y aura aucun contenu manquant.
Sommaire

Ce mémoire de maîtrise a pour principal objectif d'établir la base d'un projet de longue haleine qui consiste en l'étude de composants planaires supraconducteurs. Étant donné qu'aucun composant de ce type n'avait jusqu'à présent été fabriqué à l'Université de Sherbrooke, une procédure de fabrication a été développée. Les techniques de croissance par ablation laser, de photolithographie et de gravure humide ont été utilisées pour la fabrication des composants planaires supraconducteurs à base de YBCO.

Après avoir établi la procédure de fabrication, trois types de composants supraconducteurs ont été étudiés : la ligne à transmission microruban, le résonateur microruban et le filtre microruban à deux pôles. L'étude des trois composants a permis de mettre en évidence une lacune du montage de caractérisation micro-ondes qui devra être comblée. La technique de calibrage Full two-port des mesures micro-ondes n'est pas au point pour des composants planaires et l'analyse quantitative s'en trouve affectée. La technique Through-Reflect-Load (TRL) est proposée pour remédier à ce problème. Une analyse relative (en comparant des mesures entre elles) peut tout de même fournir de l'information quantitative sur les composants.

Puisque ce projet de maîtrise a été parrainé par l'Agence spatiale canadienne, une attention particulière est portée sur l'étude d'un résonateur microruban fonctionnant autour de 5 GHz. D'une part, cette étude montre l'importance de la densité superfluide sur les propriétés micro-ondes du résonateur. D'autre part, la présence de vortex et/ou jonctions de grains contribuent à la non-linéarité de la puissance transmise du résonateur lorsque la puissance initiale atteint environ $1 \cdot 10^{-4}$ mW. Cette valeur semblerait correspondre au champ critique
À la toute fin, exploitant la flexibilité du porte échantillon développé dans ce projet, le rôle du plan de masse est mis en évidence. L'utilisation d'un plan de masse supraconducteur contribue substantiellement à l'augmentation de la qualité des propriétés micro-ondes du résonateur microruban par rapport à un plan de masse en Au (normal). De plus, en comparant les effets des deux types de plan de masse sur les propriétés du résonateur, un couplage additionnel de type inductif entre les deux conducteurs du résonateur semble être présent lorsque le plan de masse supraconducteur est utilisé. Cet aspect encore inexpliqué pourrait se révéler important pour l'explication, la modélisation et la conception de nouveaux composants micro-ondes supraconducteurs.
Remerciements

Le financement est l’aspect qui limite le plus la recherche, c’est pourquoi je tiens à remercier en premier lieu l’Agence spatiale canadienne pour sa contribution importante dans le développement de ce projet de maîtrise, et plus particulièrement Daniel Gratton avec qui nous avons collaboré. En deuxième lieu, je remercie le CRSNG pour sa contribution monétaire.

Après le financement, la présence de techniciens compétents est à mes yeux l’aspect le plus influant dans un projet de recherche. Sans leurs nombreuses compétences précieuses, la recherche se déroulerait au ralenti. Lors de mon projet de maîtrise, tous les techniciens du Département de physique ont contribué de près ou de loin à son avancement. Un merci sincère à Stéphane Pelletier, Marcel Zakorzermy, Mario Castonguay et Jacques Corbin.

Un merci plus particulier à mon directeur de recherche, le Pr. Patrick Fournier. Son caractère quelques fois un peu froissable ne lui enlève pas ses excellentes qualités de chercheur. Son ouverture d’esprit, sa créativité et sa disponibilité font de lui un directeur de recherche...
stimulant. Ses qualités ou son PIF lui permettent d’amener ces étudiants à s’accomplir à leur façon.

Ce projet était en co-direction avec le Pr. François Boone du Département de génie électrique et de génie informatique. Sa compétence dans les composants micro-ondes aurait été un atout dans ce projet. Malheureusement, il a dû prendre un congé au tout début de mon projet. J’aimerais le remercier pour le support qu’il m’a apporté au début afin de mieux comprendre les dispositifs micro-ondes. Je lui souhaite un prompt rétablissement.

La session de cours à la maîtrise étant parfois difficile (seulement les premiers cours sont faciles), il arrive de perdre le sens de l’orientation. C’est pourquoi un guide spirituel peut aider à la réussite d’une telle épreuve. Merci David pour m’avoir éclairé durant cette période de tempête. Merci aussi à mes confrères pour leur humour et encouragements.

Merci à tous les étudiants et stagiaires du laboratoire membre de Team Fournier lors de ce projet. Je pense entre autres à Jacques Renaud, Jessica Gauthier, Marie-Ève Gosselin et Stéphanie Gagné.

Je tiens finalement à remercier le Département de physique, le Département de génie électrique et de génie informatique, le CERPEMA et le RQMP pour l’utilisation de leurs installations et autres ressources.
Table des matières

Sommaire	i
Remerciements	iii
Introduction	1

1 Supraconductivité et ses applications | 3
- 1.1 Propriétés des supraconducteurs dans le domaine des micro-ondes | 4
- 1.2 Définition de la supraconductivité | 5
 - 1.2.1 Équations de London | 8
 - 1.2.2 État mixte : régime des vortex | 9
- 1.3 Résonateur supraconducteur | 12
 - 1.3.1 Fonction fondamentale | 12
 - 1.3.2 Fonction pratique | 12
- 1.4 Autres avantages | 13
 - 1.4.1 Faible dispersion | 13
 - 1.4.2 Effets non-linéaires | 14
 - 1.4.3 Réduction de la taille et du poids | 14

2 Théorie | 15
- 2.1 Notion d’impédance | 15
 - 2.1.1 Cas d’une onde de courant ou de tension | 16
 - 2.1.2 Cas d’une onde électromagnétique | 17
2.2 Ligne à transmission ... 18
 2.2.1 Ligne coaxiale ... 20
 2.2.2 Ligne microruban 21
 2.2.3 Transition coax-microruban 22
2.3 Propagation des ondes .. 22
 2.3.1 Résistance de surface (R_s) 25
2.4 Résonateur microruban .. 27
 2.4.1 Définition ... 27
 2.4.2 Fréquence de résonance f_0 29
 2.4.3 Facteur de qualité Q 30
2.5 Théorie des réseaux micro-ondes 33
 2.5.1 Représentation matricielle de l'impédance d'un réseau 33
 2.5.2 Matrice des coefficients de réflexion et de transmission 35
 2.5.3 Réseau à deux ports 36

3 Méthode expérimentale ... 38
 3.1 Paramètres de croissance de YBCO 39
 3.2 Croissance par ablation laser 42
 3.2.1 Procédure de croissance de YBCO 43
 3.2.2 Le substrat ... 46
 3.2.3 La pression du gaz et la température de croissance 47
 3.2.4 Faisceau laser et cible 48
 3.2.5 Distance cible-substrat et pression de gaz 50
 3.2.6 Mécanismes de croissance 50
 3.3 Techniques de caractérisation de la couche mince 53
 3.4 Photolithographie et gravure humide 59
 3.5 Assemblage .. 59
 3.5.1 Techniques de fabrication d'un composant 61
 3.5.2 Ancien support à échantillon 63
3.5.3 Motivations ... 65
3.5.4 Nouveau support à échantillon 65
3.6 Caractérisation micro-onde 67

4 Mesures micro-ondes 71
4.1 Reproductibilité du nouveau support à échantillon 71
4.2 La ligne à transmission microruban 73
4.3 Le résonateur microruban 76
4.4 Comparaison avec un autre échantillon 85
4.5 Le filtre microruban 88

5 Rôle du plan de masse supraconducteur 94
5.1 Mise en contexte ... 94
5.2 Configurations hybrides du plan de masse 97

Conclusion ... 102

A Conductivité CA d'un supraconducteur BCS 105

B Paramètres utilisés pour la fabrication et l'assemblage ... 108
B.1 Conditions de croissance 108
B.2 Photolithographie et gravure 109
B.3 Préparation de l'échantillon pour l'assemblage 110

C Estimation du champ critique (H_{c1}) de YBCO 111

D Masque développé pour la détermination de la J_c 113

Bibliographie .. 115
Liste des tableaux

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Différences entre supraconducteurs et métaux normaux.</td>
<td>4</td>
</tr>
<tr>
<td>3.1</td>
<td>Comparaison des propriétés des substrats les plus utilisés dans la croissance de YBCO.</td>
<td>47</td>
</tr>
<tr>
<td>4.1</td>
<td>Fréquence de résonance du résonateur microruban (YL040902a-YL280403a1) lors de différents tests de reproductibilité de la procédure d'assemblage à une température de 81,8 K et puissance initiale de -26,426 dBm. Les écarts en pourcentage et en fréquence de la fréquence de résonance des tests par rapport à la fréquence de résonance de la mesure initiale sont indiqués.</td>
<td>73</td>
</tr>
<tr>
<td>5.1</td>
<td>Comparaison des propriétés du résonateur microruban avec un plan de masse ayant 4 % et un plan de masse ayant 86 % dans la région de la cavité.</td>
<td>99</td>
</tr>
</tbody>
</table>
Table des figures

1.1 Diagramme de phase de l'état supraconducteur et normal en champ H et température T. .. 7
1.2 Diagramme de phase de l'état supraconducteur, mixte et normal en champ H et température T. .. 11

2.1 Modèle électrique de la ligne à transmission. .. 19
2.2 Coupe transversale d'une ligne à transmission coaxiale. .. 20
2.3 Coupe transversale d'une ligne à transmission microruban. .. 21
2.4 Coupe longitudinale d'une transition coax-microruban. .. 23
2.5 Coupe longitudinale d'un exemple de résonateur microruban. .. 28
2.6 Vue de dessus d'un exemple de résonateur microruban. .. 28
2.7 Définition de la longueur de la cavité. .. 29
2.8 Réprésentation de la région contribuant aux pertes mesurées par les facteurs de qualité Q_{l} et Q_{e}. .. 31
2.9 Schéma d'un réseau à N ports. .. 34
2.10 Schéma d'un réseau à 2 ports explicitant les paramètres S associés. .. 36

3.1 Influence de la concentration d'oxygène sur la T_{c} de YBCO. .. 39
3.2 Phases orthorhombique supraconductrice ($gauche$) et tétragonale isolante ($droite$) de YBCO. .. 40
3.3 Diagramme de phase de YBCO. .. 41
3.4 Schéma du montage d'ablation laser. .. 44
3.5 Modes de croissance possibles d'une couche mince. .. 52
3.6 Exemple d'une mesure de susceptibilité magnétique de YBCO en fonction de la température. χ'' est la partie imaginaire et χ' est la partie réelle.

3.7 Schéma de la technique à quatre contacts.

3.8 Exemple d'une mesure de résistance d'un échantillon de YBCO en fonction de la température.

3.9 Exemple d'une mesure de rayon-X sur une couche mince de YBCO sur un substrat de LAO. Seuls les pics (00l) et du substrats sont observés.

3.10 Exemple d'une photo prise avec un microscope électronique sur une couche mince de YBCO durant la phase d'optimisation de la croissance. Les zones foncées représentent les domaines de la couche mince avec l'axe c transverse à la surface, et les zones pâles sont constituées de grains indésirables (axe a ou b perpendiculaire à la surface).

3.11 Schéma représentant les différentes étapes définissant le motif du composant supraconducteur.

3.12 Coupe transversale de trois résonateurs microrubans, dont deux représentent les solutions envisagées pour contourner la contrainte imposée par le montage d'ablation laser. En haut : résonateur utilisé par Hassan Ghamlouche avec deux conducteurs de YBCO sur le même substrat. Au milieu : le plan de masse de YBCO est remplacé par Au. En bas : un deuxième substrat avec une couche mince de YBCO agit de plan de masse (la solution adoptée).

3.13 Schéma du support à échantillon (test jig) utilisé par Hassan Ghamlouche pour la caractérisation micro-onde de composants. Un résonateur microruban avec un substrat est assemblé sur le porte échantillon.

3.14 Schéma du nouveau support à échantillon (test jig) pour la caractérisation micro-onde des composants de la deuxième solution. On y voit le substrat permanent avec la couche mince de YBCO servant de plan de masse. L'autre substrat possède un motif de résonateur microruban.

3.15 Schéma du montage de la caractérisation micro-onde des composants.
4.1 Schéma de la ligne à transmission microruban étudiée. La bande noire au centre est un microruban de YBCO sur un substrat $5 \times 10 \times 0.5 \ mm^3$ de LAO (100).

4.2 Paramètres S de la ligne à transmission microruban supraconductrice (Motif : YL270803a1 - Plan de masse : YL200703a) mesurés à 79,8 K à une puissance initiale de -26,426 dBm.

4.3 Schéma du type de résonateur microruban caractérisé. Les bandes noires au centre représentent la couche mince de YBCO sur un substrat $5 \times 10 \times 0.5 \ mm^3$ de LAO (100).

4.4 Paramètre S du résonateur microruban supraconducteur (Motif : YL140703b1 - Plan de masse : YL200703a) mesurés à 82,8 K à une puissance initiale de -26,426 dBm.

4.5 Évolution du paramètre S_{21} du résonateur microruban supraconducteur (Motif : YL140703b1 - Plan de masse : YL200703a) en fonction de la température à une puissance initiale de -26,426 dBm.

4.6 Puissance transmise en fonction d'une basse puissance initiale (-55 dBm à -26,426 dBm) pour différentes températures du résonateur YL140703b1-YL200703a.

4.7 Puissance transmise en fonction de la puissance initiale (-26,426 dBm à 5 dBm) pour différentes températures du résonateur YL140703b1-YL200703a. 5 dBm est la puissance maximale accessible de notre montage.

4.8 Puissance transmise en fonction de la puissance initiale à une température de 84 K du résonateur YL140703b1-YL200703a sur une échelle log-log. La ligne droite pointillée est un guide pour l'œil, elle permet d'évaluer le changement de régime. Série 1 : mesures à basse puissance entre -55 dBm et -26,426 dBm.
Série 2 : mesures à plus haute puissance entre -26,426 dBm et 5 dBm.

4.9 Facteur de qualité Q_o en fonction de la puissance initiale pour différentes températures du résonateur YL140703b1-YL200703a.

4.10 Fréquence de résonance (f_o) en fonction de la puissance initiale pour différentes températures du résonateur YL140703b1-YL200703a.
4.11 Puissance transmise en fonction de la puissance d’entrée pour différentes températures. Comparaison des échantillons YL140703b1 et b2. .. 89
4.12 Facteur de qualité unload (Q_u) en fonction de la puissance initiale pour différentes températures. Comparaison des échantillons YL140703b1 et b2. 90
4.13 Schéma du filtre microruban à deux pôles mesurée. La valeur de a est 1,911 mm et de b est 3,822 mm. La largeur des bandes noires de YBCO est de 0,2 mm. Le substrat $5 \times 10 \times 0,5 \, mm^3$ utilisé est LAO (100). ... 91
4.14 Paramètre S d’un filtre microruban supraconducteur (Motif : YL140703b3 - Plan de masse : YL200703a) à deux pôles à 81 K à une puissance initiale de -26,426 dBm. .. 92

5.1 Schéma du résonateur microruban supraconducteur avec un plan de masse en Au sur le nouveau support à échantillon. .. 96
5.2 Comparaison des amplitudes de la puissance transmise normalisée à la résonance du résonateur microruban supraconducteur (Motif : YL140703b1 - Plan de masse : YL200703a) avec un plan de masse supraconducteur et avec un plan de masse en Au. .. 98
5.3 Schémas des différentes configurations de plan de masse fabriquées à l’aide du nouveau support à échantillon. Chaque configuration est caractérisée par le pourcentage d’Au dans la région de la cavité. La bande noire représente l’Au et la bande hachurée YBCO. .. 99
5.4 Fréquence de résonance en fonction de l’Au dans la région de la cavité du résonateur microruban supraconducteur (Motif : YL140703b1 - Plan de masse : YL200703a) à 86 K et à une puissance initiale de -26,426 dBm. Chaque point représente une configuration différente du plan de masse. La ligne en pointillée est un guide pour l’œil. .. 100

D.1 Schéma du motif du masque pour la détermination de J_c. La valeur de l’angle a est de 45 degrés. .. 114
Introduction

Les ondes électromagnétiques sont présentes tout autour de nous. En fait, le monde moderne dans lequel nous vivons ne pourrait pas se passer de celles-ci, car un très grand nombre d'appareils indispensables à notre confort moderne les exploite. Nous n'avons qu'à penser à la télévision ou bien au téléphone cellulaire qui sont les exemples les plus connus. Les micro-ondes sont les fréquences définies entre 300 MHz et 30 GHz, 1 cm < λ < 1 m [1]. Deux bandes de fréquence sont définies dans les micro-ondes : de 300 MHz à 3 GHz, Ultra-high frequency (UHF), et 3 GHz à 30 GHz, Superhigh frequency (SHF). La communication par transmission d'ondes électromagnétiques via les airs nécessite une certaine organisation et un contrôle des émetteurs et des récepteurs. Le but premier est évidemment de réduire l'interférence ainsi que le piratage. L'État alloue donc une bande de fréquence pour une utilisation spécifique. Par exemple, la radio possède deux bandes de fréquence, les ondes FM et AM. À cause de cette contrainte, un problème technique se pose alors : il ne peut y avoir qu'un nombre fini d'utilisateurs dans une bande. Ce nombre est relié à la qualité des filtres (largeur à mi-hauteur de la bande passante) utilisés dans les appareils de communication. C'est donc à ce niveau que les supraconducteurs constituent un matériau intéressant pour des applications futures. Les supraconducteurs permettraient d'augmenter de façon considérable le nombre d'utilisateurs d'une même bande en réduisant la largeur de la bande passante.

Les télécommunications est un domaine possible d'applications des supraconducteurs et l'Agence spatiale canadienne œuvrant en partie dans ce domaine s'est intéressée à financer un projet de maîtrise visant à développer ce type d'applications. L'Agence spatiale canadienne a donc financé ce projet de maîtrise. Pour répondre à leurs exigences, deux objectifs bien précis
ont été fixés dès le départ du projet. Le premier objectif de ce projet de maîtrise était de fabriquer nos composants planaires supraconducteurs appliqués aux micro-ondes entièrement à l'Université de Sherbrooke, car dans un projet antérieur avec le Pr. Hassan Ghamlouche, ils avaient dû acheter leurs échantillons [couches minces de $YBa_2Cu_3O_7$ (YBCO) sur substrats de $LaAlO_3$ (LAO)] chez la compagnie Dupont pour fabriquer leurs composants. La fabrication de nos propres échantillons a pour but de réduire considérablement le coût des recherches. Le deuxième objectif est de poursuivre l'étude de résonateurs microrubans en fonction de la puissance réalisée par le Pr. Ghamlouche. Ce mémoire présentera principalement l'étude de résonateurs microrubans supraconducteurs fonctionnant à 5 GHz à base de YBCO. Rappelons qu'un résonateur est un filtre passe-bande à une fréquence, c'est-à-dire qu'une seule fréquence particulière peut être transmise. Un des avantages d'étudier un résonateur est l'information qu'il fourni sur les caractéristiques micro-ondes fondamentales du matériau qui le compose.

Ce mémoire est divisé en 5 chapitres. Le premier chapitre présente les intérêts et motivations d'utiliser les supraconducteurs dans les composants micro-ondes. La supraconductivité y est en partie définie pour initier le lecteur qui n'aurait pas de notions de base. Dans le deuxième chapitre, toute la théorie associée à ce projet est présentée. Il y a d'abord une introduction à la technologie planaire suivit de la théorie entourant le résonateur microruban. Ce chapitre se termine en introduisant les paramètres qui seront mesurés en pratique pour caractériser les composants micro-ondes. Au troisième chapitre est exposée la procédure de fabrication de nos échantillons de couches minces de YBCO préparés à l'Université de Sherbrooke pour réaliser les composants micro-ondes. Les techniques de croissance par ablation laser, photolithographie et gravure humide y sont présentées. Quant au quatrième chapitre, les propriétés micro-ondes d'une ligne à transmission microruban, d'un résonateur microruban et d'un filtre à deux pôles sont présentées. L'emphasis est mise sur le résonateur microruban à cause des exigences de l'Agence spatiale canadienne. En surplus aux objectifs de départ, le cinquième et dernier chapitre présente le rôle du plan de masse supraconducteur dans un composant planaire.
Chapitre 1

Supraconductivité et ses applications

L’application des supraconducteurs dans différents domaines date d’au moins un demi-siècle et le premier livre sur le sujet de 1964 [2]. À cause du développement grandissant des applications à l’époque, Newhouse, l’auteur du livre, sentit le besoin de mettre par écrit les résultats des recherches. Il présente entre autres une analyse très détaillée de composants micro-ondes qui est accessible pour les non-initiés. L’inconvénient majeur des supraconducteurs utilisés dans les applications de cette époque étaient leur température critique \((T_c)\) : ils devaient être refroidis à l’hélium liquide. La liquéfaction de l’hélium étant dispendieuse et entraînant un coût d’utilisation très élevé, la commercialisation de ces dispositifs était peu envisageable. Toutefois, la découverte en 1987 de supraconducteurs à hautes températures critiques (SHTC) pouvant être refroidis à l’azote liquide relança l’intérêt de commercialiser des applications utilisant des supraconducteurs. L’azote liquide a un coût de production nettement inférieur à l’hélium liquide. Dans un livre sur les composantes supraconductrices, Ruggiero et Rudman [3] mettent en évidence le rapport du coût d’utilisation d’un dispositif dissipant une puissance fixe dans l’azote et dans l’hélium. L’équivalent d’un litre d’azote évaporé pour absorber la puissance dissipée par le dispositif correspond à 50 litres d’hélium. Cette différence s’explique par la différence de chaleur spécifique des deux liquides. L’explosion qu’a connue ce domaine depuis est difficile à évaluer. L’application des supraconducteurs se retrouve dans une multitude de domaines. Tout l’effort déployé par les pionniers de l’époque a une origine simple : les supraconducteurs offrent des propriétés supérieures et
nouvelles comparativement aux très bons métaux.

