Université de Sherbrooke

Rôle de la protéine chaperonne Hfq dans la spécificité de l’appariement du petit ARN RyhB avec ses ARNm cibles

Par

Mélina Arguin

Département de Biochimie

Mémoire présenté à la Faculté de médecine
en vue de l’obtention du grade
maître ès sciences (M.Sc.) en Biochimie

3 août 2007
NOTICE: The author has granted a non-exclusive license allowing Library and Archives Canada to reproduce, publish, archive, preserve, conserve, communicate to the public by telecommunication or on the Internet, loan, distribute and sell theses worldwide, for commercial or non-commercial purposes, in microform, paper, electronic and/or any other formats.

The author retains copyright ownership and moral rights in this thesis. Neither the thesis nor substantial extracts from it may be printed or otherwise reproduced without the author's permission.

In compliance with the Canadian Privacy Act some supporting forms may have been removed from this thesis.

While these forms may be included in the document page count, their removal does not represent any loss of content from the thesis.

AVIS: L'auteur a accordé une licence non exclusive permettant à la Bibliothèque et Archives Canada de reproduire, publier, archiver, sauvegarder, conserver, transmettre au public par télécommunication ou par l'Internet, prêter, distribuer et vendre des thèses partout dans le monde, à des fins commerciales ou autres, sur support microforme, papier, électronique et/ou autres formats.

L'auteur conserve la propriété du droit d'auteur et des droits moraux qui protège cette thèse. Ni la thèse ni des extraits substantiels de celle-ci ne doivent être imprimés ou autrement reproduits sans son autorisation.

Conformément à la loi canadienne sur la protection de la vie privée, quelques formulaires secondaires ont été enlevés de cette thèse.

Bien que ces formulaires aient inclus dans la pagination, il n'y aura aucun contenu manquant.
TABLES DES MATIÈRES

TABLES DES MATIÈRES .. I
LISTE DES FIGURES... IV
LISTE DES TABLEAUX.. VI
LISTE DES ABRÉVIATIONS... VII
RÉSUMÉ...

INTRODUCTION ... 2

I.1 LES PETITS ARN RÉGULATEURS PROCARYOTES ... 2
I.2 RyhB, UN PETIT ARN RÉPONDANT À UNE CARENCE EN FER 6
 I.2.1 Le fer : un nutriment essentiel, mais toxique .. 6
 I.2.2 La régulation du fer intracellulaire .. 7
 I.2.3 Le petit ARN régulateur RyhB ... 9
 I.2.3.1 La régulation de l'expression de RyhB ... 11
 I.2.3.2 Le mécanisme d'action de RyhB .. 12
I.3 LA CHAPERONNE ARN Hfq .. 16
 I.3.1 Hfq, protéine aux rôles multiples chez la bactérie 16
 I.3.2 Régulation de la transcription et abondance de Hfq 17
 I.3.3 Structure de Hfq .. 18
 I.3.3.1 Hfq, une protéine de type Sm ... 18
 I.3.3.2 Caractéristiques structurales de Hfq ... 20
 I.3.4 Hfq et l'ARN ... 23
 I.3.5 Hfq et les petits ARN .. 26
I.4 OBJECTIFS ET SYSTÈME EXPÉRIMENTAL .. 29
 I.4.1 Les cibles de RyhB .. 31
 I.4.2 Deux non-cibles de RyhB ... 34
 I.4.3 Un ARNm contrôle négatif ... 36
CHAPITRE 2... 85

2.1 MATÉRIELS ET MÉTHODES SUPPLÉMENTAIRES.............................. 85

2.1.1 Construction des souches utilisées pour la purification des
protéines ... 85

2.1.2 Purification des protéines Hfq WT-His6 et Hfq Y55A-His6.................. 85

2.1.3 Expériences avec carA ... 86

2.2 RÉSULTATS SUPPLÉMENTAIRES ... 87

2.2.1 Étude de la protéine Hfq Y55A .. 87

2.2.1.1 Hfq Y55A-His6 ne complémente pas la demi-vie de DsrA in
vivo ... 87

2.2.1.2 Purification des protéines Hfq WT-His6 et Hfq Y55A- His6... 88

2.2.1.3 La protéine Hfq Y55A-His6 ne lie pas RyhB et les ARNm in
vitro ... 91

2.2.2 Étude de l'ARNm carA... 93

2.2.2.1 carA, un ARNm non-cible de RyhB .. 93

2.2.2.2 Hfq lie carA in vitro ... 95

2.2.2.3 Hfq ne distingue pas la non-cible carA de la cible acnB.......... 96

2.2.2.4 Hfq permet l'appariement de RyhB sur carA 98

2.2.2.5 Hfq inhibe très fortement la traduction de l'ARNm carA 99

DISCUSSION... 101

3.1 DISTINCTION ENTRE LES ARNs CIBLES ET NON-CIBLE 101

3.1.1 Hypothèse #1 : Structure des ARNm .. 102

3.1.1.1 Structure des ARNm (en absence de Hfq)................................ 103

3.1.1.2 Structure des ARNm liés à Hfq .. 107

3.1.2 Hypothèse #2 : Implication d'un facteur protéique inconnu dans la
reconnaissance de Hfq par les ARNm cibles .. 108

3.2 LA MUTATION Y55A AFFECTE LES CAPACITÉS DE Hfq À LIER
LES ARN .. 113

3.3 carA, UN ARNm NON-CIBLE? .. 117

CONCLUSIONS ... 123

REMERCIEMENTS ... 125

BIBLIOGRAPHIE ... 126
LISTE DES FIGURES

INTRODUCTION

Figure I.1 Structure secondaire de RyhB. ... 10
Figure I.2 Régulation de l’expression de RyhB.. 12
Figure I.3 Mécanisme d’action de RyhB. .. 15
Figure I.4 Structure primaire de la protéine Hfq et des protéines Sm ou Sm-like. 19
Figure I.5 Structures secondaire, tertiaire et quaternaire de Hfq. 22
Figure I.6 Structure du complexe Hfq-AU5G.. 24
Figure I.7 Structure tridimensionnelle de Hfq... 26
Figure I.8 Représentation de l’ARNm sodB et de son unité transcriptionnelle.... 32
Figure I.9 Unité transcriptionnelle des gènes acnB, fumA et de l’opéron
 sdhCDAB.. 34
Figure I.10 Unité transcriptionnelle des gènes uup et carA. 36
Figure I.11 Unité transcriptionnelle du gène icd. ... 37

CHAPITRE 1

Figure 1 RyhB pairing regions on the targets and non-target mRNAs................. 50
Figure 2 RyhB only affects the level of target mRNAs.. 52
Figure 3 Hfq binds targets and non-target mRNAs.. 54
Figure 4 Hfq binds preferentially on target mRNAs... 56
Figure 5 Hfq promotes RyhB pairing specifically with target mRNAs................. 59
Figure 6 Hfq opens the initiation of translation region of target mRNAs. 60
Figure 7 Hfq specifically reduces translation of mRNA targets in vitro. 62
Figure 8 Hfq reduces the level of mRNA targets in vivo.................................... 64
Figure 9 Hfq destabilizes target mRNAs in vivo... 66
Figure 10 The mutant Hfq Y55A complements the reduced half-life of target
 mRNAs in vivo. ... 68
Figure 11 The mutant Hfq Y55A does not complement the reduced half-life of the
 sRNA RyhB. .. 69
Figure 12 Working model of the role of Hfq in the mechanism of sRNAs.......... 71
CHAPITRE 2

Figure 2.1 *Demi-vie du petit ARN DsrA.* ... 88
Figure 2.2 *Protéines Hfq WT-His6 et Hfq Y55A-His6 purifiées.* 90
Figure 2.3 *Hfq Y55A-His6 ne lie ni les ARNm, ni le petit ARN RyhB.* 92
Figure 2.4 *Région d'appariement potentielle de RyhB sur l'ARNm carA.* 93
Figure 2.5 *Effet de RyhB sur les ARNm cibles, non-cibles et sur l'ARNm contrôle négatif.* ... 95
Figure 2.7 *Essai de compétition entre l'ARNm cible acnB et l'ARNm non-cible carA pour la protéine Hfq.* ... 97
Figure 2.8 *Hfq favorise l'appariement entre RyhB et un ARNm non-cible.* 98
Figure 2.9 *Hfq inhibe la traduction in vitro de carA.* .. 100

CHAPITRE 3

Figure 3.1 *Réaction de transestérification intramoléculaire de l'ARN.* 105
Figure 3.2 *Fusion traductionnelle du gène carA avec le gène lacZ.* 119
Figure 3.3 *Régulation transcriptionnelle de l'opéron carAB par Fur et régulation post-transcriptionnelle du transcrit carAB par RyhB.* 121
LISTE DES TABLEAUX

CHAPITRE 1

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Strains used in this study</td>
<td>45</td>
</tr>
<tr>
<td>II</td>
<td>Constants of Hfq binding on RNAs</td>
<td>55</td>
</tr>
</tbody>
</table>

CHAPITRE 2

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Oligonucléotides utilisés dans l'étude de carA</td>
<td>86</td>
</tr>
<tr>
<td>Abbr.</td>
<td>Definition</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>------------</td>
<td></td>
</tr>
<tr>
<td>ARN</td>
<td>acide ribonucléique</td>
<td></td>
</tr>
<tr>
<td>ARNm</td>
<td>ARN messager</td>
<td></td>
</tr>
<tr>
<td>ARNt</td>
<td>ARN de transfert</td>
<td></td>
</tr>
<tr>
<td>ATP</td>
<td>Adénosine triphosphate</td>
<td></td>
</tr>
<tr>
<td>E. coli</td>
<td>Escherichia coli</td>
<td></td>
</tr>
<tr>
<td>Fe(II)</td>
<td>Fe²⁺, fer ferraux</td>
<td></td>
</tr>
<tr>
<td>Fe(III)</td>
<td>Fe³⁺, fer ferrique</td>
<td></td>
</tr>
<tr>
<td>FRET</td>
<td>« Fluorescence Resonance Energy Transfer »</td>
<td></td>
</tr>
<tr>
<td>Fur</td>
<td>« Ferric Uptake Regulator »</td>
<td></td>
</tr>
<tr>
<td>Hfq</td>
<td>« Host factor for Qβ phage replication »</td>
<td></td>
</tr>
<tr>
<td>His₆</td>
<td>Hexahistidine</td>
<td></td>
</tr>
<tr>
<td>kDa</td>
<td>kiloDalton</td>
<td></td>
</tr>
<tr>
<td>Lf</td>
<td>Lactoferrine</td>
<td></td>
</tr>
<tr>
<td>NBP</td>
<td>« Nucleotide Binding Pocket »</td>
<td></td>
</tr>
<tr>
<td>qPCR</td>
<td>PCR quantitatif</td>
<td></td>
</tr>
<tr>
<td>SD</td>
<td>Shine-Dalgarno, site de liaison des ribosomes</td>
<td></td>
</tr>
<tr>
<td>SDS-PAGE</td>
<td>« Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis »</td>
<td></td>
</tr>
<tr>
<td>sRNA</td>
<td>Petit ARN</td>
<td></td>
</tr>
<tr>
<td>TCA</td>
<td>Acide tricarboxylique</td>
<td></td>
</tr>
</tbody>
</table>
RÉSUMÉ

