INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6” x 9” black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order.

UMI
A Bell & Howell Information Company
300 North Zeeb Road, Ann Arbor MI 48106-1346 USA
313/761-4700 800/521-0600
LES ÉQUATIONS DE NAVIER-STOKES NONLINÉAIRES
DANS \mathbb{R}^3

par

SOFIANE GRIRA

mémoire présenté au Département de mathématiques et d’informatique
en vue de l’obtention du grade de maître ès sciences (M.Sc.)

FACULTÉ DES SCIENCES
UNIVERSITÉ DE SHERBROOKE

Sherbrooke, Québec, Canada, juillet 1997
The author has granted a non-exclusive licence allowing the National Library of Canada to reproduce, loan, distribute or sell copies of this thesis in microform, paper or electronic formats.

The author retains ownership of the copyright in this thesis. Neither the thesis nor substantial extracts from it may be printed or otherwise reproduced without the author's permission.

L’auteur a accordé une licence non exclusive permettant à la Bibliothèque nationale du Canada de reproduire, prêter, distribuer ou vendre des copies de cette thèse sous la forme de microfiche/film, de reproduction sur papier ou sur format électronique.

L’auteur conserve la propriété du droit d’auteur qui protège cette thèse. Ni la thèse ni des extraits substantiels de celle-ci ne doivent être imprimés ou autrement reproduits sans son autorisation.

0-612-26576-5
Sommaire

Tout problème de physique mathématique conduit naturellement à la résolution d'une ou plusieurs équations fonctionnelles que nous écrivons sous la forme simplifiée:

\[Au = f \] \hspace{1cm} (0.1)

où \(A \) opère d'un espace \(X \) vers un espace \(Y \), \(f \) est donnée dans \(Y \), \(u \) est cherchée dans \(X \) (exemple: équations différentielles, intégrales, aux dérivées partielles...).

En général, la solution de (0.1) est impossible à déterminer explicitement ou encore sa forme explicite est si compliquée qu'elle est inutilisable et on s'intéresse donc à la résolution approchée de l'équation. L'idée est alors de remplacer les espaces \(X \) et \(Y \) par des espaces «plus simples» \(X_h \) et \(Y_h \) et d'associer à l'équation (0.1) une famille d'équations approchées (à un paramètre \(h \)):

\[A_h u_h = f_h \] \hspace{1cm} (0.2)

où \(A_h \) approxime \(A \), \(f_h \in Y_h \) approxime \(f \) et \(u_h \in X_h \) approxime \(u \) (du moins on le souhaite).

Les problèmes qui se posent sont les suivants:

1) \textit{Étude de l'équation exacte}.

Il faut étudier l'existence et l'unicité des solutions de (0.1): dans l'éventualité la plus favorable, l'équation possède une solution unique. Si l'équation possède plusieurs solutions,
il faut caractériser la solution que l'on cherche à approcher, ce qui est en général difficile.

2) Étude des équations approchées.

Ayant formulé convenablement les problèmes (0.2), il convient d'étudier l'existence et l'unicité des solutions de (0.2). Il faut ensuite développer des algorithmes pour la résolution effective de (0.2), ces équations n'étant pas du tout triviales (par exemple: des systèmes algébriques linéaires ou non linéaires).

3) Étude de la stabilité et de la convergence.

Ces questions sont fondamentales pour les applications; il s'agit, pour la stabilité, de s'assurer que les solutions approchées u_h demeurent bornées en un certain sens; pour la convergence, il s'agit de montrer que les u_h convergent dans un sens convenable vers la solution u de (0.1).

Dans le chapitre 1 on étudie les espaces de Sobolev, leurs propriétés (dual, densité, etc). On expose aussi des théorèmes de densité. On introduit deux espaces fondamentaux, H et V, dans l'étude des équations de Navier-Stokes. À la fin on introduit deux opérateurs A et b qui nous serviront plus tard dans le chapitre 2 pour la description des équations de Navier-Stokes.

Dans le chapitre 2 on expose la méthode de Galerkin qui consiste à construire une solution u_m dans un espace de dimension finie, puis à faire des estimations de u_m qui permettent d'utiliser ensuite le théorème de compacité 2.5, pour ainsi extraire une sous suite qui converge vers la solution cherchée. Ainsi on montrera dans ce chapitre l'existence et l'unicité d'une solution faible par le biais de deux théorèmes. L'existence est obtenue par le théorème 2.6:

"Soient f et u_0 qui satisfont à $f \in L^2(0,T;V')$ et $u_0 \in H$, alors il existe au moins une fonction u qui satisfait à

$$u \in L^2(0,T;V), \quad u' \in L^1(0,T;V'),$$
\[u' + wAu + Bu = f \text{ dans } (0,T) \]
\[u(0) = u_0. \]

De plus \(u \in L^\infty(0,T;H) \) et \(u \) est faiblement continue de \([0,T]\) dans \(H \). L'unicité est fournie par le théorème 2.9.

Considérons le problème suivant: "soient \(f \in L^2(0,T;V') \) et \(u_0 \in H \) donnés, cherchons \(u \) qui satisfait à:

\[u \in L^2(0,T,V), \ u' \in L^1(0,T;V'), \quad (0.3) \]

\[u' + wAu + Bu = f \text{ dans } (0,T) \]
\[u(0) = u_0." \]

(0.5)

Le théorème 2.9 nous dit que si \(n = 3 \), il existe au plus une solution du problème précédent satisfullant à

\[u \in L^2(0,T;V) \cap L^\infty(0,T;H) \]

et

\[u \in L^8(0,T;L^4(Q)). \]

Puis on montrera l'existence et l'unicité d'une solution forte par le théorème 2.13: "Soient \(u_0 \) et \(f \) telles que

\[u_0 \in V, f \in L^\infty(0,T;H), \]

il existe \(T_* = T_*(u_0) > 0 \) tel que, dans \([0,T_*]\) il existe une unique solution (forte) du problème précédent avec

\[u \in L^2(0,T_*;D(A)), \ u' \in L^2(0,T_*;H). " \]

iv
Dans le chapitre 3 on s'intéresse à la régularité des solutions faibles et leur domaines de singularités, on exposera aussi des estimations à priori des solutions faibles. Dans le chapitre 4 on essaye de trouver une meilleure estimation de la solution faible u par l'opérateur de Stokes en utilisant pour cela les solutions fondamentales du système de Stokes généralisé.
Remerciements

Je voudrais exprimer tout d’abord mes remerciements aux professeurs qui m’ont fait l’honneur de participer au jury de ce mémoire.

Je remercie spécialement le professeur Jean Vaillancourt, mon directeur de recherche qui m’a appuyé par ses conseils, son soutien scientifique et financier, sa grande disponibilité et la confiance qu’il m’a accordée durant toute la période de la recherche. Ceci m’a été d’une aide précieuse et m’a permis d’orienter et de poursuivre mon travail dans d’excellentes conditions. Qu’il trouve ici l’expression de ma gratitude pour l’intérêt qu’il porte à ce travail.

Je remercie aussi l’Université de Sherbrooke et la mission universitaire de Tunisie pour le soutien financier qu’elles m’ont accordé.

Je remercie enfin mon père et ma mère qui m’ont beaucoup aidé, et tous les amis qui m’ont soutenu et aidé à mener à bien mon travail.
TABLE DES MATIÈRES

SOMMAIRE	ii
REMERCIEMENTS	vi
TABLE DES MATIÈRES	vi
INTRODUCTION	1

CHAPITRE 1 — Les espaces de Sobolev

1.1 Définitions et propriétés des espaces de Sobolev 3
 1.1.1 Définition ... 3
 1.1.2 Théorème .. 4
 1.1.3 Lemme ... 5
 1.1.4 Proposition ... 6
1.2 Les espaces duaux $H_p^{-m}(Q)$ 7
 1.2.1 Proposition ... 8
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2.2</td>
<td>Proposition</td>
<td>8</td>
</tr>
<tr>
<td>1.2.3</td>
<td>Théorème</td>
<td>10</td>
</tr>
<tr>
<td>1.3</td>
<td>Les triades hilbertiennes</td>
<td>11</td>
</tr>
<tr>
<td>1.4</td>
<td>Théorèmes de densité</td>
<td>11</td>
</tr>
<tr>
<td>1.4.1</td>
<td>Théorème</td>
<td>11</td>
</tr>
<tr>
<td>1.4.2</td>
<td>Théorème</td>
<td>13</td>
</tr>
<tr>
<td>1.5</td>
<td>Théorème de traces</td>
<td>14</td>
</tr>
<tr>
<td>1.5.1</td>
<td>Théorème</td>
<td>15</td>
</tr>
<tr>
<td>1.6</td>
<td>Caractérisation des espaces H et V</td>
<td>15</td>
</tr>
<tr>
<td>1.6.1</td>
<td>Définition</td>
<td>15</td>
</tr>
<tr>
<td>1.6.2</td>
<td>Proposition</td>
<td>16</td>
</tr>
<tr>
<td>1.6.3</td>
<td>Théorème</td>
<td>16</td>
</tr>
<tr>
<td>1.6.4</td>
<td>Théorème</td>
<td>17</td>
</tr>
<tr>
<td>1.7</td>
<td>L'opérateur A</td>
<td>17</td>
</tr>
<tr>
<td>1.7.1</td>
<td>Proposition</td>
<td>18</td>
</tr>
<tr>
<td>1.7.2</td>
<td>Définition</td>
<td>19</td>
</tr>
<tr>
<td>1.7.3</td>
<td>Les fonctions propres de A</td>
<td>19</td>
</tr>
<tr>
<td>1.8</td>
<td>Les inégalités de Sobolev dans \mathbb{R}^3</td>
<td>20</td>
</tr>
<tr>
<td>1.8.1</td>
<td>Lemme</td>
<td>20</td>
</tr>
<tr>
<td>1.8.2</td>
<td>Définition</td>
<td>22</td>
</tr>
</tbody>
</table>
1.8.3 Théorème ... 23
1.8.4 Théorème ... 23
1.9 La forme trilinéaire b et l'opérateur B 24
1.9.1 Lemme: Dans le cas $n = 3.$ 24
1.9.2 Propriétés ... 25
1.9.3 L'opérateur B ... 26

CHAPITRE 2 — Existence et unicité pour les équations de Navier-Stokes
dans \mathbb{R}^3 ... 27

2.1 Lemme .. 28
2.2 Lemme .. 29
2.3 Lemme .. 30
2.4 Définition .. 30
2.5 Théorème de compacité 31
2.6 Théorème d'existence 31
2.7 Lemme .. 37
2.8 Lemme .. 38
2.9 Théorème .. 39
2.10 Théorème d'unicité 41
2.11 Lemme .. 43
2.12 Lemme .. 44

ix
2.13 Théorème ... 47

CHAPITRE 3 — Régularité des solutions 49

3.1 Inégalités de l'énergie et conséquences. 49
 3.1.1 Lemme: (inégalité d'interpolation) 49
 3.1.2 Définition .. 50
 3.1.3 Lemme .. 50
 3.1.4 Lemme .. 53

3.2 Structure de l'ensemble singulier de la solution faible 54
 3.2.1 Définitions .. 54
 3.2.2 Théorème .. 55

3.3 Estimation à priori ... 56
 3.3.1 Théorème .. 56
 3.3.2 Théorème .. 58

CHAPITRE 4 — Les inégalités d'interpolation pour l'opérateur de Stokes 59

4.1 Les solutions fondamentales du système de Stokes généralisé 59
 4.1.1 Lemme .. 63
 4.1.2 Théorème .. 65
 4.1.3 Corollaire .. 67

Index 71
Introduction

Supposons qu'un fluide remplit une région Ω de l'espace. Pour la représentation Eulerienne de l'écoulement de ce fluide, on considère trois fonctions ρ = ρ(x, t), p = p(x, t), u = u(x, t), x = (x₁, x₂, x₃) ∈ Ω, t ∈ R, où ρ(x, t) est la densité et p = p(x, t) est la pression du fluide au point x à l'instant t et u(x, t) = (u₁(x, t), u₂(x, t), u₃(x, t)) est la vitesse de la particule du fluide qui est au point x et à l'instant t. On peut aussi considérer la représentation Lagrangienne de l'écoulement, dans ce cas on introduit les fonctions ̅ρ = ̅ρ(a, t), ̅p = ̅p(a, t), ̅u = ̅u(a, t); ici ̅u(a, t) est la vitesse de la particule du fluide qui est au point a ∈ Ω et à un instant de référence t₀, et la signification de ̅ρ(a, t), ̅p(a, t) est la même. La représentation Lagrangienne est moins souvent utilisée.

Si le fluide est Newtonien, alors les fonctions ρ, p, u sont liées par l'équation de la conservation des bilans d'énergie et de force par unité de surface (0.6) (équation de Navier-Stokes), et par l'équation de continuité (0.7) qui est une conséquence directe de la conservation de la quantité de mouvement, via le théorème de Gauss liant les intégrales de surface et de volume induites:

$$\rho \left(\frac{\partial u}{\partial t} + \sum_{i=1}^{3} u_i \frac{\partial u}{\partial x_i}\right) - \nu \Delta u - (3\lambda + \nu) \nabla \text{div} u + \nabla p = f.$$ \hspace{1cm} (0.6)

$$\frac{\partial \rho}{\partial t} + \text{div} (\rho u) = 0,$$ \hspace{1cm} (0.7)
où $\nu > 0$ est la viscosité dynamique, λ un autre paramètre physique et où $f = f(x, t)$ représente la densité (volumique) du champ de force externe par unité de volume. Si le fluide est homogène et incompressible, alors ρ est une constante indépendante de x et t, et si de plus la pression p est constante, les équations sont réduites à:

$$\rho \left(\frac{\partial u}{\partial t} + \sum_{i=1}^{3} u_i \frac{\partial u}{\partial x_i} \right) - \nu \Delta u + \nabla p = f.$$

$$\text{div} (u) = 0.$$
CHAPITRE 1

Les espaces de Sobolev

1.1 Définitions et propriétés des espaces de Sobolev

Soit Ω un ensemble ouvert de \(\mathbb{R}^n \) avec frontière \(\Gamma = \overline{\Omega} \cap \Omega^c \). On suppose que Ω est situé localement d'un seul côté de Γ et que Γ est une variété [6] de dimension n-1 et de classe \(C^r (r \text{ à préciser}) \). On note par \(L^2(\Omega) \) l'espace des fonctions à valeurs dans \(\mathbb{R} \) qui sont de carré intégrable pour la mesure de Lebesgue. On munit cet espace du produit scalaire:

\[
(u, v) = \int_{\Omega} u(x)v(x)dx
\]

et de la norme \(|u| = (u, u)^{\frac{1}{2}} \). Notons par \(|u|_1 \) la norme définie par:

\[
|u|_1 = \sum_{i=1}^{n} |u_i|.
\]

1.1.1 Définition

Pour tout entier non négatif \(m \), \(H^m(\Omega) \) désigne l'espace des fonctions de \(L^2(\Omega) \) dont toutes les dérivées distributionnelles d'ordre inférieur ou égal à m sont dans \(L^2(\Omega) \). L'espace \(H^m(\Omega) \) est évidemment un sous-espace vectoriel de \(L^2(\Omega) \). Si \(u \) et \(v \in H^m(\Omega) \), nous
posons

\[<u, v> = \sum_{b|l \leq m} (D^j u, D^j v), \]

avec \(j = (j_1, \ldots, j_n) \), \(j_i \in \mathbb{N} \), \([j] = j_1 + \ldots + j_n \) et \(D^j = D_1^{j_1} \ldots D_n^{j_n} = \frac{\partial |b|}{\partial x_1^{j_1} \ldots \partial x_n^{j_n}}. \)

1.1.2 Théorème

L'espace \(H^m(\Omega) \) muni du produit scalaire (1.1) est un espace de Hilbert.

Démonstration: Il est évident que (1.1) définit sur \(H^m(\Omega) \) une forme bilinéaire symétrique positive non dégénérée. Montrons que \(H^m(\Omega) \) est complet pour la norme \(|| \cdot || \) associée à ce produit scalaire. Soit \(\{u_r\} \) une suite de Cauchy dans \(H^m(\Omega) \); comme \(D^j \) est un opérateur continu dans l'espace des distributions [10] nous avons également: pour tout multi-entier \(j, |j|_1 \leq m \), la suite \(\{D^j u_r\} \) est de Cauchy, donc convergente, dans \(L^2(\Omega) \); posons \(\lim_{r \to +\infty} u_r = g \) et \(\lim_{r \to +\infty} D^j u_r = g_j \). Nous avons alors: \(u_r \xrightarrow{r \to +\infty} g \) et \(D^j u_r \xrightarrow{r \to +\infty} D^j g \) au sens des distributions dans \(\Omega \); donc \(D^j u_r \xrightarrow{r \to +\infty} D^j g \) dans cet espace et ainsi \(D^j g \in L^2(\Omega) \), pour tout \(j, |j|_1 \leq m \). Ceci prouve que \(g \in H^m(\Omega) \) et que la suite \(\{u_r\} \) converge vers \(g \) dans \(H^m(\Omega) \). ■

Soit \(Q \) le cube de \(\mathbb{R}^n \) de période \(L \) dans chaque direction (i.e. \(Q = [0, L[^n \).

Notons par \(H^m_p(Q) \), \(m \) entier, l'espace des fonctions qui sont \(H^m_{loc}(\mathbb{R}^n) \) (i.e., \(u \) restreint à \(\sigma \) appartient à \(H^m(\sigma) \) pour tout ensemble ouvert borné \(\sigma \) et qui sont périodiques de période \(Q \): \(u(x + Le_i) = u(x) \) pour tout \(1 \leq i \leq n \), avec \(e_1, e_2, \ldots, e_n \) la base canonique de \(\mathbb{R}^n \). Pour \(m = 0 \), \(H^0_p(Q) \) coïncide avec \(L^2(Q) \). Pour \(m \) entier, \(H^m_p(Q) \) muni du produit scalaire (1.1) est un espace de Hilbert.
1.1.3 Lemme

Pour toute famille de nombres complexes \(\{c_k : k \in \mathbb{Z}^n\} \) et multi-indice \(\alpha = (\alpha_1, \ldots, \alpha_n) \), on a:

\[
\sum_{|\alpha| \leq m} \sum_{k \in \mathbb{Z}^n} |c_k|^2 \prod_{j=1}^{n} \left(\frac{2\pi}{L} \right)^{2\alpha_j} |k_j|^{2\alpha_j} \geq \frac{1}{m!} \min \left[\left(\frac{2\pi}{L} \right)^m, 1 \right] \sum_{k \in \mathbb{Z}^n} |k|^{2m} |c_k|^2.
\]

Démonstration: On a

\[
|k|^{2m} = \left(\sum_{i=1}^{n} k_i^2 \right)^m = \sum_{|\alpha| = m} \binom{m}{\alpha_1, \ldots, \alpha_n} \prod_{j=1}^{n} |k_j|^{2\alpha_j},
\]

donc

\[
\sum_{|\alpha| = m} \prod_{j=1}^{n} |k_j|^{2\alpha_j} \leq |k|^{2m} \leq m! \sum_{|\alpha| = m} \prod_{j=1}^{n} |k_j|^{2\alpha_j}, \tag{1.2}
\]

on distinguera deux cas.