1.1 Propriétés des supraconducteurs dans le domaine des micro-ondes

Non seulement les supraconducteurs ont des comportements très différents d'un métal normal, mais ils ont aussi des propriétés uniques telles que la quantification du flux magnétique et l'effet Meissner. L'effet Meissner est le comportement diamanétique du supraconducteur. Les plus importantes propriétés pour l'étude de composants en courant alternatif (CA) sont indiquées dans le tableau 1.1 ci-bas\(^1\).

<table>
<thead>
<tr>
<th>Caractéristiques</th>
<th>Conducteur normal</th>
<th>Supraconducteur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Résistance de surface ((R_s)) à 77 K et 3.7 GHz</td>
<td>2.2 m(\Omega) (Cu)</td>
<td>0.1 m(\Omega) (YBCO)</td>
</tr>
<tr>
<td>Dépendance en fréquence</td>
<td>(f^{1/2})</td>
<td>(f^2)</td>
</tr>
<tr>
<td>de la résistance de surface</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dépendance en champ de</td>
<td></td>
<td></td>
</tr>
<tr>
<td>la résistance de surface</td>
<td>Constante</td>
<td>(R_s \propto H^2)</td>
</tr>
<tr>
<td>Pénétration du champ à 77 K</td>
<td>Épaisseur de peau ((\delta))</td>
<td>Longueur de pénétration ((\lambda))</td>
</tr>
<tr>
<td></td>
<td>((\text{Au} \sim 500 \text{ nm}))</td>
<td>((\text{YBCO} \sim 360 \text{ nm}))</td>
</tr>
<tr>
<td>Effet Meissner</td>
<td>non</td>
<td>oui</td>
</tr>
<tr>
<td>Quantification du flux magnétique</td>
<td>non</td>
<td>oui</td>
</tr>
</tbody>
</table>

TAB. 1.1 – Différences entre supraconducteurs et métaux normaux.

Afin de représenter concrètement les différences entre les deux types de matériaux, comparons deux composants ; l'un constitué d'un supraconducteur et l'autre d'un métal normal, et fixons maintenant la température, qui se situe en bas de la température critique du supraconducteur, et la fréquence\(^2\). Le supraconducteur offre alors moins de pertes (résistance de surface \((R_s)\) inférieure) qu'un métal normal et cette différence peut aller jusqu'à plusieurs

\(^1\)Ce tableau est inspiré de l'article de Mansour [4].

\(^2\)La fréquence doit être suffisamment basse pour ne pas atteindre la fréquence de coupure \(~\text{THz}~\).
ordres de grandeurs. Mais un autre critère doit être tenu en compte. C'est la dépendance de ces pertes par rapport à la puissance transmise. Dans le cas d'un supraconducteur, les pertes dépendent du carré du champ produit par le signal qui le traverse. Un supraconducteur à donc naturellement un comportement non-linéaire en puissance par opposition à un métal normal. Pour certaines applications cette différence devient un atout et pour d'autres, une nuisance. Des exemples seront présentés plus loin.

Les supraconducteurs offrent de meilleures qualités, mais seulement pour des limites biens précises. Cependant, les applications demandent parfois d'être près de ces limites et même de les outrepasser. Comme l'origine des pertes à haute puissance dans les supraconducteurs n'est pas très bien comprise, une étude à ce niveau s'impose. Afin de mener cette étude, le résonateur est le composant par excellence. Sa simplicité permet d'obtenir directement les propriétés fondamentales des matériaux qui le composent. Avant de présenter le résonateur supraconducteur, regardons plus en détails le phénomène de la supraconductivité et ses particularités.

1.2 Définition de la supraconductivité

Quelques techniques simples permettent de mettre en évidence le phénomène de supraconductivité. D'abord, lorsqu'un matériau supraconducteur est parcouru par un courant continu (CC), sa résistance se comporte comme un métal en fonction de la température. Le matériau est dit dans l'état normal (N). Toutefois, sous une température précise, appelée température critique (T_c), le matériau n'offre plus de résistance ($R=0$) et il passe à l'état supraconducteur (S). Le matériau subit une transition de phase de deuxième ordre. C'est de cette façon que Onnes découvrit le phénomène en 1911 alors qu'il étudiait la résistance du mercure dans l'hélium liquide.

Puis, en 1933, Meissner et Ochsenfeld découvrent qu'en refroidissant un supraconducteur dans un champ magnétique constant celui-ci écrante le champ qui le traverse en dessous de
CHAPITRE 1. SUPRACONDUCTIVITÉ ET SES APPLICATIONS

la T_c. Cet état du supraconducteur est nommé état Meissner. Dans cet état, le supraconducteur est un matériau diamagnétique parfait. Le moment magnétique M du supraconducteur s'oppose au champ H.

$$M = -H$$ \hspace{1cm} (1.1)

Toutefois, cet état du supraconducteur disparaît à une certaine valeur de champ magnétique H_c dite critique. On distingue deux types de supraconducteurs. Dans le cas du type I, le supraconducteur transite à l'état normal au-delà de H_c. Pour le type II, dont fait partie les SHTC, le supraconducteur transite dans un état mixte à H_{c1}, il écrante partiellement H. Il devient normal qu'à un champ magnétique plus élevé (H_{c2}). La particularité du supraconducteur dans l'état mixte est qu'il laisse pénétrer le flux magnétique que dans certaines régions. Ces régions sont appelées vortex et elles sont dans l'état normal.

Les divers champs critiques H_c, H_{c1} et H_{c2} sont aussi des fonctions de la température. Par exemple, la forme empirique de H_c est donnée par

$$H_c(T) = H_c(T = 0) \left[1 - \left(\frac{T}{T_c} \right)^2 \right]$$ \hspace{1cm} (1.2)

Le diagramme de phase des états supraconducteur et normal d'un matériau de type I est représenté à la figure 1.1.

Le diagramme de phase peut être étendu en trois dimensions puisque l'état supraconducteur dépend d'un autre paramètre soit la densité de courant J traversant l'échantillon. La densité de courant critique J_c d'un matériau de type I dépend du champ magnétique selon la relation

$$J_c(H) \approx J_c(H = 0) \sqrt{1 - \left(\frac{H}{H_c} \right)^2}$$ \hspace{1cm} (1.3)
Fig. 1.1 – Diagramme de phase de l'état supraconducteur et normal en champ H et température T.
La mesure de la densité de courant critique d'un échantillon des types II révèle le comportement des vortex face à un courant\(^3\). La \(J_c\) est corrélée aux vortex d'une façon complexe. Avant d'expliquer ce qu'est un vortex, une introduction à la notion de longueur de pénétration est nécessaire.

1.2.1 Équations de London

Voulant décrire le comportement électromagnétique des supraconducteurs, les frères London ont postulé que la densité de courant était proportionnelle au potentiel-vecteur \(\vec{A}\) du champ magnétique local :

\[
\vec{j} = -\frac{1}{\mu_0\lambda_L^2} \vec{A}
\]
(1.4)

Cette relation mène à la première équation de London :

\[
\vec{\nabla} \times \vec{j} = -\frac{1}{\mu_0\lambda_L^2} \vec{B}
\]
(1.5)

qui signifie qu'en présence d'un champ magnétique environnant, des boucles de courant se forment dans le supraconducteur pour s'y opposer. Ensuite, utilisant les équations de Maxwell, ils ont retrouvé l'effet Meissner.

\[
\nabla^2 \vec{B} = -\frac{1}{\lambda_L^2} \vec{B}
\]
(1.6)

La solution de cette dernière équation indique qu'un champ magnétique continu pénétrant un supraconducteur est atténué de façon exponentielle. Ce champ magnétique ne pénètre que sur une certaine distance \(\lambda_L\) dite longueur de pénétration. Cette observation est valable pour des champs magnétiques continus et alternatifs.

\(^3\)L'orientation des jonctions de grains peut aussi changer la \(J_c\), nous y reviendrons au troisième chapitre.
Dans le cas d'un circuit en CA, il faut distinguer la longueur de pénétration de l'épaisseur de peau : la notion de longueur de pénétration est utilisée pour la description des pertes (R_{supra}) dans les supraconducteurs et la notion d'épaisseur de peau est utilisée pour des pertes (R_{normal}) dans les métaux normaux. Quant à la longueur de pénétration, elle dépend de la densité d'électrons supraconducteurs (n_s) qui elle dépend de la température et du champ magnétique, de la masse (m) de l'électron et de la charge (q) de l'électron.

$$\lambda_L(T, H) = \sqrt{\frac{m}{\mu_0 n_s(T, H) q^2}} \quad (1.7)$$

Dans le cas de l'épaisseur de peau qui apparaît uniquement lorsque \vec{B} est une fonction du temps, elle dépend de la fréquence (ω) et de la température via la résistivité ($\rho(T)$). L'épaisseur de peau est également une solution des équations de Maxwell.

$$\delta(T, \omega) = \sqrt{\frac{2\rho(T)}{\mu_0 \omega}} \quad (1.8)$$

Cette dépendance en fréquence indique, contrairement au supraconducteur, qu'un métal normal laisse pénétrer totalement un champ magnétique continu.

1.2.2 État mixte : régime des vortex

La différence entre les supraconducteurs de type I et de type II est la présence de deux champs critiques H_{c1} et H_{c2} dans ces derniers. Au dessous du premier champ critique, les deux types repoussent complètement le champ magnétique à l'aide de boucles de courant, c'est l'état Meissner. Pour $H > H_{c1}$, le type II possède des régions supraconductrices et normales, il est dans l'état mixte. L'apparition de régions dans l'état normal peut être expliquée comme suit : pour minimiser son énergie, le matériel supraconducteur laisse pénétrer des lignes de flux magnétique ($\vec{\phi}_b$) au travers des régions normales appelées *cœurs de vortex* de
dimension ξ, la longueur de cohérence4. Chaque coeur de vortex est entourée également d'un courant supraconducteur qui forme une boucle, d'où le nom de vortex. Le rayon de cette boucle est λ_L exprimant la dépendance en T et H du vortex.

Dans le cas des supraconducteurs à haute température critique et de quelques autres matériaux et multicouches artificielles, l'état mixte (fig. 1.2)5 possède deux régimes [5]. Le premier régime est l'état où les vortex sont fixes. On dit alors qu'ils sont ancrés. L'ancrage6 dépend des défauts du supraconducteur. Près de H_{c1}, les vortex sont organisés les uns par rapport aux autres en formant généralement un réseau de vortex triangulaire7 ou un verre de vortex (cristal désordonné). Puis, lorsque le champ magnétique atteint une certaine valeur, le solide de vortex fond pour atteindre un second régime8 : un liquide de vortex. La ligne séparant les deux régimes (solide et liquide) dépend de la structure du matériau (anisotropie).

Le régime dissipatif dans les supraconducteurs de type II est atteint lorsque les vortex sont forcés de se déplacer. Si nous associons une force d'ancrage \vec{f}_p à chaque vortex qui maintient le cristal rigide dans sa forme et que la présence d'un courant applique une force sur le vortex (c'est la force de Lorentz \vec{f}_L), alors la densité de courant critique J_c correspondra à la condition où \vec{f}_p est vaincue par \vec{f}_L :

$$\vec{f}_p = -J_c \times \phi_o = -\vec{f}_L \quad (1.9)$$

Lorsqu'il y a dérive des vortex, le supraconducteur présente des pertes. La résistance n'est désormais plus nulle.

4 ξ représente la longueur de cohérence ou dimension moyenne des paires de Cooper.

6 Termes anglais : pinning.

7 Dans les SHTC, un réseau carré intrinsèque a été observé pour la première fois dans LSCO [6]. D'autres supraconducteurs possèdent ce type de réseau [7].

8 La région entre les deux régimes est appelée melting line (ligne de fusion).
FIG. 1.2 – Diagramme de phase de l’état supraconducteur, mixte et normal en champ H et température T.
1.3 Résonateur supraconducteur

De façon générale, le résonateur a deux fonctions. La première fonctionnalité du résonateur est d'obtenir directement les propriétés fondamentales d'un matériau quelconque. Le matériau étudié peut constituer la cavité résonnante ou être introduite dans celle-ci (technique de perturbation). Sa deuxième fonction est d'agir en tant que filtre sur un signal qui s'y propage. Une fois filtré, le signal possède une bande en fréquence très étroite.

1.3.1 Fonction fondamentale

L'étude des propriétés des supraconducteurs n'est pas triviale, car dans une vaste majorité de conditions (comme des mauvaises couches minces) les SHTC sont considérés comme des matériaux granulaires. C'est-à-dire qu'ils sont formés de domaines supraconducteurs séparés par des régions qui peuvent être isolantes dans des cas extrêmes. La région entre ces domaines appelée jonction de grains modifie les propriétés mesurées ajoutant ainsi une contribution extrinsèque. Lors de la caractérisation de ces matériaux par résistivité, susceptibilité, magnétorésistance ou autres techniques, il est difficile de séparer les propriétés intrinsèques des propriétés extrinsèques. L'utilisation d'un résonateur permet de mettre en évidence ces propriétés extrinsèques dues aux effets des jonctions de grains. Démêler les propriétés intrinsèques et extrinsèques des propriétés mesurées pourrait permettre aux expérimentateurs d'isoler le comportement réel du supraconducteur et d'optimiser les propriétés des composants. Cela permettrait de se débarasser des effets extrinsèques nuisibles et de tirer avantage de certains autres.

1.3.2 Fonction pratique

Dans certaines conditions, le résonateur supraconducteur possède un facteur de qualité largement supérieur à un résonateur normal. Cette différence est due au fait que le supraconducteur a une R_s plus faible qu'un métal normal. D'un point de vue pratique, le résonateur

9. La structure granulaire du supraconducteur sera détaillée au troisième chapitre.
10. Par exemple, l'ancrage des vortex.
supraconducteur permet d’obtenir un signal de meilleure qualité ; la puissance transmise est plus élevée et la bande passante plus étroite. On a donc une meilleure sélection des fréquences transmises. L’augmentation de la qualité des filtres aidera à répondre à une demande croissante d’utilisateurs sur une plage donnée de fréquences. À cet effet, plusieurs projets visant à développer le potentiel des applications supraconductrices pour les télécommunications sont en cours. En plus, à partir de données recueillies sur un résonateur, des simulateurs permettent de construire des composants plus complexes comme des filtres à plusieurs pôles. La modélisation adéquate du résonateur permettra de sauver du temps dans la conception et la fabrication de composants.

1.4 Autres avantages

Les supraconducteurs possèdent d’autres caractéristiques qui leur confèrent des avantages par rapport aux métaux normaux. Quelques composants supraconducteurs pris pour exemples mettent en évidence ces caractéristiques.

1.4.1 Faible dispersion

Contrairement à un métal normal, la vitesse de propagation d’une onde dans un supraconducteur ne dépend faiblement de la fréquence. Cette caractéristique permet d’obtenir une dispersion très faible en fréquence, presque inexistante. La ligne à transmission supraconductrice s’avère idéale pour acheminer une bande de fréquences sur de longues distances comparativement aux lignes normales. Elle permet de garder le contenu en fréquence de l’onde donc son information de départ. De plus, à cause des pertes plus faibles, la puissance transmise sur une même distance est plus élevée. Kadin [8] compare l’effet de la dispersion dans l’état normal et supraconducteur. Alors que l’impulsion qui se propage dans une ligne supraconductrice est encore intacte, celle dans la ligne normale est beaucoup plus faible en amplitude et son contenu en fréquence a augmenté (la largeur de l’impulsion a augmenté).
1.4.2 Effets non-linéaires

Au premier abord, les pertes non-linéaires du supraconducteur à puissance élevée semblent être un inconvénient pour les composants : le supraconducteur perd ses propriétés supérieures par rapport aux métaux normaux, comme c’est le cas du résonateur par exemple où le facteur de qualité devient inférieur. Cependant, il est possible de tirer profit de cet inconvénient ou de cette différence pour fabriquer de nouveaux composants tels que des multiplexeurs qui sont utilisés dans l’industrie.

Par ailleurs, les pertes non-linéaires des SHTC à haute puissance n’est pas très bien compris. La compréhension des mécanismes, impliquant vortex et jonctions de grains, responsables de la non-linéarité, pourrait permettre d’augmenter les performances dans ce régime. Le résonateur permet cette étude.

1.4.3 Réduction de la taille et du poids

L’environnement utilisé pour le bon fonctionnement du supraconducteur a des conséquences positives pour certaines applications. Par exemple, un composant supraconducteur fonctionnant à une certaine fréquence sera plus petit en taille qu’un composant normal à cause des propriétés diélectriques du substrat utilisé lors de sa fabrication qui influence directement la vitesse de propagation11. Par le fait même, le poids du dispositif s’en retrouvera diminué. Selon le diélectrique utilisé, la taille et le poids sont réduits d’un ordre de grandeur. À titre d’exemple, Mansour [4] évalue l’utilité de la technologie des supraconducteurs sur les applications spatiales. Il en conclut que la technologie des SHTC peut diminuer de moitié la masse et la taille d’un système de télécommunication situé dans un satellite. Et ceci, en incluant les systèmes pour refroidir les supraconducteurs.

11L’effet du diélectrique sur la vitesse de propagation sera expliqué au prochain chapitre.
Chapitre 2

Théorie

L'étude des supraconducteurs à hautes fréquences est généralement réalisée à partir d'un résonateur. Il existe cependant plusieurs types de résonateur. Dans le cadre de ce projet, le résonateur microruban\(^1\) a été utilisé. Le choix de ce type de résonateur est justifié par la facilité de croître les supraconducteurs à haute température critique (SHTC) sur des surfaces planes et la possibilité de les utiliser pour des fins d'applications commerciales. Afin de mieux comprendre le fonctionnement du résonateur microruban, quelques notions de base sont d'abord revues avant de comparer une ligne à transmission coaxiale avec une ligne microruban. Ensuite, le fonctionnement du résonateur microruban sera exposé ainsi que la théorie des réseaux micro-ondes. La théorie des réseaux micro-ondes mène à la définition de paramètres (paramètres S) facilement accessibles en pratique pour caractériser un composant.

2.1 Notion d'impédance

L'approche pour évaluer l'impédance d'une ligne à transmission est différente selon la limite considérée. On distingue deux limites : la première lorsque que \(\lambda \ll\) la longueur de la ligne et la deuxième lorsque \(\lambda\) est comparable à la longueur de la ligne. Dans le premier cas, deux approches permettent de déterminer l'impédance d'une ligne à transmission. La première approche consiste à traiter la ligne à transmission avec une onde de courant et une

\(^1\)Terme anglais : microstrip.
CHAPITRE 2. THÉORIE

onde de tension et la seconde approche avec une onde électromagnétique (OEM). Les deux approches peuvent être utilisées, cependant l'utilisation d'une OEM réduit les dimensions du problème, donc la difficulté. Pour le deuxième cas limite, lorsque la longueur de la ligne est comparable à la longueur d'onde (λ), l’approche d’une onde courant et d’une onde de tension est plus appropriée. Ces deux méthodes permettent d’obtenir de l’information sur le comportement des charges dans la ligne à transmission considérée.

2.1.1 Cas d’une onde de courant ou de tension

Lorsqu’une onde de fréquence ω se propage dans un milieu, elle interagit avec ce dernier. La vitesse de propagation dépend de l’importance de l’interaction entre l’onde et son environnement de propagation. Cette interaction peut être modélisée par des éléments de circuits électriques de base : une résistance, une capacité ou une inductance. La phase entre le courant et la tension n’est pas nécessairement nulle. Un déphasage est généralement introduit entre les deux ondes et il est de mise de définir l’impédance qui représente toujours le rapport de l’onde de tension et l’onde de courant. En plus, l’impédance, un nombre complexe, nous informe à la fois sur l’amplitude et sur le déphasage entre ces deux ondes.