Université de Sherbrooke

Rôle de la protéine chaperonne Hfq dans la spécificité de l’appariement du petit ARN RyhB avec ses ARNm cibles

Par
Mélina Arguin
Département de Biochimie
Mémoire présenté à la Faculté de médecine
en vue de l'obtention du grade
maître ès sciences (M.Sc.) en Biochimie
15 mai 2007

Un intérêt certain s’est développé pour les petits ARN (sRNA) depuis qu’ils ont été identifiés comme d’importants régulateurs métaboliques et adaptateurs aux stress chez la bactérie. Chez l’entrobactérie *Escherichia coli*, plus d’une soixantaine de petits ARN sont connus ; ces ARN de moins de 300 nucléotides ne codent en général pour aucune protéine. L’un de ces petits ARN, RyhB, est impliqué dans le métabolisme du fer. La régulation de gène *ryhB* est contrôlée par Fur, un répresseur de transcription liant le fer, et le gène est exprimé lorsque la bactérie est soumise à une carence en fer. Une fois exprimé, le petit ARN RyhB s’apparie à une vingtaine d’ARN messagers (ARNm) cibles, et le duplex d’ARN est dégradé par un mécanisme dépendant de la RNase E. Étant donné que toutes les cibles de RyhB codent pour des protéines qui utilisent le fer ou l’emmagasinent, ce mécanisme permet de réguler étroitement l’utilisation du fer lorsque ce métal se fait rare. Le mécanisme d’appariement très spécifique de RyhB sur ses cibles est peu connu. Cependant, il a déjà été proposé qu’une protéine chaperonne ARN, Hfq, pourrait promouvoir l’appariement entre RyhB et ses cibles : en se liant sur chacun des ARN, la protéine les rapprochait dans l’espace, favorisant l’appariement. Aussi, il a été démontré que la présence de cette protéine était essentielle au maintien de l’intégrité de RyhB. Dans cette étude, nous proposons qu’en plus de promouvoir l’interaction de RyhB avec ses cibles, Hfq serait un acteur essentiel pour la spécificité de cette interaction. Nous avons établi un système comparatif entre les cibles de RyhB et d’un ARNm cible potentiel, dit non-cible. Nous avons d’abord caractérisé la liaison de Hfq avec ses ARNm cibles, puis l’avons comparé celle de la non-cible. Nous avons pu ainsi montrer une préférence de Hfq pour les ARNm cibles. Nous montrons clairement que Hfq favorise l’appariement de RyhB aux cibles, mais inhibe son appariement avec la non-cible. De plus, nous avons déterminé que Hfq semble se lier aux ARNm cibles sur leur région d’initiation de la traduction, affectant la traduction, et par le fait même, leur stabilité. Finalement, nous croyons que c’est la protéine chaperonne Hfq qui détermine spécifiquement quels ARNm RyhB doit cibler.
INTRODUCTION

I.1 LES PETITS ARN RÉGULATEURS PROCARYOTES

Parmi les microorganismes potentiellement pathogènes pour l’humain, *Escherichia coli* (*E. coli*) est sans aucun doute le plus étudié, et par conséquent le mieux caractérisé. Modèle procaryote par excellence, il est un outil indispensable pour de nombreux champs de la biologie moléculaire, la microbiologie, la biochimie et la biotechnologie. Depuis sa découverte en 1885 par Theodor Escherich, *E. coli* a fait l’objet d’innombrables travaux de recherche, autant pour comprendre les différents aspects de la virulence de certaines souches que pour connaître le fonctionnement et la régulation de son métabolisme.

Tout récemment, un nouveau domaine de la recherche sur *E. coli* s’est développé, soit l’étude de ses petits ARN (sRNA). Ces ARN sont exprimés dans des conditions précises, et peuvent exercer des fonctions régulatrices sur d’autres ARN ou sur des protéines. Bien que l’existence d’un petit nombre de ces riborégulateurs soit connue depuis le milieu de la décennie 1960, leurs rôles au sein de la bactérie n’avaient soulevé que peu d’intérêt jusqu’à tout récemment.

Le séquençage complet du génome d'E. coli (Blattner et al. 1997) a permis l'émergence des techniques de criblage génomique et le développement de biopuces, des outils puissants qui ont accéléré la découverte de nombreux petits ARN (Wassarman et al. 2001). Ces nouveaux petits ARN aux fonctions variées ont fourni des explications à plusieurs phénomènes de régulation inexpliqués.

Le séquençage subséquent d'autres organismes procaryotes a permis de comparer entre eux les génomes bactériens. Les résultats de cette comparaison ont suggéré que de nombreux petits ARN de E. coli avaient des orthologues chez d'autres espèces bactériennes. Par exemple, le petit ARN RyhB de E. coli possède une forte similitude avec RyhB de Klebsiella pneumoniae, Salmonella typhimurium, Yersinia pestis et Vibrio cholerae (Masse and Gottesman 2002).

En général, toutes les espèces bactériennes chez qui des petits ARN ont été découverts les utilisent comme régulateurs métaboliques, ou pour la régulation de la pathogénicité (chez certaines souches). Chez E. coli, RyhB est exprimé en absence de fer et régule négativement les niveaux des ARNm qui codent des protéines liant le fer. Chez Pseudomonas aeruginosa, ce sont deux petits ARN dupliqués en tandem, PrrF1 et
PrrF2, qui occupent cette fonction régulatrice, bien qu’ils ne partagent aucune homologie de séquence avec RyhB (Wilderman et al. 2004). Chez la famille d’entérobactéries *Shigella*, RyhB est non seulement impliqué dans l’homéostasie du fer, mais aussi dans la virulence bactérienne, car il cible *virB*, un ARNm requis pour l’expression des plusieurs gènes de virulence (Murphy and Payne 2007).

Cependant, il existe chez les procaryotes d’autres types de riborégulation. À titre d’exemple, chez *Staphylococcus aureus*, il est connu que de nombreux gènes impliqués dans la virulence et la croissance de la bactérie sont régulés positivement ou négativement par la protéine Agr (pour revue, voir Novick 2003). La transcription de *agr* est elle-même régulée par un riborégulateur, un ARNm de 514 nucléotides, RNAIII, dont la région non codante peut s’apparier à *agr* (Vandenesch et al. 1991).

Parallèlement aux petits ARN, plusieurs espèces bactériennes régulent l’expression de certains de leurs gènes via les « riboswitch », des aptamères présents à l’extrémité 5’ d’ARNm. Ce sont des éléments fortement structurés, qui peuvent lier un ligand spécifique (souvent un métabolite). Les « riboswitch » adoptent une conformation qui régule la transcription ou la traduction de ces ARNm en réponse à la liaison du ligand (Nudler and Mironov 2004; Soukup and Soukup 2004; Serganov et al. 2006). Par exemple, l’ARNm *thi* de *E. coli* (codant pour des enzymes de la biosynthèse de la thiamine) lient avec une très grande affinité le thiamine pyrophosphate. En présence de thiamine, l’extrémité 5’ non-traduite des ARNm *thi* adopte une conformation qui, en séquestrant le site d’initiation de la traduction, diminue la traduction de ces ARNm. Ces exemples de riborégulation chez les bactéries illustrent bien l’importance des
ARN dans la régulation de nombreux métabolismes. Ces ARN sont, de surcroît, souvent conservés chez un grand nombre d’espèces bactériennes.

A ce jour, une soixantaine de petits ARN, dont la taille varie entre 50 et 300 nucléotides, sont connus chez *E. coli*. Ils agissent selon divers mécanismes, soit par des appariements ARN-ARN, des interactions ARN-protéine, ou encore via une activité enzymatique intrinsèque (revue dans Wassarman et al., 1999)). Ces ARN accomplissent diverses fonctions cellulaires régulatrices, incluant la maturation de l’ARN (Gopalan et al., 2002), la stabilité et la traduction des ARNm (Majdalani et al., 1998; Zhang et al., 1998; Masse and Gottesman, 2002), et l’activité de certaines protéines (Wassarman and Storz, 2000).

Une caractéristique importante des petits ARN régulateurs concerne leur expression, qui est souvent induite par un stress particulier. Les bactéries peuvent être soumises à différents stress durant leur existence. Par exemple, des changements brusques de température, des stress oxydatifs, des carences nutritionnelles provoquées par l’atteinte de la phase stationnaire de croissance. Tous ces changements environnementaux nécessitent une adaptation immédiate pour éviter des dommages cellulaires ou des dépenses énergétiques superflues. Par conséquent, les organismes procaryotes ont évolué de façon à pouvoir contrôler l’expression de leurs gènes rapidement, dans une condition donnée, entre autres par la production de petits ARN. À titre d’exemple, notons le petit ARN RyhB, qui est induit spécifiquement lorsque la bactérie subit une carence en fer.
I.2 RyhB, UN PETIT ARN RÉPONDANT À UNE CARENCE EN FER

I.2.1 Le fer : un nutriment essentiel, mais toxique

Pour presque tous les organismes, le fer (Fe$^{2+}$ ou fer ferreux) est un élément essentiel. Ce métal est utilisé par un grand nombre d’enzymes impliquées dans des voies métaboliques aussi vitales que le cycle de l’acide tricarboxylique (TCA, communément appelé cycle de Krebs), la respiration, la synthèse et la réparation de l’ADN, ainsi que la synthèse de métabolites (revue dans Masse and Aruquin (2005)). Le fer est incorporé dans ces enzymes sous forme de groupement fer-soufre (par exemple dans l’hème), ou encore il est utilisé comme cofacteur. Étant donné son importance, il est vital pour les microorganismes de pouvoir l’acquérir de l’environnement.