1er cas: Si \(\frac{2\pi}{L} \leq 1 \) alors \(\left(\frac{2\pi}{L} \right)^{2\alpha_j} \geq \left(\frac{2\pi}{L} \right)^{2m} \) donc

\[
\sum_{|\alpha| \leq m} \sum_{k \in \mathbb{Z}^n} |c_k|^2 \prod_{j=1}^{n} \left(\frac{2\pi}{L} \right)^{2\alpha_j} |k_j|^{2\alpha_j} \geq \left(\frac{2\pi}{L} \right)^{2m} \sum_{|\alpha| \leq m} \sum_{k \in \mathbb{Z}^n} |c_k|^2 \prod_{j=1}^{n} |k_j|^{2\alpha_j},
\]

et d'après l'inégalité droite de (1.2) on aura

\[
\sum_{|\alpha| \leq m} \sum_{k \in \mathbb{Z}^n} |c_k|^2 \prod_{j=1}^{n} \left(\frac{2\pi}{L} \right)^{2\alpha_j} |k_j|^{2\alpha_j} \geq \left(\frac{2\pi}{L} \right)^{2m} \frac{1}{m!} \sum_{k \in \mathbb{Z}^n} |k|^{2m} |c_k|^2.
\]

2ième cas: Si \(\frac{2\pi}{L} > 1 \) alors \(\left(\frac{2\pi}{L} \right)^{2\alpha_j} > 1 \)
donc

\[
\sum_{|\alpha| \leq m} \sum_{k \in \mathbb{Z}^n} |c_k|^2 \prod_{j=1}^{n} \left(\frac{2\pi}{L} \right)^{2\alpha_j} |k_j|^{2\alpha_j} \geq \frac{1}{m!} \sum_{k \in \mathbb{Z}^n} |k|^{2m} |c_k|^2.
\]

La conclusion s'ensuit. \(\blacksquare\)
1.1.4 Proposition

Soit \(m \) un entier non négatif; les fonctions de \(H_p^m(Q) \) peuvent être caractérisées par leurs séries de Fourier

\[
H_p^m(Q) = \{ u : u = \sum_{k \in \mathbb{Z}^n} c_k e^{2i\pi x \cdot \frac{k}{L}}, c_{-k} = c_k, \sum_{k \in \mathbb{Z}^n} |k|^{2m} |c_k|^2 < +\infty \}.
\]

(Démonstration: Si

\[
u = \sum_{k \in \mathbb{Z}^n} c_k e^{2i\pi x \cdot \frac{k}{L}}
\]
alors pour tout \(|\alpha| \leq m \) on a

\[
D^\alpha u = \sum_{k \in \mathbb{Z}^n} c_k \prod_{j=1}^n \left(\frac{2\pi k_j}{L} \right)^{\alpha_j} e^{2i\pi x \cdot \frac{k}{L}},
\]
donc

\[
|D^\alpha u|^2 = \frac{L}{2} \sum_{k \in \mathbb{Z}^n} |c_k|^2 \prod_{j=1}^n \left(\frac{2\pi |k_j|}{L} \right)^{2\alpha_j} \leq \frac{L}{2} \sum_{k \in \mathbb{Z}^n} |c_k|^2 \left(\frac{2\pi}{L} \right)^{2m} |k|^{2m} \leq \frac{L}{2} \left(\frac{2\pi}{L} \right)^{2m} \sum_{k \in \mathbb{Z}^n} |c_k|^2 |k|^{2m} < +\infty
\]
donc \(D^\alpha u \in L^2(Q) \) et \(u \) est périodique de période \(Q \). Ainsi \(u \in H_p^m(Q) \).

Réciproquement si \(u \in H_p^m(Q) \) on a \(u \in L^2(Q) \). Or \(\{ e^{2i\pi k \cdot x}, k \in \mathbb{Z}^n \} \) forme une base de \(L^2_p(Q) \), donc \(u \) peut s'écrire sous la forme

\[
u = \sum_{k \in \mathbb{Z}^n} c_k e^{2i\pi x \cdot \frac{k}{L}} \] ce qui entraîne \(D^\alpha u = \sum_{k \in \mathbb{Z}^n} c_k \prod_{j=1}^n \left(\frac{2\pi k_j}{L} \right)^{\alpha_j} e^{2i\pi x \cdot \frac{k}{L}} \) \(|\alpha| \leq m \)

et \[
|D^\alpha u|^2 = \frac{L}{2} \sum_{k \in \mathbb{Z}^n} |c_k|^2 \prod_{j=1}^n \left(\frac{2\pi}{L} \right)^{2\alpha_j} |k_j|^{2\alpha_j}
\].
On a alors

$$\| u \|^2 = \sum_{|\alpha| \leq m} |D^\alpha u|^2 = \frac{L}{2} \sum_{|\alpha| \leq m} \sum_{k \in \mathbb{Z}^n} |c_k|^2 \prod_{j=1}^n \left(\frac{2\pi}{L} \right)^{2\alpha_j} |k_j|^{2\alpha_j}$$

on aura donc d'après le lemme précédent que

$$\| u \|^2 \geq \frac{1}{m!} \min \left(\left(\frac{2\pi}{L} \right)^{2m}, 1 \right) \frac{L}{2} \sum_{k \in \mathbb{Z}^n} |c_k|^2 |k|^{2m}$$

donc $$\sum_{k \in \mathbb{Z}^n} |c_k|^2 |k|^{2m} < +\infty.$$ ■

On remarque que (1.3) a un sens pour $$m \in \mathbb{R}$$ et $$m \geq 0$$; donc on définit maintenant $$H^m_p(Q)$$ par (1.3) dans ce cas.

Pour $$m$$ quelconque dans $$\mathbb{R}$$ on définit $$H^m_p(Q)$$ par:

$$H^m_p(Q) = \{ u \in H^m_p(Q) de type (1.3); c_0 = 0 \}$$

On remarque que $$H^m_p(Q)$$ est un espace de Hilbert pour la norme $$\left\{ \sum_{k \in \mathbb{Z}^n} |k|^{2m} |c_k|^2 \right\}^{\frac{1}{2}}$$.

1.2 Les espaces duals $$H^{-m}_p(Q)$$

Comme on va considérer des vecteurs de la forme $$v = (v_\alpha)_{0 \leq |\alpha| \leq m}$$, avec $$\alpha$$ multi-indice, dont le nombre de coordonnées est $$N = \sum_{k=0}^m \binom{k + n - 1}{k}$$ posons

$$L^2_N = \prod_{j=1}^N L^2(Q)$$

et notons la norme d'un vecteur $$u = (u_1, \ldots, u_N)$$ dans $$L^2_N$$ par:

$$\| u \|_N = \left(\sum_{j=1}^N |u_j|^2 \right)^{\frac{1}{2}}$$

Notons par $$(H^m_p(Q))'$$ le dual de $$H^m_p(Q)$$ dans $$L^2(Q)$$.
1.2.1 Proposition

Pour tout $\psi \in (H^m_p(Q))^\prime$, il existe un élément $v \in L^2_\nu$ tel qu’en écrivant le vecteur v sous la forme $(v_\alpha)_{0 \leq |\alpha| \leq m}$, on a pour tout $u \in H^m_p(Q)$:

$$\psi(u) = \sum_{0 \leq |\alpha| \leq m} (D^\alpha u, v_\alpha)$$ (1.4)

Démonstration: Soit P un opérateur de $H^m_p(Q)$ dans $H^0_p(Q)$ défini par

$$Pu = (D^\alpha u)_{0 \leq |\alpha| \leq m}.$$

On définit une fonction linéaire continue ψ^* sur l’image W de l’opérateur P par :

$$\psi^*(Pu) = \psi(u) , u \in H^m_p(Q).$$

W est un sous-espace vectoriel de L^2_ν, et $\|\psi^*\|_{w^*} = \sup_{\|w\|_w \leq 1} \|\psi(u)\|$ donc d’après le théorème de Hahn-Banach, il existe $\tilde{\psi} \in L^2_\nu$ qui prolonge ψ^*, et par le théorème de Riesz on a $\tilde{\psi}^* \in L^2_\nu$; alors il existe $v \in L^2_\nu$ tel que, si $u = (u_\alpha)_{0 \leq |\alpha| \leq m}$, alors

$$\tilde{\psi}(u) = \sum_{0 \leq |\alpha| \leq m} (u_\alpha, v_\alpha)$$

donc pour tout $u \in H^m_p(Q)$ on obtient :

$$\psi(u) = \psi^*(Pu) = \tilde{\psi}(Pu) = \sum_{0 \leq |\alpha| \leq m} (D^\alpha u, v_\alpha).$$

1.2.2 Proposition

Chaque élément ψ de l’espace $(H^m_p(Q))^\prime$ possède une extension à une distribution $T \in \mathcal{D}'(Q)$, avec $\mathcal{D}'(Q)$ l’espace des distributions sur Q (voir [10]).
Démonstration: Soit ψ donné par (1.4) pour $v \in L^2_N$. On définit T_{α} et $T \in \mathcal{D}'(Q)$ par:

$$T_{\alpha}(\phi) = (\phi, v_{\alpha}), \quad \forall \phi \in \mathcal{D}(Q) \text{ avec } 0 \leq |\alpha|_1 \leq m,$$

($\mathcal{D}(Q)$ l'espace des fonctions C^∞ à support compact dans Q) et

$$T = \sum_{0 \leq |\alpha|_1 \leq m} (-1)^{|\alpha|} D^\alpha T_{\alpha}.$$

Pour tout $\phi \in \mathcal{D}(Q) \subset H^m_p(Q)$ on a:

$$T(\phi) = \sum_{0 \leq |\alpha|_1 \leq m} T_{\alpha}(D^\alpha \phi) = \psi(\phi) \quad (1.5)$$

donc T est bien une extension de ψ.

Remarque: La proposition précédente reste valable pour tout $\psi \in H^m_0(Q) \subset H^m_p(Q)$ la fermeture de $\mathcal{D}(Q)$ dans $H^m_p(Q)$.

Supposons maintenant que $T \in \mathcal{D}'(Q)$ a la forme (1.5) pour un certain $v \in L^2_N$; alors T ne possède pas une unique extension dans $H^m_p(Q)$. En effet, si T^* est une extension de T alors T^{**} définie par $T^{**}(f) = T^*(f) + U(f)$ se trouve être une autre, où U est une fonction de $H^m_p(Q)$ dans \mathcal{R} telle que $U(\mathcal{D}(Q)) = \{0\}$, (par exemple $U(f) = f(\xi)$ où $\xi \in \partial Q$).

Par contre montrons que T possède une unique extension dans $H^m_0(Q)$: en effet soit $\{\phi_n\}$ une suite dans $\mathcal{D}(Q)$ tels que $\|\phi_n - u\|_{n \to +\infty} \to 0$. Notons $|.|_2$ la norme définie sur \mathcal{C} par $|u|_2 = (x^2 + y^2)^{1/2}$ si $u = x + iy$ ($x, y \in \mathcal{R}$).

Si $u \in H^m_0(Q)$ alors
\[| T(\phi_k) - T(\phi_n) |_2 \leq \sum_{0 \leq |\alpha|_1 \leq m} | T_{\alpha}(D^\alpha \phi_k - D^\alpha \phi_n) |_2 \]
\[\leq \sum_{0 \leq |\alpha|_1 \leq m} | D^\alpha (\phi_k - \phi_n) | | v_\alpha | \]
\[\leq \| \phi_k - \phi_n \| \| v \|_N \xrightarrow{k,n \to +\infty} 0 \]

donc \(\{T(\phi_n)\} \) est une suite de Cauchy dans \(\mathbb{C} \) donc convergente vers une limite qu'on notera \(\psi(u) \). La fonction \(\psi \) ainsi définie est linéaire et appartient à \((H_0^m(Q))^' \); comme on a \(u = \lim_{n \to +\infty} \phi_n \), alors il vient
\[| \psi(u) |_2 = \lim_{n \to +\infty} | T(\phi_n) |_2 \]

et donc
\[| \psi(u) |_2 \leq \lim_{n \to +\infty} | \phi_n | \| v \|_N = \| u \| \| v \|_N. \]

Nous avons donc prouvé le théorème suivant.

1.2.3 Théorème

L'espace dual \((H_0^m(Q))^' \) est isomorphe à l'espace de Banach constitué par les distributions \(T \in \mathcal{D}'(Q) \) qui vérifient (1.4) pour tout \(v \in L^2_\kappa \) pour la norme:
\[\| T \| = \inf \{ \| v \|_N : v \text{ satisfait à (1.4)} \}. \]

Nous noterons par \(H^{-m}_p(Q) \) le dual de \(H_0^m(Q) \).
1.3 Les triades hilbertiennes

Soient V et H deux espaces de Hilbert tels que V est un sous-espace dense dans H et tels que l'injection de V dans H définit par transposition d'une application linéaire continue de H' (dual de H) dans V'; on vérifie aisément que cette application est injective, ce qui permet d'identifier H' à un sous-espace de V', et que H' est dense dans V':

$V \subset H$, $V \rightarrow H$; $H' \rightarrow V'$.

Par ailleurs, d'après le théorème de Riesz, il existe un isomorphisme canonique de H sur H' et nous pouvons grâce à cet isomorphisme identifier H et H'. Finalement: $V \subset H \equiv H' \subset V'$ les injections étant continues et chaque espace étant dense dans le suivant.

Appelons triade hilbertienne l'ensemble des trois espaces ayant les propriétés qui viennent d'être indiquées. Une conséquence de cette identification: le produit scalaire dans H de $f \in H$ et $u \in V$ est le même que le produit scalaire de f et u dans la dualité entre V et V':

$$< f, u > = (f, u) \forall f \in H, \forall u \in V.$$

1.4 Théorèmes de densité

1.4.1 Théorème

L'espace $D(Q)$ est dense dans $H^m_p(Q)$.

Démonstration: Soient $u \in H^m_p(Q)$ et $(\theta_j)_{j \in J}$ un recouvrement ouvert de Q. Considérons une partition de l'unité subordonnée à ce recouvrement $1 = \phi + \sum_{j \in J} \phi_j$ où $\phi \in D(Q), \phi_j \in D(\theta_j)$. On peut écrire $u = \phi u + \sum_{j \in J} u \phi_j$; la somme sur j est finie car le support
de u est compact.

i) La fonction ϕu est à support compact dans Q (car $\text{supp } \phi u \subset \text{supp } \phi$). On posera $\phi u = 0$ en dehors de Q. Soit $\rho \in D(\mathbb{R}^n)$, $\rho \geq 0$ et $\int_{\mathbb{R}} \rho(x)dx = 1$.

Pour $\varepsilon \in [0,1]$ notons $\rho_{\varepsilon}(x) = \frac{1}{\varepsilon^n} \rho(\frac{x}{\varepsilon})$; $\rho_{\varepsilon} * \phi u$ a un support compact (car $\text{supp}(\rho_{\varepsilon} * \phi u) \subset \text{supp } \rho_{\varepsilon} + \text{supp } (\phi u) \subset \text{supp } \rho_{\varepsilon} + \text{supp } \phi$ avec $\rho_{\varepsilon}, \phi \in D(\mathbb{R}^n)$) [10].

On sait, par régularisation, que

$$\lim_{\varepsilon \to 0} \rho_{\varepsilon} * \phi u = \phi u \text{ dans } L^2(\mathbb{R}^n),$$

et

$$\lim_{\varepsilon \to 0} D^\alpha(\rho_{\varepsilon} * \phi u) = \rho_{\varepsilon} * D^\alpha(\phi u) \text{ dans } L^2(\mathbb{R}^n).$$

donc

$$\| \rho_{\varepsilon} * \phi u - \phi u \| = \sum_{0 \leq |\alpha| \leq m} \| D^\alpha(\rho_{\varepsilon} * \phi u) - D^\alpha(\phi u) \|_{\varepsilon \to 0} \to 0.$$

Donc ϕu est limite dans $H^m_P(Q)$ de fonctions appartenant à $D(\overline{Q})$.

ii) Considérons maintenant une des fonctions $u_j = \phi_j u$ non identiquement nulle. Soient $\theta'_j = \theta_j \cap Q$ et $\sigma_\lambda(x) = \lambda x$ l'homothétie de rapport $\lambda \neq 0$. On a donc $\theta'_j \subset \overline{\theta'_j} \subset \sigma_\lambda \theta'_j$ pour $\lambda > 1$ et $\sigma_\lambda \theta'_j \subset \overline{\sigma_\lambda \theta'_j} \subset \theta'_j$ pour $0 \leq \lambda < 1$.

Soit $\sigma_\lambda \circ \nu$ la fonction qui à x associe $\nu(\sigma_\lambda(x))$.

Pour $\lambda \geq 1$, $\sigma_\lambda \circ u_j \big|_{\theta'_j} \xrightarrow[\lambda \to 1]{} u_j$ dans $H^m_P(Q)$. En effet pour $p \in L^2(\theta'_j)$ on a

$$\int_{\sigma_\lambda \theta'_j} |(\sigma_\lambda \circ p)(y)|^2dy = \lambda^n \int_{\theta'_j} |p(x)|^2dx,$$

c'est à dire

$$|\sigma_\lambda \circ p|_{L^2(\sigma_\lambda \theta'_j)} = \lambda^{\frac{n}{2}} |p|_{L^2(\theta'_j)}$$

12
et donc

\[\sigma_\lambda \circ p \big|_{\theta'_j} \xrightarrow{\lambda \to 1} p \text{ dans } L^2(\theta'_j). \]

D’autre part pour \(1 \leq i \leq m \), on a

\[D^i(\sigma_\lambda \circ p)[\phi] = (-1)^{|i|}(\sigma_\lambda \circ p)[D^i \phi] = \frac{(-1)^{|i|}}{\lambda^n}(p)[\sigma_\lambda \circ (D^i \phi)] = \frac{\lambda^i}{\lambda^n}(D^i p)[\sigma_\lambda \circ \phi] = \lambda^i(\sigma_\lambda \circ D^i p)[\phi]. \]

Ainsi \(D^i(\sigma_\lambda \circ p) = \lambda^i(\sigma_\lambda \circ D^i p) \xrightarrow{\lambda \to 1} D^i p \) dans \(L^2(\theta) \), donc \(\sigma_\lambda \circ u_j \big|_{\theta'_j} \xrightarrow{\lambda \to 1} u_j \) dans \(H^m_p(Q) \).