Les impédances d’une résistance, d’une inductance et d’une capacité sont données respectivement par

$$Z_R = R$$ \hspace{1cm} (2.1)

$$Z_L = i\omega L$$ \hspace{1cm} (2.2)

$$Z_C = \frac{1}{i\omega C}$$ \hspace{1cm} (2.3)

Un circuit composé de ces trois éléments de base aura donc une impédance avec une partie réelle et une autre imaginaire, toutes deux dépendant de la configuration exacte du circuit.

16
2.1.2 Cas d'une onde électromagnétique

Les équations de Maxwell qui gouvernent la propagation des ondes électromagnétiques (OEM) dans le vide ou la matière [9] sont données par :

\[
\begin{align*}
\nabla \times \vec{E} &= -\frac{\partial \vec{B}}{\partial t} \\
\nabla \times \vec{B} &= \epsilon_o \mu_o \frac{\partial \vec{E}}{\partial t} + \mu_o \vec{J} \\
\nabla \cdot \vec{E} &= \frac{\rho}{\epsilon_o} \\
\nabla \cdot \vec{B} &= 0
\end{align*}
\]

(2.5) (2.6) (2.7) (2.8)

On en déduit entre autres que l'impédance du vide est

\[
Z = \sqrt{\frac{\mu_o}{\epsilon_o}} = 376 \Omega
\]

(2.9) (2.10)

L'impédance d'une onde électromagnétique dans un milieu est définie par le rapport du champ électrique sur le champ magnétique. L'analogie avec une ligne à transmission est évidente dans le cas où il y a peu de pertes : les champs magnétique et électrique traduisent le courant et la tension qui s'y propagent. Cette analogie permet de définir plus simplement l'impédance de la ligne à transmission. Dans cette approche, la ligne à transmission est considérée comme un guide d'onde où se propage une OEM.
2.2 Ligne à transmission

La ligne à transmission est composée de deux conducteurs parallèles séparés d'une certaine distance. Le milieu entre les deux conducteurs possède une perméabilité μ et une permittivité ϵ. Ce milieu peut être le vide, un gaz, un diélectrique, une combinaison de ceux-ci, etc.

$$\mu = \mu_r \mu_0$$ \hspace{1cm} (2.11)
$$\epsilon = \epsilon_r \epsilon_0$$ \hspace{1cm} (2.12)

μ_r et ϵ_r sont des corrections à la perméabilité et la permittivité du vide pour tenir compte de la capacité de certains matériaux de se polariser : créer des dipôles magnétiques ou électriques. Pour un milieu non magnétique ($\mu_r=1$), l'impédance caractéristique (Z_o) de la ligne à transmission, selon l'approche d'une OEM, est donnée par :

$$Z_o = \frac{376\Omega}{\sqrt{\epsilon_r}}$$ \hspace{1cm} (2.13)

Si la ligne à transmission est considérée avec des ondes de courant et de tension, alors des courants doivent s'y propager en sens opposés pour qu'il y ait une tension entre les deux conducteurs. Le milieu entre les deux conducteurs définira la grandeur de cette tension puisqu'il forme une capacité. Le rapport de cette tension et du courant circulant dans un conducteur définit l'impédance caractéristique de la ligne à transmission.

Modélisons la ligne à transmission à partir d'éléments électriques de base. Par convention, un des conducteurs est considéré comme une équipotentielle ou plan de masse et l'autre conducteur possède une résistance et une inductance tenant compte de la géométrie des deux conducteurs [8, p. 345]. À partir du modèle électrique de la ligne à transmission (fig. 2.1), où R est la résistance, L l'inductance, C la capacité et G la conductance, l'impédance

\footnote{Tous les paramètres sont exprimés par unité de longueur.}
CHOITRE 2. THÉORIE

\[Z_0 = \sqrt{\frac{R + i\omega L}{G + i\omega C}} \] \hspace{1cm} (2.14)

Dans le cas où les conducteurs sont parfaits \((R=0)\) et que le diélectrique est parfaitement isolant \((G=0)\), ou dans le cas des hautes fréquences :

\[Z_0 = \sqrt{\frac{L}{C}} \] \hspace{1cm} (2.15)

L'impédance caractéristique de la ligne à transmission est équivalente à l'impédance d'une résistance, car elle ne possède qu'une partie réelle. Ce résultat indique les paramètres importants d'une ligne à transmission. Puisque l'impédance de la ligne dépend de son inductance et sa capacité par unité de longueur, l'impédance peut être modifiée en changeant la géométrie de la ligne.

Il existe plusieurs types de lignes à transmission, mais seulement deux types ont une importance notable pour ce projet, soit le type coaxial et le type microruban.
2.2.1 Ligne coaxiale

À partir des équations de Maxwell, il est possible de déduire que le champ électrique et le champ magnétique se propagent sous forme d'ondes planes dans le vide ou dans un milieu faiblement dispersif et que les plans de polarisation des champs électrique et magnétique sont perpendiculaires. Ce mode de propagation est appelé transverse électrique et magnétique (TEM). Il en est de même dans un câble coaxial à cause de la géométrie radiale des conducteurs (fig. 2.2), si la longueur de la ligne considérée est plus grande que λ, les ondes de courant et de tension peuvent être associées à une OEM. Le conducteur extérieur est considéré comme une équipotentielle ou plan de masse.

![Diagram of coaxial line](image)

Fig. 2.2 - Coupe transversale d'une ligne à transmission coaxiale.

Le diélectrique agit comme un guide d'onde. Dans ce cas, il faut redéfinir la longueur d'onde (λ) de l'OEM.

$$
\lambda_g = \frac{\lambda}{\sqrt{\varepsilon_r}}
$$

(2.16)

λ_g est la longueur d'onde dans le guide d'onde. L'uniformité du milieu de propagation et la
gémétrie du câble coaxial permettent d'obtenir une propagation TEM. Ceci ne sera pas le cas dans une ligne à transmission microruban dont la géométrie s'éloigne significativement du cas coaxial.

2.2.2 Ligne microruban

Dans le cas d'une ligne microruban, les conducteurs sont rectangulaires et n'ont pas de géométrie radiale comme le câble coaxial (fig. 2.3). À cause de l'inégalité de la largeur des deux conducteurs, le milieu de propagation est non uniforme : l'atmosphère environnant et le diélectrique n'ont pas la même constante diélectrique, les ondes ne se propagent pas à la même vitesse de part et d'autre du conducteur principal ou microruban. Les plans de polarisation des ondes magnétique et électrique ne sont pas parfaitement perpendiculaires à cause de la géométrie. Cependant, pour fin de modélisation de la propagation des ondes, la ligne microruban est traitée comme si l'oncle était TEM. Le terme utilisé pour caractériser la propagation d'une OEM dans le microruban est quasi-TEM.

![Diagram](image)

Fig. 2.3 – Coupe transversale d'une ligne à transmission microruban.

La description de la longueur d'onde de l'OEM dans le microruban est identique à la ligne à transmission coaxiale. Cependant, pour tenir compte de la non uniformité du milieu de propagation, une constante diélectrique effective (ε_{eff}) est ajoutée [10].

$$\lambda_g = \frac{\lambda}{\sqrt{\varepsilon_{eff}}}$$ \hspace{1cm} (2.17)
La géométrie et le milieu de propagation influencent la propagation de l'OEM. Il est intéressant de regarder l'interface (transition coax-microruban) entre une ligne à transmission coaxiale et une ligne à transmission microruban (fig. 2.4), car c'est un aspect important dans toute application faisant intervenir des dispositifs de type microruban.

2.2.3 Transition coax-microruban

Même si l'impédance d'un câble coaxial et d'un câble microruban est la même, lorsqu'ils sont reliés ensemble (fig. 2.4), les ondes incidentes à cette interface peuvent être réfléchies à cause du passage d'un mode TEM à quasi-TEM. Pour éviter toute réflexion, l'orientation du champ électrique et du champ magnétique de l'OEM doit être continue de part et d'autre de l'interface. Cet aspect technique important est souvent négligé. Majewski [11] a estimé les réflexions obtenues avec ce type d'interface. Il en conclut que l'erreur obtenue sur la phase et l'amplitude peuvent être de 30%. La modélisation et l'estimation des pertes à ce type d'interface sont toutes aussi importantes que la modélisation du composant, puisque la puissance est acheminée au composant planaire par des câbles coaxiaux. Notre montage expérimental comportera deux transitions semblables.

2.3 Propagation des ondes

Sans regard au traitement effectué pour évaluer l'impédance du milieu, l'onde plane d'amplitude initiale A_o considérée est caractérisée par la constante de propagation γ et de la position z :

$$A(z) = A_0 e^{\pm \gamma z}$$

(2.18)

La constante de propagation contient l'atténuation (α) et la phase (β) de l'onde3.

3Les équations de cette section proviennent du livre de Kadin [8], autrement les références sont indiquées.
Fig. 2.4 – Coupe longitudinale d’une transition coax-microruban.

\[\gamma = \alpha + i \beta \quad (2.19) \]

La géométrie du milieu influence le mode de propagation de l’onde et les propriétés électriques et magnétiques du milieu influencent la vitesse de propagation. La vitesse de propagation de l’onde est obtenue à partir de la dérivée partielle de la phase \(\beta \) par rapport à la fréquence de l’onde :

\[v_p = \left(\frac{\partial \beta}{\partial \omega} \right)^{-1} \quad (2.20) \]

Dans le cas des ondes de tension et de courant, la vitesse de propagation n’est fonction que de l’inductance \(L \) et de la capacité \(C \) caractéristiques de la ligne :

\[v_p = \frac{1}{\sqrt{LC}} \quad (2.21) \]

Pour le cas d’une OEM, la vitesse de propagation est fonction de la perméabilité \(\mu_r \) et de la
permittivité ε_r du milieu de propagation.

$$v_p = \frac{c}{\sqrt{\mu_r \varepsilon_r}}$$ (2.22)

Afin de tenir compte des pertes, donc de l'évaluation de la constante d'atténuation α, posons la limite de faibles pertes, c'est-à-dire $R \ll \omega L$ et $G \ll \omega C$, alors la constante d'atténuation est donnée par [8, p. 344] :

$$\alpha = \frac{1}{2} \left(\frac{R}{Z_0} + \frac{G}{Z_0} \right)$$ (2.23)

La constante d'atténuation tient compte des pertes dans les conducteurs et le diélectrique. Dans le cas du diélectrique, la constante d'atténuation est donnée par la relation suivante [12] :

$$\alpha_d = 27.3 \frac{\varepsilon_r (\varepsilon_{eff} - 1) \tan \delta}{\lambda (\varepsilon_r - 1) \sqrt{\varepsilon_{eff}}}$$ (2.24)

où $\tan \delta$ est le rapport de la partie imaginaire avec la partie réelle de la constante diélectrique du milieu de propagation.

$$\tan \delta = \frac{\varepsilon''}{\varepsilon'}$$ (2.25)

Pour déterminer l'atténuation de l'onde dans les conducteurs, la notion d'impédance de surface (Z_s) doit être introduite. Cette impédance est définie en modélisant un conducteur comme une ligne à transmission avec seulement une inductance $L = \mu_o$ et une conductance $G = \sigma$, voir fig. 2.1 :

$$Z_s = (1 + i) \sqrt{\frac{\omega \mu_o}{2\sigma}}$$ (2.26)

$$= R_s + i \omega L_s$$ (2.27)
L'impédance de surface possède un terme résistif \(R_s \) et un terme inductif \(L_s \). La conductivité du matériau influence les deux termes de l'impédance de surface. C'est la présence de la conductivité dans la définition de la résistance de surface qui confère aux métaux normaux et supraconducteurs des propriétés de surfaces différentes.

2.3.1 Résistance de surface \((R_s) \)

Dans le cas d'un métal normal, la conductivité \(\sigma \) est réelle et ne dépend que de la température\(^4\). La résistance de surface varie comme la racine carrée de la fréquence.

\[
R_s = \sqrt{\frac{\omega \mu_0}{2\sigma}} \quad \text{(2.28)}
\]

\[
= \frac{1}{\sigma \delta} \quad \text{(2.29)}
\]

L'épaisseur de peau \(\delta \) est donnée par

\[
\delta = \sqrt{\frac{2}{\omega \mu_0 \sigma}} \quad \text{(2.30)}
\]

L'inductance de surface \((L_s) \) qui a le même comportement en fréquence que la résistance de surface provient de la pénétration du champ sur une longueur \(\delta \) dans le conducteur.

Dans le cas d'un supraconducteur, un modèle phénoménologique permet d'obtenir qualitativement la physique des pertes, c'est le modèle à deux fluides. Ce modèle suppose la présence de deux types de particules dans le supraconducteur qui sont indépendantes : des quasiparticules, électrons normaux, et paires de Cooper, électrons supraconducteurs. Le courant circulant dans le supraconducteur serait donc la somme de deux courants constitués de ces particules.

\[
\vec{J} = \vec{J}_n + \vec{J}_s \quad \text{(2.31)}
\]

\(^4\)La conductivité n'est pas fonction de la fréquence \(\omega \).
La conductivité complexe du supraconducteur dérivée du modèle à deux fluides est :

\[
\sigma(\omega) = \frac{1}{\rho} - \frac{i}{\omega L_s}
\]

(2.32)

\(L_s\) est l'inductance cinétique de la densité superfluide. La conductivité du supraconducteur qui dépend de la fréquence \(\omega\) exprime la présence d'un canal résistif, électrons normaux, et d'un canal inductif à cause de la présence des paires de Cooper. L'évaluation de l'impédance de surface du supraconducteur n'est pas triviale. Regardons deux cas particuliers : une couche mince et une couche épaisse. Tout d'abord, utilisant l'approximation que l'épaisseur \(d \ll \lambda_L\) pour une couche mince et l'approximation de faible fréquence \(\omega L_s \ll \rho\), l'impédance de surface du supraconducteur est

\[
Z_s = R_s + i\omega L_s
\]

\[
\approx \frac{\omega^2 \mu_n^2 \lambda_L^2}{2\rho} + i\omega \mu_n \lambda_L
\]

(2.34)

La résistance de surface du supraconducteur varie alors comme le carré de la fréquence dans le cas d'une couche mince. Ce résultat est aussi vrai pour le cas d'une couche épaisse \(d \gg \lambda_L\). Donc si la résistance de surface d'un supraconducteur est plus faible qu'un métal normal à une fréquence donnée, cette dernière augmentera beaucoup plus rapidement avec l'augmentation de la fréquence qu'un métal normal qui a une résistance de surface qui va comme la racine carrée de la fréquence. À une certaine fréquence, les deux résistances de surface seront égales.

Contrairement aux métaux normaux, la résistance de surface du supraconducteur dépendra ultimement de la puissance à grande intensité. Cette dépendance provient de la présence possible de vortex se déplaçant dans le supraconducteur. Ces vortex apparaissent à cause du champ magnétique créé par les courants induits dans le composant. Le mécanisme des pertes

\(^5\)Voir le détail de l'obtention de la conductivité à l'annexe A.
CHAPITRE 2. THÉORIE

sera toutefois différent selon le type de courant. En courant continu, les pertes proviennent de l’écoulement des vortex dans tout le volume du matériau soumis à la force de Lorentz (éq. 1.9). Tandis qu’en courant alternatif, dans le régime des RF, des pertes apparaîtront par hystérésis de l’aimantation : seulement les vortex sur les bords de l’échantillon contribueront aux pertes [13].

2.4 Résonateur microruban

Cette section définit les notions élémentaires nécessaires au traitement des mesures pour l’obtention des propriétés micro-ondes d’un résonateur. Puisqu’il y a plusieurs types de résonateur et que c’est le résonateur microruban qui a été étudié dans ce projet, la définition de ces différentes parties est nécessaire.

2.4.1 Définition

Un résonateur microruban est une ligne à transmission sectionnée. Le microruban doit être discontinu pour qu’il y ait réflexion et transmission des ondes à cette interface. Le résonateur proposé pour ce projet possède deux discontinuités. La région entre ces discontinuités est la cavité résonante (fig. 2.5) où des ondes stationnaires s’y forment. La fréquence de résonance, la largeur de la bande passante et la puissance transmise par cette cavité dépendent de la géométrie du composant, mais aussi du type de matériaux utilisés pour fabriquer le composant. La longueur des discontinuités qui couplent la cavité avec l’extérieur est responsable en grande partie de la puissance transmise à travers cette cavité. Le couplage entre la cavité et l’extérieur est de nature capacitif. Plus la longueur de ces discontinuités (gaps capacitifs) est importante, moins de puissance pourra être transmise dans la cavité (la capacité diminue).

La figure 2.6 présente clairement les gaps capacitifs et définit les surfaces de contact (pads). Cette surface permet de fixer le câble coaxial qui amène le signal à la cavité. À cause du gap capacitif, une certaine partie de la puissance du signal incident est réfléchie, et donc l’am-
CHAPITRE 2. THÉORIE

FIG. 2.5 - Coupe longitudinale d'un exemple de résonateur microruban.

L'amplitude du signal transmis est diminuée. De plus, des réflexions supplémentaires doivent être prises en compte à cause du passage de l'onde d'un milieu TEM (câble coaxial) à quasi-TEM (câble microruban) à la transition coax-microruban.

FIG. 2.6 - Vue de dessus d'un exemple de résonateur microruban.

Pour fin d'études des comportements des pertes dans la cavité, une normalisation des données permet de soustraire les pertes engendrées pas la transition et les discontinuités. Mais en pratique, le défi est de taille pour adapter l'impédance des deux lignes, c'est-à-dire permettre
la continuité du champ électrique et magnétique de part et d’autre des deux lignes.

C’est à partir du signal transmis par la cavité qu’il sera possible d’extraire les pertes dans la cavité.

2.4.2 Fréquence de résonance f_0

À cause du changement d’impédance imposé par les discontinuités dans le microruban, seules certaines fréquences pourront être transmises. Ces fréquences seront des multiples entiers (n) non nuls et positifs de la longueur de la cavité. Donc, la longueur l de la cavité permet à une onde stationnaire de fréquence f_0 (ainsi que ses multiples) de s’établir (fig. 2.7). Uniquement cette onde pourra être transmise par la cavité filtrant ainsi les fréquences non désirées.

Fig. 2.7 – Définition de la longueur de la cavité.

\[
f_0 = \frac{n v_p}{2 l_r}
\] \hspace{1cm} (2.35)

*C’est une cavité $\lambda/2$ où $l = \lambda/2$.

\[\]
l_r est une correction à la longueur de la cavité, puisque les lignes de champ ne sont pas entièrement comprises dans la région de la cavité. Selon l'approche considérée, la fréquence de résonance est décrite par les relations suivantes :

\[
\begin{align*}
 f_o &= \frac{1}{2l_r\sqrt{LC}} \\
 f_o &= \frac{c}{2l_r\sqrt{\varepsilon_{eff}}}
\end{align*}
\]

(2.36) (2.37)

L représente l'inductance totale de la cavité et la capacité C inclut la capacité des gaps capacitifs, du diélectrique entre les conducteurs et du reste du composant avec l'atmosphère. En réalité, une certaine distribution de fréquence Δf_o s'établit dans la cavité autour de la fréquence de résonance. Cette distribution dépend du couplage et des pertes. Pour fin d'applications, il faut trouver un compromis entre la distribution de fréquence et la puissance transmise. C'est la distribution de fréquence et la puissance transmise qui permettront d'évaluer les pertes dans la cavité.

2.4.3 Facteur de qualité Q

De façon grossière, le facteur de qualité est le rapport de l'énergie emmagasinée, électrique et magnétique, sur la puissance dissipée ou pertes\(^7\).

\[
Q = \frac{E_{em}}{P_d}
\]

(2.38)

La constante d'atténuation est reliée au facteur de qualité par l'expression qui suit [12] :

\[
\alpha = \frac{8.686\pi\sqrt{\varepsilon_{eff}}}{Q\lambda}
\]

(2.39)

où λ est la longueur d'onde dans le vide.

\(^7\)Voir définition plus exacte dans [14].
Définissons les facteurs de qualité du résonateur Q_i et de la cavité Q_o (fig. 2.8)8. Le facteur de qualité Q_o est fonction des pertes provenant des deux conducteurs et du diélectrique et éventuellement des pertes radiatives en se référant à la figure 2.8. Toutefois, les pertes radiatives sont généralement négligées dans l'expression du facteur de qualité de la cavité (éq. 2.40) puisqu'un écran radiatif (shield) est placé autour du résonateur. Le facteur de qualité Q_o est alors exprimé en terme du facteur de qualité des conducteurs et du diélectrique.

\begin{figure}
\centering
\includegraphics[width=\textwidth]{fig2.8.png}
\caption{Fig. 2.8 – Réprésentation de la région contribuant aux pertes mesurées par les facteurs de qualité Q_i et Q_o.}
\end{figure}

\begin{equation}
\frac{1}{Q_o} = \frac{1}{Q_c} + \frac{1}{Q_d}
\end{equation}

Puisque toute cavité est couplée avec son environnement extérieur 9, des pertes supplémentaires doivent être prises en compte. Le facteur de qualité Q_i, qui est le facteur de qualité du résonateur, est fonction des pertes dans la cavité et celles dues au couplage avec son

8Les termes anglais des facteurs de qualité sont respectivement \textit{loaded} (Q_l) et \textit{unloaded} (Q_o).