En masse, le fer est l’élément le plus abondant de notre planète, et constitue 5% de la croûte terrestre. Malgré son abondance, le fer est pratiquement indisponible pour le vivant, puisqu’il devient insoluble (fer ferrique, Fe$^{3+}$) en présence d’oxygène et à pH neutre. Aussi, à l’intérieur d’un hôte, les bactéries ont difficilement accès au fer, car l’hôte peut limiter de plusieurs façons le fer disponible (Barasch and Mori 2004). Par exemple, la lactoferrine (Lf) humaine est une protéine globulaire primordiale dans la réponse immunitaire. Lf possède une activité lytique directe sur les pathogènes, affecte l’adhésion des microbes aux cellules hôtes et séquestre le fer avec une forte affinité
(Legrand et al. 2006). Néanmoins, la bactérie a su évoluer de façon à pouvoir contourner les défenses de l’hôte afin d’en acquérir le fer (voir section I.2.2).

D’un autre côté, un excès de fer intracellulaire peut être toxique pour la bactérie. En présence de peroxyde d’hydrogène (produit issu du métabolisme cellulaire normal), le Fe$^{2+}$ catalyse la formation de radicaux libres, selon la réaction de Fenton:

\[
(1) \quad \text{Fe}^{2+} + \text{H}_2\text{O}_2 \rightarrow \text{Fe}^{3+} + \text{OH}^+ + \text{OH}^{-}
\]

\[
(2) \quad \text{Fe}^{3+} + \text{H}_2\text{O}_2 \rightarrow \text{Fe}^{2+} + \text{OOH}^- + \text{H}^+
\]

Le Fe$^{3+}$ formé dans la réaction (1) est ensuite réduit pour redevenir sous forme Fe$^{2+}$ (2). Il résulte de cette réaction des radicaux hydroxyles extrêmement réactifs (OOH$^-$), qui peuvent attaquer les acides nucléiques et les membranes cellulaires. Donc, en grande concentration, le fer intracellulaire est radicalement toxique pour les microorganismes. Pour cette raison, il est très important pour ces microorganismes de pouvoir maintenir le niveau de fer à une concentration intracellulaire optimale. Plusieurs systèmes assurent le maintien d’un équilibre des taux de fer dans la cellule.

I.2.2 La régulation du fer intracellulaire

L’acquisition du fer chez *E. coli* se fait selon divers modes. D’abord, lorsque les niveaux de fer intracellulaire sont faibles, la bactérie synthétise des sidérophores nommés entérobaactines (ou entérochelines). Ces molécules de faible poids moléculaire, qui possèdent une affinité très élevée pour le fer, sont sécrétées dans l’environnement pour y séquestrer le fer. Les bactéries expriment plusieurs

Plusieurs autres systèmes d’acquisition du fer sont utilisés pour introduire dans la cellule des composés comme le citrate ferrique, l’hème, la lactoferrine et la transferrine. Aussi, en condition anaérobie, qui rend le fer soluble (Fe^{2+}), E. coli peut acquérir le fer directement via un système ATP-dépendant spécifique au fer ferreux (Kammler et al. 1993). L’excès de fer peut également être mis en réserve dans les ferritines et les bactérioferitines (revue dans Andrews et al.(2003)).

Lorsque le niveau de fer intracellulaire devient suffisant, il est nécessaire de cesser l’acquisition du fer à cause de ses effets toxiques potentiels. Chez E. coli, la protéine Fur (Ferric Uptake Regulator) réprime la transcription des gènes impliqués dans l’acquisition du fer. Fur est un régulateur dimérique, dont chacune de ses sous-unités peut lier un atome de fer. Lorsque Fur est lié à du fer, il adopte une conformation lui permettant de reconnaître une séquence d’ADN consensus de 19pb, la boîte Fur. Cette

Un autre moyen de gérer le niveau de fer intracellulaire consiste à moduler l’utilisation de ce fer. En condition de carence en fer, il est primordial de limiter l’usage du fer par des protéines non essentielles, afin que le métal puisse être utilisé par les protéines essentielles (la ribonucléotide réductase, par exemple). Cette fonction est accomplie par un petit ARN régulateur, RyhB. Lors d’une carence en fer, RyhB réprime spécifiquement les ARNm qui codent les métalloprotéines non-essentielles (Masse et Gottesman 2002; Masse et al. 2005).

I.2.3 Le petit ARN régulateur RyhB

RyhB est un petit ARN de 90 nucléotides constitué de trois tiges-boucles consécutives (voir Figure 1), qui a été identifié pour la première fois lors d’un criblage génomique à grande échelle des régions intergéniques de E. coli (Wassarman et al. 2001).
Figure I.1 *Structure secondaire de RyhB.* Le petit ARN de 90 nucléotides RyhB possède trois tiges-boucles et une région linéaire. Les nucléotides soulignés constituent le site de liaison à la protéine Hfq (Figure adaptée de Geissman and Touati 2004).

Peu après, il fut démontré que RyhB régulait négativement (via un processus de dégradation) des ARNm impliqués dans le métabolisme du fer, et que cette régulation était dépendante de la quantité de fer disponible, ainsi que du répresseur de transcription Fur (Masse and Gottesman 2002). Cette découverte a permis d’expliquer pourquoi certains gènes semblaient contrôlés par Fur alors que ce répresseur n’affectait même pas la transcription de ces gènes. Plus précisément, il avait été remarqué que la transcription de plusieurs gènes, dont *sodB* (un gène encodant la superoxyde dismutase), semblait régulée positivement par le répresseur Fur. Pourtant, la région promotrice de *sodB* ne contient aucun élément de liaison à Fur (boîte Fur). De plus, des délétions dans la région promotrice n’altéraient en rien cette régulation positive (Dubrac and Touati 2000). Les auteurs de cette étude avaient conclu qu’un élément régulateur en trans ou en cis contrôlé par Fur pouvait être à l’origine de cette régulation. Il a été démontré plus tard que le petit ARN RyhB, régulé par Fur, était le
responsable de cet effet observé sur sodB (Masse and Gottesman 2002). Parallèlement à cela, un groupe de recherche avait identifié à leur insu le promoteur de RyhB (inconnu à cette époque), qui contient une boîte Fur, dans une région qu’on croyait être une longue région 5’ non-traduite (Vassinova and Kozyrev 2000). La découverte de RyhB par Massé et al. (2002) a apporté une explication logique à cette régulation indirecte de Fur sur l’ARNm sodB.

Massé et Gottesman (2002) ont caractérisé RyhB et montré qu’il régulait négativement six ARNm cibles au niveau post-transcriptionnel. Trois de ces ARNm codent des enzymes du cycle du TCA, soit l’aconitase A (acnA), la fumarase A (fumA), et la succinate déshydrogénase (sdhCDAB). RyhB cible également d’autres ARNm : un qui code une autre enzyme, la superoxyde dismutase (sodB) et deux autres codant deux protéines qui emmagasinent le fer, la ferritine (fth) et la bactérioferritine (bfr).

Toutes ces protéines possèdent la particularité d’emmagasiner le fer ou de l’utiliser comme co-facteur. Une étude subséquente du même groupe (Masse et al. 2005) a évalué le nombre de transcrits régulés négativement par RyhB à au moins dix-huit, codants pour 56 protéines. À ce jour, il s’agit du petit ARN possédant le plus grand nombre de cibles. La répression des ARNm cibles qui codent des protéines liant le fer est un moyen rapide de diminuer le besoin en fer lorsqu’il est en faible quantité.

1.2.3.1 La régulation de l’expression de RyhB

Lors de la croissance dans un milieu riche en fer, l’expression de RyhB est réprimée par Fur (voir Figure 2A). Par contre, lorsque les niveaux de fer intracellulaire chutent,
Fur devient inactif, et libère le promoteur. RyhB est alors fortement exprimé (voir Figure 2B) (Masse and Gottesman 2002). De façon expérimentale, il est facile d’observer la dérépression de ryhB par Fur : en utilisant une souche Δfur (en général, une interruption fur::kan) ou encore en ajoutant au milieu de culture un chélateur de fer, le 2,2’-dipyridyl (Masse et al. 2003).

Figure I.2 *Régulation de l'expression de RyhB.* A. En présence de fer, le répresseur Fur lie le métal et réprime le gène RyhB. Lorsque le fer est absent, Fur devient inactif et la répression du gène ryhB est levée.

1.2.3.2 Le mécanisme d’action de RyhB

Dès l’apparition de la carence en fer, le petit ARN RyhB est rapidement exprimé (Masse et al. 2003). RyhB reconnaît alors ses ARNm cibles et s’y apparie, sur la base
d'une complémentarité partielle. Selon des prédictions basées sur l'alignement des séquences, cette région appariée varie entre 20 et 30 nucléotides et représente un appariement plutôt espacé, sauf pour un noyau de 7-11 nucléotides consécutifs (voir Figure 1A, Chapitre 1). Ces prédictions tiennent uniquement compte de la séquence, et non des structures secondaire et tertiaire des ARN. Sur les ARNm cibles, les régions d'appariement avec RyhB sont invariablement situées dans la région d'initiation de la traduction, au niveau de la région 5' non-traduite, et incluent parfois le début de la région codante. Il est intéressant de constater que la région de RyhB qui est impliquée dans l'appariement varie pour les différents ARNm cibles, et donc RyhB ne reconnaît pas de séquence consensus. Ceci confère probablement au petit ARN RyhB la possibilité de cibler une plus grande variété d'ARNm.

Une autre composante qui est fort probablement impliquée dans l'appariement est la chaperonne ARN Hfq. RyhB fait partie d'une grande famille de petits ARN qui utilisent cette protéine pour exercer leur action (Masse et al. 2003; Gottesman 2004). En effet, le rôle de Hfq dans l'appariement de petits ARN (Spot42, OxyS et DsrA) avec leur cible avait été suggéré il y a quelques années (Moller et al. 2002; Zhang et al. 2002; Moll et al. 2003a). Cependant, les détails concernant le rôle exact de Hfq dans le mécanisme de cet appariement ne sont pas encore connus.

Une fois que RyhB est apparié sur un ARNm cible, un complexe protéique, le dégradosome, reconnaît le duplex ARN-ARN. Au sein du dégradosome, la RNase E est un élément fonctionnel central. Cette endoribonucléase attaque spécifiquement l'ARN simple brin composé des séquences riches en A/U (McDowall et al. 1994). Il a toutefois été démontré qu'un G en position -2 par rapport au site de clivage pouvait

Certaines évidences montrent que la chaperonne Hfq participerait également au recrutement du dégradosome sur le complexe petit ARN-ARNm en s’associant à l’extrémité C-terminale de la RNase E, tel que suggéré par des essais de co-immunoprécipitation (Morita et al. 2005). Après le recrutement du dégradosome au
duplex d’ARN, les deux espèces d’ARN subissent une dégradation rapide. Toutes ces étapes sont résumées à la Figure I.3.