Si \(\psi_j \in D(\sigma_\lambda(\theta'_j)) \) et \(\psi_j = 1 \) dans \(\theta_j \), posons \(v_j = \psi_j(\sigma_\lambda \circ u) \big|_Q \). Alors

\[v_j \xrightarrow{\lambda \to 1} u_j \text{ dans } H^m_p(Q) \text{ et } v_j \text{ est une fonction à support compact dans } Q, \text{ le résultat s'ensuit alors du point (i).} \]

1.4.2 Théorème

\(C^\infty(Q) \cap H^m_p(Q) \) est dense dans \(H^m_p(Q) \)

(avec \(C^\infty(Q) \) l’ensemble des fonctions continûment différentiables sur \(Q \)).

Démonstration: Soit \(Q_\nu (\nu = 0, 1, \ldots) \) une suite de sous ensembles ouverts de \(Q \) relativement compacts tels que leur union est égale à \(Q \) et pour chaque \(\nu = 0, 1, \ldots, \overline{Q}_\nu \subset Q_{\nu+1} \).

Posons \(Q'_1 = Q_1 \) et pour \(\nu \geq 2, Q'_\nu = Q_\nu - \overline{Q}_{\nu-2} \). Il est clair que les \(Q'_\nu (\nu = 1, 2, \ldots) \) forment un recouvrement ouvert de \(Q \). Soit \(\xi_\nu (\nu = 1, 2, \ldots) \) une \(C^\infty \)-partition de l’unité subordonnée au recouvrement \(Q'_\nu \) (les supports de \(\xi_\nu \) sont compacts). Soit \(\rho \in D(\mathbb{R}^n) \rho \geq 0, \int_{\mathbb{R}^n} \rho dx = 1 \) et posons, pour \(\varepsilon \geq 0, \rho_\varepsilon(x) = \frac{1}{\varepsilon^n} \rho \left(\frac{x}{\varepsilon} \right) \). Pour chaque \(\nu \) on
sélectionne un nombre $\varepsilon_\nu \geq 0$ tel que l'adhérence du voisinage d'ordre ε_ν du supp ξ_ν soit dans Q_ν'. Ecrivons $v_\nu = \rho_\varepsilon \ast (\xi_\nu u)$, avec $u \in H^m_p(Q)$; bien sûr on a $v_\nu \in D(Q_\nu')$. Or on sait que, si $f \in L^p(\mathbb{R}^n)$, $\rho_\varepsilon \ast f$ converge vers f dans $L^p(\mathbb{R}^n)$, donc pour tout $\varepsilon \geq 0$, on choisit ε_ν assez petit pour qu'on ait: $\forall \alpha, |\alpha|_1 \leq m$

$$| D^\alpha(\xi_\nu u - v_\nu) | \leq | D^\alpha(\xi_\nu u) - \rho_\varepsilon \ast D^\alpha(\xi_\nu u) | \leq \varepsilon 2^{-\nu}$$

de sorte qu'on a

$$\|\xi_\nu u - v_\nu\| \leq \varepsilon 2^{-\nu - 1}.$$

Posons $v = \sum_{\nu=1}^{+\infty} v_\nu$ (comme distributions), il est clair que $v \in C^\infty(Q)$ (les fonctions v_ν étant de support compris dans \overline{Q} compact). De plus si K est un sous ensemble compact quelconque de Q, il existe $\nu(K)$ tel que $\xi_\nu u$ et v_ν sont identiques dans un voisinage de K pour tout $\nu \geq \nu(K)$. Donc

$$\left(\sum_{|\alpha|_1 \leq m} \int_K | D^\alpha(u - v) |^p dx \right)^{1/p} \leq \sum_{\nu \leq \nu(K)} \left(\sum_{|\alpha|_1 \leq m} \int_K | D^\alpha(\xi_\nu u - v_\nu) |^p dx \right)^{1/p} \leq \sum_{\nu \leq \nu(K)} \|\xi_\nu u - v_\nu\| \leq \varepsilon$$

et on a prouvé que $u - v$ appartient à $H^m_p(Q)$, donc v aussi, et que u est limite dans $H^m_p(Q)$ de suites de fonctions v qui appartiennent à $C^\infty(Q) \cap H^m_p(Q)$. ■

1.5 Théorème de traces

Soit n la normale extérieure à Γ frontière de Q.
Pour tout $u \in D(\overline{Q})$ on note $\gamma_n u = \frac{\partial u}{\partial n}$ |Γ, $(\gamma_0 u = u |$|Γ) où $\frac{\partial}{\partial n}$ est la dérivée de u suivant la normale extérieure à Γ.

14
1.5.1 Théorème

Soit $m \in \mathbb{N}^*$.

i) L'application

$$\gamma_m : u \rightarrow \gamma_m u = (\gamma_0 u, \ldots, \gamma_{m-1} u)$$

définie sur $\mathcal{D}(\overline{Q})$ à valeurs dans $[\mathcal{D}(\Gamma)]^m$ se prolonge par densité en une application linéaire continue surjective de $H^m(Q)$ sur $\prod_{j=0}^{m-1} H^{m-j-\frac{1}{2}}(\Gamma)$.

ii) $\text{Ker } \gamma_m = H_0^m(Q)$.

Démonstration: Voir Lions-Magenes [5]

1.6 Caractérisation des espaces H et V

1.6.1 Définition

Soit V l'espace défini par

$$V = \{ u \in (\mathcal{D}(Q))^n : \text{div } u = 0 \}.$$

La fermeture de V dans $(L^2(Q))^n$ et dans $(H^1(Q))^n$ sont deux espaces fondamentaux dans l'étude des équations de Navier-Stokes; on note ces deux espaces respectivement par H et V.

On munit V du produit scalaire et de la norme Hilbertienne

$$((u, v)) = \sum_{i=1}^{n} (D_i u, D_i v), \quad \|u\| = ((u, u))^{\frac{1}{2}}.$$

V est un espace de Hilbert pour cette norme et H est muni du produit scalaire induit par $(L^2(Q))^n$.

15
1.6.2 Proposition

Si une distribution \(p \) a toutes ses dérivées premières \(D_i p, 1 \leq i \leq n \) dans \(H^{-1}(Q) \), alors \(p \in L^2(Q) \).

1.6.3 Théorème

\[V = \{ u \in (H_0^1(Q))' : \text{div} \ u = 0 \} \]

Démonstration: Posons

\[W = \{ u \in (H_0^1(Q))' : \text{div} \ u = 0 \}. \]

Si \(u \in V \) alors il existe une suite \((u_m)_{m \geq 0} \subset V \) tel que \(\lim_{m \to +\infty} u_m = u \). Comme l’opérateur divergence est continu de \(S'(Q) \) (le dual de l’espace de Schwarz, voir [10]) dans \(S'(Q) \), on a donc que \(\lim_{m \to +\infty} \text{div} \ u_m = \text{div} \ u \). Puisque \(\text{div} \ u_m = 0 \) alors \(\text{div} \ u = 0 \) et donc \(V \subset W \).

Pour prouver que \(V = W \) nous allons montrer que toute forme linéaire continue \(L \) de \(W \) dans \(\mathcal{R} \) est nulle si sa restriction est à \(V \) est nulle. Soit \(v \in W \), on a d’après (1.4)

\[l(v) = \sum_{i=1}^{n} <l_i, v_i>, \ l_i \in H^{-1}(Q) \]

le vecteur \(l = (l_1, \ldots, l_n) \in (H^{-1}(Q))' \) et \(<l, v> = 0 \ \forall v \in V \). D’après le théorème de Rham [12] et la proposition précédente on a:

\[l = \text{grad} \ p, \ p \in L^2(Q) \]

et alors

\[<l_i, v_i> = <D_i p, v_i> = -<p, D_i v_i>, \ \forall v_i \in H^1(Q). \]
Pour \(v \in W \)

\[
L(v) = \sum_{i=1}^{n} < l_i, v > = -(p, \text{ div } v) = 0
\]

et \(L \equiv 0 \) dans \(W \). Donc \(W = V \), sinon il existe \(x \in W \setminus V \) et alors, d'après le théorème de Hahn Banach [3], il existe une forme linéaire \(T \) de \(W \) dans \(\mathbb{R} \) telle que

\[
T(v) = 0 \ \forall v \in V \text{ et } T(x) = 1
\]

ce qui est absurde. ■

1.6.4 Théorème

Soit \(\gamma_j \) la fonction définie dans le théorème de la trace, alors

\[
H = \{ u \in (L^2(Q))^n : u = \text{grad } p, p \in (H^1(Q))^n \},
\]

\[
H^1 = \{ u \in (L^2(Q))^n : \text{div } u = 0, \gamma_j u = 0 \}.
\]

Démonstration: Voir Temam [12].

1.7 L'opérateur \(A \)

Soit \(u \in V \), la forme

\[
v \in V \longmapsto (u, v) \in \mathbb{R}
\]

est linéaire et continue sur \(V \). Donc il existe un élément de \(V' \) qu'on note \(Au \) tel que

\[
<(Au, v) = (u, v) \ \forall v \in V.
\]
1.7.1 Proposition

L'opérateur A ainsi défini est un isomorphisme de V sur V'.

Démonstration: La forme $((u,v))$ étant continue, il existe $M > 0$ tel que

$$ |<Au,v>|_2 \leq M\|u\|\|v\| \quad \forall u,v \in V $$

d'où

$$ \|Au\|_{V'} \leq M\|u\| \quad \forall u \in V $$

ce qui prouve que A est continue. Comme $((u,v))$ est une forme bilinéaire coercive [11]

$$ \exists \alpha > 0, \text{ tel que } \alpha\|u\|^2 \leq <Au,u> \leq \|Au\|_{V'}\|u\| $$
on on a

$$ \alpha\|u\| \leq \|Au\|_{V'}, \quad \forall u \in V. \quad (1.6) $$

Ce qui prouve que A est injective et que A^{-1} est continue de AV sur V. Puisque A est un isomorphisme de V sur AV, nous voyons que AV est complet et donc fermé dans V'. Montrons pour terminer que A est surjective, c'est-à-dire que $AV = V'$. Soit $(AV)^\circ$ le polaire de AV dans V.
Si $u \in (AV)^\circ$ alors $<l,u> = 0 \quad \forall l \in AV$
d'où

$$ <Au,u> = 0 \quad \forall v \in V $$
et donc

$$ <Au,u> = ((u,u)) = 0 $$
ce qui entraîne que $u = 0$ car $((u,v))$ est une forme bilinéaire coercive. Donc le polaire de AV est réduit à $\{0\}$ et il s'en suit que:

$$ AV = \overline{AV} = (AV)^\circ = \{0\}^\circ = V'. \quad \blacksquare $$

18
1.7.2 Définition

On appelle $D(A)$, ou domaine de A dans H, l'ensemble des $u \in V$ tel que $Au \in H$. L'espace $D(A)$ est dense dans V et dans H, puisque d'après la proposition précédente A est un isomorphisme d'espaces normés et que H est dense dans V'. On vérifiera aisément que $D(A)$ est un espace de Hilbert pour le produit scalaire

$$(u, v) + (Au, Av)$$

et que A est un isomorphisme de $D(A)$ dans H.

1.7.3 Les fonctions propres de A

Comme A est un isomorphisme de $D(A)$ dans H alors A^{-1} existe, est linéaire et continue de H dans $D(A)$ [3]. Puisque l'injection de $D(A)$ dans H est compacte on conclut par le théorème de Banach-Steinhaus [3] que A^{-1} est un opérateur compact; il est aussi autoadjoint car si $u, v \in H$ on a

$$< A^{-1}u, v > = < u_1, Av_1 > = (u_1, v_1) = < Au_1, v_1 > = < u, A^{-1}v >,$$

avec $u_1, v_1 \in D(A)$ et $Au_1 = u, Av_1 = v$.

Alors il admet une suite de fonctions propres $w_j, j \in \mathbb{N}$, qui forment une base orthonormée de H,

$$A^{-1}w_j = \alpha_j w_j, \quad w_j \in D(A), \quad \alpha_j \in \mathbb{R}.$$

et donc

$$Aw_j = \lambda_j w_j \quad \text{avec} \quad \lambda_j = \frac{1}{\alpha_j}. \quad (1.7)$$
Or A^{-1} est compact donc, d'après le théorème spectral pour les opérateurs compacts [3], le nombre de valeurs propres de A^{-1} est dénombrable et le seul point d'accumulation possible est zéro, ce qu'on écrit

$$ 0 < \lambda_1 \leq \lambda_2 \leq \lambda_3 \ldots, \quad \lambda_j \xrightarrow[j \to +\infty]{} +\infty. \quad (1.8) $$

1.8 Les inégalités de Sobolev dans \mathbb{R}^3

Dans toute la suite, on ne s'intéressera qu'au cas $n = 3$.

1.8.1 Lemme

Soit $m > \frac{3}{2}$ et $0 < \alpha < \min(m - \frac{3}{2}, 1)$. Alors il existe une constante C telle que

$$ |u(x) - u(y)| \leq C \|u\| \|x - y\|^\alpha $$

pour tout $x, y \in \mathbb{R}^3$ et $u \in H^m_p(\mathbb{R}^3)$.

Démonstration: On voit tout d'abord que $\forall \alpha \in (0, 1)$, il existe $a = a(\alpha) > 0$ tel que

$$ |\exp(ieu) - \exp(iev)|_2 \leq a \|u - v\|^\alpha, \quad \forall u, v \in \mathbb{R}. \quad (1.9) $$

En effet, on a

$$ \sup_{\|u - v\|_2 \geq \varepsilon} \frac{|\exp(ieu) - \exp(iev)|_2}{\|u - v\|^\alpha} \leq \sup_{\|u - v\|_2 \geq 1} \frac{|\exp(ieu) - \exp(iev)|_2}{\varepsilon^\alpha} \leq \frac{\sqrt{2}}{\varepsilon^\alpha} < \infty, \quad \forall \alpha, \forall \varepsilon > 1. $$

Comme

$$ \cos(u) - \cos(v) = (-\sin(\xi^*)) (u - v), \quad \xi^* \in (u, v) $$

20
et

\[\sin(u) - \sin(v) = (\cos(\xi))(u - v), \quad \xi \in (u, v) \]

alors \(|\exp(iu) - \exp(iv)|_2 = |u - v|_2 \sqrt{\sin^2(\xi^*) + \cos^2(\xi)} \leq \sqrt{2} |u - v|_2 \) pour tout \(u, v \in \mathbb{R} \) d'où

\[
\frac{|\exp(iu) - \exp(iv)|_2}{|u - v|_2^\alpha} \leq \sqrt{2} |u - v|_2^{(1-\alpha)} \\
\leq \sqrt{2} \varepsilon^{(1-\alpha)} \text{ si } |u - v|_2^\alpha \leq \varepsilon.
\]

Ainsi \(\sup_{u,v \in \mathbb{R}} \frac{|\exp(iu) - \exp(iv)|_2}{|u - v|_2^\alpha} \leq \frac{\sqrt{2}}{\varepsilon^\alpha} + \sqrt{2} \varepsilon^{(1-\alpha)} < \infty \) pour tout \(\varepsilon > 0 \). D'autre part on a pour tout \(x, y \in \mathbb{R}^3 \)

\[
|u(x) - u(y)|_2 = \sum_{k \in \mathbb{Z}^3} c_k (\exp(2\pi k x) - \exp(2\pi k y)) |_2 \\
\leq \sum_{k \in \mathbb{Z}^3} |c_k| |\exp(2\pi k x) - \exp(2\pi k y)|_2.
\]

D'après (1.9) on aura

\[
|u(x) - u(y)|_2 \leq a \sum_{k \in \mathbb{Z}^3} |c_k| |x - y|_2^\alpha 2\pi k |x|_2^\alpha, \quad \alpha \in (0, 1)
\]

\[
\leq a_1 |x - y|_2^\alpha \sum_{k \in \mathbb{Z}^3} |c_k| |k|_2^\alpha
\]

\[
\leq a_1 |x - y|_2^\alpha \left(\sum_{k \in \mathbb{Z}^3} (1 + |k|_2^m)^2 |c_k|_2^2 \right)^{\frac{1}{2}} \left(\sum_{k \in \mathbb{Z}^3} \frac{|k|_2^{2\alpha}}{(1 + |k|_2^m)^2} \right)^{\frac{1}{2}}
\]

\[
\leq 2a_1 |x - y|_2^\alpha \left(\sum_{k \in \mathbb{Z}^3} (1 + |k|_2^m)^2 |c_k|_2^2 \right)^{\frac{1}{2}} \left(\sum_{k \in \mathbb{Z}^3} \frac{|k|_2^{2\alpha}}{(1 + |k|_2^m)^2} \right)^{\frac{1}{2}}
\]

\[
\leq 2a_1 \|u\|_{H^m(\mathbb{R}^3)} \left(\sum_{k \in \mathbb{Z}^3} \frac{|k|_2^{2\alpha}}{(1 + |k|_2^m)^2} \right)^{\frac{1}{2}},
\]

21
et donc il suffit de montrer que \(\sum_{k \in \mathbb{Z}^3} \frac{|k|_2^{2\alpha}}{(1 + |k|_2^m)^2} < \infty \) et la démonstration du lemme sera achevée.

Or

\[
\sum_{k \in \mathbb{Z}^3} \frac{|k|_2^{2\alpha}}{(1 + |k|_2^m)^2} = \sum_{k \in \mathbb{Z}^3 \setminus \{0\}} \frac{|k|_2^{2\alpha}}{(1 + |k|_2^m)^2} \\
\leq \sum_{k \in \mathbb{Z}^3 \setminus \{0\}} |k|_2^{2(\alpha - m)} \\
\leq \sum_{k_1, k_2, k_3 \in \mathbb{Z}^3 \setminus \{0\}} \frac{1}{(k_1^2 + k_2^2 + k_3^2)(m-\alpha)} + \int_1^{+\infty} \int_1^{+\infty} \int_1^{+\infty} \frac{dx
dy
dz}{(x^2 + y^2 + z^2)^{(m-\alpha)}} \\
\leq 3 \sum_{k_1, k_2 \in \mathbb{Z}^3 \setminus \{0\}} \frac{1}{(k_1^2 + k_2^2)^{(m-\alpha)}} + \int_1^{+\infty} \int_0^{2\pi} \int_0^{\pi} r^{(2-2(m-\alpha))} \sin(\phi) \, d\phi \, d\theta \, dr \\
\leq 3 \left[\sum_{k \in \mathbb{Z}^3 \setminus \{0\}} \frac{1}{|k|_2^{(m-\alpha)}} + \int_1^{+\infty} \int_1^{+\infty} \frac{dx
dy}{(x^2 + y^2)^{(m-\alpha)}} \right] + 4\pi \int_1^{+\infty} r^{(2-2(m-\alpha))} \, dr \\
\leq 3 \left[\sum_{k \in \mathbb{Z}^3 \setminus \{0\}} \frac{1}{|k|_2^{(m-\alpha)}} + \int_1^{+\infty} \int_0^{2\pi} \frac{d\phi \, d\theta}{r^{(2(m-\alpha)-1)}} \right] + 4\pi \int_1^{+\infty} r^{(2-2(m-\alpha))} \, dr < +\infty
\]

car \(m - \alpha > \frac{3}{2} \). \quad \square

1.8.2 Définition

Soient \(X \) et \(Y \) deux espaces de Banach. On dit que \(X \) est une injection compacte dans \(Y \) si la boule unité dans \(X \) est précompacte dans \(Y \); ou si chaque suite bornée dans \(X \) admet une sous-suite qui converge dans \(Y \).