9Sinon, elle serait inutilisable.

31
environnement (gaps capacitifs).

\[
\frac{1}{Q_t} = \frac{1}{Q_o} + \frac{1}{Q_{zz}}
\]
(2.41)

On peut réécrire l'expression de \(Q_t\) permettant de définir la constante de couplage \(\kappa\):

\[
Q_t = \frac{Q_o}{1 + \frac{Q_o}{Q_{zz}}} \equiv \frac{Q_o}{1 + \kappa}
\]
(2.43)

Expérimentallement \(Q_t\) est déterminé par la fréquence de résonance sur la largeur à mi-hauteur du pic de résonance, la distribution de fréquences:

\[
Q_t = \frac{f_o}{\Delta f_o}
\]
(2.44)

Quant à la constante de couplage \(\kappa\), elle peut être déterminée à partir des pertes d'insertion \((IL)^{10}\) qui est la puissance transmise à \(f_o\) exprimée en dB [15] :

\[
\kappa = \frac{10^{IL/20}}{2(1 - 10^{IL/20})}
\]
(2.45)

En pratique, les pertes dans le diélectrique\(^{11}\) sont les contributions les plus importantes aux pertes de la cavité [15, 16]. Elles dépendent de \(\tan\) et des constantes diélectriques relative \((\varepsilon_r)\) et effective \((\varepsilon_{eff})\). De plus, les pertes causées par la radiation peuvent être importantes à basse température. Miura et al [17] ont observé une augmentation du facteur de qualité \(unload\) d'environ un ordre de grandeur en utilisant un écran radiatif supraconducteur (niobium).

\(^{10}\)Terme anglais : insertion loss.

\(^{11}\)Les pertes du diélectrique, fonction de la température, sont déterminées à partir de la littérature [12].
Définissons maintenant les quantités qui seront mesurées en pratique afin de caractériser le résonateur microruban ou tout autre composant.

2.5 Théorie des réseaux micro-ondes

Dans une ligne à transmission où le mode de propagation est non-TEM, la relation entre la tension et le courant est complexe à déterminer. La théorie des réseaux micro-ondes [18] permet de tenir compte de ce mode. En fait, le concept de courants et de tensions équivalents permet de montrer sans regard au mode de propagation\(^{12}\) que les coefficients de réflexion et de transmission sont des quantités physiques uniques : à une onde de tension correspond qu'une seule onde de courant. Les courants et les tensions équivalents peuvent être décrits selon une base normalisée ou non-normalisée. Seulement la base normalisée sera traitée dans cette section.

2.5.1 Représentation matricielle de l’impédance d’un réseau

La figure 2.9 présente le schéma d’un réseau à \(N\) ports. Un port constitue une entrée ou une sortie d’un réseau par lequel une onde se propage. Il possède sa propre impédance caractéristique \((Z_{on})\). Et à chaque port \(n\) est associé une tension \(\hat{V}_n\) et un courant \(\hat{I}_n\) normalisés.

La tension au port \(n\) considéré est définie par la somme de la tension incidente (+) et de la tension réfléchie (-) à ce port :

\[
\hat{V}_n = \hat{V}^+_n + \hat{V}^-_n
\]

(2.46)

Quant au courant, il est défini par la différence entre le courant incident et le courant réfléchi :

\[
\hat{I}_n = \hat{I}^+_n - \hat{I}^-_n
\]

(2.47)

\(^{12}\)La propagation peut être TEM, quasi-TEM ou non-TEM.
CHAPITRE 2. THÉORIE

Fig. 2.9 – Schéma d’un réseau à N ports.

Le courant et la tension réfléchis à un port n dépendent de l’impédance du réseau et de l’impédance des autres ports présents d’une façon non triviale. La représentation matricielle de l’impédance d’un réseau (\(\hat{Z}\)) permet de simplifier l’analyse du système. La tension normalisée\(^{13}\) d’un réseau à N ports est le produit de son impédance et du courant normalisé.

\[
[\hat{V}] = [\hat{Z}][\hat{I}]
\] \hspace{1cm} (2.48)

où les matrices de la tension, de l’impédance et du courant sont définies respectivement par :

\[
[\hat{V}] = \\
\begin{bmatrix}
\hat{V}_1 \\
\vdots \\
\hat{V}_N
\end{bmatrix}
\] \hspace{1cm} (2.49)

\(^{13}\)Le chapeau indique que les éléments de la matrice sont normalisés.
[\hat{Z}] =
\begin{bmatrix}
\hat{Z}_{11} & \hat{Z}_{12} & \cdots & \hat{Z}_{1N} \\
\hat{Z}_{21} & \hat{Z}_{22} & \cdots & \hat{Z}_{2N} \\
\vdots & \vdots & \ddots & \vdots \\
\hat{Z}_{N1} & \hat{Z}_{N2} & \cdots & \hat{Z}_{NN}
\end{bmatrix} \quad (2.50)

[\hat{I}] =
\begin{bmatrix}
\hat{i}_1 \\
\vdots \\
\hat{i}_N
\end{bmatrix} \quad (2.51)

2.5.2 Matrice des coefficients de réflexion et de transmission

En pratique, il est plus intéressant de définir une quantité facilement mesurable. Kurokawa [19] a défini en 1964 une transformation linéaire de V et I définissant ainsi le rapport, matrice S, entre les tensions réfléchies et incidentes\footnote{S pour Scattering en anglais.} :

\[[\hat{V}^-] = [\hat{S}][\hat{V}^+]\]

(2.52)

Les paramètres S peuvent directement être exprimés en fonction de la puissance, l'équivalent d'une onde de puissance parcourant le réseau :

\[|\hat{S}_{nn}|^2 = \frac{|\hat{V}_{n^-}|^2}{|\hat{V}_{n^+}|^2} = \frac{P_{n^-}}{P_{n^+}}\]

(2.53)

La loi de conservation de la puissance au port n est donnée par :

\[|\hat{S}_{1n}|^2 + |\hat{S}_{2n}|^2 + \cdots + |\hat{S}_{Nn}|^2 = 1\]

(2.54)

L'utilisation des paramètres S permet généralement d'obtenir plus facilement les propriétés d'un réseau.
2.5.3 Réseau à deux ports

Le cas qui nous intéresse pour ce projet est le cas d'un réseau à deux ports puisque le test jig dans notre montage expérimental possède seulement deux entrées ou sorties. La figure 2.10 illustre la signification des paramètres S d'un réseau à deux ports.

![Diagram of a 2-port network with S-parameters](image)

Fig. 2.10 – Schéma d'un réseau à 2 ports explicitant les paramètres S associés.

\(\hat{S}_{11} \) et \(\hat{S}_{22} \) représentent les réflexions aux ports 1 et 2 respectivement. \(\hat{S}_{21} \) est le signal transmis au port 2 provenant du port 1. Et \(\hat{S}_{12} \) le signal transmis au port 1 provenant du port 2. Les paramètres S d'un réseau à deux ports possèdent certaines particularités dans le cas idéal. Sachant que la conservation de la puissance aux ports 1 et 2 impose :

\[
|\hat{S}_{11}|^2 + |\hat{S}_{21}|^2 = 1 \tag{2.55}
\]
\[
|\hat{S}_{12}|^2 + |\hat{S}_{22}|^2 = 1 \tag{2.56}
\]

on en déduit, si l'impédance des lignes amenant le signal à chaque port est la même, que les
coefficients de transmission sont identiques :

$$| \hat{S}_{21} |^2 = | \hat{S}_{12} |^2$$

(2.57)

Ainsi que les coefficients de réflexion déduits à partir de la loi de conservation :

$$| \hat{S}_{11} |^2 = | \hat{S}_{22} |^2$$

(2.58)

Nous verrons dans la présentation des résultats que ces deux dernières équations ne sont pas exactement vraies, et qu'en pratique, elles diffèrent un peu à cause de l'asymétrie du composant sur le porte-échantillon.
Chapitre 3

Méthode expérimentale

Dans ce chapitre, nous aborderons la technique de croissance par ablation laser, les techniques de caractérisation des couches minces, la définition du composant par photolithographie et gravure humide, la procédure d’assemblage du composant pour la caractérisation micro-onde et, finalement, la technique de caractérisation micro-onde.

La procédure de fabrication mise en place à l’Université de Sherbrooke dans le cadre de ce projet de maîtrise peut être utilisée pour le développement de tous les composants de type planaire, si leur taille est bornée. Les dimensions maximales et minimales des composants sont limitées par les équipements à l’Université de Sherbrooke. Le montage de croissance par ablation laser limite la taille maximale des composants à une surface d’environ \(15 \times 15 \, mm^2\), tandis que la technique de gravure humide limite la taille minimale des composants à environ \(\sim 5\, \mu m\). Ces contraintes techniques restreignent la gamme de fréquences d’opération des composants pouvant être fabriqués. Dans le cas d’applications micro-ondes, la limite imposée par les équipements peut être contournée en utilisant différents substrats, impliquant que la vitesse de propagation des ondes électromagnétiques peut être ajustée.

La procédure de fabrication est divisée en trois étapes : la croissance et la caractérisation de la couche mince, la photolithographie et la gravure humide, et l’assemblage du composant sur un porte-échantillon. Ce n’est qu’une fois la procédure de fabrication terminée que
les propriétés micro-ondes du composant sont mesurées. Les paramètres de croissance de $Y_1Ba_2Cu_3O_7$ (YBCO) permettant d’obtenir la phase supraconductrice sont d’abord présentés avant d’expliquer la technique de croissance par ablation laser. Cette section permettra de justifier les paramètres utilisés lors de la croissance.

3.1 Paramètres de croissance de YBCO

Les propriétés des cuprates dont fait partie YBCO sont très sensibles à leur contenu en oxygène. Lorsque la concentration de $YBa_2Cu_3O_7$ en oxygène est inférieure à environ 6,4 ($x = 0,64$), il ne présente plus de supraconductivité quelque soit la température (fig. 3.1).

![Diagramme de Tc en fonction de x](image)

Fig. 3.1 - Influence de la concentration d’oxygène sur la T_c de YBCO.

La présence d’oxygène modifie la structure cristalline de YBCO. Lorsque la concentration d’oxygène est de 6 ($x = 1$), la structure cristalline de YBCO est tétragone et les axes a et b sont égaux. Par contre, l’axe c est beaucoup plus grand. En augmentant graduellement la concentration d’oxygène, une différence de longueur apparaît entre les axes a et b et s’accentue. La structure cristalline se transforme progressivement en une phase orthorhombique.

1 Ce diagramme est tiré de [20, p. 11].

2 Voir tableau 3.1.
qui est la phase cristalline pour laquelle YBCO est supraconducteur. La figure 3.2 montre que les oxygènes supplémentaires dans la phase orthorhombique se fixent sur les chaînes de cuivre-oxygène (Cu-O)\(^3\). La phase tétragonale et la phase orthorhombique font partie de la phase 1-2-3 de YBCO (1-2-3 représente les concentrations respectives de Y, Ba et Cu).

![Diagramme de structure de YBCO](image)

FIG. 3.2 – Phases orthorhombique supraconductrice *(gauche)* et tétragonale isolante *(droite)* de YBCO.

Lors de la croissance d’une couche mince de YBCO, la pression d’oxygène\(^4\) et la température du substrat (de croissance) sont les deux paramètres de base à contrôler. Hammond et Bormann [21] ont déterminé le diagramme de phase de YBCO (fig. 3.3) à l’aide d’une méthode

\(^3\)Ce diagramme est tiré de [20, p. 10].

\(^4\)Pression partielle si un autre gaz inerte est présent.
électrochimique suggérant ainsi la zone des paramètres optimaux pour la croissance d'une couche mince5.

FIG. 3.3 – Diagramme de phase de YBCO.

Les deux conclusions importantes de leur travail permettent de guider l'expérimentateur à obtenir les propriétés recherchées. Voici les conclusions qu’ils ont tirées :

1. la croissance de YBCO doit être effectuée près de la ligne de décomposition 6 dans la phase tétragonale afin d'augmenter la mobilité des atomes, augmentant ainsi la

5Ce diagramme est tiré de [20, p. 39].

6Cette zone est indiquée à la figure 3.3.
grosseur des grains et améliorant significativement l'ordre structurel ;

2. l'éloignement vers la droite, à des températures plus basses, par rapport à la ligne de décomposition réduit la mobilité des oxygènes, la grosseur des grains diminue et la formation d'amas d'oxyde de métal à la surface augmente.

La zone de décomposition située à gauche de la phase tétraéronale indique les conditions auxquelles la phase 1-2-3 de YBCO est instable. Cette zone contient trois phases particulières : Y$_2$BaCuO$_5$ (phase verte), BaCuO$_2$ et Cu$_2$O. Si la croissance est effectuée trop près de la ligne de décomposition, ces trois phases peuvent être présentes sur la couche mince.

Lorsque la croissance est effectuée près de la ligne de décomposition, YBCO est normalement dans la phase tétraéronale (x ~ 1). Une fois la croissance terminée, la pression d'O$_2$ est fortement augmentée (plusieurs ordres de grandeur) et la couche est refroidie lentement afin d'obtenir la phase orthorhombique. Cette étape d'oxydation augmente la concentration d'oxygène au-dessus de 6,4 (x = 0,6) pour rendre la couche supraconductrice (voir fig. 3.1). C'est cet environnement de croissance qui sera récréé lors de la croissance par ablation laser de YBCO.

3.2 Croissance par ablation laser

La technique de croissance par ablation laser [22, 23] fut utilisée avec succès sur les SHTC peu après leur découverte. Dijkkamp et al ont rapporté la première couche mince de YBCO fabriquée par ablation laser [24]. Le contrôle des nombreux paramètres de croissance est l'aspect à maîtriser pour obtenir des couches supraconductrices de bonnes qualités. Par contre, contrairement à la technique d'épitaxie par jet moléculaire (EJM)7, cette technique est peu coûteuse et plus simple à optimiser. De plus, elle permet une très grande flexibilité : plusieurs matériaux peuvent être crus dont des oxydes très difficiles à évaporer avec d'autres techniques.

7Terme anglais : Molecular Beam Epitaxy (MBE).
CHAPITRE 3. MÉTHODE EXPÉRIMENTALE

La maîtrise des paramètres de croissance de YBCO n’est pas aussi simple que de déposer, par exemple, de l’or sur une surface. Lorsque des atomes d’or sont adsorbés, la position d’un atome peut être changée avec celle d’un autre sans changer les propriétés de la couche : l’ordre cristallin demeure le même. Par contre, dans le cas d’un supraconducteur qui contient plusieurs atomes, l’ordre cristallin est évidemment important. En fait, c’est cette organisation bien précise qui mène vers la supraconductivité. Les conditions de croissance peuvent affecter significativement la structure cristalline du supraconducteur ainsi que les différents mécanismes de croissance pouvant créer des défauts ou des surfaces rugueuses.

Cette section présente d’abord la procédure expérimentale du dépôt des couches minces fabriquées en y mentionnant les paramètres de croissances à contrôler. Par la suite, la présentation plus détaillée de certains paramètres de croissance permettra d’illustrer l’effet de ceux-ci sur les mécanismes de croissance de la couche mince.

3.2.1 Procédure de croissance de YBCO

Un laser pulssé (~ 20 ns) à 10 Hz émettant une longueur d’onde dans l’ultraviolet (UV, 248 nm) permet d’évaporer les atomes d’une cible de YBCO fabriquée dans nos laboratoires. À l’aide d’une lentille convergente, le faisceau du laser est focalisé près de la cible (fig. 3.4) pour obtenir une densité d’énergie de l’ordre de 2 J/cm².

Une fois les liens des atomes de la cible brisés, les atomes sont éjectés perpendiculairement à la surface de la cible en direction d’un substrat de LaAlO₃ (LAO) d’orientation (100)⁸ placé face à la cible à une distance de 6 cm et à une température de 840 degrés Celsius. Les atomes éjectés de la cible forment un plasma que l’on nomme aussi plume. Les atomes formant le plasma sont adsorbés en partie par le substrat. La cible (matériau sous forme polycristalline) doit contenir habituellement la stoichiométrie exacte de la structure cristalline de la couche mince recherchée. Ce processus d’ablation est effectué pendant 20 min sous une pression d’O₂ de 140 mTorr pour un dépôt total d’environ 500 nm. Après quoi une pression

⁸cette orientation cristalline favorise la croissance de l’axe c perpendiculaire à la surface du substrat
FIG. 3.4 – Schéma du montage d'ablation laser.
de 300 Torr d’oxygène est maintenue dans la chambre lors du refroidissement vers l’ambiance pour obtenir la phase orthorhombique permettant à la couche mince d’être supraconductrice.

Finalement, une très mince couche d’or (∼ 20 nm) est déposée sur la couche de YBCO, lorsque la température passe sous 150 °C.

Deux raisons justifient le dépôt d’une couche très mince d’or sur la couche de YBCO8 :

1. tout d’abord, la phase 1-2-3 de YBCO est instable et se dégrade en présence de vapeur d’eau [26]. En se dégradant, YBCO peut former une couche isolante. Exposer la couche à l’air ambiant pourrait provoquer une décomposition graduelle vers une phase non supraconductrice. Selon Russek et al [27], le CO₂ peut aussi dégrader la surface. Leur étude montre que la résistance de contact augmente avec l’exposition de la couche mince à ces réactifs ;

2. il est relativement difficile d’obtenir des résistance de contact convenables entre la majorité des métaux et YBCO. Il existe plusieurs méthodes permettant de diminuer la résistance de contact [28]-[39], mais les plus importantes sont d’effectuer un recuit d’une couche d’or évaporée ex situ, ou de déposer de l’or ou de l’argent in situ. C’est cette dernière approche qui a été choisie pour ce projet. En résumé, le dépôt in situ de l’or diminue les réactifs pouvant dégrader la couche mince de YBCO qui sont en plus grande concentration à l’extérieur de la chambre de croissance. La résistance de contact est en fait un aspect important à considérer pour la détermination du courant critique ou le fonctionnement de composants micro-ondes fonctionnant à hautes puissances. Dans ces deux cas, si la résistance de contact est trop élevée, la couche peut chauffer localement et perdre ses propriétés.

Malgré la simplicité apparente de la technique de croissance par ablation laser, plusieurs paramètres mentionnés dans la procédure (et non mentionnés) doivent être contrôlés lors de la croissance10. Ils sont énumérés dans la liste qui suit :

8Voir étude sur l’influence de la couche d’or sur la R_x dans [25].
10Toutes les conditions de croissance sont indiquées à l’annexe B.
1. la température du substrat;
2. le type de substrat;
3. la pression du gaz dans la chambre de croissance;
4. la densité et la stoichiométrie de la cible;
5. la distance cible-substrat;
6. la densité d'énergie du faisceau laser;
7. la fréquence du laser;
8. l'interaction entre la cible et le faisceau laser.

Malgré l'expérience acquise dans le domaine, chaque nouveau montage d'ablation laser possèdera ces propres paramètres de croissance. C'est un peu comme de la cuisine ; même si on suit à la lettre la recette de notre grand-mère, ça ne goûte jamais pareil : l'optimisation des paramètres de croissance nécessite plusieurs ajustements fins, spécifiques à chaque chambre de croissance, mais reproductibles dans la mesure où cette chambre n'est pas modifiée. L'impression que les paramètres de croissance sont contrôlés est fausse. Les paramètres dérivent aussi toujours un peu en fonction du temps que ce soit pendant une croissance ou après plusieurs croissances. Toutes ces tendances sont faciles à caractériser et à circonscrira pour en limiter les impacts si l'expérimentateur connaît l'effet de ces paramètres sur la croissance de la couche mince de YBCO.

3.2.2 Le substrat

Le substrat est un matériau qui possède un paramètre de maille qui doit s'approcher de celui du supraconducteur. Dans le cas de YBCO, plusieurs substrats peuvent être utilisés. Toutefois, le choix de ces substrats influence directement les propriétés micro-ondes des composants puisque leur constante diélectrique et leur tangente δ sont différentes (tableau 3.1)\(^{11}\).

Puisque la structure cristalline de YBCO est anisotrope, la croissance doit donc avoir une

\(^{11}\)Tableau inspiré de [20, p. 38].