Figure I.3 Mécanisme d’action de RyhB. A. RyhB est réprimé en présence de fer par le répresseur Fur. Les ARNm cibles de RyhB sont traduites normalement. B. En absence de fer, RyhB est exprimé, et s’apparait sur une vingtaine d’ARNm cibles via la protéine chaperonne Hfq. Le dégradosome est recruté, et induit la dégradation du complexe ARN-ARN. Figure adaptée de Massé et al (2007b).
I.3 LA CHAPERONNE ARN Hfq

La protéine Hfq (ou HF-1) a été décrite pour la première fois en 1968 comme étant un facteur cellulaire essentiel à la réplication du phage à ARN Qβ, d'où la dénomination Hfq, pour « Host factor for Qβ phage replication » (Franze de Fernandez et al. 1968).

I.3.1 Hfq, protéine aux rôles multiples chez la bactérie

La protéine chaperonne Hfq possède un rôle indéniable au sein du mécanisme d'action des petits ARN, qui modulent la synthèse de certaines protéines ; soit en affectant la stabilité des ARNm ou leur traduction. (Zhang et al. 1998; Vytytyska et al. 2000; Sledjeski et al. 2001). Cette protéine semble aussi impliquée dans de nombreux processus cellulaires apparemment indépendants des petits ARN, comme la poly-adénylation de certains ARNm (Hajnsdorf and Regnier 2000).

De façon étonnante, il a été démontré que l’ARN polymérase pouvait interagir avec Hfq et la protéine ribosomale S1. Ceci suggère un rôle de Hfq dans le couplage de la transcription et de la traduction chez les procaryotes (Sukhodolets et al. 2003). Cette étude suggère également que Hfq possède une activité ATPase, mais le rôle de cette activité dans les fonctions de Hfq n’est pas encore connu.

Aussi, des constructions ont été créées dans le but d’observer les effets phénotypiques de l’absence de Hfq chez E. coli. L’insertion d’une cassette de résistance à la kanamycine dans le gène hfq (mutation hfqI) induit plusieurs phénotypes : des défauts
de croissance sévères, une diminution importante du surenroulement négatif de l’ADN plasmidique dans les cellules en phase stationnaire de croissance, une augmentation de la taille cellulaire, l’osmosensibilité, une augmentation de l’oxydation des sources de carbone, ainsi qu’une sensibilité accrue aux rayons ultraviolets. Ces phénotypes ne sont pas observés si la cassette de résistance à la kanamycine et insérée à la fin du gène \(hfq \) (mutation \(hfq2 \)) (Tsui et al. 1994). Une souche arborant cette insertion possède le même phénotype qu’une souche de type sauvage, et tient lieu de contrôle pour déterminer si l’insertion d’une cassette dans le gène \(hfq \) provoque des effets polaires; c’est-à-dire si elle affecte l’expression des gènes en aval de l’opéron dans lequel \(hfq \) se trouve (voir section 1.3.2). Malgré les nombreux phénotypes observés dans une souche mutante \(hfq1 \), les rôles précis de Hfq n’ont pas encore été éclaircis.

1.3.2 Régulation de la transcription et abondance de Hfq

Le gène \(hfq \) est le quatrième gène de l’opéron \(amiB-mutL-miaA-hfq-hflX-hflK-hflC \). Tous ces gènes encodent des protéines qui accomplissent diverses fonctions importantes telles que l’hydrolyse de la paroi cellulaire, la réparation de l’ADN, et la maturation des ARN de transfert (ARNt) (Tsui et al. 1996). La transcription de cet opéron est initiée à partir d’au moins cinq promoteurs (\(P_{mutL}, P_{miaA}, P_{hfq1}, P_{hfq2} \) et \(P_{3_hfq} \)), durant la phase exponentielle de croissance, en milieu riche et en absence de stress (Tsui et al. 1994; Tsui and Winkler 1994; Tsui et al. 1996). Une étude du même groupe avait suggéré l’autocontrôle de la protéine Hfq sur son propre ARNm (Tsui et al. 1997), ce qui fut plus tard confirmé lors de la découverte de deux sites de liaison de la protéine Hfq sur l’ARNm \(hfq \) (Vecerek et al. 2005). Les auteurs de cette étude ont observé la répression de la traduction de cet ARNm en présence de la protéine Hfq. La
protéine Hfq est plutôt abondante ; on dénombre environ 55 000 hexamères de Hfq par cellule durant la phase exponentielle de croissance. Toutefois, lorsque la phase stationnaire est atteinte, ce nombre chute de moitié (Ali Azam et al. 1999). La majorité de Hfq est retrouvée dans le cytoplasme, associée aux ribosomes, tandis qu’une fraction minoritaire est associée au nucléoïde (Kajitani et al. 1994). Étant donné les rôles multiples de la protéine Hfq, cette incidence élevée de la protéine dans la bactérie n’est pas surprenante.

I.3.3 Structure de Hfq

I.3.3.1 Hfq, une protéine de type Sm

Il est désormais bien connu que la protéine Hfq partage de nombreuses caractéristiques fonctionnelles et structurales avec une grande famille de protéines conservées appelées Sm (on qualifie généralement Hfq de protéine « Sm-like », ou LSm). Les protéines de type Sm sont retrouvées chez les eucaryotes, les archaebactéries et les bactéries. Ces protéines agissent comme chaperonnes pour des interactions protéine-protéine ou ARN-protéine. Elles accomplissent diverses fonctions, comme la régulation de l’épissage des pré-ARNm, la maturation des ARN nucléaires, la dégradation des ARNm et la traduction (Wilusz and Wilusz 2005). Les protéines membres de cette famille possèdent un motif bipartite appelé motif Sm, constitué de deux segments relativement conservés (Sm1 et Sm2) séparés par une région de longueur et de séquence variable (voir Figure I.4) (Branlant et al. 1982).
Figure 1.4 Structure primaire de la protéine Hfq et des protéines Sm ou Sm-like.

Ces protéines sont conservées chez diverses espèces eubactériennes, archéées et chez l’humain. Les domaines Sm sont identifiés (Tiré de Zhang et al. (2002)).

Chez *E. coli*, Hfq est associé depuis peu à la famille Sm (Moller et al. 2002; Zhang et al. 2002). Ces deux groupes ont démontré par microscopie électronique que la protéine Hfq s’assemble sous forme d’homohexamères, selon un arrangement en forme d’anneau d’un diamètre d’environ 70Å possédant une cavité centrale. Chez les eucaryotes, cette caractéristique structurale est retrouvée pour les protéines Sm et LSm, qui s’organisent de façon similaire en hétéroheptamères.

L’intérêt soulevé par la similitude de Hfq au niveau structural et fonctionnel avec les protéines Sm a conduit à la cristallisation de la protéine Hfq de *S. aureus* (Schumacher et al. 2002). La structure cristalline d’une version tronquée de Hfq de *E. coli* (Sauter et al. 2003), et plus récemment, la structure de Hfq chez *Pseudomonas aeruginosa* ont aussi été résolues (Nikulin et al. 2005), démontrant une grande similitude structurale chez ces trois espèces.
1.3.3.2 Caractéristiques structurales de Hfq

Chez *E. coli*, chaque sous-unité de Hfq comporte 102 résidus qui lui confèrent un poids moléculaire de 11,2 kDa (Zhang et al. 2002). Il faut au minimum les 70 premiers résidus pour obtenir un repliement appelé « Hfq-fold, ou Sm-fold » (retrouvé chez toutes les protéines Sm ou LSm), nécessaire à l'assemblage et à l'activité de Hfq. En fait, il a été démontré que des protéines portant des délétions dans la région C-terminale étaient encore actives (Tsui et al. 1994), bien que l'on sait maintenant que la présence de l'extrémité C-terminale améliore la stabilité de la protéine (Arluison et al. 2004). La protéine Hfq tronquée cristallisée dans les travaux de Sauter et al. (2003) contenait les acides aminés 1-72. D'ailleurs, la protéine Hfq de *S. aureus* ne contient que 77 résidus (Schumacher et al. 2002). Dans une autre étude, la protéine Hfq de *S. aureus* a été introduite dans une souche de *E.coli* et cela a permis de conclure que Hfq de *S. aureus* pouvait complémer les effets de l'inactivation de Hfq *in vivo* (Sonnenleitner et al. 2002).

Parmi plusieurs régions très conservées de la séquence en acides aminés de Hfq, notons celles qui forment des structures secondaires comme une hélice α et certains des feuillots β. Dans ces régions, quelques résidus sont moins conservés, ils sont remplacés par des acides aminés de la même famille. Par ailleurs, mentionnons aussi un motif très conservé appelé YKHAI (résidus 55-59) qui est situé dans une boucle au niveau du motif Sm2 (Sauter et al. 2003). Certains résidus importants pour l'assemblage de Hfq ou pour ses fonctions régulatrices ont été identifiés par des études de mutagénèse. Un groupe a récemment généré une quinzaine de mutants uniques, ainsi que quelques mutants doubles sur les faces proximale et distale de Hfq.
(Mikulecky et al. 2004). Ils ont ainsi identifié plusieurs acides aminés qui influencent l’activité de la protéine Hfq, notamment au niveau de sa capacité à lier différents types d’ARN. Deux acides aminés situés autour de la cavité centrale de l’hexamère, la tyrosine 55 (Y55) et la lysine 56 (K56), semblent très importants pour la liaison à l’ARN. Un autre résidu, l’histidine 57 (H57), semble aussi jouer le même rôle. Ces trois résidus font partie du motif YKHAI situé dans le motif Sm2, très conservé. Une autre étude s’est penchée sur une mutation de la valine 43 (V43), qui affectait sévèrement la liaison à l’ARN et sa capacité à stimuler l’élongation d’une queue poly-A par la poly-A polymérase (Ziolkowska et al. 2006). Cette étude a montré que la mutation de V43 affectait la position des chaînes latérales de Y55 et de K56, les empêchant de lier l’ARN.

Les six monomères de Hfq au sein du complexe hexamérique sont identiques. Chaque sous-unité consiste en un « Hfq-fold » constitué d’une hélice-α N-terminale (α1), suivie de 5 feuilles β (β1, β2, β3, β4, et β5) (Schumacher et al. 2002). Des boucles (ou « loops ») composées de quelques acides aminés appelées L1, L2, L3, L4 et L5 séparent chacune de ces structures (voir Figure I.5).
Figure I.5 **Structures secondaire, tertiaire et quaternaire de Hfq.** A. Structure secondaire de Hfq montrant l’hélice-α N-terminale et les cinq feuillets β consécutifs. B. Monomère montrant la structure tertiaire du Hfq-fold, commune aux protéines de la famille Sm et conservée chez tous les Hfq bactériens connus. C. Structure quaternaire de Hfq montrant l’assemblage de six sous-unités en un arrangement symétrique. Tiré de Schumacher et al. (2002). PDB :1kq1.