Notons par \(C_b(\overline{Q}) \) l'ensemble des fonctions continues bornées dans \(\overline{Q} \).
1.8.3 Théorème

Pour $m \geq \frac{3}{2}$ on a une injection compacte de $H^m_p(Q)$ dans $C_b(Q)$ et il existe $C > 0$ tel que $\sup_{x \in Q} |u(x)| \leq C \|u\|$, $\forall u \in H^m_p(Q)$.

Démonstration: Soit $B = \{u \in H^m_p(Q) : \|u\| \leq 1\}$.

D'après le lemme précédent on a que B est équicontinue; d'autre part $\forall x \in Q$, $B(x) = \{u(x) \in \mathbb{R}^n : |u(x)| \leq 1\}$ est précompacte dans \mathbb{R}^n. On conclut d'après le théorème d'Ascoli que B est précompacte dans $C_b(Q, \mathbb{R}^n)$, d'où le résultat.

1.8.4 Théorème

Supposons que $2 < \frac{n}{m}$, m entier naturel. Alors $H^m_p(Q) \subset L^q(Q)$, avec $\frac{1}{q} = \frac{1}{2} - \frac{m}{n}$, et il existe une constante $C > 0$ telle que $\|u\|_{L^q(Q)} \leq C \|u\|$, $\forall u \in H^m_p(Q)$.

Démonstration: Considérons le cas $m = 1$. En combinant le fait que $D(\mathbb{R}^n)$ est dense dans $H^1(\mathbb{R}^n)$ et que si $T = \sum_{0 \leq |\alpha| \leq m} (-1)^{|\alpha|} D^\alpha T^{\alpha}$, avec $v \in L^2_N$, on voit que $H^1(\mathbb{R}^n) \subset L^q(\mathbb{R}^n)$ [4] et on a, pour un certain $C_1 > 0$, $\|v\|_{L^q(\mathbb{R}^n)} \leq C_1 \|v\|_{H^1(\mathbb{R}^n)}$, $\forall v \in H^1(\mathbb{R}^n)$.

On utilise alors ε_q l'extension périodique de $H^1(Q)$ en $H^1(\mathbb{R}^n)$ et on obtient, pour tout $u \in H^1(Q)$ et pour $C_2 > 0$,

$$\|\varepsilon_q u\|_{H^1(\mathbb{R}^n)} \leq C_2 \|u\|_{H^1(Q)}$$

et donc

$$\|u\|_{L^q(Q)} \leq \|\varepsilon_q u\|_{L^q(\mathbb{R}^n)} \leq C_1 \|\varepsilon_q u\|_{H^1(\mathbb{R}^n)}$$

d'où

$$\|u\|_{L^q(Q)} \leq C_1 C_2 \|u\|_{H^1(Q)}$$

(1.10)
Soit m un entier supérieur à 1.
$u \in H^m_p(Q)$ si et seulement si $D^\alpha u \in H^1(Q)$ pour tout α satisfaisant à $|\alpha| \leq m - 1$.
Appliquant (1.10) à $D^\alpha u, |\alpha| \leq m - 1$ on obtient

$$\|u\|_{H^{m-1},\epsilon(Q)} \leq C_3 \|u\|_{H^m_p(Q)}$$

on itère cette inégalité m fois d'où le résultat. ■

Remarque: Le théorème précédent reste vrai pour m réel. (Voir [8]).

1.9 La forme trilinéaire b et l'opérateur B

Soient $u, v, w \in (L^1(Q))^n$. Posons

$$b(u, v, w) = \sum_{i,j=1}^n \int_Q u_i D_i v_j w_j dx.$$

1.9.1 Lemme: Dans le cas $n = 3$.

La forme b est définie, trilinéaire et continue sur $(H^{m_1}(Q))^3 \times (H^{m_2+1}(Q))^3 \times (H^{m_3}(Q))^3$ où m_i sont des réels positifs tels que

$$m_1 + m_2 + m_3 \geq \frac{3}{2} \text{ si } m_i \neq \frac{3}{2} \forall i = 1, 2, 3. \quad (1.11)$$

$$m_1 + m_2 + m_3 > \frac{3}{2} \text{ si } m_i = \frac{3}{2} \text{ pour l'un au moins des } i. \quad (1.12)$$

Démonstration: Si $m_i < \frac{3}{2}$ pour $i = 1, 2, 3$ alors d'après la remarque précédente on a que

$$H^m_i(Q) \subset L^{q_i}(Q) \text{ où } \frac{1}{q_i} = \frac{1}{2} - \frac{m_i}{3}$$
Or d'après (1.11) $\frac{1}{q_1} + \frac{1}{q_2} + \frac{1}{q_3} \leq 1$, donc le produit $u_i D_i v_j w_j$ est intégrable et $b(u, v, w)$ est bien définie. Il est facile de vérifier que b est trilinéaire. Par Hölder on a

$$| b(u, v, w) | \leq | u_i |_{L^{q_i}} | D_i v_j |_{L^{q_3}} | w_i |_{L^{q_3}}$$

(1.13)

$$\leq c_1 \| u \|_{(H^{m_1}(Q))^3} \| v \|_{(H^{m_2+1}(Q))^3} \| w \|_{(H^{m_3}(Q))^3}$$

à cause de l'injection continue de $H^{m_i}(Q)$ dans $L^{q_i}(Q)$. Si un ou plus des m_i est plus grand que $\frac{3}{2}$ on procède de la même manière, en remplaçant le q_i correspondant par ∞ et les autres par 2. Si l'un des m_i est égal à $\frac{3}{2}$, on le remplace par $m_i' \leq m_i$, $m_i - m_i'$ suffisamment petit pour que l'inégalité (1.13) reste valable.

1.9.2 Propriétés

1) $b(u, v, w) = -b(u, w, v)$ $\forall u, v, w \in V$.

2) $b(u, v, v) = 0$ $\forall u, v \in V$.

Démonstration: 1)

$$b(u, v, w) = \sum_{i,j=1}^{n} \int_Q u_i D_i v_j w_j = - \sum_{i,j=1}^{n} \int_Q v_j D_i (u_i w_j)$$

$$= -b(u, v, w) - \sum_{i,j=1}^{n} \int_Q v_j w_j D_i u_i = -b(u, v, w)$$

car

$$\sum_{i,j=1}^{n} \int_Q v_j w_j D_i u_i = \langle \sum_{j=1}^{n} v_j w_j, \sum_{i=1}^{n} D_i u_i \rangle$$

$$= \langle \sum_{j=1}^{n} v_j w_j, \text{div } u \rangle = 0 \text{ car } u \in V.$$

2) Il suffit de prendre $w = v$ dans 1).
1.9.3 L'opérateur B

Pour tout $u, v, w \in V$ on définit un opérateur B par

$$< B(u, v), w > = b(u, v, w); \quad Bu = B(u, u).$$

On a que $B(u, v) \in V'$ et $Bu \in V'$. Puisque b est trilinéaire continu sur V, B est un opérateur bilinéaire continu de $V \times V$ dans V'.
CHAPITRE 2

Existence et unicité pour les équations de Navier-Stokes dans \mathbb{R}^3

Note: On utilisera dans ce chapitre les mêmes notations qu’au chapitre précédent, l’expression "const" représente une constante spécifique mais pas toujours la même.

Problème 2.1: Pour f et u_0 donnés tels que:

\[f \in L^2(0, T; V') \]
\[u_0 \in H \]

on veut trouver u satisfaisant à:

\[u \in L^2(0, T; V), \]
\[\frac{d}{dt}(u, v) + w((u, v)) + b(u, u, v) = < f, v >, \forall v \in V, w \text{ const}, \]
\[u(0) = u_0. \]
2.1 Lemme

Soit \(u \in L^2(0, T, V) \) alors la fonction \(Bu \) définie par :

\[
< Bu(t), v > = b(u(t), u(t), v), \ \forall v \in V, t \in [0, T],
\]

appartient à \(L^1(0, T, V') \).

Démonstration: Pour tout \(t, Bu(t) \) est un élément de \(V' \), et puisque \(b \) est trilinéaire continue sur \(V \) on a donc

\[
\|Bu\|_{V'} \leq c\|v\|^2_{H^1}, \ \forall v \in V, c > 0
\]

et donc

\[
\int_0^T \|Bu(t)\|_{V'}dt \leq c \int_0^T \|u\|^2_{H^1} < \infty. \]

Maintenant si \(u \) satisfait (2.3)-(2.4), et comme \(H \equiv H' \), (2.4) peut s'écrire:

\[
\frac{d}{dt} < u, v > = < f - wAu - Bu, v >, \ \forall v \in V.
\]

Puisque \(Au \) appartient à \(L^2(0, T, V') \) alors \(f - wAu - Bu \) appartient à \(L^1(0, T, V') \). Le lemme 1.1 implique donc que:

\[
\left\{ \begin{array}{l}
 u' \in L^1(0, T, V') \\
 u' = f - wAu - Bu,
\end{array} \right.
\]

et que \(u \) est égal partout à une fonction continue de \([0, T] \) à valeurs dans \(V' \).

Une autre formulation du problème 2.1 est donc la suivante:

Problème 2.2: Soient \(f \) et \(u_0 \) donnés vérifiant (2.1)-(2.2), cherchons \(u \) qui satisfait à:

\[
u \in L^2(0, T, V), \quad u' \in L^1(0, T, V'),
\]

(2.7)

\[
u' + wAu + Bu = f \quad \text{dans} \ (0, T)
\]

(2.8)

\[
u(0) = u_0.
\]

(2.9)

On a montré que toute solution du problème 2.1 est solution du problème 2.2, la réci-
proque est aussi évidente et donc les deux problèmes sont équivalents.
2.2 Lemme

Si \(u_\mu \) converge vers \(u \) dans \(L^2(0,T;V) \) faiblement et dans \(L^2(0,T;H) \) fortement, alors pour toute fonction vectorielle \(w \) dont les composantes sont dans \(C^1(\overline{Q}) \) on a

\[
\int_0^T b(u_\mu(t), u_\mu(t), w(t))dt \longrightarrow \int_0^T b(u(t), u(t), w(t))dt.
\] (2.10)

Démonstration: On va montrer que si \(u_\mu \) converge fortement dans \(L^2(Q) \) vers \(u \) et que \(v_\mu \) converge faiblement dans \(L^2(Q) \) vers \(u \) alors pour tout \(\phi \in \mathcal{D}(\overline{Q}) \)

\[
u_{\mu} \cdot v_{\mu} \overset{faible}{\underset{\mu \to +\infty}{\longrightarrow}} \nu v.
\] (2.11)

En effet, pour tout \(\phi \in \mathcal{D}(\overline{Q}) \)

\[
| (u_\mu \cdot v_\mu, \phi) - (u \cdot v, \phi) |_2 \leq | (u_\mu - u, v_\mu \cdot \phi) |_2 + | (v_\mu - v, u \cdot \phi) |_2
\]

\[
\leq | u_\mu - u || v_\mu \cdot \phi |_2 + | (v_\mu - v, u \cdot \phi) |_2.
\]

Comme \(\{v_\mu\} \) converge faiblement dans \(L^2(0,T,V) \) elle est donc bornée, et donc \(\{v_\mu \cdot \phi\} \)

l'est aussi, ce qui nous donne avec la convergence forte de \(u_\mu \) que

\[
| u_\mu - u || v_\mu \cdot \phi |_2 \overset{\mu \to +\infty}{\longrightarrow} 0.
\]

De même, la convergence faible de \(v_\mu \) nous donne que

\[
| (u, v_\mu) - (u, v) |_2 \overset{\mu \to +\infty}{\longrightarrow} 0,
\]

et (2.11) est démontré. Comme nous avons

\[
\int_0^T b(u_\mu(t), u_\mu(t), w(t))dt = -\int_0^T b(u_\mu(t), w(t), u_\mu(t))dt
\]

\[
= -\sum_{i,j=1}^n \int_Q (u_\mu)_i D_i (w_j)(u_\mu)_j dx dt.
\]
Et d'après (2.11), pour chaque t,

$$
\int_Q (u_\mu)_i(D_i w_j)(u_\mu)_j dx \xrightarrow{\mu \to +\infty} \int_Q (u)_i(D_i w_j)(u)_j dx
$$

donc, par convergence dominée,

$$
\lim_{\mu \to +\infty} \int_0^T b(u_\mu(t), u_\mu(t), w(t)) dt = - \sum_{i,j=1}^n \int_0^T \int_Q (u)_i(D_i w_j)(u)_j dx dt
$$

$$
= - \int_0^T b(u(t), w(t), u(t)) dt
$$

$$
= \int_0^T b(u(t), u(t), w(t)) dt.
$$

\section{2.3 Lemme}

Pour tout $0 \leq \gamma \leq \frac{1}{4}$, il existe une constante $c=c(\gamma)$ qui dépend de γ telle que:

$$
x^{2\gamma} \leq c(\gamma) \frac{1 + x}{1 + x^{(1-2\gamma)}} \quad \forall x \geq 0.
$$

Démonstration:

$$
\frac{x^{2\gamma}(1 + x^{(1-2\gamma)})}{1 + x} = \frac{x^{2\gamma} + x}{1 + x} \xrightarrow{x \to +\infty} 1
$$

entraîne $\forall \varepsilon > 0, \exists A > 1$, si $x > A$ alors $\frac{x^{2\gamma}(1 + x^{(1-2\gamma)})}{1 + x} < 2$ ($\varepsilon = 1$).

D’autre part si $x < A$ alors $\frac{x^{2\gamma} + x}{1 + x} < x^{2\gamma} + x < A^{2\gamma} + A$ et donc $c(\gamma) = (A^{2\gamma} + A)$.

\section{2.4 Définition}

Soient X_0 et X_1 deux espaces de Hilbert. Pour $\gamma > 0$ on définit l’espace:

$$
\mathcal{H}^\gamma(\mathbb{R}, X_0, X_1) = \{ v \in L^2(\mathbb{R}, X_0) : D^\gamma v \in L^2(\mathbb{R}, X_1) \}.
$$
où $D_t^\gamma v$ est la dérivée fractionnaire d'ordre γ en t de v définie comme l'inverse de la transformée de Fourier de $(2i\pi \tau)^\gamma \hat{v}(\tau)$. C'est un espace de Hilbert pour la norme

$$\|v\|_{\mathcal{H}_k^\gamma(\mathbb{R},X_0,X_1)} = \left\{ \|v\|^2_{L^2(\mathbb{R},X_0)} + \|\tau |^\gamma \hat{v}|^2_{L^2(\mathbb{R},X_1)} \right\}^{\frac{1}{2}}.$$

On le voit aisément en considérant le théorème de Plancherel. Pour tout compact $K \subset \mathbb{R}$, on définit le sous espace \mathcal{H}_K^γ de \mathcal{H}^γ par:

$$\mathcal{H}_K^\gamma(\mathbb{R},X_0,X_1) = \{ u \in \mathcal{H}^\gamma(\mathbb{R},X_0,X_1) : \text{support } u \subset K \}.$$

2.5 Théorème de compacité

Soient X_0, X et X_1 des espaces de Hilbert tels que $X_0 \subset X \subset X_1$ sont des injections continues et l'injection de X_0 dans X est compacte. Alors pour tout ensemble borné K et pour tout $\gamma > 0$, l'injection de $\mathcal{H}_K^\gamma(\mathbb{R};X_0,X_1)$ dans $L^2(\mathbb{R},X)$ est compacte.

Démonstration: Voir [12].

2.6 Théorème d'existence

Soient f et u_0 qui satisfont à (2.1)-(2.2). Alors il existe au moins une fonction u qui satisfait à (2.7)-(2.9). De plus $u \in L^\infty(0,T; H)$ et u est faiblement continue de $[0,T]$ dans H.

Démonstration: Puisque V est séparable et \mathcal{V} est dense dans V, il existe une suite w_1, \ldots, w_m, \ldots d'éléments de \mathcal{V} formant un ensemble libre et total dans V (on dit aussi que w_1, \ldots, w_m, \ldots forment un système de générateurs complet). Pour chaque m on définit une solution approximative u_m de (2.4) comme suit:

$$u_m = \sum_{i=1}^{m} g_i(t) w_i \quad (2.12)$$
et

\[(u'_m, w_j) + w((u_m(t), w_j)) + b(u_m(t), u_m(t), w_j) = < f(t), w_j >, \]

\[t \in [0, T], j = 1, \ldots, m, \quad u_m(0) = u_{0m}, \]

(2.13)

(2.14)

où \(u_{0m}\) est la projection orthogonale dans \(H\) de \(u_0\) sur l'espace engendré par \(w_1, \ldots, w_m\). L'équation (2.13) possède effectivement une solution \(u_m\) pour chaque \(m\): c'est une équation de Riccati généralisée (matricielle) en \(g\) (voir [17]). Les fonctions \(g_{jm}, 1 \leq i \leq m\) sont les coefficients de Fourier de \(u_m\) par rapport à \(\{w_1, \ldots, w_m\}\). Multiplions (2.13) par \(g_{jm}\) et additionnons ces équations pour \(j = 1, \ldots, m\). On obtient donc:

\[(u'_m(t), u_m(t)) + w\|u_m\|_{H^1}^2 = < f(t), u_m(t) >, \]

(2.15)

d'où

\[\frac{d}{dt} |u_m(t)|^2 + 2w\|u_m\|_{H^1}^2 = 2 < f(t), u_m(t) >, \]

\[\leq 2\|f(t)\|_{V'}\|u_m(t)\|_{H^1}, \]

\[\leq w\|u_m\|_{H^1}^2 + \frac{1}{w}\|f(t)\|_{V'}^2, \]

pour tout \(w > 0\), d'où il vient

\[\frac{d}{dt} |u_m(t)|^2 + w\|u_m\|_{H^1}^2 \leq \frac{1}{w}\|f(t)\|_{V'}^2. \]

(2.16)

Intégrons (2.16) de 0 à \(s\); on obtient alors:

\[|u_m(s)|^2 \leq \frac{1}{w}\int_0^s \|f(t)\|_{V'}^2 dt - w\int_0^s \|u_m(t)\|_{H^1}^2 dt + |u_{0m}|^2 \]

\[\leq |u_{0m}|^2 + \frac{1}{w}\int_0^s \|f(t)\|_{V'}^2 dt \]

\[\leq |u_0|^2 + \frac{1}{w}\int_0^T \|f(t)\|_{V'}^2 dt. \]
Alors

\[\sup_{s \in [0,T]} |u_m(s)|^2 \leq |u_0|^2 + \frac{1}{w} \int_0^T \|f(t)\|_{V}^2 dt \]

(2.17)

donc

la suite \(u_m\) reste dans un ensemble borné de \(L^\infty(0, T, H)\).