46
CHAPITRE 3. MÉTHODE EXPÉRIMENTALE

<table>
<thead>
<tr>
<th>Substrats</th>
<th>Paramètre de maille [Å]</th>
<th>Constante diélectrique</th>
<th>tan δ</th>
<th>Coefficient d'expansion [K⁻¹]</th>
</tr>
</thead>
<tbody>
<tr>
<td>SrTiO₃ (STO)</td>
<td>a = 3.905</td>
<td>300</td>
<td>2 - 10⁻² à 10 MHz</td>
<td>9 - 10⁻⁶</td>
</tr>
<tr>
<td>Y₂O₃stabil.ZrO₂ (YSZ)</td>
<td>a = 5.125</td>
<td>27</td>
<td>—</td>
<td>8 - 10⁻⁶</td>
</tr>
<tr>
<td>MgO</td>
<td>a = 4.203</td>
<td>8.1</td>
<td>9 - 10⁻² à 10 GHz</td>
<td>8 - 10⁻⁶</td>
</tr>
<tr>
<td>LaAlO₃ (LAO)</td>
<td>a = 3.831</td>
<td>≈ 24</td>
<td>3 - 10⁻⁴ à 10 MHz</td>
<td>10⁻⁵</td>
</tr>
<tr>
<td>YBCO</td>
<td>a = 3.82</td>
<td>b = 3.89</td>
<td>c = 11.68</td>
<td>1,1 - 1,3 · 10⁻⁶</td>
</tr>
</tbody>
</table>

Tab. 3.1 - Comparaison des propriétés des substrats les plus utilisés dans la croissance de YBCO.

L'orientation bien précise. L'orientation cristalline du substrat influence l'orientation de croissance de YBCO. C'est ce qu'on appelle une croissance épitaxiale, le substrat favorise une croissance avec une orientation cristalline particulière du matériau déposé à sa surface. Dans le cas d'un matériau comme YBCO, il arrive que, pour une tentative de croissance épitaxiale selon l'axe c (perpendiculaire au substrat), l'orientation des axes a et b de certains grains ne soit pas la même. Les propriétés de la couche mince peuvent donc être modifiées si ces grains sont trop nombreux (voir fig. 3.10). Le choix du substrat et des autres paramètres de croissance peuvent influencer la présence de ces structures.

3.2.3 La pression du gaz et la température de croissance

Il est nécessaire d'introduire un gaz entre la cible et le substrat pour réduire la vitesse des atomes et créer un plasma (la plume). En effet, lors de l'ablation, les atomes sont éjectés à plusieurs fois la vitesse du son [20, p.30]. S'ils n'étaient pas ralentis par le gaz ambiant, le faisceau d'ions endommagerait la surface du substrat ou de la couche. Puisque le libre parcours moyen à P ~ 140 mTorr est d'environ 10 μm, un plasma (d'une longueur ~ 5 cm) apparaît dans la chambre de croissance. Dans notre cas, le gaz utilisé doit contenir de l'oxygène. Le rôle du gaz est d'abord de ralentir les atomes du plasma, mais aussi de contribuer à assurer une stoichiométrie appropriée d'oxygène dans la couche mince. Étant donné que

47
CHAPITRE 3. MÉTHODE EXPÉRIMENTALE

la présence du gaz modifie la température moyenne du plasma, qui représente l'énergie ciné-
tique moyenne, la mobilité des atomes sur la surface sera modifiée. Des travaux montrent que
la composition de la stoïchiométrie dans la plume est fonction de r, la distance par rapport
à la cible. Pour cette raison, la distance entre la cible et le substrat est un autre paramètre
à contrôler et est affecté par P.

Lorsque les atomes sont adsorbés par le substrat, ils peuvent se déplacer. Leur mobilité
dépend en partie de la température du substrat et de la nature du plasma (plume). L'élé-
ment chauffant sur lequel le substrat est fixé avec de la laque d'argent permet de varier
la température du substrat. Le substrat n'est pas un bon conducteur thermique, donc un
mauvais collage peut mener à un important gradient de température sur la surface. Dans
de telles conditions, la température n'est pas uniforme sur la surface du substrat, et le su-
praconducteur ne croît pas avec la même qualité cristalline sur toute la surface de la couche
mince : en général, plus de défauts sont présents à cause de la taille différente des grains
pour les zones à plus basse température.

3.2.4 Faisceau laser et cible

Lors de l'interaction entre la cible et le faisceau laser, la stoïchiométrie de la plume peut
s'éloigner sensiblement de celle de la cible. L'interaction entre la cible et le faisceau pulsé
peut être divisée en deux parties [22] :

1. l'interaction entre le faisceau laser et le matériau solide de la cible ;

2. l'interaction entre le faisceau laser et le plasma ou même le gaz présent dans la chambre
de croissance.

L'ablation d'un matériau nécessite la présence d'un champ électrique $|\vec{E}|$ suffisamment élevé
pour briser les liens des atomes. Le champ électrique produit par le faisceau laser sur la cible
dépend de l'indice de réfraction n de la cible12 et de la densité de puissance ϕ.

12La densité de la cible polycristalline affecte ce paramètre.
CHAPITRE 3. MÉTHODE EXPÉRIMENTALE

\[|\bar{E}| = \sqrt{\frac{2\phi}{cn\epsilon_0}} \] \hspace{1cm} (3.1)

La densité de puissance du champ électrique est proportionnelle à la densité d'énergie du faisceau laser et inversement proportionnelle à la durée du pulse \(\tau \) [23] :

\[\phi = \frac{U}{A\tau} \] \hspace{1cm} (3.2)

U est l'énergie du faisceau et A l'aire couverte par le faisceau incident sur la cible. Ces deux paramètres peuvent être contrôlés lors de la croissance.

L'interaction du faisceau laser avec la cible a un effet sur la stoichiométrie de la plume. En effet, tel que démontré dans la littérature, si la densité d'énergie du faisceau laser incident sur la cible n'est pas suffisante, la stoichiométrie du matériau évaporé risque d'être différente de celle de la cible [40]. De plus, l'exposition prolongée de la surface de la cible au faisceau laser peut modifier l'indice de réfraction pouvant ainsi diminuer la densité d'énergie absorbée par la cible en plus de modifier la morphologie de cette surface [41, 42]. C'est une source de variation dans le temps des conditions durant un dépôt.

Le plasma formé des différents constituants évaporés de la cible réfléchit et absorbe une partie du faisceau laser. Les différentes interactions dans le plasma vont influencées la dynamique des particules. Par exemple, l'augmentation de la fréquence et de la densité d'énergie du laser peut augmenter la température maximale du plasma [22]. Lors du relâchement adiabatique du plasma, l'énergie thermique se transformant en énergie cinétique, les particules sont accélérées à l'opposé de la cible. Si l'énergie maximale est plus élevée, les particules auront en moyenne une plus grande vitesse. La présence d'un gaz dans la chambre modifie l'expansion. Lorsque l'énergie cinétique et la densité de particules du plasma sont affectées, la croissance est modifiée : le taux de dépôt varie et le type de mécanisme de croissance peut changer.

49
3.2.5 Distance cible-substrat et pression de gaz

La pression du gaz dans la chambre et la distance cible-substrat modifie le taux de croissance et les propriétés de la couche [43]. Le taux de déposition varie avec la distance. Si le substrat est trop près de la plume, alors l'énergie cinétique des particules est trop grande. Dans ce cas, le substrat est endommagé comme s'il s'agissait d'une gravure par plasma. Si le substrat est trop éloigné de la cible, peu de particules s'y rendent, le taux de dépôt est très faible. Quelque part entre ces deux extrêmes se situe la distance où le taux de déposition est le plus élevé. La pression du gaz dans la chambre de croissance affectera cette distance optimale.

Dans certaines conditions13, le processus d'ablation peut éjecter de grosses particules de l'ordre du μm vers le substrat causant des défauts ou bien des irrégularités sur la surface (augmentation de la rugosité). Diverses solutions peuvent être envisagées. Par exemple, une de ces solutions est d'augmenter la densité de la cible [44]. L'utilisation d'un mélange d'argon avec l'oxygène peut aussi donner le même effet [45].

Malgré l'effort déployé pour obtenir la stoichiométrie des constituants nécessaires à la croissance de la structure recherchée à la surface du substrat, les mécanismes de croissance pourraient affecter la qualité cristalline de la couche.

3.2.6 Mécanismes de croissance

Les atomes du plasma sous forme vapeur sont dans un état sursaturé, ils vont se condenser généralement sous forme liquide sur le substrat (adsorption). Certains endroits du substrat étant plus propice à la cristallisation (nucléation) constitueront les germes menant à la formation de la couche mince monocristalline. À ces centres de nucléation vont venir se greffer les atomes contenus dans le liquide. La température joue un rôle important dans la mobilité de surface des atomes dans la phase liquide. La diffusion de surface (D_{substrat}) des particules adsorbées14 est fonction de l'énergie d'activation E_d et la température selon l'expression sui-

13La conductivité thermique de la cible est en cause.

14Les particules ont aussi une probabilité d'être évaporées.
vante :

\[D_{\text{substrat}} = \frac{e^{-E_d/kT}}{\nu_0} \] (3.3)

où \(\nu_0 \) est le taux à laquelle une particule se déplace à un site voisin du réseau cristallin.

Selon les conditions de croissance, les atomes peuvent s'agencer en couches, en flots ou en un mélange des deux (fig. 3.5)\(^{15}\). Le mode de croissance en couches ou Frank-Van de Merwe est attribué à une interaction plus forte entre le substrat et les constituants. Pour le mode formant des flots ou Volmer-Weber, l'interaction entre les atomes est plus importante. Les atomes peuvent même se fusionner avant de condenser sur la surface. Puis, pour le dernier mode, seulement quelques couches peuvent croître avant que le mécanisme à l'origine des flots prenne le dessus (mode Stranski-Krastanov)[46].

Les flots situés à des centres de nucléation augmentent de taille pendant la croissance : lorsque les frontières de deux flots se rejoignent durant la croissance, une zone désordonnée est attendue et observée. Cette zone agira comme une jonction de grains [47]. Dans le cas de la croissance d'une couche mince d'un SHTC, cette région peut être isolante dans le pire des cas. C'est cette région qui peut limiter la densité de courant critique \((J_c) \) selon sa qualité (isolante, semi-isolante, métallique) et affecter les propriétés micro-ondes. En plus, même si la zone entre les deux grains (flots) était idéale, la densité de courant pourrait être faible. En effet, il a été montré que la \(J_c \) dépendait du mauvais alignement des grains entre eux [48, 49] à cause de la symétrie du gap supraconducteur.

En résumé, selon Hammond et Bornmann [21], les conditions de croissance modifient la grosseur des grains et la rugosité de surface. L'allure structurale de la couche mince dépend de l'agencement des mécanismes de croissance qui est influencé par les conditions de croissance. Près de la ligne de décomposition (fig. 3.3), la surface est généralement plus rugueuse.

\(^{15}\)Figure inspirée de [46, p.360].
Îlots (Volmer-Weber)

Couches (Frank-Van der Merwe)

Couches et îlots (Stranski-Krastanov)

Fig. 3.5 – Modes de croissance possibles d'une couche mince.
qu'à basses températures. Pour des applications dans les micro-ondes et dans la fabrication d'autres composants, la rugosité de surface est un aspect important. C'est la mobilité des atomes une fois adsorbés par le substrat qui est en cause. Toutefois, le plasma entourant le substrat doit posséder la stoichiométrie nécessaire à la croissance du matériau. De plus, le mauvais contrôle de certains paramètres peut mener à des surfaces rugueuses qui ne sont pas idéales pour certains composants. Devant la complexité de modéliser la croissance par ablation laser, une période d'optimisation accompagnée de tests de caractérisation est nécessaire. Après la croissance, divers tests permettent de vérifier si la couche mince possède les propriétés escomptées tels que la résistivité, la susceptibilité magnétique, la détermination de la densité de courant critique (J_c), les rayons-X et la microscopie électronique.

3.3 Techniques de caractérisation de la couche mince

Sachant que les paramètres de croissance ne peuvent être contrôlés parfaitement, il est suggéré de vérifier les propriétés de la couche à l'aide de la technique de susceptibilité magnétique avant de poursuivre la fabrication du composant. Cette technique est non-destructive pour la couche, c'est-à-dire que l'échantillon pourra être utilisé par la suite pour fabriquer le composant. En plus, la susceptibilité magnétique est utilisée lors de l'optimisation des paramètres de croissance.

La technique de susceptibilité est basée sur le principe d'induction mutuelle. Deux bobines sont utilisées dans cette technique : une d'excitation et l'autre de détection. Lorsqu'un courant alternatif circule dans la bobine d'excitation, un signal est induit dans la bobine de détection. En insérant une couche mince entre ces deux bobines, l'inductance mutuelle pourrait être perturbée dépendant de la nature magnétique de l'échantillon. C'est le cas pour un échantillon dans son état supraconducteur qui possède une susceptibilité négative (il écrante le champ magnétique). Le principe de fonctionnement est simple. Lorsque la température de l'échantillon est diminuée et que l'échantillon entre les bobines est supraconducteur, la couche mince écranera le champ magnétique. Moins de flux sera perçu dans la bobine de
détection.

La susceptibilité évalue la T_c ainsi que la distribution ΔT_c de la couche mince (fig. 3.6). Plus la transition de l'état normal vers l'état supraconducteur est étroite (habituellement déterminée par la largeur à mi-hauteur de la partie imaginaire χ'' à la transition), donc une faible distribution, meilleure est l'uniformité de la phase cristalline orthorhombique de l'échantillon.

![Graphique](image)

Fig. 3.6 – Exemple d'une mesure de susceptibilité magnétique de YBCO en fonction de la température T. χ'' est la partie imaginaire et χ' est la partie réelle.

La mesure de la résistance en fonction de la température est aussi une technique de caractérisation utilisée. Contrairement à la susceptibilité, c'est une technique qui pourrait détruire
CHAPITRE 3. MÉTHODE EXPÉRIMENTALE

l'échantillon à cause des contacts qu'il faut appliquer sur l'échantillon. La technique à quatre contacts (fig. 3.7) est utilisée pour mesurer la tension aux bornes de l'échantillon lorsqu'un courant constant y circule. L'allure de la résistance en fonction de la température dans l'état normal renseigne sur la qualité de la couche. Le comportement accepté de la résistance de YBCO dans la littérature est un comportement linéaire dont l'ordonnée à l'origine est près de zéro et le rapport de la résistance à 300 K sur la résistance à 100 K est d'environ 2,3 - 3 (fig. 3.8).

![Diagram of four-contact technique](image)

FIG. 3.7 – Schéma de la technique à quatre contacts.

La même configuration de contacts permet de déterminer la densité de courant critique de l'échantillon. Il suffit dans un premier temps de fixer la température de l'échantillon supraconducteur en dessous de sa température critique, la tension mesurée à ses bornes à ce moment est nulle, et, dans un deuxième temps, d'augmenter graduellement le courant jusqu'à ce qu'une certaine différence de potentiel soit mesurée. La condition d'évaluation du courant critique est la présence d'un champ électrique de 1 \(\mu V/cm \) (aussi appelé critère). Par exemple, si la distance entre les deux contacts de tension est 1 cm, le critère correspond à l'apparition d'une différence de potentiel de 1 \(\mu V \).

16Le courant est injecté par deux contacts et la tension lue par deux autres. Cette technique permet de soustraire la résistance des contacts à la résistance de l'échantillon.
Fig. 3.8 – Exemple d'une mesure de résistance d'un échantillon de YBCO en fonction de la température.

Quant à la technique des rayons-X, elle permet de vérifier la structure cristalline de la couche mince. Dans le cas d'une croissance de YBCO selon l'axe c, il arrive que les axes a et b de certains grains soient parallèles à la normale de la surface du substrat. Les rayons-X indiquent la présence de telles structures. L'exemple de spectre de rayons-X à la figure 3.9 d'une couche mince de YBCO confirme la présence de l'axe c à cause de la présence des pics de la famille (001). Les deux pics les plus intenses proviennent de la présence du substrat de LAO. Toutefois, les pics reliés aux axes a et b ne sont pas observés sur ce spectre.

La dernière technique utilisée dans ce projet pour l'optimisation des couches a été la microscopie électronique. Cette technique est particulièrement intéressante pour évaluer la rugosité de surface et l'épaisseur de la couche. La figure 3.10 illustre l'état de surface d'un de nos échantillons obtenus pendant l'optimisation des paramètres de croissance. La présence de structures rectangulaires bien définies indique des domaines d'axe a ou b (les zones étroites et pâles). L'épaisseur de la couche est un autre paramètre important pour la modélisation des propriétés micro-ondes. En fait, le rapport entre la longueur de pénétration et l'épaisseur de la couche détermine quelle approximation pourra être utilisée. La microscopie électronique
Fig. 3.9 – Exemple d’une mesure de rayon-X sur une couche mince de YBCO sur un substrat de LAO. Seuls les pics (001) et du substrats sont observés.
peut aussi vérifier s'il n'y a pas eu de surgravure en observant la couche clivée en incidence normale. Une surgravure peut avoir des effets sur le comportement micro-onde du composant. Pour cela, il suffit d'imaginer qu'à cause d'une épaisseur non-uniforme sur les côtés, des pertes supplémentaires soient ajoutées.

Fig. 3.10 – Exemple d'une photo prise avec un microscope électronique sur une couche mince de YBCO durant la phase d'optimisation de la croissance. Les zones foncées représentent les domaines de la couche mince avec l'axe c transverse à la surface, et les zones pâles sont constituées de grains indésirables (axe a ou b perpendiculaire à la surface).
3.4 Photolithographie et gravure humide

Après la croissance de la couche mince, le motif du composant doit être défini par photolithographie. Cette étape de fabrication contient six parties (fig. 3.11)17 :

1. la surface de la couche mince est nettoyée avec des solvants dans un bain à ultrasons ;
2. une résine photosensible est étendue pour protéger la couche mince ;
3. un masque est utilisé pour définir la zone de la résine à être exposée au faisceau ultraviolet (UV) ;
4. l'échantillon est placé dans une solution qui grave la résine ;
5. l'échantillon est placé dans une solution de H_3PO_4 qui grave la couche mince de YBCO non protégée par la résine ;
6. la résine restante est décapée avec des solvants.

La gravure ressemble à la croissance en ce sens qu'une période d'optimisation est nécessaire. Les conditions de croissance de la couche modifient la structure cristalline de YBCO influençant le taux de gravure. Lorsque les conditions de croissance sont modifiées, il faut toujours vérifier l'effet sur la gravure. De plus, la gravure humide peut modifier la R_s et laisser des dépôts [50, 51]. Une solution pour remplacer la gravure humide consisterait à utiliser un faisceau d'ions. La gravure par faisceau d'ions permettrait aussi d'obtenir une meilleure définition des composants, diminuant ainsi la rugosité. Cependant, il pourrait y avoir un problème de surgravure du substrat.

3.5 Assemblage

Dans la procédure décrite jusqu'ici, une partie est manquante pour compléter le composant, et c'est le plan de masse. Seulement un conducteur a été déposé sur le substrat. À cause de la contrainte imposée par le type de montage de croissance par ablation laser que

17Voir les détails de la procédure en annexe B.
FIG. 3.11 – Schéma représentant les différentes étapes définissant le motif du composant supraconducteur.
CHAPITRE 3. MÉTHODE EXPÉRIMENTALE

nous utilisons, il n’a pas été possible de déposer une couche supraconductrice sur les deux côtés d’un substrat. Cette contrainte provient des techniques de fabrication d’un composant. Les composants étudiés par Hassan Ghamlouche dans son projet à l’Agence spatiale canadienne comportaient une couche mince de YBCO sur chaque côté du substrat. Il avait donc développé un porte-échantillon pour ce type de composants. Deux solutions (fig. 3.12) ont été envisagées pour contourner notre contrainte\(^\text{18}\):

1. déposer de l’or à la place de YBCO sur le revers du substrat sur laquelle une couche de YBCO avait déjà été déposée;

2. utiliser un autre substrat avec une couche mince de YBCO pour former l’équivalent d’un substrat avec deux couches de YBCO.

Nous avons opté pour la deuxième solution. Celle-ci nécessite cependant un léger changement du porte-échantillon. Le nouveau porte-échantillon développé dans le cadre de ce projet de maîtrise nous semble très utile pour la recherche fondamentale et appliquée puisqu’il permet de mesurer plusieurs échantillons dans un cours laps de temps.

Cette section expose brièvement les techniques de fabrication d’un composant et présente ensuite l’ancien porte-échantillon. Par la suite, les motivations justifiant l’utilisation d’un nouveau porte-échantillon seront données et le nouveau porte-échantillon décrit.

3.5.1 Techniques de fabrication d’un composant

La première technique de fabrication d’un composant consiste à faire croître une première couche d’un côté du substrat, puis dans un deuxième temps de l’autre côté en tenant mécaniquement le substrat. Cette technique comporte des risques quant à la comparaison d’échantillons. Lors de la deuxième croissance, la première couche subit un deuxième cycle thermique et est sensible à l’oxygène dans la chambre de dépôt. Les mesures effectuées sur les deux couches montrent que les propriétés ne sont pas identiques [17]. Étant donnée que

\(^{18}\)La première solution présente un inconvénient technique qui est un problème d’adhérence de l’or sur les oxides. L’échantillon doit alors être manipulé avec précaution pour ne pas que l’or déposé décolle du revers.
FIG. 3.12 – Coupe transversale de trois résonateurs microrubans, dont deux représentent les solutions envisagées pour contourner la contrainte imposée par le montage d’ablation laser. En haut : résonateur utilisé par Hassan Ghamlouche avec deux conducteurs de YBCO sur le même substrat. Au milieu : le plan de masse de YBCO est remplacé par Au. En bas : un deuxième substrat avec une couche mince de YBCO agit de plan de masse (la solution adoptée).