Parmi les acides aminés très conservés de cette protéine, notons la glycine 29, importante pour la structure de Hfq car elle permet la courbure du feuillet β2 (Schumacher et al. 2002). La conservation de la structure primaire de Hfq (ou la présence d’acides aminés de la même classe) permet un repliement et un assemblage très caractéristique des protéines Sm-like comme Hfq. Cette structure tertiaire,
extrêmement conservée parmi différentes espèces, semble être très importante pour les propriétés de Hfq. Chez *E. coli*, tout comme chez *S. aureus* (Schumacher et al. 2002), les sous-unités de Hfq sont maintenues ensemble par des interactions hydrogène entre les feuillets β4 et β5 de monomères adjacents. Cet assemblage est solidifié par des interactions hydrophobiques entre les chaînes latérales des acides aminés de α1 d’un monomère avec celles des feuillets β1 et β2 d’un monomère voisin (Sauter et al. 2003).

I.3.4 Hfq et l’ARN

Sur l’ARN, Hfq ne lie pas de séquence consensus. Ceci suggère que la liaison de Hfq sur l’ARN ne se fait pas avec une grande spécificité de séquence (Zhang et al. 2002). Plusieurs travaux ont montré la préférence de Hfq pour lier des régions d’ARN simple brin riches en A/U à proximité d’une ou de plusieurs tige-boucles (Kajitani et al. 1994; Moller et al. 2002).

L’importance de la protéine Hfq pour la cellule bactérienne dérive majoritairement de sa capacité à lier l’ARN. Des travaux de cristallographie sur Hfq originaire de différents organismes ont permis de montrer l’importance de plusieurs résidus et régions de la protéine pour la liaison à l’ARN (Schumacher et al. 2002; Sauter et al. 2003). Les travaux de Schumacher et al. (2002) montrent qu’un oligoribonucléotide AU3G se lie autour du pore central de l’hexamère de Hfq, du côté proximal de la protéine (voir Figure I.6). Sur cette face, la distribution des charges sur la surface entourant le pore est clairement électropositive (Schumacher et al. 2002), favorisant des interactions avec l’ARN, qui est chargé négativement.
La capacité de liaison à l’ARN de Hfq dépend de son arrangement structural. En effet, la disposition des feuilles β rapproche et positionne les boucles L3 et L5 de façon adjacente, permettant la formation d’une cavité, le « nucleotide binding pocket » (NBP). La localisation des chaînes latérales de certains acides aminés spécifiquement conservés du motif Sm1 (Lys41, Tyr42 dans L3) et du motif Sm2 (Tyr55, Lys56, dans L5) en direction du pore permet la formation d’interactions hydrogène avec la face Watson-Crick des adénines ou des uraciles (Sauter et al. 2003). Le cristal de Hfq-AU₅G publié par Schumacher et al. (2002) montre précisément les interactions qui relient les divers phosphates, atomes d’oxygène et d’azote des ribonucléotides aux résidus importants des motifs Sm1 et Sm2 mentionnés plus haut.

Une étude de mutagénèse de Hfq chez E. coli a montré, entre autres, que les mutations des acides aminés Y55 et K56 (situés autour de la cavité centrale) affectaient de façon variable la liaison de Hfq à différents types d’ARN : DsrA (un petit ARN), un poly-A,
rpoS (ARNm cible de DsrA), et l’oligonucléotide AU$_5$G. La liaison à ce dernier ARN est particulièrement affectée. De plus, certaines mutations sur la face proximale de la protéine diminuent légèrement, et de façon non-spécifique, la liaison aux mêmes ARN (Mikulecky et al. 2004).

Un hexamère de Hfq possède six NBP, ce qui multiplie son efficacité à lier des régions d’ARN riches en A/U. Toutefois, d’autres sites d’attachement potentiels à l’ARN ont été suggérés. En effet, les arginines 17 et 19 de l’hélice α1, ainsi que la queue N-terminale hydrophile située directement au dessus du NBP pourraient constituer des sites de liaison probables (Sauter et al. 2003). Le même groupe propose aussi que la queue C-terminale puisse potentiellement jouer ce même rôle à la périphérie de la protéine, car elle contient de nombreux acides aminés connus pour pouvoir lier l’ARN, soit l’histidine, la tyrosine, l’aspartate, et l’asparagine.

L’étude de Schumacher et al. (2002) montre que le côté distal de l’hexamère est non polaire. Il n’est donc pas probable qu’il puisse lier l’ARN, comme le montre leur cristal de Hfq-AU$_5$G (voir Figure 1.6). Cependant, l’étude de mutagénèse de Mikulecky et al. (2004) montre que des mutations sur la face distale affectent la liaison au poly-A. Comme Hfq possède un rôle dans la poly-adénylation, cette observation suggère que le contrôle de cette fonction puisse utiliser la face distale de la protéine. Il a aussi été suggéré par des travaux de cristallographie que les faces distales (à caractère non polaire, et donc hydrophobe) de deux hexamères puissent interagir ensemble pour former un dodécamère, et ce, en présence ou en absence d’ARN (Schumacher et al. 2002). Cette propriété pourrait avoir une implication importante dans le rôle de chaperonne de Hfq pour mener les petits ARN à leurs cibles.
Figure I.7 *Structure tridimensionnelle de Hfq.* A. Structure de la face proximale et vue de côté de la protéine hexamérique Hfq. B. Assemblage de deux hexamères de Hfq via leur côté distal, vu de côté. Adapté de Schumacher et al. (2002).

I.3.5 Hfq et les petits ARN

Les petits ARN ne s’apparentent avec leurs ARNm cibles grâce à de courtes séquences complémentaires interrompues. Il n’est donc pas surprenant que l’on ait soupçonné l’implication d’un tiers facteur pour faciliter l’interaction entre un petit ARN et sa cible.

Il est connu depuis quelques années que des petits ARN, comme DsrA (Sledjeski et al. 2001), Spot42 (Moller et al. 2002), OxyS (Zhang et al. 1998), SgrS (Kawamoto et al. 2005) et RyhB (Massé and Gottesman 2002; Massé et al. 2003) dépendent de la protéine Hfq pour leur activité et leur stabilité *in vivo*. Dans le cas de RyhB et de DsrA, l’activité du petit ARN est probablement directement dépendante de la liaison de Hfq sur le petit ARN (Massé et al. 2003; Moll et al. 2003a). Expérimentalement,
une approche *in vitro* de gel de retardement est souvent utilisée pour montrer une interaction directe entre Hfq et un petit ARN (Moller et al. 2002; Zhang et al. 2002; Geissmann and Touati 2004). Avec la découverte d'un nombre de plus en plus imposant de petits ARN liant Hfq, il est devenu évident que cette protéine devait jouer un rôle global dans la régulation par les petits ARN. Une étude de co-immunoprécipitation, suivie d'une analyse par puce à ADN, a montré qu'au moins quinze petits ARN connus, ainsi qu'une vingtaine d'ARN codés dans des régions intergénériques (des petits ARN potentiels) interagissaient avec Hfq *in vivo* (Zhang et al. 2003). Malgré ce nombre important, le mécanisme par lequel Hfq intervient dans la régulation des petits ARN est peu connu. Pour le découvrir, différents groupes de recherche ont déterminé le site de liaison à Hfq sur les petits ARN (généralement par de la cartographie avec des RNases ou avec des radicaux hydroxyles). Tel qu'attendu, des sites de liaison ont été identifiés sur des régions simple brin riches en A/U. Il fut aussi surprenant d'apprendre que Hfq pouvait aussi lier un ARNm cible de RyhB, *sodB*, et provoquer sur lui un changement structural (Geissmann and Touati 2004). À l'opposé, la structure de l'ARNm cible de DsrA, *rpoS* ne semble pas affectée par la liaison de Hfq (Lease and Woodson 2004). De façon générale, au cœur de l'étude des petits ARN, il est plus rare que les groupes de recherche s'intéressent à la relation individuelle de Hfq avec les ARNm cibles des petits ARN.

Au cours d'essais d'appariement *in vitro* entre un petit ARN et sa cible, plusieurs ont constaté la présence d'un complexe ternaire (petit ARN-Hfq-ARNm). (Moller et al. 2002; Zhang et al. 2002; Lease and Woodson 2004; Afonyushkin et al. 2005). Dans ces essais, les complexes formés entre les petits ARN et leurs cibles étaient plus importants en présence de Hfq, suggérant un rôle dans l'appariement. Des techniques
spectroscopiques avancées ont aussi permis de confirmer ce rôle, et de mesurer les changements de conformation induits par Hfq sur le petit ARN DsrA et sa cible rpoS de manière très précise (Arluisson et al. 2007). C’est grâce à ces observations qu’un titre de chaperonne ARN a été attribué à Hfq, pour son efficacité à favoriser l’appariement petit ARN-ARNm.

Plusieurs modèles ont été proposés pour l’appariement des petits ARN avec leur ARNm cibles via Hfq. On pourrait les classer en deux catégories, soit les mécanismes impliquant un ou plusieurs hexamères.

Dans le premier cas, Hfq lie d’abord le petit ARN dès son expression (cette liaison est essentielle à sa stabilité). Puis, ce complexe « petit ARN-Hfq » s’attache à un ARNm cible, ce qui rapproche dans l’espace les deux ARN partageant une séquence partiellement complémentaire (Lease and Woodson 2004; Kawamoto et al. 2005; Arluison et al. 2007). La présence de Hfq sur l’ARNm modifie sa structure et favorise l’appariement avec le petit ARN. Dans la plupart des modèles, la protéine est libérée après l’appariement des deux ARN. Il est probable que le petit ARN et l’ARNm puissent reconnaître des sites de liaison différents sur la protéine.

Depuis l’étude de Mikulecky et al. (2004), un autre modèle a émergé. Ce modèle est basé sur le fait que deux hexamères peuvent interagir ensemble via leur côté distal ; ce complexe dodécamérique exhibe alors deux faces pouvant lier l’ARN. Un dodécamère de Hfq pourrait lier le petit ARN sur l’une de ses faces et lier l’ARNm cible sur l’autre face, rapprochant ainsi les deux partenaires d’interaction. Une variante de ce modèle
stipule que deux hexamères de Hfq puissent lier séparément le petit ARN et l'ARNm, et qu'une interaction protéine-protéine surviendrait ensuite. Ce modèle est supporté par une étude qui a montré que la stoichiométrie de la liaison de Hfq avec DsrA était de deux hexamères de Hfq pour un ARN (Sun and Wartell 2006). Quoiqu'il en soit, aucun de ces modèles n'a été clairement démontré expérimentalement.