(2.18)

Intégrons maintenant (2.16) de 0 à \(T\) on obtient alors:

\[|u_m(T)|^2 + w \int_0^T \|u_m(t)\|_{H^1}^2 dt \leq |u_0|^2 + \frac{1}{w} \int_0^T \|f(t)\|_{V}^2 dt \]

donc

\[\int_0^T \|u_m(t)\|_{H^1}^2 dt \leq \frac{1}{w} |u_0|^2 + \frac{1}{w^2} \int_0^T \|f(t)\|_{V}^2 dt \]

d'où

la suite \(u_m\) reste dans un ensemble borné de \(L^2(0, T, V)\).

(2.19)

Soit \(\hat{u}_m\) la fonction de \(\mathbb{R}\) dans \(V\) qui est égale à \(u_m\) dans \([0,T]\) et à 0 ailleurs. Notons par \(\hat{u}_m\) la transformée de Fourier de \(\hat{u}_m\).

Montrons que \(\hat{u}_m\) appartient à un ensemble borné de \(H^\gamma(\mathbb{R}, V, H)\) ce qui nous permettra d’appliquer le théorème de compacité. Comme \(H^\gamma(\mathbb{R}, V, H)\) est un espace de Hilbert pour la norme \(\|v\|_{H^\gamma(\mathbb{R}, V, H)} = \left\{ \|v\|^2_{L^2(\mathbb{R}; V)} + \|\tau \hat{v}\|^2_{L^2(\mathbb{R}; H)} \right\}^{\frac{1}{2}}\), il suffit donc de montrer que

\[\int_{-\infty}^{+\infty} |\tau|^{2\gamma} |\hat{u}_m|^2 dt \leq \text{Const, pour tout } \gamma > 0. \]

(2.20)

Avec (2.19) cela implique que

la suite \(\hat{u}_m\) reste dans un ensemble borné de \(H^\gamma(\mathbb{R}, V, H)\).

(2.21)

Pour prouver (2.21) on observe que \(\hat{u}_m\) a deux points de discontinuité 0 et \(T\) donc

\[\frac{d}{dt} \hat{u}_m(t) = u_m'(t) + u_0 \delta_0 - u_m(T) \delta_T, \]
et par suite (2.13) peut s'écrire

\[\frac{d}{dt} (\hat{u}_m, w_j) = \langle \hat{f}_m, w_j \rangle + (u_{0m}, w_j) \delta_0 - (u_m(T), w_j) \delta_T, \quad j = 1, \ldots, m \]

(2.22)

où \(\delta_0, \delta_T \) sont respectivement les distributions de Dirac en 0 et \(T \), \(f_m = f - wA_{um} - Bu_m \) et \(\hat{f}_m = f_m \) dans \([0, T]\) et 0 ailleurs. La transformée de Fourier de (2.22) nous donne

\[2i\pi \tau (\hat{u}_m, w_j) = \langle \hat{f}_m, w_j \rangle + (u_{0m}, w_j) - (u_m(T), w_j) \exp(-2i\pi \tau T), \]

(2.23)

où \(\hat{u}_m \) et \(\hat{f}_m \) sont respectivement les transformées de Fourier de \(u_m \) et \(f_m \). Multiplions (2.23) par \(\hat{g}_{jm}(\tau) \) (transformée de Fourier de \(\hat{g}_{jm} \)) et additionnons les équations pour \(j = 1, \ldots, m \); on aura

\[2i\pi \tau | \hat{u}_m(\tau) |^2 = \langle \hat{f}_m(\tau), \hat{u}_m \rangle + (u_{0m}, \hat{u}_m(\tau)) - (u_m(T), \hat{u}_m(\tau)) \exp(-2i\pi \tau T). \]

(2.24)

A cause de l'inégalité (2.6) et le fait que l'opérateur \(A \) est continu de \(V \) dans \(V' \) on a

\[\int_0^T \| f_m(t) \|_{V'} \leq \int_0^T (\| f(t) \|_V + w \| u_m(t) \|_{H^1} + c \| u_m(t) \|_{H^1}^2) dt; \]

(2.25)

or \(V \) est dense dans \(L^2 \), donc \(\| \varphi \|_{L^2} \leq \| \varphi \|_V \forall \varphi \in V \) d'où \(\| \varphi \|_{V'} \leq \| \varphi \|_{L^2} \) et donc avec (2.18) et (2.19), (2.25) nous permet d'affirmer que \(f_m \in L^1(0, T, V') \); ce qui implique que

\[\sup_{\tau \in \mathbb{R}} \| \hat{f}_m(\tau) \|_{V'} \leq \text{Const}, \forall m. \]

Par (2.17) on obtient que:

\[| u_m(0) | \leq \text{const}, \quad | u_m(T) | \leq \text{const}, \]

et on déduit de (2.24) à la fois

\[| \tau | | \hat{u}_m(\tau) |^2 \leq c_2 \| \hat{u}_m(\tau) \|_{H^1} + c_3 \| \hat{u}_m(\tau) | \]

et, comme on a une injection continue de \(H^1 \) dans \(L^2 \),

\[| \tau | | \hat{u}_m(\tau) |^2 \leq c_4 \| \hat{u}_m(\tau) \|_{H^1}. \]

(2.26)
D'après le lemme précédent on a pour γ fixé, $0 < \gamma < \frac{1}{4}$, que

$$| \tau |^{2\gamma} \leq c_5 \frac{1 + |\tau|}{1 + |\tau|^{(1-2\gamma)}}, \forall \tau \in \mathbb{R}.$$

Donc on aura que

$$\int_{-\infty}^{+\infty} | \tau |^{2\gamma} | \hat{u}_m(\tau) |^2 d\tau \leq c_5(\gamma) \int_{-\infty}^{+\infty} \frac{1 + |\tau|}{1 + |\tau|^{(1-2\gamma)}} | \hat{u}_m(\tau) |^2 d\tau$$

et par (2.26) et le fait que l'injection de H^1 dans L^2 est continue, on aura

$$\int_{-\infty}^{+\infty} | \tau |^{2\gamma} | \hat{u}_m(\tau) |^2 d\tau \leq c_5 \int_{-\infty}^{+\infty} \frac{\| \hat{u}_m(\tau) \|_{H^1}}{1 + |\tau|^{(1-2\gamma)}} d\tau + c_7 \int_{-\infty}^{+\infty} \| \hat{u}_m(\tau) \|_{H^1}^2 d\tau.$$

Par l'inégalité de Schwarz

$$\int_{-\infty}^{+\infty} \frac{\| \hat{u}_m(\tau) \|_{H^1}}{1 + |\tau|^{(1-2\gamma)}} d\tau \leq \left(\int_{-\infty}^{+\infty} \frac{d\tau}{(1 + |\tau|^{(1-2\gamma)})^2} \right)^{\frac{1}{2}} \left(\int_0^T \| u_m(t) \|_{H^1}^2 dt \right)^{\frac{1}{2}} < \text{const}$$

à cause de (2.19) et $0 < \gamma < \frac{1}{4}$. D'autre part par l'égalité de Parseval:

$$\int_{-\infty}^{+\infty} \| \hat{u}_m(\tau) \|_{H^1}^2 d\tau = \int_0^T \| u_m(t) \|_{H^1}^2 dt < \text{const}.$$

Ainsi la démonstration de (2.20) et (2.21) est achevée.

(2.18) et (2.19) nous permettent d'affirmer qu'il existe un élément $u \in L^2(0, T, V) \cap L^\infty(0, T, H)$ et une sous-suite $u_{m'}$ telle que:

$$u_{m'} \xrightarrow{m' \to +\infty} u \quad \text{faiblement dans } L^2(0, T, V),$$

et $^*\text{-faiblement dans } L^\infty(0, T, H)$ (voir [3])

(2.27)

D'autre part (2.19) nous donne que $\| u_{m'} \|_{H^1(R, V, H)}$ est bornée et donc, par le théorème de compacité, il existe une sous-suite $u_{m''}$ de $u_{m'}$ telle que

$$u_{m''} \xrightarrow{m'' \to +\infty} u \quad \text{dans } L^2(0, T, H) \quad \text{fortement.}$$

(2.28)
(2.28) et (2.27) nous permettent de passer à la limite.
En effet, soit ψ une fonction continûment différentiable sur $[0,T]$ avec $\psi(T) = 0$.
On multiplie (2.13) par $\psi(t)$ et on intègre le premier terme par partie, ce qui nous donne:

$$- \int_0^T (u_m^\ast(t), \psi(t)w_j)dt + w \int_0^T ((u_m^\ast(t), w_j\psi(t)))dt + \int_0^T b(u_m^\ast(t), u_m^\ast(t), w_j\psi(t))dt$$

$$= (u_{0m^\ast}, w_j)\psi(0) + \int_0^T < f(t), w_j\psi(t) > dt.$$

Par (2.27) on a que:

$$\int_0^T (u_m^\ast(t), \psi(t)w_j)dt \xrightarrow{m^\ast \to +\infty} \int_0^T (u(t), \psi(t)w_j)dt$$

et

$$\int_0^T ((u_m^\ast(t), w_j\psi(t)))dt \xrightarrow{m^\ast \to +\infty} \int_0^T ((u(t), w_j\psi(t)))dt$$

D’autre part (2.28) nous donne que:

$$u_{0m^\ast} \xrightarrow{m^\ast \to +\infty} u_0$$

fortement dans $L^2(0, T, H)$.

Le lemme 2.2 nous donne que:

$$\int_0^T b(u_m^\ast(t), u_m^\ast(t), w_j\psi(t))dt \xrightarrow{m^\ast \to +\infty} \int_0^T b(u(t), u(t), w_j\psi(t))dt$$

Donc par passage à la limite (2.13) nous donne:

$$- \int_0^T (u(t), z\psi(t))dt + w \int_0^T ((u(t), z\psi(t)))dt + \int_0^T b(u(t), u(t), z\psi(t))dt$$

$$= (u_0, z)\psi(0) + \int_0^T < f(t), z\psi(t) > dt,$$

(2.29)

pour tout $z = w_1, w_2, \ldots$; par linéarité cette équation reste vraie pour z toute combinaison
linéaire finie des w_j, et par continuité pour tout $z \in V$.

En particulier pour $\psi = \phi \in \mathcal{D}((0,T))$, on voit que u satisfait (2.4) dans le sens des
distributions. Enfin il reste à vérifier la condition initiale. Pour cela multiplions (2.4) par \(\psi \) et intégrons. Après intégration du premier terme par partie on obtient:

\[
- \int_0^T (u(t), z\psi(t))dt + w \int_0^T ((u(t), z\psi(t)))dt + \int_0^T b(u(t), u(t), z\psi(t))dt
= (u(0), z)\psi(0) + \int_0^T < f(t), z\psi(t) > dt.
\]

Par comparaison avec (2.29) on aura:

\[(u(0) - u_0, z)\psi(0) = 0.\]

On peut choisir \(\psi \) tel que \(\psi(0) = 1 \); alors

\[(u(0) - u_0, z) = 0 \quad \forall z \in V,
\]

et ainsi on a démontré (2.5). □

2.7 Lemme

Si \(n = 2 \) alors on a:

\[
\|v\|_{L^4(Q)} \leq 2^{\frac{3}{4}} \|v\|_{L^2(Q)} \|\text{grad } v\|_{L^2(Q)}, \quad \forall v \in H^1(Q).
\]

(2.31)

Démonstration: Comme \(D(Q) \) est dense dans \(H^1(Q) \) il suffit de montrer le lemme pour \(v \in D(Q) \). Pour un tel \(v \) et en posant \(x = (x_1, x_2) \), on a

\[
v^2(x) = 2 \int_{-\infty}^{\xi_1} v(\xi_1, x_2) D_1 v(\xi_1, x_2) d\xi_1,
\]

et donc \(v^2(x) \leq 2v_1(x_2) \), avec

\[
v_1(x_2) = \int_{-\infty}^{+\infty} | v(\xi_1, x_2) | D_1 v(\xi_1, x_2) d\xi_1.
\]

37
Donc

\[\int_{-\infty}^{+\infty} v_1(x_2) \leq \|v\|_{L^2(\mathbb{R}^2)} \|D_1 v\|_{L^2(\mathbb{R}^2)} \]

De même \(v^2(x) \leq 2v_2(x_1) \), avec

\[v_2(x_1) = \int_{-\infty}^{+\infty} |v(x_1, \xi_2)| \|D_2 v(x_1, \xi_2)\| d\xi_1 \]

donc

\[\int_{-\infty}^{+\infty} v_2(x_1) \leq \|v\|_{L^2(\mathbb{R}^2)} \|D_2 v\|_{L^2(\mathbb{R}^2)} \]

et donc

\[
\int_{\mathbb{R}^2} v^4(x) dx \leq 4 \int_{\mathbb{R}^2} v_1(x_2) v_2(x_1) dx \\
\leq 4 \left(\int_{-\infty}^{+\infty} v_1(x_2) dx_2 \right) \left(\int_{-\infty}^{+\infty} v_2(x_1) dx_1 \right) \\
\leq 4 \|v\|_{L^2(\mathbb{R}^2)}^2 \|D_1 v\|_{L^2(\mathbb{R}^2)} \|D_2 v\|_{L^2(\mathbb{R}^2)} \\
\leq 2 \|v\|_{L^2(\mathbb{R}^2)} \|\text{grad} \ v\|_{L^2(\mathbb{R}^2)}^2. \quad \blacksquare
\]

2.8 Lemme

Si \(n = 3 \) alors:

\[
\|v\|_{L^4(Q)} \leq 2^{\frac{1}{2}} \|v\|_{L^2(Q)} \|\text{grad} \ v\|_{L^2(Q)}, \quad \forall v \in H^1(Q). \quad (2.32)
\]

Démonstration: Il suffit de prouver le lemme pour \(v \in D(Q) \). Pour un tel \(v \), et en notant cette fois \(x = (x_1, x_2, x_3) \), on a par application de (2.31):

\[
\int_{\mathbb{R}^3} v^4(x) dx \leq 2 \int_{-\infty}^{+\infty} \left(\int_{\mathbb{R}^2} v^2 dx_1 dx_2 \right) \left(\int_{\mathbb{R}^2} \sum_{i=1}^{2} (D_i v)^2 dx_1 dx_2 \right) dx_3
\]
donc
\[\int_{\mathbb{R}^3} v^4(x) dx \leq 2 \left(\sup_{x_3 \in \mathbb{R}} \int_{\mathbb{R}^2} v^2 dx_1 dx_2 \right) \left(\sum_{i=1}^{2} \| D_i v \|^2_{L^2(\mathbb{R}^3)} \right). \] (2.33)

Mais
\[v^2(x) = 2 \int_{-\infty}^{x_3} v(x_1, x_2, \xi_3) D_3 v(x_1, x_2, \xi_3) d\xi_3 \leq 2 \int_{-\infty}^{+\infty} | v(x_1, x_2, \xi_3) | | D_3 v(x_1, x_2, \xi_3) | d\xi_3 \]

et donc
\[\sup_{x_3 \in \mathbb{R}} \int_{\mathbb{R}^2} v^2 dx_1 dx_2 \leq 2 \int_{\mathbb{R}^3} | v | | D_3 v | dx \leq 2\| v \|_{L^2(\mathbb{R}^3)} \| D_3 v \|_{L^2(\mathbb{R}^3)}. \]

Avec cette inégalité on déduit de (2.33) que:
\[\int_{\mathbb{R}^3} v^4(x) dx \leq 4\| v \|_{L^2(\mathbb{R}^3)} \| D_3 v \|_{L^2(\mathbb{R}^3)} \left(\sum_{i=1}^{2} \| D_i v \|^2_{L^2(\mathbb{R}^3)} \right)^{\frac{1}{2}} \]
\[\leq 4\| v \|_{L^2(\mathbb{R}^3)} \left(\sum_{i=1}^{3} \| D_i v \|^2_{L^2(\mathbb{R}^3)} \right)^{\frac{1}{2}} \]
\[\leq 4\| v \|_{L^2(\mathbb{R}^3)} \| \text{grad} v \|_{L^2(Q)}. \]

\[\blacksquare \]

2.9 Théorème

Si \(n = 3 \), la solution \(u \) donnée par le théorème 2.5 et qui vérifie (2.7) - (2.9) satisfait à:
\[u \in L^5(0, T, L^4(Q)) \] (2.34)

et
\[u' \in L^3(0, T, V'). \] (2.35)
Démonstration: D'après (2.32) on a que
\[\| u \|_{L^1(Q)} \leq 2^{\frac{1}{2}} \| u \|_{L^2(Q)}^{\frac{1}{2}} \| \text{grad } u \|_{L^2(Q)}^{\frac{3}{2}}, \quad \forall u \in H^1(Q), \]
or on a une injection continue de $H^1(Q)$ dans $L^2(Q)$, et donc on aura
\[\| u \|_{L^1(Q)} \leq c_0 \| u \|_{L^2(Q)}^{\frac{1}{2}} \| \text{grad } u \|_{H^1(Q)}^{\frac{3}{2}} \]
et comme le gradient est continu de $H^1(Q)$ dans $L^2(Q)$ on obtient que:
\[\| u \|_{L^1(Q)} \leq c_1 \| u(t) \|_{L^2(Q)} \| \text{grad } u \|_{L^2(Q)}^{\frac{3}{2}}. \quad (2.36) \]

La fonction à droite appartient à $L^{\frac{3}{2}}(0, T)$; en effet
\[\int_0^T \left(\| u(t) \|_{L^2(Q)}^{\frac{3}{2}} \right)^{\frac{3}{2}} dt = \int_0^T \| u(t) \|_{L^2(Q)}^{\frac{3}{2}} dt \]
\[\leq \sup_{t \in [0, T]} \| u(t) \|_{L^2(Q)}^{\frac{3}{2}} \int_0^T \| u(t) \|_{L^2(Q)}^{\frac{3}{2}} dt < +\infty \]
d'après (2.18) et (2.19).