L’influence du plan de masse sur le conducteur micro-ruban n’est pas connue, il est difficile de comparer l’effet d’une croissance différente du conducteur micro-ruban si les deux composantes n’ont pas le même plan de masse. Cette technique semblait envisageable avec notre montage, mais les problèmes de thermalisation rencontrés rendaient les couches non-uniformes.

En ce qui a trait à la deuxième technique, elle consiste à tenir mécaniquement le substrat sur les côtés et croître les deux couches en même temps. Le substrat face ou de côté à la plume créée par l’ablation laser tourne à une certaine fréquence afin d’uniformiser la croissance des deux côtés du substrat. Cependant, cette approche entraîne une croissance différente, même si les conditions de croissance sont les mêmes, parce que la dynamique des ions ou atomes n’est pas la même. La deuxième technique ne pouvait être envisagée dans ce projet, puisqu’il aurait fallu effectuer des changements importants sur la chambre de dépôt.
Il y a tout de même un point commun aux deux techniques de fabrication : c'est qu'elles permettent difficilement l'étude fondamentale de composants à base de supraconducteur. En effet, si une interaction existe entre le plan de masse et le conducteur micro-ruban, il devient alors difficile de découpler cet effet lorsque deux composants sont comparées entre eux.

3.5.2 Ancien support à échantillon

Le porte-échantillon \textit{(test jig)}19 utilisé par Hassan Ghamlouche (fig. 3.13) est en aluminium. Le composant y est fixé avec de la laque d'argent. Par la suite, deux connecteurs SMA sont fixés avec des vis sur le porte-échantillon. Les connecteurs SMA permettent de fixer les câbles coaxiaux qui amènent le signal micro-onde au composant. Les \textit{pins} des connecteurs sont fixées à l'aide de laque d'argent ou d'indium sur les \textit{pads} du motif. Un bon contact électrique est nécessaire pour éviter tout effet capacitif ou réchauffement de l'échantillon à cause d'une résistance de contact élevée. L'environnement dans lequel le composant sera placé doit être un bon conducteur thermique et électrique, sans pour autant perturber significativement la constante diélectrique effective \((\varepsilon_{\text{eff}})\) du composant. L'échange de chaleur est important pour que l'échantillon demeure froid et à la même température. La température peut influencer considérablement les propriétés micro-ondes dans la région de la \(T_c\).

Et comme le porte-échantillon agit comme plan de masse, selon le design du composant, les pertes du test jig peuvent être importantes, la \(R_s\) doit alors être le plus petit possible. L'aluminium est un matériau intéressant pour remplir la fonction du porte-échantillon, car il est peu dispendieux et ne s'oxyde pas rapidement. Et, finalement, l’assemblage se termine en fixant avec des vis un écran radiatif en aluminium sur le \textit{test jig}. Cet écran permet de réduire les pertes radiatives du composant.

19C’est le terme utilisé dans la littérature.
FIG. 3.13 – Schéma du support à échantillon (test jig) utilisé par Hassan Ghamlouche pour la caractérisation micro-onde de composants. Un résonateur microruban avec un substrat est assemblé sur le porte échantillon.
3.5.3 Motivations

Comme aucune des techniques de fabrication de composants avec un substrat n'était accessible avec notre montage d'ablation laser pour fabriquer un composant complètement supraconducteur, l'utilisation de la deuxième solution s'imposait. De plus, les propriétés micro-ondes des composants obtenus avec la premiere solution n'étaient pas comparables aux propriétés des composants de Hassan Ghamlouche. Leur qualité était de beaucoup inférieure.

La superposition de deux substrats, la deuxième solution, possède une flexibilité supérieure par rapport à l'utilisation d'un unique substrat pour fabriquer le composant et une économie de temps. Premièrement, la superposition de deux substrats a la particularité de séparer le plan de masse et le conducteur micro-ruban du même substrat, donc la possibilité d'étudier le couplage entre ces deux conducteurs, ce qui était difficilement possible avec un seul substrat. C'est donc dire que tous les paramètres du composant peuvent facilement être modifiés de façon ciblée. Cet aspect est très important pour des études menant à la modélisation d'un composant supraconducteur. Deuxièmement, le nouveau montage associé à cette solution permettra une caractérisation plus rapide lorsque deux échantillons seront comparés. Seulement trois croisances sont nécessaires comparativement à quatre pour la première technique mentionnée. Un minimum de trois heures de travail est alors sauvé.

Par contre, une différence importante se présente par rapport à l'ancien montage. Cette différence est de nature géométrique. Les substrats devront être très bien alignés afin d'éviter de changer des paramètres qui ne seraient pas identiques lors de la mesure de chaque échantillon. Nous verrons au prochain chapitre l'influence d'un mauvais alignement sur les propriétés micro-onde du composant.

3.5.4 Nouveau support à échantillon

Le nouveau support à échantillon pour la caractérisation micro-ondes possède deux modifications comparativement à l'ancien support utilisé dans le projet de Hassan Ghamlouche.
Premièrement, la deuxième solution oblige à modifier légèrement l’ancien porte-échantillon pour la caractérisation micro-onde en augmentant simplement la distance entre la pointe de la pin et la base du test jig (fig. 3.13). Deuxièrement, un substrat avec une couche mince de YBCO est fixée de façon permanente au test jig avec de la laque d’argent (fig. 3.14). À noter que la couche mince doit être en contact électrique avec le test jig pour qu’elle soit au même potentiel20.

![Diagram](image)

Fig. 3.14 – Schéma du nouveau support à échantillon (test jig) pour la caractérisation micro-onde des composants de la deuxième solution. On y voit le substrat permanent avec la couche mince de YBCO servant de plan de masse. L’autre substrat possède un motif de résonateur microruban.

Par la suite, la procédure d’assemblage est semblable à l’ancien support à échantillon. Il s’agit de placer le substrat avec le motif sur le substrat permanent. Le substrat avec le motif peut être fixé avec de la laque d’argent aux quatre coins, ou bien les pins une fois collées aux pads permettent de tenir l’échantillon.

20De la laque d’argent doit être placée entre le connecteur SMA et le substrat, sinon le deuxième substrat agit comme une ligne à transmission et le signal de fond est augmenté.
3.6 Caractérisation micro-onde

Dans le montage expérimental de caractérisation micro-onde (fig. 3.15), prêté par l'Agence Spatiale Canadienne (sauf pour l'analyseur), l'analyseur de réseau vectoriel Agilent 8720ES mesure les paramètres S d'un réseau à deux ports. Dans notre expérience, le test jig est le réseau à deux ports. L'analyseur de réseau génère un signal d'une fréquence et puissance données (en dBm) vers le test jig via des câbles coaxiaux soit par le port 1 ou 2 et mesure ensuite les signaux réfléchis et transmis, il doit cependant effectuer la mesure dans les deux directions (vers port 1 et vers port 2) pour déterminer tous les paramètres S.

Comme l'analyseur de réseau mesure les paramètres S à ces ports 1 et 2, la contribution des câbles coaxiaux sera incluse dans les mesures du test jig. La caractérisation micro-onde du test jig seulement nécessite une procédure particulière de calibrage. Avant toute mesure, la procédure de calibrage Full two-port est effectuée à la température ambiante pour soustraire la contribution des câbles coaxiaux amenant le signal au test jig. La procédure de calibrage est réalisée à l'aide d'une fonction de l'analyseur de réseau. Elle consiste à utiliser des étalons (différentes impédances) pour effectuer des tests de transmission, de réflexions et d'isolations sur les câbles coaxiaux du montage. Ces tests permettent à l'analyseur de réseau, à partir de calculs compliqués, d'obtenir seulement les paramètres S du test jig. Les paramètres sont alors normalisés (voir sous-section 2.5.3). En aucun cas les câbles doivent être déconnectés de l'analyseur de réseau ou autre partie dans le circuit, car le calibrage serait à refaire. De plus, la procédure de calibrage doit être refaite pour chaque puissance, ce qui rend la procédure de calibrage très longue et fastidieuse.

Le calibrage est un détail gênant en pratique, car il faut connaître la plage de fréquence à laquelle le composant fonctionne. Il est donc préférable d'effectuer un calibrage sur une plage de fréquences plus large au départ et de mesurer ensuite les propriétés du composant. Une fois la plage ciblée, un calibrage sur cette plage réduite est conseillée pour obtenir une résolution adéquate sur les mesures. Le nombre de points du fichier de calibrage est limité à

67
FIG. 3.15 – Schéma du montage de la caractérisation micro-onde des composants.
CHAPITRE 3. MÉTHODE EXPÉRIMENTALE

un maximum de 1601. Cet aspect est très important dans le cas de résonateurs micro-ondes supraconducteurs, car le pic de résonance est très étroit. L’erreur sur l’amplitude du pic de résonance peut être importante si le calibrage n’est pas adéquat.

L’étape de calibrage terminée, le test jig est fixé sur un support en cuivre sur lequel un thermomètre et un élément chauffant sont fixés. Puisque le porte-échantillon est en aluminium et le support en cuivre, un anneau d’indium est inséré entre les deux afin d’assurer un bon contact thermique à basse température. Et pour éviter qu’il y ait trop de pertes thermiques, le support de cuivre est fixé à une tige en acier inoxydable à l’aide d’une tige de teflon qui est un isolant thermique.

Une fois le support à échantillon en place, les câbles provenant de l’analyseur de réseau peuvent être branchés. L’enceinte contenant l’échantillon est scellée hermétiquement afin d’y effectuer le vide avec une pompe mécanique Edwards. Un vide de 1×10^{-1} torr est suffisant. Ensuite, de l’hélium gazeux est introduit dans l’enceinte. L’hélium permet l’échange thermique entre l’azote liquide et le test jig. Une jauge Pirani est utilisée pour mesurer la pression du gaz. L’enceinte est pompée de nouveau pour s’assurer qu’elle soit bien purgée et 30 torr d’hélium sont introduits pour la caractérisation micro-onde. Finalement, l’enceinte est tout simplement plongée dans un cryostat CRYOFAB21 pouvant contenir 50 litres d’azote liquide. Ce cryostat a été mal conçu : de la glace se forme sur le dessus du cryostat, rendant les joints d’étanchéité peu fontionnels, et certaines soudures n’étaient pas adéquates pour la cryogénie. La mauvaise conception du cryostat nous a fait perdre un temps précieux estimé à trois mois à essayer de réparer des fuites. Ces fuites à cause du cryopompage de l’eau ont détruit des échantillons. L’achat d’un nouveau cryostat devra être envisagé à court terme.

Le montage utilisé permet de refroidir l’échantillon généralement jusqu’à environ 79 K. Le contrôleur de température Neocera LTC-21 permet de sélectionner la température à laquelle on veut étudier les propriétés du composant. La plage de température couverte par le

21Modèle CF 9536 F.
contrôleur permet d'aller largement au-dessus de la T_c de YBCO.

Une particularité doit être mentionnée quant à l'étude en puissance d'un composant. La puissance initiale générée par l'analyseur de réseau n'est pas la puissance d'entrée au composant. Puisque la présence des câbles coaxiaux atténue la puissance générée par l'analyseur, la puissance à l'entrée du *test jig* ne sera pas la même. Donc, lorsque deux échantillons sont comparés, il est important de s'assurer que la puissance d'entrée soit la même. Si les câbles entre le *test jig* et l'analyseur de réseau sont changés, la puissance d'entrée pour une même puissance initiale risque de ne plus être la même. On ne voit pas la différence de puissance d'entrée entre les deux échantillons lorsque les paramètres S sont normalisés, cet aspect est très important lorsque les propriétés des composants dépendent de la puissance d'entrée.

Pour terminer, puisque la procédure de calibrage est effectuée à température ambiante, les paramètres S ne sont plus normalisés à basse température à cause du refroidissement des câbles coaxiaux. En refroidissant, les câbles coaxiaux offrent moins de pertes et ce changement est fonction de la fréquence. Il faudra donc en tenir compte lors de la mesure des paramètres S de nos composants. C'est l'obstacle le plus délicat à traiter dans l'analyse de nos résultats. Une solution sera mentionnée dans la présentation des résultats de la ligne à transmission au prochain chapitre.
Chapitre 4

Mesures micro-ondes

Dans ce quatrième chapitre, les caractéristiques micro-ondes d’une ligne à transmission, d’un résonateur et d’un filtre sont présentées. Les trois composants planaires ont été mesurés avec le nouveau support à échantillon (voir fig. 3.14). Mentionnons que le plan de masse de YBCO (échantillon YL200703a) sur un substrat de LAO (10 × 10 × 0,5 mm³) est demeuré fixe pour chaque mesure effectuée. La reproductibilité des mesures du nouveau porte-échantillon a d’abord été évaluée sur un résonateur test.

4.1 Reproductibilité du nouveau support à échantillon

Avant de débuter les mesures sur nos échantillons, nous avons effectué trois mesures différentes afin de mettre à l’épreuve le nouveau support à échantillon. Pour réaliser cette épreuve, il s’agissait à chaque mesure de répéter certaines parties de la procédure d’assemblage et de comparer les propriétés micro-ondes d’un résonateur test (préalablement caractérisé) après chaque mesure. Puisqu’il est difficile de replacer les deux substrats du composant au même endroit à chaque mesure, ce changement de la position relative des deux substrats formant le résonateur test par rapport au support à échantillon devrait influencer les propriétés micro-ondes. C’est cette influence que nous avons tenté de caractériser et quantifier. À noter que les

1La température critique (Tc) et la densité de courant critique (Jc) de la couche mince de YBCO de cet échantillon n'ont pas été mesurées.
deux couches minces du résonateur microruban n'avaient pas de phase cristalline uniforme. À cause de la non uniformité des couches minces, le résonateur test devrait être plus sensible à un mauvais alignement d'une mesure à l'autre qu'un résonateur fabriqué à partir de couches plus uniformes comme nos échantillons. Ces tests ont permis d'établir l'incertitude maximum sur la fréquence de résonance et l'amplitude maximale transmise des résonateurs microrubans que nous avons fabriqués.

L'échantillon YL04002a (substrat avec motif) a d’abord été assemblé sur le plan de masse (YL280403a1) pour former un résonateur microruban (fig. 4.3). La fréquence de résonance mesurée lors de la caractérisation initiale était de 4,934 GHz. Lors du premier test, toute la procédure d'assemblage a été refaite. C'est à dire que les deux substrats ont été démontés du support à échantillon et réassemblés. La position du substrat avec le plan de masse et la position du substrat avec le motif du résonateur ont été modifiées. Ces modifications ont diminué la fréquence de résonance (4,886 GHz) de 48 MHz. Ce qui représente une variation de 1 %. Puis pour le deuxième test, les deux substrats sont demeurés fixes, seulement les contacts d'indium ont été refaits. La fréquence de résonance mesurée était de 4,901 GHz. Cette augmentation de 15 MHz (0,3 %) par rapport à la fréquence de résonance mesurée lors du premier test n'est pas due à notre nouveau support à échantillon, elle est due au mauvais design du motif du résonateur microruban. La cavité est trop près des pins des connecteurs SMA, donc lors de la soudure des pins sur les pads, la fréquence de résonance de la cavité est affectée. Finalement, lors du dernier test, toute la procédure d'assemblage a été reprise. La fréquence de résonance mesurée était de 4,803 GHz. C'est un changement de 64 MHz (1,3 %) par rapport à la fréquence de résonance du deuxième test et une variation de 102 MHz par rapport à la fréquence initiale. Quant à l'amplitude maximale transmise, elle a variée au plus de 2 dB lors des tests. Le tableau 4.1 résume les mesures obtenues lors des trois tests.

L'incertitude sur les mesures micro-ondes de résonateurs effectuées avec le nouveau support à échantillon pourrait être estimée à ± 75 MHz ou ± 2 %, afin d'englober l'écart de 102 MHz (2 %) observé entre les extrêms des fréquences de résonance mesurées. De plus, étant
CHAPITRE 4. MESURES MICRO-ONDES

<table>
<thead>
<tr>
<th>Mesure</th>
<th>Fréquence de résonance (f_0) (GHz)</th>
<th>Écart en fréquence (MHz)</th>
<th>Écart en pourcentage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>initiale</td>
<td>4,934</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>test 1</td>
<td>4,886</td>
<td>48</td>
<td>1</td>
</tr>
<tr>
<td>test 2</td>
<td>4,901</td>
<td>33</td>
<td>0,7</td>
</tr>
<tr>
<td>test 3</td>
<td>4,836</td>
<td>102</td>
<td>2</td>
</tr>
</tbody>
</table>

Tab. 4.1 – Fréquence de résonance du résonateur microruban (YL040902a-YL280403a1) lors de différents tests de reproductibilité de la procédure d’assemblage à une température de 81,8 K et puissance initiale de -26,426 dBm. Les écarts en pourcentage et en fréquence de la fréquence de résonance des tests par rapport à la fréquence de résonance de la mesure initiale sont indiqués.

donnée la variation non négligeable engendrée sur la fréquence de résonance par la simple présence des contacts, nous suggérons donc qu’un changement soit apporté à ce niveau en augmentant la longueur des surfaces de contacts afin d’éloigner les pins. Cet aspect est peut-être tout aussi important que les effets géométriques du support à échantillon développé et pourrait nuire à la caractérisation des résonateurs étudiés.

4.2 La ligne à transmission microruban

Le motif de la ligne à transmission microruban qui sera caractérisée est illustré à la figure 4.1. La bande conductrice de YBCO de 0,5 mm de large est située au centre d’un substrat de LaAlO$_3$ (LAO) de dimensions $10 \times 5 \ mm^2$ et de 500 μm d’épaisseur (échantillon YL270803a1). La direction cristalline du substrat de LAO est (100). Cette direction cristalline favorise la croissance de l’axe c de façon perpendiculaire à la surface.

On constate d’après la figure 4.2 que l’amplitude des signaux transmis S_{21} et S_{12} est plus grande que 13. Or, les paramètres S ont été normalisés, S_{21} et S_{12} ne devraient pas être

2La température critique (T_c) de cet échantillon n’a pas été déterminée ainsi que sa densité de courant critique (J_c).

3Les chapeaux sur les paramètres S pour indiquer qu’ils sont normalisés ne sont pas indiqués, car on ne les retrouve pas dans la littérature.
FIG. 4.1 – Schéma de la ligne à transmission microruban étudiée. La bande noire au centre est un microruban de YBCO sur un substrat $5 \times 10 \times 0.5 \, \text{mm}^3$ de LAO (100).

plus grands que 1, sauf s'il y a un gain du signal. L'origine de ce gain est attribuée à la diminution des pertes dans les câbles coaxiaux du montage de caractérisation micro-onde. En effet, lorsque les câbles allant au test jig sont refroidis en plongeant l'enceinte dans le cryostat, il y a diminution de l'atténuation (ou résistance de surface (R_s)) dans les câbles à cause de l'augmentation de la conductivité des conducteurs des câbles avec l'abaissement de la température (voir éq. 2.28). Cette diminution de l'atténuation entraîne un gain dans la puissance transmise et ce gain est légèrement fonction de la fréquence entre 4 et 5 GHz, région d'opération de nos résonateurs microrubans.

Les mesures effectuées sur la ligne à transmission montrent également qu'il y a de fortes réflexions aux extrémités de la ligne à transmission microruban suggérant que les impédances des câbles coaxiaux et de la ligne à transmission microruban supraconductrice sont mal adaptées. Il est important de rappeler que les transitions coax-microrubans ne sont pas tenues en compte dans le calibrage Full two-port et qu'elles sont une source importante de réflexions dues probablement au passage d'un mode TEM à quasi-TEM.

Dans notre cas, à cause du calibrage inadéquat des paramètres S, les coefficients de réflexion S_{11} et S_{22} semblent indiquer d'importantes réflexions à la transition coax-microruban. En fait,

\footnote{Cet aspect a été mentionné à la section 2.2.}

74
Fig. 4.2 – Paramètres S de la ligne à transmission microruban supraconductrice (Motif : YL270803a1 - Plan de masse : YL200703a) mesurés à 79,8 K à une puissance initiale de -26,426 dBm.
CHAPITRE 4. MESURES MICRO-ONDES

la technique de calibrage *Full two-port* n’est pas conçue pour la caractérisation de composants planaires, la technique *through-reflect-load* (TRL) est plus appropriée [52]. Cette technique suivant le même principe que la méthode *Full two-port* permettrait de tenir compte des transitions coax-microrubans en utilisant trois lignes à transmission microruban différentes, deux de longueurs différentes (*through-load*) et une discontinue (*reflect*). La méthode TRL exigerait un temps de calibrage plus long que la méthode *Full two-port*, car l’expérimentateur doit effectuer trois mesures à basse température. Nous verrons que le calibrage inadéquat des paramètres S affecte les mesures micro-ondes du résonateur et du filtre. Le traitement des données est alors plus délicat.