I.4 OBJECTIFS ET SYSTÈME EXPÉRIMENTAL

Bien qu'il soit établi que la protéine Hfq agisse comme chaperonne dans l'appariement de plusieurs petits ARN sur leur(s) ARNm cible(s), ce mécanisme demeure obscur. Dans cette étude, nous cherchons à montrer que Hfq joue un tel rôle pour faciliter l'appariement de RyhB sur ses ARNm cibles.

Une étude de Massé et al. (2005) a montré que RyhB réprimait au moins dix-huit transcrits. Cependant, étant donné la très pauvre complémentarité de séquence requise pour qu'un ARNm soit reconnu par RyhB, il est naturel d'envisager que le petit ARN pourrait en cibler bien davantage parmi le transcriptome de E. coli. Récemment, un programme informatique nommé Target RNA et voué à la recherche de cibles de petits ARN a été créé (Tjaden et al. 2006). Ce programme permet de trouver des appariements théoriques possibles (incluant des appariements G·U) entre un petit ARN et les ARNm de E. coli selon les restrictions désirées : la section de l'ARNm, la longueur de la région d'appariement, etc. Une telle recherche a été effectuée avec le
petit ARN RyhB, en utilisant les restrictions suivantes : une région d’appariement de sept nucléotides consécutifs directement sur, ou près du site d’initiation de la traduction. Tel qu’attendu, nous y avons retrouvé plusieurs cibles connues de RyhB. Étonnamment, plusieurs autres ARNm correspondaient à ces critères, sans toutefois être réprimés en présence de RyhB (Masse et al. 2005). Comment RyhB peut-il reconnaître précisément un groupe d’ARNm cibles impliquées dans le métabolisme du fer alors que d’autres ARNm leur sont similaires? Il est indispensable pour la cellule de pouvoir contrôler de façon très spécifique un mécanisme aussi drastique et irréversible que l’action de RyhB, car des ARNm importants, voire essentiels, pourraient être affectés. Selon ces évidences, nous croyons que la faible région d’appariement entre RyhB et ses ARNm cibles n’est pas suffisante pour dicter le destin de ces ARNm cibles. La spécificité de l’interaction doit provenir d’un autre élément, en l’occurrence la protéine chaperonne Hfq. Nous postulons l’hypothèse que la protéine chaperonne Hfq sert de guide afin que RyhB et ses cibles puissent s’apparier de manière spécifique.

Pour vérifier cette hypothèse, nous avons établi un système comparatif. Nous avons étudié le comportement de RyhB envers ses ARNm cibles par rapport à deux autres ARNm théoriquement ciblés par RyhB que nous avons nommé non-cibles. Nous voulions savoir si Hfq peut spécifier une préférence de RyhB envers ses ARNm cibles. Pour ce faire, il fallait caractériser de manière biochimique la liaison de Hfq avec ces différents types d’ARNm. Ensuite, nous avons étudié la préférence de Hfq à lier l’une ou l’autre des deux catégories d’ARNm parmi une population d’ARNm contenant une cible et une non-cible. Nous voulions également situer le site d’interaction de Hfq sur ces ARNm, puis vérifier l’impact de cette liaison in vivo et in vitro. Finalement, nous
avons voulu savoir si Hfq agissait comme chaperonne pour l’appariement de RyhB avec ces ARNm.

I.4.1 Les cibles de RyhB

Dans ce travail, nous définissons les cibles de RyhB comme étant des ARNm dont la stabilité est réduite en présence de RyhB in vivo. Ces ARNm sont connus dans la littérature comme étant régulés négativement par RyhB (Masse et al. 2005), et possèdent une séquence de complémentarité partielle à RyhB, précisément dans la région 5' non-traduite qui précède le début de la région codante. Cette région inclut la séquence de Shine-Dalgarno (SD, ou site de liaison des ribosomes) et chevauche souvent le codon d’initiation de la traduction. Par ailleurs, un appariement de RyhB sur cet endroit précis de l’ARNm est suffisant pour diminuer la traduction des ARNm cibles (Morita et al. 2006). Dans cette étude, nous caractérisons quatre ARNm cibles. Tous ces ARNm codent des enzymes qui utilisent le fer.

L’ARNm sodB est la cible la plus caractérisée de RyhB. Cet ARNm code l’enzyme FeSOD, une superoxyde dismutase contenant du fer. Cette enzyme utilise le fer, et joue un rôle important dans la détoxification des radicaux libres (Fridovich 1978). De nombreuses études se sont penchées sur la caractérisation de l’ARNm sodB en tant que cible de RyhB, autant in vivo que in vitro (Masse and Gottesman 2002; Masse et al. 2003; Vecerek et al. 2003; Geissmann and Touati 2004; Afonyushkin et al. 2005). Nous avons décidé d’étudier cet ARNm comme un contrôle pour valider nos résultats par rapport à des résultats publiés. L’ARNm sodB est réprimé environ 20 fois par RyhB (Masse et al. 2005). sodB est un ARNm de 636 nucléotides, dont la région 5'
non-traduite adopte la structure secondaire illustrée à la Figure 1.8A. La tige-boucle de l’extrémité 5’ rend l’ARNm sodB difficilement accessible à la dégradation par des RNases, ce qui se traduit par une longue demi-vie (Dubrac and Touati 2000; Masse et al. 2003) en absence de RyhB. Cette stabilité intrinsèque de sodB et le fort taux de répression observé en présence de RyhB expliquent bien l’intérêt porté à cet ARNm cible. L’unité transcriptionnelle de sodB est montrée à la Figure 1.8B.

Figure 1.8 Représentation de l’ARNm sodB et de son unité transcriptionnelle. A. Structure secondaire de l’ARNm sodB dans la région 5’ non-traduite (Tiré de Geissman and Touati (2004)) B. Unité transcriptionnelle du gène sodB. Les régulateurs de transcription sont représentés par des rectangles blancs pour les activateurs et noirs pour les répresseurs. Figure adaptée de http://ecocyc.org/.
L’ARNm acnB code l’enzyme aconitase B (AcnB), qui transforme le cis-aconitate en isocitrate au cours du cycle de l’acide tricarboxylique (TCA). Cet ARNm est réprimé environ quatre fois en présence de RyhB (Masse et al. 2005), et est davantage réprimé que son homologue de fonction, acnA qui est aussi reconnu par RyhB (Masse and Gottesman 2002). L’ARNm acnB possède 2597 nucléotides. L’unité transcriptionnelle de acnB est montrée à la Figure I.9.

sdhCDAB est un ARNm polycistronique de 3493 nucléotides qui comporte quatre gènes codant les sous-unités C, D, A et B de la succinate déshydrégénase. Cette enzyme produit le fumurate à partir du succinate dans le cycle du TCA. Sur l’ARNm, les gènes sdhC et sdhD se chevauchent sur 4 nt. Le petit ARN RyhB cible spécifiquement le début du gène sdhD, provoquant la répression de l’opéron sdhCDAB en entier d’un facteur 6.1X (Masse et al. 2005). L’unité transcriptionnelle de sdhCDAB est montrée à la Figure I.9.

L’ARNm du gène fumA code la protéine fumarase A, enzyme qui génère le malate à partir du fumarate au cours du cycle du TCA. Le transcript fumA possède une longueur de 1795 nucléotides, et il est réprimé 7.6X en présence de RyhB. L’unité transcriptionnelle de fumA est montrée à la Figure I.9.
Figure I.9 *Unité transcriptionnelle des gènes acnB, fumA et de l’opéron sdhCDAB*. Les régulateurs de transcription sont représentés par des rectangles blancs pour les activateurs et noirs pour les répresseurs. Figure adaptée de http://ecocyc.org/.

1.4.2 Deux non-cibles de RyhB

Nous définissons un ARNm non-cible comme un ARNm possédant une région d’appariement potentielle à RyhB dans la région 5’ non-traduite, tout comme les ARNm cibles (selon le programme TargetRNA, (Tjaden et al. 2006)), mais dont les niveaux ne sont pas affectés par RyhB. Autrement dit, il possède les mêmes caractéristiques de séquence que les ARNm cibles : RyhB devrait donc théoriquement pouvoir s’y apprîter. Par contre, un ARNm non-cible ne possède pas de lien connu avec le métabolisme du fer, et surtout ne sont pas réprimés par RyhB.

Parmi plusieurs ARNm proposés par TargetRNA, nous avons choisi *mup*, codant une protéine impliquée dans l’excision de transposons via l’hydrolyse de l’ATP.
(Murat et al. 2006). *uup* est le deuxième gène de l’opéron *rlmL-uup*, transcrit sous le contrôle du promoteur *rlmL*. La transcription de cet opéron génère un ARNm de 4200 nucléotides ciblé théoriquement par RyhB tout juste en amont du début du cadre de lecture de *uup*.

Nous trouvons que cet ARNm constitue un excellent contrôle, car en plus de ressembler en tout point à un ARNm cible, RyhB cible le deuxième gène de l’opéron, à l’instar de la cible *sdhCDAB*. L’unité transcriptionnelle de l’opéron *rlmL-uup* est représentée à la Figure I.10.

Dans le cadre de ce projet de recherche, nous avons étudié une deuxième non-cible, l’opéron *carAB*, défini de la même façon que *uup*. Les résultats obtenus avec cet ARNm ne sont pas traités dans l’article du Chapitre 1. Par contre, nous élaborerons ces résultats au Chapitre 2 de ce mémoire. *carAB* est un ARNm qui code les sous-unités A et B de l’enzyme carbamoyl phosphate synthétase, impliquée dans la synthèse des pyrimidines et de l’arginine (Thoden et al. 2004). Les deux sous-unités de la carbamoyl phosphate synthétase s’assemblent en un hétérotétramère pour former un complexe enzymatique fonctionnel.

carA et *carB* font partie d’une même unité transcriptionnelle de 4387 nucléotides, l’opéron *carAB* (voir Figure I.10). RyhB cible théoriquement la partie *carA* au niveau de la région 5’ non-traduite. Dans nos travaux *in vitro*, nous n’étudions que cette région de l’opéron *carAB*, et nous appelons cette non-cible l’ARNm *carA*.
I.4.3 Un ARNm contrôle négatif

Pour finir, nous avons inclus dans notre démarche expérimentale l’étude d’un ARNm qui ne possède aucune séquence partiellement complémentaire avec RyhB. Cet ARNm, icd, n’a pas de lien avec le métabolisme du fer, et la protéine qu’il code utilise le Mn$^{2+}$ comme cofacteur. Nous avons choisi icd, qui code l’isocitrate déshydrogénase, car c’est une enzyme du cycle du TCA, à l’instar de plusieurs ARNm cibles. Il a déjà été démontré expérimentalement que RyhB n’affecte pas la stabilité de icd (Masse and Gottesman 2002; Masse et al. 2005). L’unité transcriptionnelle du gène icd est représentée à la Figure I.11.
Figure I.11 *Unité transcriptionnelle du gène icd.* Les régulateurs de transcription sont représentés par des rectangles blancs pour les activateurs et noirs pour les répresseurs. Figure adaptée de http://ecocyc.org/.