L'inégalité de Hölder nous donne que:
\[\| u_i D_i v_j w_i \|_{L^p} \leq \| u_i \|_{L^{q_1}} \| D_i v_j \|_{L^{q_2}} \| w_i \|_{L^{q_3}}, \quad \text{avec } \frac{1}{p} = \frac{1}{q_1} + \frac{1}{q_2} + \frac{1}{q_3} \leq 1 \]
et donc si on prend $q_1 = q_3 = 4$ et $q_2 = 2$ et en utilisant le fait que la dérivée est un opérateur continu de $H^1(Q)$ dans $L^2(Q)$ on obtient:
\[\| u_i D_i v_j u_i \|_{L^1(Q)} = \int_Q \| u_i D_i v_j u_i \| \leq c_2 \| u \|_{L^2(Q)}^2 \| v \|, \quad \forall u, v \in V. \quad (2.37) \]

Cela entraîne
\[\| b(u, u, v) \| = \| b(u, v, u) \| \leq c_2 \| u \|_{L^1(Q)} \| v \|, \quad \forall u, v \in V. \]
Il s'ensuit

\[\| Bu(t) \|_{V'} \leq c_2 \| u \|_{L^1(Q)}^2 \]
\[\leq c_3 | u(t) |^{\frac{3}{2}} \| u(t) \|^{\frac{1}{2}} \]

d'où

\[\int_0^T \| Bu(t) \|_{V'}^\frac{3}{2} \, dt \leq c_3 \int_0^T | u(t) |^{\frac{3}{2}} \| u(t) \|^2 \, dt \]
\[\leq c_3 \sup_{t \in [0,T]} | u(t) |^{\frac{3}{2}} \int_0^T \| u(t) \|^2 \]

et donc si \(u \in L^2(0,T,V) \cap L^\infty(0,T,H) \) alors \(Bu \in L^{\frac{3}{2}}(0,T,V') \). □

2.10 Théorème d'unicité

Si \(n = 3 \), il existe au plus une solution du problème 2.2 satisfaisant

\[u \in L^2(0,T,V) \cap L^\infty(0,T,H) \quad (2.38) \]

et

\[u \in L^2(0,T,L^4(Q)). \quad (2.39) \]

Démonstration: Par l'inégalité de Hölder on a:

\[| b(u, u, v) | \leq c_0 \| u \|_{L^4(Q)} \| v \|_{L^4(Q)} \| u \|, \]

en utilisant (2.32), on a

\[| b(u, u, v) | \leq c_1 \| v \|_{L^4(Q)} | u |^{\frac{3}{2}} \| \text{grad} \, u |^{\frac{3}{2}} \| u \| \]
et comme on a une injection continue de $H^1(Q)$ dans $L^2(Q)$ et que le gradient est continu sur $H^1(Q)$ on obtient que:

$$| b(u,u,v) | \leq c |u|^{1/4} \| u \|^{7/2} \| v \|_{L^1(Q)}.$$ \hspace{2cm}(2.40)$$

Supposons que u_1 et u_2 sont deux solutions de (2.7)-(2.9) qui satisfont (2.38)-(3.9) et soit $u = u_1 - u_2$. Donc u vérifie

$$u' + wAu = -Bu_1 + Bu_2$$ \hspace{2cm}(2.41)$$

$$u(0) = 0;$$

en faisant le produit scalaire de (2.41) avec $u(t)$, on obtient:

$$\frac{d}{dt} \| u(t) \|^2 + 2w\| u(t) \|^2 = 2b(u_2(t), u_2(t), u(t)) - 2b(u_1(t), u_1(t), u(t))$$

$$= 2b(u_2(t), u_2(t), u(t)) - 2b(u_2(t), u_1(t), u(t)) + 2b(u_2(t), u_1(t), u(t)) - 2b(u_1(t), u_1(t), u(t))$$

$$= 2 [-b(u_2(t), u(t), u(t)) - b(u(t), u_1(t), u(t))]$$

$$= 2b(u(t), u_2(t), u(t)) + 2b(u(t), u(t), u_2(t))$$

$$- 2b(u(t), u_1(t), u(t))$$

$$= 2 [-b(u(t), u(t), u(t)) + b(u(t), u(t), u_2(t))]$$

$$= 2b(u(t), u(t), u_2(t)).$$

Et d’après (2.40) on aura

$$\frac{d}{dt} \| u(t) \|^2 + 2w\| u(t) \|^2 \leq 2c |u(t)|^{1/4} \| u(t) \|^{7/2} \| u_2(t) \|_{L^1(Q)}$$

$$\leq w\| u(t) \|^2 + c_2 |u(t)|^2 \| u_2(t) \|_{L^1(Q)}^8.$$
la deuxième inégalité est obtenue en appliquant l’inégalité de Young, \((ab \leq \varepsilon a^p + c_\varepsilon b^q)\) où \(\varepsilon\) est une constante positive, \(c_\varepsilon\) une constante qui dépend de \(\varepsilon\) et \(\frac{1}{p} + \frac{1}{q} = 1\), pour \(p = \frac{8}{7}\) et \(q = 8\). On obtient donc

\[
\frac{d}{dt} |u(t)|^2 \leq c_2 |u(t)|^2 \|u_2(t)\|_{L^*_1(Q)}^8.
\]

Puisque la fonction \(t \mapsto \|u_2(t)\|_{L^*_1(Q)}^8\) est intégrable on a :

\[
\frac{d}{dt} |u(t)|^2 \exp \left(-c_2 \int_0^t \|u_2(s)\|_{L^*_1(Q)}^8 ds\right) - c_2 |u(t)|^2 \|u_2(t)\|_{L^*_1(Q)}^8 \exp \left(-c_2 \int_0^t \|u_2(s)\|_{L^*_1(Q)}^8 ds\right) \leq 0
\]

d'où

\[
\frac{d}{dt} \left\{ \exp \left(-c_2 \int_0^t \|u_2(s)\|_{L^*_1(Q)}^8 ds\right) |u(t)|^2 \right\} \leq 0
\]

Intégrons entre 0 et t en tenant compte de \(u(0) = 0\), on aura

\[|u(t)|^2 \leq 0, \forall t \in [0, T].\]

Alors

\[u_1 = u_2,\]

et la solution est unique. ■

2.11 Lemme

Si \(u \in V \cap (H^2(Q))^3\), alors \(Bu \in H \subset (L^2(Q))^3\) et

\[|Bu| \leq c_2 \|u\|_{3/2}^3 \|Au\|_{3/2}.\] \hspace{1cm} (2.42)

Dém: On sait par l’inégalité de Hölder que si \(f_i \in L^{q_i}, \forall i = 1, \ldots, n\), et \(f = f_1 f_2 \ldots f_n\) alors \(\|f\|_{L^p} \leq \|f_1\|_{L^{q_1}} \|f_2\|_{L^{q_2}} \ldots \|f_n\|_{L^{q_n}}\) avec \(\frac{1}{p} = \frac{1}{q_1} + \frac{1}{q_2} + \ldots + \frac{1}{q_n}\). Appliquons cette
inégalité pour \(q_i = 6, q_2 = 4, q_3 = 12 \) et \(q_4 = 2 \)

\[
\left| \int_Q u_i D_i u_j v_j \, dx \right| \leq \int_Q \left| u_i \right| \left| D_i u_j \right|^{\frac{1}{2}} \left| D_i u_j \right|^{\frac{1}{2}} \left| v_j \right| \, dx
\leq \left| u_i \right|_{L^3(Q)} \left| D_i u_j \right|_{L^2(Q)}^{\frac{1}{2}} \left| D_i u_j \right|_{L^2(Q)}^{\frac{1}{2}} \left| v_j \right|_{L^2(Q)}.
\]

Comme on a une injection continue de \(H^1(Q) \) dans \(L^6(Q) \) et que l'opérateur \(D_i \) est continue de \(H^k(Q) \) dans \(H^{k-1}(Q) \) avec \(k \in \mathbb{N} \) on aura

\[
\left| \int_Q u_i D_i u_j v_j \, dx \right| \leq c_5 \left| u_i \right|_{H^1(Q)}^{\frac{3}{2}} \left| D_i u_j \right|_{H^1(Q)}^{\frac{1}{2}} \left| v_j \right|_{L^2(Q)},
\]

donc

\[
\left| b(u, u, v) \right| \leq c_6 \left\| u \right\|_{(H^2(Q))^3} \left| v \right|.
\]

Ainsi (2.42) est démontré. ■

2.12 Lemme

Il existe une constante \(K_1 = \frac{3}{8} c_3 \) qui dépend de \(f, w, Q, T \) telle que

\[
\left\| u(t) \right\|^2 \leq 2(1 + \left\| u_0 \right\|^2)
\]

pour

\[
t \leq T_1(\left\| u_0 \right\|) = \frac{K_1}{(1 + \left\| u_0 \right\|^2)^2}.
\]

Démonstration: Remplaçons \(v \) par \(Au(t) \) dans (2.4)

\[
\frac{d}{dt}(u, Au) + w((u, Au)) + b(u, u, Au) = \langle f, Au \rangle.
\]

44
Puisque

\[\langle A\phi, \psi \rangle = ((\phi, \psi)) \quad \forall \phi, \psi \in V, \]

il vient donc

\[\frac{1}{2} \frac{d}{dt} \|u(t)\|^2 + w|Au(t)|^2 + b(u(t), u(t), Au(t)) = (f(t), Au(t)) \]

\[\leq \frac{w}{4} |Au(t)|^2 + \frac{1}{w} |f(t)|^2. \]

Il s'ensuit

\[\frac{d}{dt} \|u(t)\|^2 + \frac{3}{2} w|Au(t)|^2 \leq \frac{2}{w} |f(t)|^2 + 2c_2\|u(t)\|^\frac{3}{2} |Au(t)|^\frac{3}{2} \]

\[\leq \frac{2}{w} |f(t)|^2 + \frac{w}{2} |Au(t)|^2 + c_3\|u(t)\|^6 \]

(par l'inégalité de Young).

D'où

\[\frac{d}{dt} \|u(t)\|^2 + w|Au(t)|^2 \leq \frac{2}{w} |f(t)|^2 + c_3\|u(t)\|^6. \]

(2.43)

Mais pour tout \(v \in D(A) \) on a d'après (1.7)

\[v = \sum_{i=1}^{m} \beta_i w_i, \quad \text{avec} \quad Aw_i = \lambda_i w_i, \beta_i \in \mathbb{R} \]

et

\[|Av|^2 = \sum_{i=1}^{m} \beta_i^2 \lambda_i^2 \]

et

\[\|v\|^2 = ((v, v)) = \langle Av, v \rangle = \sum_{i=1}^{m} \beta_i^2 \lambda_i \]
et donc d'après (1.8) on aura
\[\|v\| \leq \frac{1}{\sqrt{\lambda_1}} |Av(t)| \quad \forall v \in D(A), \]
et donc (2.43) devient
\[\frac{d}{dt} \|u(t)\|^2 + w \lambda_1 \|u(t)\|^2 \leq \frac{2}{w} \|f(t)\|^2 + c_3 \|u(t)\|^6. \]
On obtient une inéquation différentielle de la forme:
\[y' \leq c_4 y^3, \]
avec \(y(t) = 1 + \|u(t)\|^2, \quad c_4 = \max \left(c_3, \frac{2}{w} \sup_{t \in [0,T]} |f(t)|^2 \right) \). Intégrons cette inéquation entre 0 et t et on aura
\[\int_0^t \frac{y'}{y^3} dy \leq \int_0^t c_4 dy \]
\[\implies \]
\[y^2(t) \leq \frac{y^2(0)}{1 - 2y^2(0)c_4 t} \]
comme \(y(t) > 0 \ \forall t \in [0, T] \) on obtient donc
\[y(t) \leq \frac{y(0)}{\sqrt{1 - 2y^2(0)c_4 t}} \]
avec \(t < \frac{1}{2y^2(0)c_4} \), et alors
\[\|u(t)\|^2 \leq 2(1 + \|u_0\|^2) \]
pour
\[0 \leq t \leq \frac{3}{8c_4(1 + \|u_0\|^2)^2}. \]
2.13 Théorème

Soient u_0 et f tels que

$$u_0 \in V, f \in L^\infty(0, T; H),$$

il existe $T_* = T_*(u_0) = \min(T, T_1(\|u_0\|))$, avec $T_1(\|u_0\|)$ donné par le lemme précédent, est tel que, dans $[0, T_*]$ il existe une unique solution (forte) du problème 2.2 avec

$$u \in L^2(0, T_*; D(A)), \quad u' \in L^2(0, T_*; H).$$

Démonstration: Considérons encore la méthode de Galerkin utilisée dans la démonstration du théorème 2.6. Cette fois les w_j sont les fonctions propres de A, et donc vérifient (1.7).

D'après le lemme précédent on a (en supposant que $T_1 \leq T$)

$$\sup_{t \in [0, T_1]} \|u_m(t)\|^2 \leq K_2 = 2(1 + \|u_0\|^2).$$

Donc

u_m reste dans un ensemble borné de $L^\infty(0, T_*; V)$.

D'autre part d'après (2.43) on a

$$\int_0^{T_*} |Au_m(t)|^2 dt \leq \frac{1}{w} \left(\|u_0\|^2 + \frac{2}{w} \int_0^{T_1} |f(t)|^2 dt + c_2 K_2^2 \right).$$

(2.44)

D'après (1.6) et le fait qu'on a une injection continue de $L^2(Q)$ dans $H^{-2}(Q)$ on obtient

$$\|u\|_{(H^2(Q))^3} \leq c_0 \|Au\|_{(H^{-2}(Q))^3} \leq c'_0 |Au|;$$

on déduit donc que

u_m reste dans un ensemble borné de $L^2(0, T_*; (H^2(Q))^3)$.

47
En suivant le même processus que lors de la démonstration du théorème 2.6, on conclut de l'existence d'une unique solution faible du problème 2.2. De plus d'après (2.44) \(Au \in L^2(0,T_\ast;H) \) et par (2.42) \(Bu \in L^1(0,T_\ast;H) \) et donc par (2.8) \(u' = f - Au - Bu \in L^2(0,T_\ast;H) \). Donc \(u \) est une solution forte du problème 2.2. \(\blacksquare \)
CHAPITRE 3

Régularité des solutions

3.1 Inégalités de l'énergie et conséquences.

3.1.1 Lemme: (inégalité d'interpolation)

Si $m_1, m_2 \in \mathbb{R}$, $m_1 \leq m_2$ et $\theta \in]0, 1[$ alors

$$|u|_{(1-\theta)m_1 + \theta m_2} \leq |u|_{m_1}^{1-\theta} |u|_{m_2}^\theta \quad \forall u \in H^{m_2}_{p}, \quad m_1 \leq m_2.$$

Démonstration: L'inégalité de Hölder discrète nous donne

$$|\sum_i a_i b_i| \leq \left(\sum_i |a_i|^p\right)^{\frac{1}{p}} \left(\sum_i |b_i|^{p'}\right)^{\frac{1}{p'}}.$$

Et donc pour $p = \frac{1}{\theta}$ et $p' = \frac{1}{1-\theta}$ on aura

$$\sum_{k \in \mathbb{Z}^3} |k|^{2((1-\theta)m_1 + \theta m_2)} |u_k|^2 \leq \left(\sum_{k \in \mathbb{Z}^3} |k|^{2m_1} |u_k|^2\right)^{(1-\theta)} \left(\sum_{k \in \mathbb{Z}^3} |k|^{2m_2} |u_k|^2\right)^\theta,$$

et donc

$$|u|_{(1-\theta)m_1 + \theta m_2} \leq |u|_{m_1}^{(1-\theta)} |u|_{m_2}^\theta. \quad \blacksquare$$

49
3.1.2 Définition

On définit l'espace V_r, pour tout $r \in \mathbb{R}$ par:

$$V_r = \{ v \in (H^r_0(Q))^3 : \text{div } v = 0 \}.$$

3.1.3 Lemme

Si u est solution du problème 2.1.2.2, alors pour chaque $t > 0$ et pour tout $r \geq 1$,

$$\frac{d}{dt} |u(t)|_r^2 + w|u(t)|_{r+1}^2 \leq L_r(1 + |u(t)|_1^2 |u(t)|_{r+1}^{2r-1})$$

(3.1)

où la constante L_r dépend de w, Q et $N_{r-1}(f) = |f|_{L^\infty(0,T,V_{r-1})}$.

De plus, pour tout $r \geq 3$, on a

$$\frac{d}{dt} |u(t)|_r^2 + w|u(t)|_{r+1}^2 \leq L'_r(1 + |u(t)|_1^2)^{2r+1}$$

(3.2)

où L'_r dépend de w, Q et $N_{r-1}(f)$.

Démonstration: i) En Faisant le produit scalaire dans H de (2.8) avec $A^r u$, on obtient

$$\frac{1}{2} \frac{d}{dt} |u|^2_r + w |u|^2_{r+1} = (f,u)_r - (Bu, A^r u).$$

En choisissant l'opérateur $Au = -\Delta u$,

on aura

$$\frac{1}{2} \frac{d}{dt} |u|^2_r + w |u|^2_{r+1} = (f,u)_r - (-1)^rb(u,u,\Delta^r u).$$

(3.3)

Le premier terme $(f,u)_r$ est majoré (lemme 3.1.1) par

$$|f(t)|_{r-1} |u(t)|_{r+1} \leq \frac{w}{4} |u(t)|_{r+1}^2 + \frac{1}{w} N_{r-1}(f)^2.$$

(3.4)

Le second terme $b(u,u,\Delta^r u)$ est la somme d'intégrales du type

$$\int_Q u_i D_i u_j \Delta u_j dx \text{ ou } \int_Q u_i D_i u_j D_1^{\alpha_1} D_2^{\alpha_2} D_3^{2\alpha_3} u_j dx, \quad \alpha_i \in \mathbb{N}, \quad \alpha_1 + \alpha_2 + \alpha_3 = r.$$
On intègre par partie en utilisant la formule de Stokes [4]; les termes de la frontière s'annulent entre eux à cause de la périodicité de \(u \), et on aura des intégrales de la forme

\[
\int_Q D^\alpha(u_iD_iu_j)D^\alpha u_j dx, \quad D^\alpha = D_1^{a_1}D_2^{a_2}D_3^{a_3}.
\]

Avec la formule de Leibniz, on observe que ces intégrales sont la somme d'intégrales de la forme

\[
\int_Q u_iD_i(D^\alpha u_j)D^\alpha u_j dx, \tag{3.5}
\]

et d'intégrales de la forme

\[
\int_Q \delta^k u_i \delta^{r-k} D_i u_j D^\alpha u_j, \quad k = 1, \ldots, r, \tag{3.6}
\]

où \(\delta^k \) est l'un des opérateurs \(D^\alpha \) avec \([\alpha] = [(\alpha_1, \alpha_2, \alpha_3)] = \alpha_1 + \alpha_2 + \alpha_3 = k\).