4.3 Le résonateur microruban

Le type de résonateur microruban caractérisé est illustré à la figure 4.3. Le substrat avec le motif d’un résonateur (échantillon YL140703b1) a les mêmes caractéristiques que celui de la ligne à transmission. La largeur du conducteur microruban de YBCO est la même que la ligne à transmission soit de 0,5 mm. Les surfaces de contacts (*pads*) sont 0,55 mm de long, tandis que la cavité fait 7,8 mm de long. La longueur de la cavité devrait donner une fréquence de résonance autour de 5 GHz. Les deux discontinuités de 0,55 mm représentent les gaps capacitifs du résonateur.

La *Tc* de cette couche, déterminée avec la technique de résistivité, correspond à 86,8 K et la *Jc* de 6,08 · 10^5 A/cm² à T = 77 K. Ces deux résultats sont comparables avec la littérature [16] et ont été obtenus sur le microruban de la cavité *après* la caractérisation micro-onde (i.e. après toutes les étapes de lithographie et gravure)\(^5\).

La figure 4.4 montre les paramètres S du résonateur microruban YL140703b1-YL200703a mesurées à 79,8 K. On constate que les paramètres S ne sont pas symétriques : *S11* et *S22* sont très différents, tandis que *S21* et *S12* sont presqu’identiques. Cette asymétrie marquée

\(^5\)Le masque utilisé pour déterminer la *Jc* sur la couche mince de la cavité est présenté en annexe D.
Fig. 4.3 – Schéma du type de résonateur microruban caractérisé. Les bandes noires au centre représentent la couche mince de YBCO sur un substrat $5 \times 10 \times 0.5 \, mm^3$ de LAO (100).

Les coefficients de réflexion du résonateur doit provenir des contacts d'indium effectués sur les pads. La cause est soit de nature géométrique (par exemple : une couche mince pas de la même épaisseur) ou électrique (la résistance de contact est différente). La cause de l'asymétrie à même un effet sur la fréquence de résonance mesurée qui est différente selon le port du test jig considéré. Cette différence à pour effet d'élargir le pic de transmission. En moyenne, la fréquence de résonance (f_o) est de 4.853 GHz. Les données ont été prises près de f_o pour plus de précision. La largeur du pic de résonance à la mi-hauteur (Δf_o) est de quelques MHz et la puissance transmise qui représente les pertes d'insertion (IL) est d'environ -0.8 dB. 0 dB correspond à la puissance d'entrée au test jig à la température ambiante une fois le calibrage complété (c'est la référence d'où le signe moins de la puissance transmise qui représente des pertes). Si le résonateur était parfait et le calibrage adéquat, la puissance transmise serait de 0 dB.

À cause de la diminution des pertes dans les câbles coaxiaux à basse température, la puissance transmise ne peut être évaluée à partir de 0 dB à cause du gain. Il faut renormaliser les paramètres S sinon l'évaluation des facteurs de qualité sera erronée. L'amplitude de la puissance transmise est renormalisée par rapport à la puissance maximale réfléchie au test jig, ce qui correspond à $|S_{11}|^2$ maximum. Une fois renormalisées, les pertes d'insertion sont

6Les paramètres S permettent de retrouver la puissance transmise.
FIG. 4.4 – Paramètre S du résonateur microruban supraconducteur (Motif : YL140703b1 - Plan de masse : YL200703a) mesurés à 82,8 K à une puissance initiale de -26,426 dBm.
de -1,2 dB, ce qui est très faible pour un composant passif. C'est d'ailleurs un des avantages d'utiliser les supraconducteurs pour la fabrication de composants passifs : les performances obtenues avec ces matériaux dépassent largement celles des matériaux conventionnels tel que l'or par exemple. Notons que cette dernière affirmation demeure vraie que dans un régime à basse puissance.

Par ailleurs, S_u maximum du résonateur correspond au maximum de S_{ij} de la ligne à transmission. Il demeure toutefois étrange que les réflexions mesurées dans la ligne à transmission ne soient pas présentes dans celles du résonateur, puisqu'autour de la fréquence de résonance, tout signal est réfléchi. Cette observation met en doute la méthode de renormalisation mentionnée ci-haut et utilisée par Hassan Ghamlouche. Une fois de plus, le calibrage adéquat des paramètres S pourrait enrayer tout problème de traitement des données.

Quant au comportement en température du résonateur microruban, l'étude permet de mettre en évidence la variation de l'inductance cinétique (L_s) du supraconducteur (fig. 4.5). Celle-ci a un impact évident sur la fréquence de résonance qui se déplace significativement en fonction de la température [8, 15, 53]. Entre 82,8 K et 88,1 K, la fréquence de résonance a diminué de 40 MHz (0,8 %) et l'amplitude de transmission S_{21} a chuté d'environ 69 %. Ce changement traduit l'apparition croissante de pertes dans la couche mince de YBCO, ce qui explique pourquoi la largeur à mi-hauteur (Δf_o) du pic de résonance augmente avec la température. L'augmentation des pertes et la diminution de la fréquence de résonance s'expliquent par la diminution de la densité superfluide (n_s) en s'approchant de la température critique. La diminution de n_s fait augmenter la longueur de pénétration (éq. 1.7) qui fait augmenter L_s, donc l'inductance totale de la cavité (éq. 2.36).

Fait important, la T_c mesurée par la technique de résistivité de la cavité microruban après les mesures des propriétés micro-ondes était de 86,8 K. Or, en observant attentivement la figure 4.5, un pic de résonance est observé à 88,1 K, signe que la couche mince de YBCO est encore supraconductrice. Il y a donc un problème sérieux de thermalisation du composant.
FIG. 4.5 – Évolution du paramètre S_{21} du résonateur microruban supraconducteur (Motif : YL140703b1 - Plan de masse : YL200703a) en fonction de la température à une puissance initiale de -26,426 dBm.
CHAPITRE 4. MESURES MICRO-ONDES

En fait, le thermomètre devrait idéalement être tout près du composant sur le test jig, ce qui n’est pas le cas dans le montage utilisé (fig. 3.15).

Les figures 4.6 et 4.7 montrent le comportement de la puissance transmise en fonction de la puissance initiale générée par l’analyseur de réseau. À basse puissance (fig. 4.6), un comportement linéaire est observé. Ce comportement linéaire indique que les couches minces du résonateur microruban sont dans l’état Meissner (diamagnétique parfait). À plus haute puissance (fig. 4.7), le comportement de la puissance transmise par le résonateur microruban devient non-linéaire. Le dernier point de la courbe représente la limite de puissance de notre montage qui est de 5 dBm. Lorsque les mesures (à basse et plus haute puissance) de la puissance transmise \(P_t \) en fonction de la puissance initiale \(P_i \) sont reportées sur une échelle log-log (fig. 4.8), le champ de transition \(H^* \) entre le régime linéaire et non-linéaire peut grossièrement être évalué. La loi de puissance entre \(P_t \) et \(P_i \) est linéaire jusqu’environ 1 \(\cdot 10^{-1} \) mW. Au-delà de cette valeur, la non-linéarité du résonateur donne une loi de puissance fractionnaire (< 1). La limite des deux régimes permet d’évaluer \(H^* \) à partir d’un calcul grossier\(^7\) qui est environ 14 Oe. Cette valeur de \(H^* \) semble représenter le champ critique \(H_{c1} \) des couches minces de notre résonateur. En effet, Yoshitake [54] a mesuré un \(H_{c1} \) d’environ 50 Oe pour un de ses échantillons à 4,2 K à une fréquence de 5,7 GHz. Cette valeur doit nécessairement diminuer avec la température à cause de la diminution de la densité superfluide. Notre valeur estimée grossièrement semble être du bon ordre de grandeur. Le calcul de \(H^* \) devra être plus étoffé et davantage de mesures devront être prises autour de cette valeur afin d’expliquer l’origine du comportement non-linéaire du résonateur microruban. L’évaluation de \(H^* \) de notre résonateur devrait pointer sur quel mécanisme entre le mouvement des vortex dans les grains ou les pertes associées aux jonctions de grains est principalement responsable de la non-linéarité. En réalité, puisque la transition entre le régime linéaire et non-linéaire s’effectue d’une façon lente et continue, les deux mécanismes sont probablement présents.

\(^7\)Voir le détail des calculs en annexe.
FIG. 4.6 – Puissance transmise en fonction d'une basse puissance initiale (-55 dBm à -26,426 dBm) pour différentes températures du résonateur YL140703b1-YL200703a.
Fig. 4.7 – Puissance transmise en fonction de la puissance initiale (-26,426 dBm à 5 dBm) pour différentes températures du résonateur YL140703b1-YL200703a. 5 dBm est la puissance maximale accessible de notre montage.
CHAPITRE 4. MESURES MICRO-ONDES

FIG. 4.8 - Puissance transmise en fonction de la puissance initiale à une température de 84 K du résonateur YL140703b1-YL200703a sur une échelle log-log. La ligne droite pointillée est un guide pour l'œil, elle permet d'évaluer le changement de régime. Série 1 : mesures à basse puissance entre -55 dBm et -26,426 dBm. Série 2 : mesures à plus haute puissance entre -26,426 dBm et 5 dBm.
L'étude en puissance et en température brosse un tableau plus complet de la physique présente dans le résonateur microruban comme le montre la figure 4.9 du facteur de qualité Q_o. Le facteur de qualité Q_o est déterminé à partir des équations 2.42, 2.44 et 2.45. Aucune de nos valeurs mesurées ne peut être comparée à celles mesurées par Hassan Ghamlouche [12] à cause d'un problème de thermalisation, car dans cette gamme de température, Q_o évolue très rapidement. En fonction de la puissance, Q_o décroît très rapidement à basse puissance pour atteindre un régime plus stable. Le rapport entre Q_o à basse et à haute puissance est beaucoup plus marqué à basse température. À 82,8 K, le rapport est de 3 et tend vers 1 lorsque la température approche la T_c. Ce comportement peut être attribué à l'évolution du champ de transition (H^*) avec la température. Plus la température diminue et plus H^* augmente, ce qui a pour effet d'augmenter la puissance associée à la transition entre le régime linéaire et non-linéaire à haute puissance. En résumé, puisque la fréquence de résonance f_o du résonateur (fig. 4.10) diminue avec l'augmentation de la puissance (entre 0,04 % et 0,1 %) ou de la température (1 %), la densité superfluide (n_s) joue un rôle important dans les propriétés du résonateur. En effet, tout changement de n_s se répercute sur l'inductance cinétique L_S qui affecte l'inductance totale de la cavité, donc f_o (voir eq. 2.36)\(^8\).

Pour s'assurer que les données mesurées sur ce résonateur soient reproductibles, les mêmes mesures ont été effectuées sur un autre échantillon.

4.4 Comparaison avec un autre échantillon

Toutes les mesures présentées précédemment ont été reprises sur un autre résonateur (YL140703b2-YL200703a), mais toujours avec le même plan de masse déjà fixé sur le test jig. Les conditions de croissance de la couche mince du motif (YL140703b2) de ce résonateur devraient être les mêmes que l'échantillon YL140703b1, car les deux couches minces ont été crues en même temps. Le comportement non-linéaire des deux échantillons en fonction de la puissance devrait donc être le même, et c'est effectivement ce que montre la figure

\(^8\)Kadin [8] traite de la contribution de l'inductance cinétique sur la fréquence de résonance
Fig. 4.9 – Facteur de qualité Q_o en fonction de la puissance initiale pour différentes températures du résonateur YL140703b1-YL200703a.
FIG. 4.10 – Fréquence de résonance (f_o) en fonction de la puissance initiale pour différentes températures du résonateur YL140703b1-YL200703a.
4.11. La puissance transmise du second résonateur est plus faible que le premier résonateur pour une même température donnée, ce qui pourrait indiquer une moins bonne qualité de cet échantillon à cause d'une position différente sur l'élément chauffant. Toutefois, puisque nous avons mentionné qu'il y avait un problème de thermalisation du composant à cause de l'emplacement du thermomètre par rapport à l'échantillon, une conclusion définitive ne peut être apportée. En effet, les figures 4.11 et 4.12 pourraient indiquer que les deux résonateurs sont identiques, mais que la caractérisation n'a pas été faite à la même température.

Avant d'exposer les résultats obtenus avec le filtre microruban, mentionnons qu'il serait intéressant d'effectuer des mesures sur le résonateur à plus haute puissance que 3,16 mW (5 dBm), puisque les régimes de puissance étudiés ne correspondent pas aux puissances utilisées dans les télécommunications qui sont de l'ordre du watt. De plus, la région non-linéaire pourrait être mieux définie en menant une étude à plus haute puissance.

4.5 Le filtre microruban

Le filtre passe-bande à deux pôles (fig. 4.13) a une fréquence d'opération plus élevée que le résonateur à cause de la longueur des bandes au centre. Cette longueur de 3,822 mm (environ deux fois plus petite que la longueur de la cavité du résonateur) permet au filtre d'avoir une fréquence d'opération autour de 10 GHz. Contrairement au résonateur, le filtre possède une grande largeur de bande passante. Le filtre est tout aussi important que le résonateur pour fin d'applications. Sa caractéristique principale importante à obtenir est de posséder des fréquences de coupure très étroites.

La figure 4.14 montre la large bande passante d'environ 400 MHz du filtre à deux pôles de notre premier essai à environ 9,9 GHz pour une température de 81 K. Cette largeur de bande représente environ 50 fois la largeur de bande du résonateur. Avec le même type de filtre, Hassan Ghamlouche [12] avait obtenu une largeur de bande de 250 MHz autour de 9,5 GHz.

9 Extrémités de la bande passante très étroites.
FIG. 4.11 – Puissance transmise en fonction de la puissance d’entrée pour différentes températures. Comparaison des échantillons YL140703b1 et b2.
FIG. 4.12 – Facteur de qualité unload (Q_o) en fonction de la puissance initiale pour différentes températures. Comparaison des échantillons YL140703b1 et b2.
Fig. 4.13 – Schéma du filtre microruban à deux pôles mesurée. La valeur de a est 1,911 mm et de b est 3,822 mm. La largeur des bandes noires de YBCO est de 0,2 mm. Le substrat 5 × 10 × 0,5 mm3 utilisé est LAO (100).

à 80 K. La différence de largeur de bande entre les deux filtres est importante. Toutefois, puisque la thermométrie de l’échantillon n’est pas certaine, les deux filtres ne peuvent être comparés. De plus, il faudrait vérifier avec un autre échantillon si la largeur de bande demeure la même.

Le calibrage inadéquat des données empêche également d’analyser correctement les propriétés du filtre. La présence d’oscillations à tous les 100 MHz est un exemple du mauvais calibrage des paramètres S. Une fois de plus, la méthode de calibrage TRL aiderait à régler ce problème.

En résumé, la présentation des propriétés micro-ondes d’une ligne à transmission, d’un résonateur et filtre microruban dans ce chapitre montre que les objectifs fixés dans le cadre de ce projet de maîtrise parrainé par l’Agence spatiale canadienne ont été atteints. Premièrement, nous avons réalisé nos propres composants micro-ondes supraconducteurs à l’Université de Sherbrooke, ce qui constitue une première. Les techniques de croissance par ablation laser, photolithographie et gravure humide ont été utilisées pour développer la procédure de fabrication à l’Université de Sherbrooke. Deuxièmement, des mesures en puissance et en température ont été effectuées sur un résonateur microruban afin de caractériser son
FIG. 4.14 – Paramètre S d’un filtre microruban supraconducteur (Motif : YL140703b3 - Plan de masse : YL200703a) à deux pôles à 81 K à une puissance initiale de -26,426 dBm.
comportement en puissance. Même si la puissance maximale de quelques milliwatts disponible sur notre montage a permis d'observer un comportement non-linéaire du résonateur, des modifications devront être apportées à notre montage pour atteindre des puissance de fonctionnement autour du watt, puissance à laquelle fonctionnent les composants dans les télécommunications. De surcroît aux objectifs atteints, le nouveau support à échantillon a permis de mettre en évidence un comportement contre-intuitif du résonateur microruban supraconducteur. Ce résultat que nous verrons au prochain chapitre montre une fois de plus la flexibilité importante qu'offre le support à échantillon à deux substrats qui a été développé dans ce projet.
Chapitre 5

Rôle du plan de masse supraconducteur

Le plan de masse semble être une partie passive du résonateur qui soit négligée. Dans les modèles de ligne à transmission, le plan de masse est modélisé comme une équipotentielle, d'où son nom. En réalité, un courant y circule tout comme dans le conducteur principal, mais dans le sens opposé. Le modèle électrique accepté pour une ligne à transmission n'est qu'une simplification de la réalité pour que le traitement mathématique (ou électrique) soit plus léger. Cette représentation de la ligne à transmission semble être un obstacle dans la compréhension du rôle que joue le plan de masse dans un composant planaire supraconducteur. Ce bref chapitre présente d'abord une mise en contexte en survolant les mesures effectuées pendant le projet de maîtrise qui ont conduit au choix de mesurer les propriétés micro-ondes de différentes configurations de plan de masse composées de Au et de YBCO (plans de masse hybrides). Les propriétés d'un résonateur microruban avec différents plans de masse hybrides sont ensuite présentées. Nous verrons que le plan de masse supraconducteur joue un rôle très important dans les performances du résonateur microruban.

5.1 Mise en contexte

Au début de ce projet de maîtrise, nous avions évoqué deux solutions permettant de fabriquer des composants supraconducteurs pour remédier à notre contrainte de montage (fig. 3.12) qui est l'impossibilité de déposer deux couches de qualité contrôlée sur les deux faces
CHAPITRE 5. RÔLE DU PLAN DE MASSE SUPRACONDUCTEUR

d'un même substrat. Des mesures avaient été effectuées sur l'ancien support en exploitant la première solution (plan de masse en Au). Aucun résultat satisfaisant n'avait été observé sur le résonateur microruban : la puissance transmise était très faible et elle n'était pas comparable aux résonateurs étudiés par Hassan Ghamlouche avec deux couches de YBCO sur le même substrat. Puis, nous avons essayé la deuxième solution (plan de masse supraconducteur permanent sur un deuxième substrat) avec le nouveau support à échantillon. La puissance transmise obtenue était désormais comparable aux résultats de la littérature et à ceux obtenus par Hassan Ghamlouche. La différence de puissance transmise entre les deux résonateurs était d'environ 13 dB, ce qui est un ordre de grandeur plus élevé. Après quelques recherches dans la littérature, nous avons trouvé quelques articles qui mentionnaient cet aspect de l'influence du plan de masse sur le facteur de qualité [55]. Pinto avait observé une augmentation d'un facteur deux sur le facteur de qualité de la cavité du résonateur en utilisant un plan de masse supraconducteur. Cependant, aucune explication physique n'est mentionnée au sujet de ce phénomène si ce n'est de dire que la résistance de surface \(R_s \) de l'or est environ 10 fois plus élevée. Nous avons donc décidé de comparer les propriétés du résonateur microruban avec deux plans de masse différents : un fabriqué d'Au et l'autre fabriqué de YBCO. Le nouveau montage (substrat avec une couche mince de YBCO) a été utilisé pour caractériser le résonateur avec un plan de masse en Au (fig. 5.1). Une couche d'Au de 1 µm d'épaisseur a été déposée sur le revers du substrat avec le motif du résonateur (échantillon YL140703b1). La couche d'Au agit désormais comme le plan de masse, ce n'est plus la couche mince de YBCO sur le substrat fixe\(^1\).

Les propriétés mesurées de ce résonateur étaient comparables à celles obtenues avec un résonateur du même type (plan de masse en Au) mesuré sur l'ancien support à échantillon. Par la suite, la couche d'Au a été retirée et le résonateur a été de nouveau caractérisé. La figure 5.2 montre les pics de résonance du résonateur avec un plan de masse supraconducteur

\(^1\)La couche mince de YBCO sur le deuxième substrat est pratiquement invisible aux ondes électromagnétiques puisque l'épaisseur de peau dans l'Au dans la gamme de température de 77 K à 100 K est d'environ 500 nm (plus petit que l'épaisseur de la couche d'Au).
CHAPITRE 5. RÔLE DU PLAN DE MASSE SUPRACONDUCTEUR

Fig. 5.1 – Schéma du résonateur microruban supraconducteur avec un plan de masse en Au sur le nouveau support à échantillon.