Ce système étant établi, nous avons voulu déterminer comment Hfq pourrait spécifier l’interaction en RyhB et ses ARNm cibles exclusivement. Le Chapitre 1 contient l’article qui résume ce projet. Les résultats qui y sont présentés apportent la démonstration que malgré leur grandes ressemblances théoriques, les ARNm cibles et non-cibles possèdent des relations très différentes avec la protéine chaperonne Hfq, et c’est ce qui semble déterminer s’ils peuvent être ciblés par RyhB.
CHAPITRE 1

1.1 AVANT-PROPOS

Specific pairing between a sRNA and mRNA targets is determined by the RNA chaperone Hfq

Mélina Arguin, Karine Prévost, and Eric Massé

L’article a été rédigé principalement par Eric Massé. J’ai contribué à la rédaction de la section introduction de cet article, et rédigé la section Materials and Methods. J’ai aussi réalisé toutes les expériences de ce manuscrit, à l’exception des Figures 8A, 9 et 10 qui ont été effectuées par le deuxième auteur de l’article, Karine Prévost. Karine exécute présentement les expériences demandées par le comité de révision.

L’article corrigé sera soumis au même journal au début de l’automne 2007.
Specific pairing between a sRNA and mRNA targets is determined by the RNA chaperone Hfq

Mélina Arguin, Karine Prévost, and Eric Massé*

Université de Sherbrooke, Département de Biochimie, 3001 12e avenue, Sherbrooke, Québec, Canada, J1H 5N4

*Corresponding author:
Tel. 819-346-1110 ext. 15475
Fax. 819-564-5340
E-mail: eric.masse@usherbrooke.ca
ABSTRACT

Most of the work on the RNA chaperone Hfq has focused exclusively on its role with a specific group of small regulatory RNAs that basepair with their target mRNAs. One of these sRNAs, RyhB, regulates at least 18 mRNAs, making this molecule an excellent model to study how a sRNA specifically recognizes a large number of target mRNAs. We found that RNA-RNA pairing alone is not sufficient for specific interaction between the sRNA RyhB and its target mRNAs. Additionally, in vitro data demonstrate that Hfq binds more avidly the mRNAs targeted by RyhB as compared to non-target mRNAs. This indicates that Hfq determines the mRNAs targeted by the sRNA. Moreover, our in vivo assays demonstrate that lack of Hfq results in increased level of mRNAs targeted by RyhB. These data suggest that Hfq pre-selects the mRNAs targeted by sRNAs and increase the specificity by which the sRNA can pair with them.
INTRODUCTION

Small non-coding RNAs (sRNAs) play numerous roles in stress adaptation and development in bacteria, archea, and eukaryotes (Gottesman 2004; Gottesman 2005). Recently, the extensive use of genomic searches has lead to the discovery of more than 60 small non-coding RNAs in the bacterium *Escherichia coli* (Argaman et al. 2001; Wassarman et al. 2001). It is estimated that one-third of these small molecules acts by base-pairing and utilize the RNA chaperone Hfq to interact with their target mRNAs. Indeed, a study revealed that as much as 30 sRNAs co-immunoprecipitated with the Hfq chaperone (Zhang et al. 2003). In addition to stabilizing many sRNAs *in vivo*, Hfq facilitates the pairing between sRNAs and their cognate target mRNAs *in vitro* (Sledjeski et al. 2001; Moller et al. 2002; Zhang et al. 2002; Masse et al. 2003; Geissmann and Touati 2004).

Hfq is an RNA binding protein that prefers single stranded AU-rich regions of highly structured RNAs. (Moller et al. 2002; Zhang et al. 2002) Recent crystallography analysis demonstrated that Hfq monomers assemble into a ring-shaped homohexameric protein that is conserved in *Staphylococcus aureus* and *E. coli* (Schumacher et al. 2002; Sauter et al. 2003). Each monomer consists of an N-terminal helix followed by five β-sheets, separated by loops (Sauter et al. 2003). Some of the conserved structural features of Hfq form a cavity (nucleotide binding pocket) that can accommodate either an uracile or an adenine (Sauter et al. 2003). These studies suggest other RNA binding sites, such as the C-terminal end, and a few specific residues. In particular, one highly conserved residue, Y55, is located close to the
central pore of the ring. Since it is not involved in H-bond interaction, the Y55 residue is free to rotate around the core and bind RNA. The presence of multiple RNA binding sites on Hfq suggested in the literature (Mikulecky et al. 2004) is consistent with a chaperoning role of Hfq in sRNA-mRNA interactions.

Hfq not only plays an important role for sRNAs but also for mRNAs. For example, the mRNA *ompA* has been originally characterized as post-transcriptionally regulated by Hfq (Vytvyska et al. 1998; Vytvyska et al. 2000). In this case, the RNA chaperone Hfq competes with ribosomes for the translation initiation site and reduces *ompA* stability in a RNase E-dependent mechanism. Recently, Hfq-dependent translation of *ompA* mRNA by the sRNA MicA has been shown (Udekwu et al. 2005). Additionally, other mRNAs such as *hfq*, *fur*, and *sodB* have also been characterized as Hfq-regulated (VECEREK et al. 2003). This regulation suggests a role for Hfq in the regulation of iron uptake.

Other sRNAs such as RyhB, SgrS, DsrA, OxyS, and Spot42 are example of sRNAs using Hfq. Most of these sRNAs have been demonstrated to regulate one or two target mRNAs, with the exception of RyhB that regulates negatively at least 18 transcripts (Masse et al. 2005). To our knowledge, RyhB is the sRNA with the most target mRNAs, all of which encode iron-using proteins. Because of the important group of mRNAs regulated by RyhB, it is a useful conundrum to understand the factors involved in sRNA specificity (Masse et al. 2005). While RyhB has many target mRNAs, the pairing between both RNAs can be strikingly weak. This raises the question as whether the Hfq protein only helps the pairing at the nucleotide level or
does it increase the specific interaction between the two RNAs, thereby reducing the possible mispairing between a sRNA and a non-target mRNA.

One of the actual model of sRNA pairing with a target mRNA suggests that Hfq binds to the sRNA to help the interaction with the target mRNA (Mikulecky et al. 2004). Nearly all studies have focused on the association between Hfq and the sRNA, yet, only few studies have been purposely examining the role of Hfq on the mRNAs targeted by sRNAs. We have determined in vitro the affinity of Hfq for many target mRNAs, as well as RyhB and non-target mRNAs. Our results demonstrate that, at least for RyhB-dependent mechanism, Hfq binds target mRNAs with a stronger affinity for any other RNAs (sRNA or non-target mRNAs). In addition, our in vivo results indicate that Hfq binds to and reduces the stability of target mRNAs. These results suggest that Hfq preselects target mRNA from the mixed cellular RNA population.
MATERIALS AND METHODS

Strains and plasmids. Strains used in this work are described in Table I. Oligonucleotides used in this study are shown in Supplementary Table 1. The construction of plasmid pET21b-hfq and Hfq purification was described in Prévost et al. (2007). The plasmids pBAD-ryhB and pNM12 are described in Masse et al. (2005). The strain EM1059 (Δara714 leu::Tn10) was constructed by P1 transduction using KS272 as a donor strain. The strains EM1265 (hfq1::kan) and EM1266 (hfq2::kan) were derived from TX2808 and TX2758 by P1 transduction (Tsui et al. 1994). EM1451 (Δara714 leu+) was constructed by introducing a leu+ allele by P1 transduction and selecting on minimal media (Guzman et al. 1995). EM1455 was constructed by transducing the ryhB::cat allele from EM1238 into EM1451 (Masse and Gottesman 2002). The strains KP110 and KP111 were constructed by transducing the ryhB::cat allele from EM1238 into EM1266 and EM1265, respectively.
Table I *Strains used in this study*

<table>
<thead>
<tr>
<th>Strains name</th>
<th>Relevant markers</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>EM1055</td>
<td>MG1655 Δlac</td>
<td>Massé, 2002</td>
</tr>
<tr>
<td>DH5α</td>
<td>endA1 hsdR17 thr-1 recA1 gyrA relA1 ΔlacΔargR17Δmrr L-bro</td>
<td>Lab collection</td>
</tr>
<tr>
<td>BL21</td>
<td>ompT gal dcm lon hsdS with DE3 (T7 RNA pol)</td>
<td>Lab collection</td>
</tr>
<tr>
<td>TX2088</td>
<td>hfg1::kan</td>
<td>Tsui, 1994</td>
</tr>
<tr>
<td>TX2758</td>
<td>hfg2::kan</td>
<td>Tsui, 1994</td>
</tr>
<tr>
<td>KS272</td>
<td>Δara714 leu::Tn10</td>
<td>Guzman, 1995</td>
</tr>
<tr>
<td>MA6</td>
<td>BL21 DE3 pLyeS (p15A Cam) with pET21b-hfg</td>
<td>Prévost, 2007</td>
</tr>
<tr>
<td>EM1059</td>
<td>EM1055 Δara714 leu::Tn10</td>
<td>This work</td>
</tr>
<tr>
<td>EM1238</td>
<td>EM1055 rphB::cat</td>
<td>Massé, 2002</td>
</tr>
<tr>
<td>EM1265</td>
<td>EM1055 hfg1::kan</td>
<td>This work</td>
</tr>
<tr>
<td>EM1266</td>
<td>EM1056 hfg2::kan</td>
<td>This work</td>
</tr>
<tr>
<td>EM1451</td>
<td>EM1059 [Δara714…Δara714] Δara leu+</td>
<td>This work</td>
</tr>
<tr>
<td>EM1455</td>
<td>EM1451 [Δara leu+] rphB::cat</td>
<td>This work</td>
</tr>
<tr>
<td>KP111</td>
<td>EM1265 rphB::cat</td>
<td>This work</td>
</tr>
<tr>
<td>KP110</td>
<td>EM1266 rphB::cat</td>
<td>This work</td>
</tr>
<tr>
<td>KP112</td>
<td>EM1455 [Δara leu+, rphB::cat] + pBAD-rphB</td>
<td>This work</td>
</tr>
<tr>
<td>KP113</td>
<td>EM1455 [Δara leu+, rphB::cat] + pNM12</td>
<td>This work</td>
</tr>
</tbody>
</table>

Electrophoretic mobility shift assay of target mRNAs and RyhB with purified Hfq. All the RNAs used in this study for *in vitro* assays are transcribed as described in Prévost et al. (2007) using PCR templates generated with oligonucleotides shown in (see Supplementary Table 1). 5 nM 32P-labeled transcripts were heated at 90°C with 0.1 μg/reaction yeast tRNA for 2 min., then slowly cooled until the temperature reached 37°C. Samples were incubated for 10 min at 37°C in the presence or absence of increasing amounts of purified Hfq in 10 μl of binding buffer (10 mM Tris–HCl, pH 7.5, 5 mM magnesium acetate, 100 mM NH₄Cl and 0.5 mM DTT). After 1 min on ice for, the loading buffer was added and then samples were loaded on 5% native polyacrylamide gel (run in TBE 1X). We measured the K_{app} from
the initial binding slope divided by the time of the binding reaction (10 min). The
initial binding slope was calculated according to the plotted data of each RNAs tested
below 2.5 nM of Hfq hexamer.