La somme des intégrales (3.5) est égale à

\[
< \sum_{i=1}^{3} u_i, D_i(D^\alpha u_j)D^\alpha u_j > = \frac{1}{2} < \sum_{i=1}^{3} u_i, D_i ((D^\alpha u_j)^2) > + \frac{1}{2} < \sum_{i=1}^{3} D_i u_i, ((D^\alpha u_j)^2) >
\]

\[= - \frac{1}{2} < \text{div } u, ((D^\alpha u_j)^2) > = 0.
\]

Il reste alors les intégrales (3.6) à majorer.

ii) Preuve de (3.1). Par l'inégalité de H"older \((q_1 = 3, q_2 = 6, q_3 = 2)\) on obtient

\[
| \int_Q \delta^k u_i \delta^{r-k} D_i u_j D^\alpha u_j | \leq | \delta^k u_i(t) |_{L^3(Q)} | \delta^{r+1-k} u_j(t) |_{L^6(Q)} | D^\alpha u(t) |.
\]

D'après le théorème d'injection de Sobolev on a une injection continue de \(H^1(Q) \) dans \(L^6(Q) \) et de \(H^{\frac{1}{2}}(Q) \) dans \(L^3(Q) \), et comme l'opérateur \(D^\alpha \) est continu de \(H^k(Q) \) dans \(H^{k-1}(Q) \) on aura

\[
| \delta^k u_i(t) |_{L^3(Q)} | \delta^{r+1-k} u_j(t) |_{L^6(Q)} | D^\alpha u(t) | \leq c'_1 | u(t) |_{k+\frac{1}{2}} | u(t) |_{r+2-k} | u(t) |_r,
\]

51
où c'_1 dépend de k, r, Q.

Appliquons alors l’inégalité d’interpolation avec $m_1 = 1, m_2 = r + 1, \theta = \frac{k}{r} - \frac{1}{2r}$,

$(1 - \theta)m_1 + \theta m_2 = k + \frac{1}{2}$, puisque $\theta = 1 - \frac{k - 1}{r}$, $(1 - \theta)m_1 + \theta m_2 = r + 2 - k$, pour obtenir

$$| u(t) |_{k+\frac{1}{2}} \leq | u(t) |_{1}^{1 - \frac{k}{r} + \frac{1}{2r}} | u(t) |_{r+1}^{\frac{k}{r} - \frac{1}{2r}}$$

$$| u(t) |_{r+2-k} \leq | u(t) |_{1}^{\frac{k-1}{r}} | u(t) |_{r+1}^{1 - \frac{k-1}{r}}.$$

Donc les intégrales du type (3.6) sont majorées par

$$c'_2 | u(t) |_{1}^{1 - \frac{k}{r}} | u(t) |_{r+1}^{1 + \frac{k}{r}} | u(t) |_{r}. \tag{3.7}$$

L’inégalité de Minkovski [3] entraîne

$$| b(u, u, \Delta^r u) | \leq c'_3 | u(t) |_{1}^{1 - \frac{k}{r}} | u(t) |_{r+1}^{1 + \frac{k}{r}} | u(t) |_{r} \leq \frac{w}{4} | u(t) |_{r+1}^{2} + c'_4 | u(t) |_{1}^{2} | u(t) |_{r}^{\frac{4}{r-1}}.$$

Cette relation avec (3.3) et (3.4) nous donne (3.1).

iii) Preuve de (3.2). Majorons $b(u, u, \Delta^r u)$ d’une manière différente. On a

$$| u(t) |_{r} \leq c'_5 | u(t) |_{1}^{1} | u(t) |_{r+1}^{1 - \frac{k}{r}}$$

par application de l’inégalité d’interpolation avec $m_1 = 1, m_2 = m + 1, \theta = 1 - \frac{1}{r}$; l’inégalité (3.7) nous donne

$$| b(u, u, \Delta^r u) | \leq c'_6 | u(t) |_{1}^{1 + \frac{k}{r}} | u(t) |_{r+1}^{2 - \frac{k}{r}} \leq \frac{w}{4} | u(t) |_{r+1}^{2} + c'_7 | u(t) |_{1}^{4r+2}.$$

Cette relation combinée avec (3.3) et (3.4) nous donne (3.2).
3.1.4 Lemme

i) Si \(u_0 \in V_r \) et \(f \in L^\infty(0,T;V_{r-1}) \), \(r \geq 1 \), alors la solution \(u \) du problème 2.2 donnée par le théorème 2.13 appartient à \(C([0,T_*];V_r) \).

ii) Si \(u_0 \in V \) et \(f \in L^\infty(0,T;V_{r-1}) \), \(r \geq 1 \), alors \(u \in C([0,T_*];V_r) \).

\(\text{Démonstration:} \) Nous allons d’abord montrer que \(u \) appartient à \(L^\infty(0,T_*;V_r) \). Pour cela il suffit de montrer que l’approximation de Galerkin \(u_m \) de \(u \) construite dans le chapitre 2 reste bornée dans \(L^\infty(0,T_*;V_r) \) quand \(m \) tend vers l’infini. Faisant le produit scalaire dans \(H \) de (2.8) avec \(A^r u_m = (-1)^r \Delta^r u_m \)

\[
\frac{1}{2} \frac{d}{dt} |u_m|_r^2 + w|u_m|_{r+1}^2 = (f,u_m)_r - (-1)^r b(u_m,u_m,\Delta^r u_m).
\]

Cette équation est similaire à (3.3) et donc exactement comme dans le lemme précédent, on a une expression analogue à (3.2):

\[
\frac{d}{dt} |u_m(t)|_r^2 + w|u_m(t)|_{r+1}^2 \leq L'(1 + |u_m(t)|_1^2)^{2r+1};
\]

intégrons entre 0 et \(t \) et utilisons le fait que \(u \) reste dans un ensemble borné de \(L^2(0,T_*;D(A)) \cap L^\infty(0,T;V) \); on aura

\[
|u_m(t)|_r^2 \leq c'_1 + |u_m(0)|_r^2 \text{ pour } 0 \leq t \leq T_*,
\]

et en intégrant entre 0 et \(T_* \), on aura

\[
\int_0^{T_*} |u_m(t)|_{r+1}^2 dt \leq c'_2 + |u_m(0)|_r^2.
\]

Soit \(P_m \) la projection orthogonale dans \(H \) sur \(W_m \) (\(W_m \) est l’espace engendré par les \(w_j \)). \(P_m \) est aussi une projection dans \(V_r \), et

\[
|u_m(0)|_r = |P_m u_0|_r \leq |u_0|_r,
\]

et donc \(u_m \) reste dans un ensemble borné de \(L^\infty(0,T_*;V_r) \) et \(L^2(0,T_*;V_{r+1}) \) et

\[
u \in L^\infty(0,T_*;V_r) \cap L^2(0,T_*;V_{r+1}) \tag{3.8}
\]
ii) Pour \(u_0 \in V \), on observe que la solution \(u \) du problème 2.2 appartient à \(L^2(0, T_*; D(A)) \). Alors \(u(t) \in D(A) = V \) presque partout dans \((0, T_*) \), et on peut trouver \(t_1 \) petit tel que \(u(t_1) \in V_2 \). D'après i) on a que \(u \in C([t_1, T_*], V_2) \cap L^2(t_1, T_*; V_3) \). De même, \(u(t_2) \in V_3 \) pour \(t_2 \in [t_1, T_*] \), \(t_2 \) très proche de \(t_1 \), et \(u \in C([t_2, T_*], V_3) \cap L^2(t_2, T_*; V_4) \). Par induction on arrive à \(u \in C([t_{r-1}, T_*], V_r) \cap L^2(t_{r-1}, T_*; V_{r-1}) \) et, puisque \(t_{r-1} \) est proche de 0, le résultat est prouvé. ■

3.2 Structure de l’ensemble singulier de la solution faible

3.2.1 Définitions

Soit \(m \geq 1 \). On dit que la solution \(u \) du problème 2.1-2.2 est \((H^m)^3 \)-régulière dans l’intervalle \((t_1, t_2) \) \((0 \leq t_1 \leq t_2) \) si \(u \in C((t_1, t_2), (H^m(Q))^3) \). On dit qu’un intervalle de \((H^m)^3 \)-régularité \((t_1, t_2) \) est maximal s’il n’existe pas d’intervalle de \((H^m)^3 \)-régularité plus grand que \((t_1, t_2) \).

L’existence locale d’une solution \((H^m)^3 \)-régulière est donnée par le lemme précédent: si \(u_0 \in V_m \) et \(f \in L^\infty(0, T; V_{m-1}) \), alors il existe une solution \((H^m)^3 \)-régulière des équations de Navier-Stokes définie dans \((0, t_0) \). Aussi si \((t_1, t_2) \) est un intervalle de \((H^m)^3 \)-régularité maximal de la solution \(u \), alors

\[
\lim_{t \to t_2^-} \sup_{m} |u(t)|_m = +\infty.
\] (3.9)

En effet, si

\[
\lim_{t \to t_2^-} \sup_{m} |u(t)|_m < +\infty
\] (3.10)

alors \(u(t_2^-) \in (H^m(Q))^3 \) et comme \(f \in L^\infty(0, T, (H^m(Q))^3) \) on conclut d’après le lemme précédent qu’il existe \(s_0 \in [0, T] \), tel que \(\hat{u} \in C((t_2, s_0), (H^m(Q))^3) \), où \(\hat{u} \) est le prolonge-
ment de u sur l'intervalle (t_1, s_0), et donc (t_1, t_2) n'est pas un intervalle de H^m-régularité maximal de la solution u.

3.2.2 Théorème

Supposons que $u_0 \in H$, $f \in L^m(0, T; V_{m-1})$, $m \geq 1$, et que u est une solution faible des équations de Navier-Stokes (Problème 2.1). Alors u est $(H^m)^3$-régulière dans un ensemble ouvert de $(0, T)$ qui admet un complément de mesure de Lebesgue nulle.

De plus, l'ensemble de $(H^r)^3$-régularité de u est indépendant de r, c'est-à-dire que c'est le même pour $r = 1, \ldots, m$.

Démonstration: Puisque u est faiblement continue de $[0, T]$ dans H, $u(t)$ est bien définie pour tout t et on peut définir

$$
\Sigma_r = \{t \in [0, T], u(t) \notin (H^r(Q))^3\},
$$

$$
\Omega_r = \{t \in [0, T], u(t) \in (H^r(Q))^3\},
$$

$$
\mathcal{O}_r = \{t \in (0, T), \exists \varepsilon > 0, u \in C((t - \varepsilon, t + \varepsilon); (H^r(Q))^3)\}.
$$

C'est clair que \mathcal{O}_r est un ouvert pour tout r.

Pour $r = 1$, puisque $u \in L^2(0, T, V)$, $u(t) \in (H^1(Q))^3$ et donc Σ_1 a une mesure de Lebesgue 0. Si t_0 appartient à Ω_1 et non à Ω_1 alors, d'après le théorème 2.13, t_0 est la borne gauche d'un intervalle de $(H^1)^3$-régularité, c'est-à-dire que c'est l'une des composantes connexes de \mathcal{O}_1; alors $\Omega_1 \setminus \mathcal{O}_1$ est dénombrable et $[0, T] \setminus \mathcal{O}_1$ a une mesure de Lebesgue nulle.

Le théorème est prouvé pour $m = 1$. Complétons la démonstration en montrant que $\mathcal{O}_m = \mathcal{O}_1$.

Si (t_1, t_2) est une composante connexe de \mathcal{O}_1 (intervalle de $(H^1)^3$-régularité maximal), alors pour tout t'_1 dans cet intervalle, $u(t'_1) \in V$ et, d'après le lemme 3.1.3, il existe une
unique solution \((H^m)^3\)-régulière définie dans un intervalle \((t_1', t_2')\), \(t_1' < t_2' \leq t_2\). Puisqu’on a unicité aussi pour la classe des solutions faibles cette solution coïncide avec \(u\), c’est-à-dire, \((t_1', t_2')\) est un intervalle de \((H^m)^3\)-régularité de \(u\). D’après (3.2) si \(u\) est bornée dans \(V\) alors \(u\) reste bornée dans \((H^m)^3\). Donc, en utilisant le lemme 3.1.3 aussi, on a que \(t_2' = t_2\), et puisque \(t_1'\) est proche de \(t_1\), \((t_1, t_2)\) est un \((H^m)^3\)-intervalle de régularité. Ceci prouve que \(O_m = O_1\), et \(O_r = O_1\), \(r = 1, \ldots, m - 1\). ■

3.3 Estimation à priori

3.3.1 Théorème

Soient \(u_0 \in H\), \(f \in L^2(0, T; V_{m-1})\) et \(u\) une solution faible des équations de Navier-Stokes (Problème 2.1). Alors \(u\) satisfait à

\[
\begin{align*}
\int_0^T |u(t)|_{L^p}^p \, dt & \leq c_r, \\
\end{align*}
\]

\(r = 1, \ldots, m + 1\), où les constantes \(c_r\) dépendent de \(w, Q, u_0, f\), et les \(\alpha_r\) sont donnés par

\[
\alpha_r = \frac{2}{2r - 1}.
\]

Démonstration: i) Soit \((s_i, t_i), i \in \mathbb{N}\), les composantes connexes de \(O_1\), qui sont aussi des intervalles de \(H^m\)-régularité maximaux de \(u\).

Dans chaque intervalle \((s_i, t_i)\), les inégalités (3.1) sont satisfaites, \(r = 1, \ldots, m\), et donc

\[
\frac{d}{dt} |u(t)|_{L^p}^p + w |u(t)|_{W^{r+1}}^2 \leq L_r (1 + |u(t)|_{L^p}^p)(1 + |u(t)|_{L^p}^p)^{2r/(2r-1)}.
\]

On déduit

\[
\frac{d}{dt} |u(t)|_{L^p}^p + w |u(t)|_{W^{r+1}}^2 (1 + |u(t)|_{L^p}^p)^{2r/(2r-1)} \leq L_r (1 + |u(t)|_{L^p}^p).
\]

56
Par intégration entre s_i et t_i, on aura

\[-(2r - 1) \frac{1}{(1 + |u(t; - 0)|^2)^{\frac{1}{2r - 1}}} + (2r - 1) \frac{1}{(1 + |u(s_i + 0)|^2)^{\frac{1}{2r - 1}}} + w \int_{s_i}^{t_i} \frac{|u(t)|^2_{r+1}}{(1 + |u(t)|^2)^{\frac{2r}{2r-1}}} dt \leq L_r \int_{s_i}^{t_i} (1 + |u(t)|^2) dt.

D'après (3.9), le premier terme à gauche de l'inégalité disparaît, puisque (s_i, t_i) est un H^m-intervalle de régularité maximal. Alors

\[\int_{s_i}^{t_i} \frac{|u(t)|^2_{r+1}}{(1 + |u(t)|^2)^{\frac{2r}{2r-1}}} dt \leq \frac{w}{L_r} \int_{s_i}^{t_i} (1 + |u(t)|^2) dt.

Par sommation de ces relations pour $i \in \mathbb{N}$, on a

\[\int_0^T \frac{|u(t)|^2_{r+1}}{(1 + |u(t)|^2)^{\frac{2r}{2r-1}}} dt \leq \frac{L_r}{w} \int_0^T (1 + |u(t)|^2) dt = c_r < \infty \quad r = 1, \ldots, m \quad (3.12)

car $u \in L^2(0, T, V)$.

ii) Montrons maintenant (3.11) par induction. Le résultat est vrai pour $r = 1$ car $u \in L^2(0, T, V)$. Supposons que c'est vrai pour $1, \ldots, r$, et montrons $r + 1$ ($r \geq 1$). On a

\[\int_0^T |u(t)|^{\alpha_{r+1}} dt = \int_0^T \left[\frac{|u(t)|^2_{r+1}}{(1 + |u(t)|^2)^{\frac{2r}{2r-1}}} \right]^{\frac{\alpha_{r+1}}{2}} \frac{[(1 + |u(t)|^2)^{\frac{2r}{2r-1}}]^{\frac{\alpha_{r+1}}{2}}}{dt} \leq \left[\int_0^T \frac{|u(t)|^2_{r+1}}{(1 + |u(t)|^2)^{\frac{2r}{2r-1}}} dt \right]^{\frac{\alpha_{r+1}}{2}} \left[\int_0^T (1 + |u(t)|^2)^{\gamma} dt \right]^{1 - \frac{\alpha_{r+1}}{2}}

(par l'inégalité de Hölder), où

\[\gamma = \frac{2r}{2r - 1} \frac{\alpha_{r+1}}{2} = \frac{1}{2r - 1} = \frac{\alpha_r}{2}.

A cause de (3.12) et que $u \in L^2(0, T, V)$ on aura

\[\int_0^T |u(t)|^{\alpha_{r+1}} dt \leq c'_r. \quad \blacksquare

(3.11) est ainsi démontré.
3.3.2 Théorème

Soit $u_0 \in H$ et $f \in L^\infty(0, T; H)$. Alors toute solution faible u du Problème 2.2 appartient à $L^1(0, T; (L^\infty(Q))^3$.

Démonstration: Soient $m_1, m_2 \in \mathbb{R}$, $m_1 \leq m_2$ et $\theta \in]0, 1[$.

Si $(1 - \theta)m_1 + m_2 > \frac{3}{2}$, alors d'après le théorème 1.8.3, il existe une constante c qui dépend seulement de θ, m_1, m_2 et L(période de u) telle que

$$|u|_{L^\infty(Q)} \leq c(\theta, m_1, m_2, L) |u|_{(1-\theta)m_1 + \theta m_2}$$

donc

$$|u|_{L^\infty(Q)} \leq c(\theta, m_1, m_2, L) |u|_{m_1}^{(1-\theta)} |u|_{m_2}^\theta \quad \forall u \in H^m(Q)$$ \hspace{1cm} (3.13)

(par l'inégalité d'interpolation). L'inéquation (3.13) reste valide si

$$0 \leq m_1 < \frac{3}{2} < m_2, \quad (1 - \theta)m_1 + \theta m_2 = \frac{3}{2}, \quad \text{c.a.d.,} \quad \theta = \frac{3 - m_1}{m_2 - m_1}.$$

Donc pour $m_1 = 1$ et $m_2 = 2$ on aura $\theta = \frac{1}{2}$ et

$$|u(t)|_{L^\infty(Q)} \leq c|u(t)|_{L^1}^{1/2} |u(t)|_{L^2}^{1/2} \quad \forall u \in (H^2_p(Q))^3,$$

ce qui implique

$$|u(t)|_{L^\infty(Q)} \leq c|u(t)|_{L^2}^{1/2} \quad \forall u \in D(A),$$

et donc par l'inégalité de Hölder on aura

$$\int_0^T |u(t)|_{L^\infty(Q)} dt \leq c \left(\int_0^T |Au(t)|_{L^3}^{1/3} dt \right)^{1/4} \left(\int_0^T \|u(t)\|_L^2 dt \right)^{1/4}.$$

Comme A est continue, il vient

$$\int_0^T |u(t)|_{L^\infty(Q)} dt \leq c_1 \left(\int_0^T |u(t)|_{L^3}^{1/3} dt \right)^{4/3} \left(\int_0^T \|u(t)\|_L^2 dt \right)^{1/3} ;$$

or comme $u \in L^\infty(0, T, V)$ et à cause de (3.11) pour $r = 2$ on obtient que

$$\int_0^T |u(t)|_{L^\infty(Q)} dt < \infty. \quad \blacksquare$$

58
CHAPITRE 4

Les inégalités d'interpolation pour l'opérateur de Stokes

Notation. Soient $\mathcal{H}^1_0(Q)$ et $L^2(Q)$ respectivement les fermetures de $H^1(Q)$ et de $L^2(Q)$ dans \mathcal{V}. Notons par ∇ le gradient, par Δ l'opérateur de Laplace et par $\tilde{\Delta}$ l'opérateur de Stokes défini de $\mathcal{H}^1_0(Q)$ dans $L^2(Q)$ (où $\mathcal{H}^1_0(Q)$ représente la complétion de \mathcal{V} pour la norme de Dirichlet) par:

$$\int_Q \nabla u. \nabla v dx = - \int_Q \tilde{\Delta} u. v dx, \quad \forall v \in \mathcal{V}.$$

4.1 Les solutions fondamentales du système de Stokes généralisé

On construit tout d'abord les solutions dans le cas sans pression P_μ.
Soit $g_\mu(x, x_0)$ les solutions fondamentales de l'équation de Helmoltz dans \mathbb{R}^3,

$$(-\Delta + \mu)g_\mu = \delta(x - x_0), \quad (4.1)$$

59
où $x_0 \in \mathbb{R}^3$ et $\mu \geq 0$ sont fixées, δ étant la distribution de Dirac. En faisant la transformée de Fourier de (4.1) on obtient

$$|\alpha|^2\hat{g}_\mu(\alpha) + \mu \hat{g}_\mu(\alpha) = \frac{e^{-iz_0\alpha}}{(2\pi)^\frac{3}{2}}$$

où \hat{g}_μ est la transformée de Fourier de $g_\mu, \alpha \in \mathbb{R}^3$.