(YBCO) et un plan de masse normal (Au). En enlevant la couche d’Au, la fréquence de résonance a augmenté de 0,164 GHz (cet écart est reproductible et à l'intérieur de l'incertitude évaluée lors des tests de reproductibilité). C'est un changement de 3,5 % de la fréquence de résonance du résonateur avec plan de masse en Au. De plus, l'amplitude de la puissance transmise normalisée est environ 14 fois plus élevée. Lorsqu'on amplifie par un facteur 14 le pic de transmission du résonateur avec le plan de masse en Au (fig. 5.2), on remarque que la largeur à mi-hauteur est semblable. Ce qui semble a priori contre-intuitif, car en supposant que la réduction de l'amplitude du pic de résonance proviennent de l'augmentation des pertes dans la cavité à cause de la présence de l’Au, le pic devrait être beaucoup plus large. À ce moment, nous avons soupçonné qu'un mécanisme de couplage différent (ou additionnel) était présent avec le plan de masse supraconducteur. Ce couplage serait de nature inductive puisque les dimensions de la cavité ne changent pas. De plus, pour renforcer notre intuition, certains articles théoriques récents de Genenko montrent que la distribution de courant d'un microruban supraconducteur peut être affectée par la présence d'un plan de masse supraconducteur [56, 57]. La flexibilité de notre nouveau porte-échantillon a grandement contribué à la mise en évidence du rôle du plan de masse en fabriquant l'équivalent de plans de masse
5.2 Configurations hybrides du plan de masse

En modifiant la quantité d’Au sur le revers du substrat avec le motif du résonateur, différentes configurations de plans masse peuvent être obtenues (fig. 5.3). Dans les différentes configurations qui y sont présentées, la quantité d’Au dans la région de la cavité n’est pas la même ainsi que dans la région des gaps capacitifs.

En mesurant les propriétés micro-ondes de ces résonateurs, on constate que l’Au dans la région de la cavité influence la fréquence de résonance (fig. 5.4). Les deux points à 0 % d’Au sous la cavité sont deux mesures effectuées sur le même résonateur avec un plan de masse supraconducteur. L’écart entre les deux mesures n’est pas plus de 50 MHz en accord avec notre incertitude estimée au chapitre précédent. La relation entre la fréquence de résonance de la cavité et la quantité d’Au sur le plan de masse dans cette cavité semble être linéaire, mais plus de mesures devront être prises pour s’en assurer.

Quant à la puissance transmise, si nous comparons les puissances transmises du résonateur avec le plan de masse avec 86 % d’Au et celui avec 4 % d’Au (tableau 5.1), alors on observe que le résonateur avec le plus d’Au dans sa cavité transmet 8,5 % plus de puissance. Ceci n’a pas de sens si on considère que la résistance de surface de l’Au est plus élevée que celle de YBCO [55]. De plus, en calculant le facteur de qualité \(Q_o \) à partir de la fréquence de résonance et de la puissance transmise mesurées, on obtient une meilleure qualité de cavité avec plus d’Au sur le plan de masse. En regardant attentivement les configurations des deux plans de masse à la figure 5.3, la cause de la différence de puissance transmise semblait être la présence d’Au dans la région des gaps capacitifs et non la région de la cavité. L’Au affecterait (d’une façon encore inconnue) la puissance transmise dans la cavité. Le signal serait majoritairement amplifié sans trop modifier les pertes dans la cavité. En plus du
CHAPITRE 5. RÔLE DU PLAN DE MASSE SUPRACONDUCTEUR

Fig. 5.2 - Comparaison des amplitudes de la puissance transmise normalisée à la résonance du résonateur microruban supraconducteur (Motif : YL140703b1 - Plan de masse : YL200703a) avec un plan de masse supraconducteur et avec un plan de masse en Au.
FIG. 5.3 – Schémas des différentes configurations de plan de masse fabriquées à l’aide du nouveau support à échantillon. Chaque configuration est caractérisée par le pourcentage d’Au dans la région de la cavité. La bande noire représente l’Au et la bande hachurée YBCO.

couplage capacitif, il pourrait s’ajouter un couplage qui serait de nature inductive à cause de l’interaction entre le plan de masse et la cavité dans la région autour du gap capacitif. L’effet Meissner certainement en cause serait à l’origine d’un nouveau mécanisme de couplage aux extrémités de la cavité qui n’est pas présent dans le cas d’une cavité fabriquée à partir d’un métal normal.

<table>
<thead>
<tr>
<th>Configuration du plan de masse</th>
<th>P_{Rc}/P_{tot}</th>
<th>Fréquence de résonance (f_0) (GHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 % d’Au</td>
<td>21,5 %</td>
<td>4,833</td>
</tr>
<tr>
<td>86 % d’Au</td>
<td>30 %</td>
<td>4,659</td>
</tr>
</tbody>
</table>

TAB. 5.1 – Comparaison des propriétés du résonateur microruban avec un plan de masse ayant 4 % et un plan de masse ayant 86 % dans la région de la cavité.

Les mesures obtenues montrent l’importance du plan de masse supraconducteur en améliorant significativement les propriétés micro-ondes du résonateur microruban et semblent suggérer que la théorie des réseaux ne soit pas adéquate dans le cas d’un plan de masse supraconducteur. C’est peut-être la façon de déterminer la constante de couplage qui n’est pas correcte ou bien la définition même du facteur de qualité. De toute évidence, l’impor-
Fig. 5.4 - Fréquence de résonance en fonction de l'Au dans la région de la cavité du résonateur microruban supraconducteur (Motif : YL140703b1 - Plan de masse : YL200703a) à 86 K et à une puissance initiale de -26,426 dBm. Chaque point représente une configuration différente du plan de masse. La ligne en pointillée est un guide pour l'œil.
tance et la flexibilité du nouveau porte-échantillon sont clairement mises en évidence à la lumière de ces résultats. Ces résultats préliminaires laissent présager la possibilité d’explorer l’optimisation de tels composants en évitant les questions de reproductibilité mentionnées au chapitre précédent (avec des couches supraconductrices de chaque côté d’un même substrat).
Conclusion

La contrainte imposée par notre montage d’ablation laser nous a forcé à développer un nouveau support à échantillon qui s’est avéré la pierre angulaire de ce projet. Grâce à cet outil, les deux objectifs fixés par l’Agence spatiale canadienne ont été atteints et même dépassés. Des couches minces de YBCO avec des propriétés comparables à celles que l’on retrouve dans la littérature (\(J_c \sim 10^5 - 10^6 \text{ A/cm}^2 \) et \(T_c \sim 86 - 90K \)) et crues par la technique d’ablation laser ont permis de fabriquer les premiers composants planaires supraconducteurs à l’Université de Sherbrooke, ce qui constituait le premier objectif de notre contrat. Pour la réalisation du deuxième objectif, deux résonateurs microrubans fonctionnant à 5 GHz ont été étudiés en fonction de la puissance initiale. Un comportement non-linéaire de la puissance transmise a été observé. L’apparition de cette non-linéarité coïnciderait avec le passage des deux couches minces de YBCO formant le résonateur de l’état Meissner vers l’état mixte (où les vortex apparaissent et contribuent aux pertes) puisque \(H_{c1} \) évalué dans une première approximation très grossière est de \(\sim 14 \text{ Oe} \) à 84 K. Davantage de mesures sur d’autres échantillons et l’utilisation de calculs plus élaborés permettrait de mieux évaluer \(H_{c1} \) pour modéliser les propriétés du résonateur. De plus, des études à plus hautes puissances devront être réalisées avant de penser appliquer les supraconducteurs aux télécommunications. Le montage utilisé dans notre étude ne peut fournir qu’une puissance maximale de quelques milliwatts. Les composants en télécommunication utilisent des puissances de l’ordre du watt. Un amplificateur de puissance pourrait être utilisé pour réaliser ce projet, mais la présence d’un amplificateur dans le circuit de caractérisation compliquerait l’analyse des paramètres S.

Le résonateur microruban a aussi permis de montrer l’importance de l’inductance cinétique
(Lₐ) sur les propriétés micro-ondes de YBCO. Nous avons observé qu'en fonction de la température et de la puissance, la fréquence de résonance du résonateur microruban étudié variait. Lₐ influence l'inductance totale de la cavité, donc fₒ. En fonction de la puissance, des variations de la fₒ entre 0,04 % et 0,1 % ont été observées selon la température. En fonction de la température, la fₒ a varié de 1 %. En contraste, l'incertitude de la valeur absolue de fₒ est de ± 2 %. Le support à échantillon et/ou le design du résonateur sont à l'origine de cette imprécision. Une solution permettrait de corriger en partie cette variation importante : l'éloignement des pins de la cavité en augmentant la longueur des surfaces de contact pourrait corriger d'au moins 0,3 % le problème (sec. 4.1).

En ajout à l'atteinte des objectifs dans ce projet, des mesures ont été effectuées sur le résonateur microruban pour déterminer le rôle du plan de masse. La flexibilité du support à échantillon développé dans ce projet a été mise à profit. Comparativement à un plan de masse en Au, le plan de masse supraconducteur de YBCO améliore considérablement les propriétés du résonateur. L'ajout du plan de masse supraconducteur a augmenté environ d'un facteur 14 la puissance transmise. De plus, en utilisant des plans de masse hybrides (Au-YBCO), un mécanisme de couplage supplémentaire (encore inexpliqué) a été identifié : la transmission de l'onde électromagnétique est fortement amplifiée lorsqu'un matériau supraconducteur est présent dans la région du gap capacitif.

En ce qui à trait au montage de caractérisation micro-ondes, les mesures effectuées sur une ligne à transmission microruban, des résonateurs microrubans et un filtre microruban ont indiqué un problème majeur de calibrage des paramètres S qui nuit à l'analyse des propriétés micro-ondes. Cependant, la technique de calibrage Full two-port n'étant pas adéquate pour des composants planaires, la technique through-reflect-load (TRL) a été proposée pour corriger la situation. Un nouveau porte-échantillon devra être construit pour utiliser la technique TRL, car elle nécessite l'utilisation de deux lignes à transmission de longueurs différentes.

De plus, l'étude du résonateur a aussi montré que le porte-échantillon a un problème de
thermalisation. En effet, un pic de résonance a été observé à plus de 2 K au-delà de la T_c évaluée par la technique de résistivité. Le thermomètre utilisé dans le montage devra être placé sur le porte-échantillon pour régler ce problème.

En ouverture à ce projet, les problèmes soulevés dans cette conclusion pourraient tous être corrigés dans un projet visant à développer un nouveau porte-échantillon. En plus, le porte-échantillon pourrait être adapté pour être utilisé à plus basse température, c’est-à-dire à la température de l’hélium liquide. La configuration du porte-échantillon avec deux substrats pourrait permettre d’étudier plus précisément le caractère d’un certain supraconducteur à sa transition supraconductrice en utilisant un composant hybride. Le composant hybride serait formé du supraconducteur à étudier sur le substrat du motif et YBCO sur le substrat agissant de plan de masse. Le développement d’une procédure de fabrication de composants planaires supraconducteurs à l’Université de Sherbrooke est la ligne de départ d’une multitude de projets qui ne demandent qu’à être initiés.
Annexe A

Conductivité CA d’un supraconducteur BCS

Les densités de courant du modèle à deux fluides sont définis par

\[\tilde{J}_s = q_n \tilde{v}_s \]
\[\tilde{J}_n = q_n \tilde{v}_n \]

(A.1)
(A.2)

La relation entre la densité de quasiparticules \(n_n \) et la densité superfluide \(n_s \) est donnée par la forme empirique suivante :

\[n_s = \frac{1}{2} (n - n_n) \]
\[= \frac{n}{2} \left[1 - \left(\frac{T}{T_c} \right)^4 \right] \]

(A.3)
(A.4)

\(n \) est la densité totale d’électron dans l’état normal. À partir des équations du mouvement, la conductivité du supraconducteur pourra être dérivée pour déterminer l’impédance de surface.

\[m \frac{d\tilde{v}_s}{dt} = q \tilde{E} \]

(A.5)
ANNEXE A. CONDUCTIVITÉ CA D'UN SUPRACONDUCTEUR BCS

\[m \frac{d \vec{v}_n}{dt} = q \vec{E} - m \frac{\vec{v}_n}{\tau} \] \hspace{1cm} (A.6)

Remplaçant les vitesses par les courants et utilisant la définition de la longueur de pénétration \(\lambda_L \)

\[\mu_0 \lambda_L^2 \frac{d \vec{J}_n}{dt} = \vec{E} \] \hspace{1cm} (A.7)
\[\frac{m}{q n_n} \frac{d \vec{J}_n}{dt} = q \vec{E} - m \frac{\vec{J}_n}{\tau q n_n} \] \hspace{1cm} (A.8)

Le terme de gauche de l'équation du mouvement des quasiparticules est négligé si la fréquence est inférieure au THz. Ce qui donne

\[\vec{E} = \frac{m \vec{J}_n}{\tau q^2 n_n} \] \hspace{1cm} (A.9)

\[= \rho \vec{J}_n \] \hspace{1cm} (A.10)

Exprimant le courant total en fonction de l'expression du champ électrique de chaque courant

\[\vec{J} = \frac{1}{\mu_0 \lambda_L^2} \int \vec{E} dt + \frac{\vec{E}}{\rho} \] \hspace{1cm} (A.11)

Si le champ électrique est oscillant et que \(\mu_0 \lambda_L^2 \) est remplacé par \(L_s \) qui représente l'inductance cinétique des électrons supraconducteurs, on obtient

\[\vec{J} = \frac{1}{L_s i \omega} + \frac{\vec{E}}{\rho} \] \hspace{1cm} (A.12)

et finalement la conductivité complexe qui dépend de la fréquence\(^1\)

\(^1\)La conductivité mentionnée dans cette annexe n'est valide que dans un supraconducteur BCS. Dans le cas des SHTC comme YBCO, cette conductivité est différente. Les travaux de D.A. Bonn et al traitent de la conductivité des SHTC [58].
\[\sigma(\omega) = \frac{1}{\rho} - \frac{i}{\omega L_s} \] (A.13)
Annexe B

Paramètres utilisés pour la fabrication et l’assemblage

B.1 Conditions de croissance

1. Densité d’énergie du faisceau laser 1,66 J/cm²;
2. température de croissance 840 °C;
3. fréquence du faisceau laser 10 Hz;
4. Type de substrat LAO (100);
5. distance cible-substrat 6 cm;
6. pression d’O₂ 140 mTorr;
7. temps de préablation 4 min (pour nettoyer la cible des impuretés);
8. temps d’ablation 20 min;
9. pression d’O₂ après la croissance 300 Torr;
10. refroidir jusqu’à 150 °C;
11. purger la chambre en faisant le vide, et ajouter 22 mTorr d’argon;
12. dépôt d’or pendant 7 min;
13. retirer l’échantillon de la chambre;
ANNEXE B. PARAMÈTRES UTILISÉS POUR LA FABRICATION ET L’ASSEMBLAGE

14. dégager le plus possible la laque d’argent sur les côtés de l’échantillon avec une lame de rasoir.

B.2 Photolithographie et gravure

1. Placer l’échantillon dans un bécher contenant de l’acétone et déposer le bécher dans un bain à ultrasons pendant 2 min;

2. répéter la première partie, mais avec de l’isopropanol;

3. assécher l’échantillon avec de l’azote gazeux;

4. déposer la résine S1813 (PMMA) sur toute la surface de la couche;

5. étendre la résine pendant 1 seconde à 1000 tours/seconde;

6. spinner la résine pendant 30 secondes à 5000 tours/seconde;

7. cuisson douce 15 secondes sur une plaque chauffante à 120 °C;

8. une fois le masque aligné, exposer la résine au faisceau UV pendant 15 secondes;

9. développement de la résine (30 secondes en ayant réglé la vitesse à un demi tour);

10. stabiliser le développeur pendant 15 secondes (un demi tour supplémentaire);

11. assécher l’échantillon avec de l’azote gazeux;

12. cuisson forte 15 min dans un four à environ 115 degrés Celcius;

13. graver la couche de YBCO dans une solution d’acide phosphorique (H_3PO_4) 1% (50 ml d’eau d’ionisée + 0.5 ml H_3PO_4 à 86 %) pendant 1 min 30 pour ~ 500 nm;

14. rincer l’échantillon dans l’eau pour enlever l’acide;

15. enlever la résine en trempant l’échantillon dans l’acétone suivi de l’isopropanol;

\footnote{La vitesse n’était pas indiquée sur l’appareil utilisé.}

109
ANNEXE B. PARAMÈTRES UTILISÉS POUR LA FABRICATION ET L’ASSEMBLAGE

Note : il reste généralement des parties non gravées sur les côtés de l’échantillon. Ces parties sont non désirables, il faut ajouter manuellement de la résine sur le motif et répéter les étapes de cuisson et gravure. Une fois le motif défini, ne pas enlever immédiatement la résine. La résine permet de protéger l’échantillon lors de la prochaine étape.

B.3 Préparation de l’échantillon pour l’assemblage

1. Le dessous de l’échantillon peut être gratté avec une lame de rasoir pour enlever le surplus de laque d’argent;

2. polir les côtés ainsi que le dessous de l’échantillon avec une solution contenant de la poudre de diamants (15 microns)²;

3. rincer l’échantillon avec de l’eau pour enlever le surplus de particules;

4. décaper la résine avec l’acétone et isopropanol. Pour ce faire, utiliser une tige avec du coton. Lors de cette étape, il faut enlever la très mince couche d’or qui est restée autour du motif.

²J’ai utilisé mes doigts pour tenir l’échantillon.
Annexe C

Estimation du champ critique \((H_{c1})\) de YBCO

Les calculs présentés ici pour estimer le champ de transition \(H^*\) entre les régimes linéaires et non-linéaires du résonateur microruban de YBCO sont très grossiers\(^1\). Le but est seulement d'obtenir un ordre de grandeur de \(H_{c1}\) et de comparer cette valeur avec les résultats expérimentaux dans la littérature.

Pour évaluer le champ magnétique \(H^*\), nous supposerons d’abord que le résonateur est parcouru par un courant continu et est représenté par un fil avec la relation connue décrivant le champ magnétique \(B\) d’un fil :

\[
B = \frac{\mu_0 I}{2\pi r} \quad \text{(C.1)}
\]

où \(I\) est le courant circulant dans le résonateur et \(r\) la distance de la surface de la couche mince par rapport à son centre (250 nm).

Ensuite, nous supposerons que \(H^*\) correspond à \(B\) à la surface du fil lorsque la puissance

\(^1\)Pour un calcul plus rigoureux de \(H_{c1}\), Yoshitake [54] mentionne deux références à partir desquelles il a fait le calcul de \(H_{c1}\).
ANNEXE C. ESTIMATION DU CHAMP CRITIQUE (H_{C1}) DE YBCO

circulant dans le résonateur provoque des effets non-linéaires. Cette valeur de la puissance initiale a été estimée à $1 \cdot 10^{-1}$ mW. Pour évaluer B, il nous faut I. Les seules informations que nous ayons sur notre système sont l'impédance Z_o (30 Ω) de la ligne à transmission et la puissance initiale. Afin d'exprimer I en fonction de P et Z_o, utilisons les relations entre la tension (V), l'impédance caractéristique (Z_o) de la ligne à transmission, le courant (I) et sa puissance (P) :

$$V = Z_o I \quad \text{(C.2)}$$
$$P = VI \quad \text{(C.3)}$$

I est alors donné par :

$$I = \sqrt{\frac{P}{Z_o}} \quad \text{(C.4)}$$

d'où :

$$H^* = \sqrt{\frac{P/Z_o}{2\pi r}} \quad \text{(C.5)}$$

La valeur calculée de H^* est alors de 14 Oe.
Annexe D

Masque développé pour la détermination de la J_c

Le masque développé dans ce projet pour la détermination de la densité de courant critique (J_c) à la figure D.1 peut être utilisé sur toutes couches minces. Toutefois, ses dimensions permettent d’aligner le masque sur la cavité du résonateur microruban étudié dans le cadre de ce projet. Sur le schéma, on distingue deux surfaces de contact de largeur 0,6 mm. La plus petite longueur de 2 mm permet de faire deux contacts d’indium. Trois contacts doivent être mis sur la plus longue (4,4 mm) surface de contact. Au moins deux contacts doivent être suffisamment espacés pour évaluer la résistivité de ce pad. En tout, cinq contacts sont faits sur le microruban testé. L’injection du courant se fait à partir des deux contacts les plus éloignés. Les deux contacts les plus près du canal de $2,4 \times 0,05 \text{ mm}^2$ permettent d’y mesurer la tension afin de déterminer la T_c et la J_c. Le contact supplémentaire près du contact d’injection de courant sur le plus long pad, permet de comparer la résistivité du pad avec la résistivité du canal afin de s’assurer que la gravure n’a pas affecté la couche mince du canal. Ce test nous a permis de confirmer que la gravure n’affecte pas les propriétés.
ANNEXE D. MASQUE DÉVELOPPÉ POUR LA DÉTERMINATION DE LA J_C

FIG. D.1 – Schéma du motif du masque pour la détermination de J_C. La valeur de l’angle a est de 45 degrés.
Bibliographie

[41] **TOMOV, R., V. TSANEVA, V. TSANEV et D. OUZOUNOV.** *Prolonged Laser Ablation Effects of YBCO Ceramic Targets During Thin Film Deposition : Influence of
BIBLIOGRAPHIE

119