On a

$$\hat{g}_\mu(\alpha) = \frac{1}{(2\pi)^\frac{3}{2}} \frac{e^{-iz_0\alpha}}{|\alpha|^2 + \mu}$$

d'où

$$g_\mu(x) = \frac{1}{(2\pi)^\frac{3}{2}} \int_{\mathbb{R}^3} \hat{g}_\mu(y)e^{izy}dy = \frac{1}{(2\pi)^3} \int_{\mathbb{R}^3} \frac{e^{i(z-x_0)y}}{|y|^2 + \mu}dy = \frac{1}{(2\pi)^\frac{3}{2}} \hat{f}(x_0 - x)$$

avec $f(y) = \frac{1}{|y|^2 + \mu}$ $\forall y \in \mathbb{R}^3$. Comme f est invariante en rotation dans \mathbb{R}^3 ($f(y) = f(r)$, $r = |y|_2$), la transformée de Fourier \hat{f} de f peut s'écrire

$$\hat{f}(\rho) = \frac{1}{\rho^\frac{3}{2}} \int_0^{+\infty} f(r)r^\frac{3}{2}J_\frac{3}{2}(\rho r)dr$$

pour tout $\rho = |x - x_0|_2$ et où J_β sont les fonctions de Bessel [2] pour tout $\beta \in \mathbb{R}$.

Donc

$$\hat{f}(\rho) = \frac{\sqrt{2}}{\rho \sqrt{\pi}} \int_0^{+\infty} \frac{r}{r^2 + \mu} \sin(\rho r)dr,$$

Calculons cette intégrale par la méthode des résidus. Soit $h(z) = \frac{ze^{iz}}{z^2 + \mu}$, $z \in \mathbb{C}, \rho > 0$.

Considérons le demi-cercle de rayon $R > \mu$ orienté dans le sens contraire d'une montre, on a donc

$$\lim_{R \to +\infty} \int_{-R}^{R} \frac{xe^{ix\theta}}{x^2 + \mu}dx + \lim_{R \to +\infty} \int_{0}^{\pi} \frac{Re^{i\theta}e^{iRRe^{i\theta}}}{R^2e^{2i\theta} + \mu}iRe^{i\theta}d\theta = 2i\pi \text{Res}(h, \sqrt{\mu}).$$
Or
\[\left| \int_0^\pi \frac{Re^{i\theta} e^{i\rho R e^{i\theta}}}{R^2 e^{2i\theta} + \mu} iRe^{i\theta} d\theta \right| \leq \int_0^\pi \frac{R^2 e^{-\rho R \sin \theta}}{R^2 - \mu} d\theta \to 0 \quad R \to +\infty \]
et donc on aura
\[\int_{-\infty}^{+\infty} \frac{xe^{ix}}{x^2 + \mu} dx = 2i\pi \lim_{z \to i\sqrt{\mu}} \frac{ze^{iz}}{z + i\sqrt{\mu}} \]
donc
\[\int_0^{+\infty} \frac{x \sin(\rho x)}{x^2 + \mu} dx = \frac{\pi}{2} e^{-\rho \sqrt{\mu}} \]
d'où
\[g_\mu(x) = \frac{e^{-\sqrt{\mu}|x-x_0|_2}}{4\pi |x-x_0|_2} \quad (4.2) \]
Pour \(\mu > 0 \) on a
\[|g_\mu|^2 = \frac{1}{16\pi^2} \int_{\mathbb{R}^3} \frac{e^{-2\sqrt{\mu}|x-x_0|_2}}{|x-x_0|_2^2} dx \]
\[= \frac{1}{16\pi^2} \int_0^{+\infty} \int_0^{+\infty} \int_0^{2\pi} e^{-2\sqrt{\mu}r} \sin \theta dr d\theta d\phi \]
donc
\[|g_\mu|^2 = \frac{1}{8\pi \sqrt{\mu}} \quad (4.3) \]
Construisons maintenant un \(\phi_\mu \) qui satisfait à
\[\Delta \phi_\mu = g_\mu \quad (4.4) \]
pour \(\mu > 0 \), on a d'après (4.1) que
\[(-\Delta + \mu)g_\mu = \delta(x - x_0) \]
61
et que

\[-\Delta g_0 = \delta(x - x_0)\]

donc

\[\Delta \left(\frac{g_\mu - g_0}{\mu} \right) = g_\mu\]

d'où

\[\phi_\mu = \frac{g_\mu - g_0}{\mu}. \quad (4.5)\]

Pour \(\mu = 0\), on a d’après (4.2) que

\[g_0 = \frac{1}{4\pi |x - x_0|_2} = \Delta \phi_0 \quad (4.6)\]

donc

\[\phi_0 = \frac{|x - x_0|_2}{8\pi}. \quad (4.7)\]

On va maintenant s’attaquer au cas général, avec pression non nulle. Soient \(1 \leq k \leq n\) et \(e^k\) le vecteur unité dans la direction \(x_k\). Soit

\[U_\mu = \Delta \phi_\mu e^k - \nabla \frac{\partial \phi_\mu}{\partial x_k}, \quad (4.8)\]

\[P_\mu = (-\Delta + \mu) \frac{\partial \phi_\mu}{\partial x_k}. \quad (4.9)\]

Il est facile de vérifier que ce sont les solutions fondamentales du système de Stokes généralisé:

\[
\text{div} U_\mu = \text{div}(\Delta \phi_\mu e^k) - \text{div}(\nabla \frac{\partial \phi_\mu}{\partial x_k})
\]

\[= \nabla(\nabla \frac{\partial \phi_\mu}{\partial x_k}) - \nabla(\nabla \frac{\partial \phi_\mu}{\partial x_k}) = 0.\]
D’autre part

\[
(-\Delta + \mu) U_\mu + \nabla P_\mu = (-\Delta + \mu) U_\mu + \nabla \left[(-\Delta + \mu) \frac{\partial \phi_\mu}{\partial x_k} \right]
\]

\[
= (-\Delta + \mu)(U_\mu + \nabla \frac{\partial \phi_\mu}{\partial x_k})
\]

\[
= (-\Delta + \mu)(\Delta \phi_\mu e^k - \nabla \frac{\partial \phi_\mu}{\partial x_k} + \nabla \frac{\partial \phi_\mu}{\partial x_k})
\]

\[
= (-\Delta + \mu) g_\mu e^k = \delta(x - x_0) e^k.
\]

On aura donc

\[
(-\Delta + \mu) U_\mu + \nabla P_\mu = \delta(x - x_0) e^k,
\]

\[
\text{div } U_\mu = 0.
\]

4.1.1 Lemme

Pour \(\mu > 0\), on a

\[
| U_\mu |^2 = \frac{1}{12\pi \sqrt{\mu}},
\]

\[
| \nabla (U_\mu - U_0) |^2 = \frac{\sqrt{\mu}}{12\pi}.
\]

Démonstration: De (4.8) on a

\[
| U_\mu |^2 = \left(\Delta \phi_\mu e^k - \nabla \frac{\partial \phi_\mu}{\partial x_k}, \Delta \phi_\mu e^k - \nabla \frac{\partial \phi_\mu}{\partial x_k} \right)
\]

\[
= | \Delta \phi_\mu |^2 - 2 \left(\Delta \phi_\mu, \frac{\partial^2 \phi_\mu}{\partial x_k^2} \right) + \left(\nabla \frac{\partial \phi_\mu}{\partial x_k}, \nabla \frac{\partial \phi_\mu}{\partial x_k} \right)
\]

\[
= | \Delta \phi_\mu |^2 - \left(\Delta \phi_\mu, \frac{\partial^2 \phi_\mu}{\partial x_k^2} \right).
\]
En faisant la somme par rapport à k et en utilisant (4.4), on obtient

$$\sum_{k=1}^{3} |U_{\mu}|^2 = 3|\Delta \phi_{\mu}|^2 - (\Delta \phi_{\mu}, \Delta \phi_{\mu}) = 2|g_{\mu}|^2.$$

La partie droite est indépendante de k. Donc, par symétrie, on a

$$|U_{\mu}|^2 = \frac{2}{3} |g_{\mu}|^2.$$

Et par (4.3) on obtient (4.12).

On refait le même travail pour la deuxième égalité,

$$|\nabla(U_{\mu} - U_0)|^2 = |\nabla(\Delta \phi_{\mu} - \Delta \phi_0)|^2 - 2(\nabla(\Delta \phi_{\mu} - \Delta \phi_0), \nabla(\frac{\partial^2 \phi_{\mu}}{\partial x_k^2} - \frac{\partial^2 \phi_0}{\partial x_k^2}))$$

$$+ (\nabla(\frac{\partial^2 \phi_{\mu}}{\partial x_k^2}), \nabla(\frac{\partial^2 \phi_0}{\partial x_k^2}))$$

$$= |\nabla(\Delta \phi_{\mu} - \Delta \phi_0)|^2 - 2(\nabla(\Delta \phi_{\mu} - \Delta \phi_0), \nabla(\frac{\partial^2 \phi_{\mu}}{\partial x_k^2} - \frac{\partial^2 \phi_0}{\partial x_k^2}))$$

$$+ (\nabla(\frac{\partial^2 \phi_{\mu}}{\partial x_k^2}), \nabla(\frac{\partial^2 \phi_0}{\partial x_k^2}))$$

$$= |\nabla(\Delta \phi_{\mu} - \Delta \phi_0)|^2 - \left(\nabla(\Delta \phi_{\mu} - \Delta \phi_0), \nabla(\frac{\partial^2 \phi_{\mu}}{\partial x_k^2} - \frac{\partial^2 \phi_0}{\partial x_k^2})\right).$$

En faisant la somme sur k et en utilisant le même argument que précédemment on obtient

$$|\nabla(U_{\mu} - U_0)|^2 = \frac{2}{3} |\nabla(g_{\mu} - g_0)|^2.$$

Or

$$|\nabla(g_{\mu} - g_0)|^2 = -(g_{\mu} - g_0, \Delta(g_{\mu} - g_0)) = (g_0 - g_{\mu}, \mu g_{\mu}),$$

et

$$(g_0 - g_{\mu}, \mu g_{\mu}) = \mu(g_0, g_{\mu}) - \mu|g_{\mu}|^2$$

$$= \mu(g_0, g_{\mu}) - \frac{\sqrt{\mu}}{8\pi}$$

$$= \mu \int_{\mathbb{R}^2} \frac{e^{-\sqrt{\mu}y}}{16\pi^2} |y| |y|^2 dy - \frac{\sqrt{\mu}}{8\pi}$$

$$= \frac{\mu}{16\pi} \int_0^{+\infty} \int_0^\pi \int_0^{2\pi} r^2 e^{-\sqrt{\mu}y} r^2 \sin \theta dr d\theta d\phi - \frac{\sqrt{\mu}}{8\pi}$$

$$= \frac{\sqrt{\mu}}{4\pi} - \frac{\sqrt{\mu}}{8\pi} = \frac{\sqrt{\mu}}{8\pi}$$

64
4.1.2 Théorème

Si \(u \in H^1_0(\mathbb{R}^3) \) et \(\tilde{\Delta} u \in L^2(\mathbb{R}^3) \), alors

\[
\| u \|_\infty \leq \frac{1}{\sqrt{3\pi}} \| \nabla u \|^{1/2} \| \tilde{\Delta} u \|^{1/2}.
\] \((4.14) \)

On a égalité si et seulement si

\[
u(x) = (\Delta - \nabla \text{div}) \left(\frac{e^{-\sqrt{\mu} |x-x_0|} - 1}{\mu |x-x_0|} - \frac{|x-x_0|}{2} \right) c,
\] \((4.15) \)

pour \(x_0 \in \mathbb{R}^3, \mu > 0 \) et \(c \) vecteur constant.

Démonstration: En faisant le produit scalaire de \((4.10) \) par \(u \) on aura

\[
(-\Delta U_0, u) + (\nabla P_0, u) = u_k(x_0)
\]

or

\[
(\nabla P_0, u) = -(P_0, \text{div} \ u) = 0
\]
donc

\[
u_k(x_0) = (U_0, -\tilde{\Delta} u).
\]

D’autre part

\[
u_k(x_0) = (U_\mu - U_0, \tilde{\Delta} u) - (U_\mu, \tilde{\Delta} u)
\]

\[
= -(\nabla(U_\mu - U_0), \nabla u) - (U_\mu, \tilde{\Delta} u).
\]

Par l’inégalité de Schwarz, \((4.12) \) et \((4.13) \), on obtient, pour tout \(\mu > 0 \),

\[
|u_k(x_0)|_2 \leq |\nabla(U_\mu - U_0) ||\nabla u| + |U_\mu||\tilde{\Delta} u|
\]

\[
= \frac{1}{2\sqrt{3\pi}} \left(\mu^{1/4} |\nabla u| + \mu^{-1/4} |\tilde{\Delta} u| \right).
\]
Pour $\mu = \frac{\vert \tilde{\Delta} u \vert^2}{\vert \nabla u \vert^2}$, on minimise la borne

$$
\vert u_k(x_0) \vert_2 \leq \frac{1}{\sqrt{3\pi}} \vert \nabla u \vert^{1/2} \vert \tilde{\Delta} u \vert^{1/2}.
$$

Si

$$
u = c(U_\mu - U_0)
$$

pour c une constante, alors

$$(\nabla(U_\mu - U_0), \nabla u) = c \vert \nabla u \vert^2 = \vert \nabla(U_\mu - U_0) \vert \nabla u \vert.$$

Pour $\mu > 0$ on aura aussi

$$
\tilde{\Delta} u = c\mu U_\mu,
$$
en effet, pour tout $v \in \mathcal{V}$ on a

$$(c\mu U_\mu, v) = c(-\Delta U_\mu - \nabla P_\mu + \delta(x - x_0)e^k, v)$$

$$
= c [(-\Delta U_\mu, v) + u_k(x_0)]
$$

$$
= c [(-\Delta U_\mu, v) + (\Delta U_0, v)]
$$

$$
= c \left[\frac{1}{c} \Delta u, v \right]
$$

$$
= -(\Delta u, v)
$$

$$
= (\nabla u, \nabla v)
$$

$$
= (\tilde{\Delta} u, v).
$$

Et donc

$$(U_\mu, \tilde{\Delta} u) = c\mu \int U_\mu \vert^2 = \int U_\mu \vert \tilde{\Delta} u \vert.$$

Et donc on a égalité dans (4.14) pour

$$
u = c(U_\mu - U_0).
$$

D’après (4.8), (4.5), (4.7) et (4.2) on obtient (4.15).
4.1.3 Corollaire

Si $u \in \mathcal{H}_0^1(\mathbb{R}^3)$ et $\tilde{\Delta}u \in \mathcal{L}^2(\mathbb{R}^3)$, alors

$$\|u\|_\infty \leq \frac{1}{\sqrt{3\pi}}\|u\|^{1/4}\|\tilde{\Delta}u\|^{3/4}.$$

Démonstration: En faisant une intégration par partie et en utilisant l'inégalité de Schwarz on obtient

$$|\nabla u|^2 = -(u, \tilde{\Delta}u) \leq \|u\|\|\tilde{\Delta}u\|.$$

Et donc d'après le théorème précédent on aura

$$\|u\|_\infty \leq \frac{1}{\sqrt{3\pi}}\|\nabla u\|^{1/2}\|\tilde{\Delta}u\|^{1/2} \leq \frac{1}{\sqrt{3\pi}}\|u\|^{1/4}\|\tilde{\Delta}u\|^{3/4}.$$
Conclusion

Ce mémoire a décrit en détail les questions d'existence, d'unicité et de régularité des équations de Navier-Stokes nonlinéaires dans \mathbb{R}^3 dans le cas ρ indépendant du temps et à pression constante.

Dans un travail ultérieur, nous avons l'intention d'aborder ces questions et certaines autres dans le contexte où un terme stochastique est ajouté. Les équations stochastiques permettent en effet d'aborder rigoureusement l'analyse qualitative et quantitative des solutions dans un contexte plus général.
Bibliographie

Index

$H_0^m(Q)$, 9
$S'(Q)$, 16
$<, >$, 4
A, 17
B, 26
$D(A)$, 19
H, 15
$H_p^{-m}(Q)$, 10
L^2_{R}, 7
Q, 4
V, 15
V_a, 49
Γ, 3
Ω, 3
ν, 24
$H_0^m(Q)$, 7
$\hat{H}_0^1(Q)$, 59
$|\cdot|$, 12
$\|\cdot\|$, 15
$\hat{\Delta}$, 59
$H^m(\Omega)$, 3
$L^2(\Omega)$, 3

$\mathcal{D}'(Q)$, 8
$H^\nu(\mathbb{R}, X_0, X_1)$, 30
$H^\nu_{K}(\mathbb{R}, X_0, X_1)$, 31
$H^1_0(Q)$, 59
$L^2(Q)$, 59
$|\cdot|_2$, 9
$\|\cdot\|_8$, 7
(\cdot, \cdot), 3
$((\cdot, \cdot))$, 15
P_μ, 62
U_μ, 62
$H^m_{loc}(\mathbb{R}^n)$, 4
$(H^m_p(Q))'$, 7
$C^\infty(Q)$, 13
$C_b(\overline{Q})$, 22
D^γ_{ν}, 31
$H^m_p(Q)$, 4
$b(u,v,w)$, 24
$D(Q)$, 9

71