EMSA kinetics of binary and ternary complexes assay. A mastermix of 5 nM
32P-labeled transcript and 0.05 µg/reaction yeast tRNA and another one with 40 nM
unlabelled transcript and 0.05 µg/reaction yeast tRNA were heated as described above.
Both mastermixes were divided in two secondary mixes, and 10 µl binding
buffer/reaction was added into each with or without 20 nM of purified Hfq hexamer.
After 10 min at 37°C, secondary mixes were pooled in the following manner: labeled
transcript + unlabelled transcript without Hfq, and labeled transcript + unlabelled
transcript with 20 nM Hfq. Aliquots of both final reactions were taken at times 0, 1,
2.5, 5, 10, 20 and 30 min. After cooling on ice for at least 1 min, loading buffer was
added and samples were then loaded on 5% native polyacrylamide gel (run in TBE
1X).

Total RNA extraction, Northern blot, and quantitative real-time PCR.
Overnight KP112A and KP113A cultures were incubated at 37°C in LB medium with
50 µg/ml ampicillin and diluted 1000 fold in 50 ml LB with ampicillin. Both cultures
were grown in duplicatas. Cultures were incubated at 37°C with agitation until they
reached OD₆₀₀ of 0.5. Expression of RyhB was induced by addition of 0.1% arabinose
(final concentration). Aliquots of 600 µl of the cultures were taken just before and 15
minutes after arabinose addition, and total RNA was extracted from the cells
according to the hot phenol method (Masse et al. 2003). Then, 20 µg of each RNA
extract was treated for 30 min with 8 units of Turbo DNase 1 from Ambion (Austin,
TX). The DNase was then removed with a phenol chloroform extraction and RNA was precipitated in ethanol and resuspended in water. The reverse transcription reactions were performed according to the Superscript II Reverse Transcriptase kit from Invitrogen (Carlsbad, CA) using 2.5 μg total RNA extract and 125 ng EM36 random oligonucleotide. Following this protocol, newly synthesized cDNA reactions were treated with 20 μg/ml of RNase A for 30 min at 37°C. The cDNA was then extracted with phenol chloroform, precipitated with ethanol and resuspended in sterile water. For the quantitative real-time PCR reactions, gene specific primers were designed using the PrimerQuest tool from IDT (Coralville, IA). For each transcript analyzed, a specific PCR product at known concentration was diluted in series from 5×10⁷ copies/μl to 5×10⁻³ copies/μl to generate the standard curve. Unknown samples were diluted 10 fold. In 20μl final volume reactions, 1μl of DNA and 250 nM forward and reverse primers (see Supplementary Table 1) were used with Platinum SYBR Green qPCR SuperMix-UDG from Invitrogen using the Rotor-Gene 3000 from Corbett Research. The relative quantification of each transcript was calculated by dividing the number of copies in the extract from the strain carrying pBAD-ryhB or pNM12 after 15 minutes of RyhB induction by the number of copies in the pNM12 strain extract.

RNase footprinting assays. Two identical series of 5nM 5'-labeled mRNA were incubated in the absence or presence of Hfq (0, 10, 20, 50 nM) in binding buffer during 10 min at 37°C, and then both series were subjected to either 1 μl of RNase T1 (Roche, diluted 1/100 in water for 2 min) or RNase T2 (Invitrogen, diluted 1/20 in water for 1 min) at room temperature (RT). After a phenol extraction, samples were precipitated in ethanol. Ladders were generated by fresh 0.2N NaOH cleavage of the
mRNA for 1 min at room temperature, and then they were precipitated in ethanol. Samples were run in a 8% acrylamide/8M urea gel in TBE 1X.

In vitro translation assays. These assays were performed using *E. coli* S30 extract for linear template (Promega). Two μg of purified full length transcript mRNA were used in the absence or presence of increasing molar ratio of Hfq. S30 extract was added to the reactions prior to Hfq. [^{35}S]methionine (1200 Ci/mmol at 15 mCi/ml) was used for labeling of newly synthesized proteins. Reactions were performed in a final volume of 20 μl, for 15 min at 37°C and then stopped by a 5 min ice bath, followed by acetone precipitation. Samples were then run on SDS-PAGE 12% acrylamide.
RESULTS

Bioinformatics search for RyhB target mRNAs. The sRNA RyhB is expressed during iron starvation and facilitates the degradation of many mRNAs encoding for iron-using proteins (Masse and Gottesman 2002; Masse et al. 2003). A microarray study demonstrated that RyhB down-regulates at least 18 transcripts, encoding a total of 56 proteins (Masse et al. 2005). However, despite the large number of regulated transcripts, the direct interaction between RyhB and its mRNA targets remained poorly defined. To determine this, we used TargetRNA computer software designed to score the best matches between bacterial sRNAs and potential mRNA targets (Tjaden et al. 2006). The parameters used include a RyhB-mRNA pairing, of at least 7 consecutive nucleotides (core pairing) at or near the translation start site of the mRNA. Various known RyhB targets such as *acnB, fumA, sdhCDAB*, and *sodB* scored among the best targets (Fig 1A). Interestingly, one highly scoring hit, *uup*, demonstrated an extensive RyhB pairing at the translation initiation site but has never been described previously as down-regulated by RyhB (Fig 1B). Thus, we used the potential target *uup*, encoding for an ATP-binding cassette (ABC) protein, for further analysis.
Figure 1
RyhB pairing regions on the targets and non-target mRNAs. (A) Interactions between target mRNAs and RyhB. Only the RyhB-sodB interaction has been characterized experimentally (Geissmann and Touati 2004). (B) Putative RyhB interactions with the non-target mRNA *uup* as determined by TargetRNA (Tjaden et al. 2006). Some of these interactions have been abbreviated (see Supplementary Fig 1 to 4 for full interaction).

The potential target mRNA *uup* is not targeted for degradation by the RyhB-dependent mechanism. As shown in Figure 1B, the pairing between RyhB and *uup* suggests that this mRNA is a potential target for RyhB-mediated degradation (Masse et al. 2003). To test this, we extracted total RNA from a strain overproducing
RyhB (pBAD-\textit{ryhB}, +RyhB) and a control strain (pNM12, -RyhB). We then used quantitative real-time PCR (see materials and methods for details) to determine the RNA level of the RyhB targets \textit{acnB}, \textit{fumA}, and \textit{sodB} and compared to \textit{uup} as well as the negative control, \textit{icd} (described in Masse and Gottesman (2002)). The results shown in Figure 2 suggest that under RyhB expression, the mRNA levels of \textit{sodB}, \textit{acnB}, and \textit{fumA} targets decreased significantly (about 10-fold). However, the \textit{uup} mRNA level is totally resistant to RyhB expression, which is also the case for the negative control \textit{icd}. This is consistent with previous microarray data that indicated no RyhB effect on the mRNA level of \textit{uup} (Masse et al. 2005). Thus, although the free energy of the potential RyhB pairing on the mRNA \textit{uup} (\textit{AG}=-27.0) is similar or even superior to that of target mRNAs (compare Fig 1A and B) \textit{sdhCD} (\textit{AG}=-36.5), \textit{sodB} (\textit{AG}=-18.9), \textit{fumA} (\textit{AG}=-26.5), or \textit{acnB} (\textit{AG}=-27.9), this is not sufficient for \textit{in vivo} degradation of the non-target mRNAs.
Figure 2

RyhB only affects the level of target mRNAs. Quantitative real-time PCR on target mRNAs and non-target mRNAs in the presence (+RyhB) or absence (-RyhB) of RyhB (see Materials and Methods for description of RNA extraction and quantitative real-time PCR analysis). Despite significant basepairing with RyhB, the non-target mRNA *uup* is insensitive to its expression. As opposed to *uup*, the *icd* mRNA does not display any significant basepairing with RyhB, and is considered to be a negative control.

Target mRNAs binding saturates Hfq more efficiently than a non-target mRNA. While the data in Figure 1 suggest that the sRNA RyhB pairs similarly with some target mRNAs (*acnB, fumA*, and *sdhCDAB*) and non-target mRNA (*uup*), only the target mRNAs are degraded *in vivo*. These surprising results suggest that a supplemental factor, in addition to the basepairing, is necessary the specific interaction between RyhB and its target mRNAs. A likely candidate for this specificity factor is the RNA chaperone Hfq, which is known to help the interaction between a sRNA and its cognate target mRNA (Moller et al. 2002; Zhang et al. 2002). Additionally, our previous *in vivo* results have demonstrated that RyhB down-regulates its target
mRNAs in an Hfq-dependent process (Masse and Gottesman 2002). To characterize the effect of Hfq on target and non-target mRNAs, we measured the binding affinity of the Hfq protein on both mRNA types. All mRNAs were incubated with increasing amount of Hfq protein and the complex formation was analyzed by mobility shift assays (see Fig 3A and B for *fumA* and *uup* binding to Hfq). As shown in Figure 3C, Hfq binds the target mRNA *fumA* with a hyperbolic curve, which suggests a strong initial binding. Also in Figure 3C, Hfq is shown to bind the non-target *uup* with a sigmoidal curve, suggesting a weak initial binding typical of a cooperative binding. All target mRNAs and the sRNA RyhB are plotted in Figure 3D. Interestingly, while Hfq binds all four target mRNAs with a hyperbolic binding curve, the bindings on RyhB sRNA, *uup*, and *icd* display a sigmoidal binding, suggesting cooperative bindings. This suggests that, compared to RyhB and non-target mRNAs, Hfq initial binding to target mRNAs is stronger and will likely favor them to form complexes. As shown in Table II, the Kd of target and non-target mRNAs are relatively similar. However, the K_{app} (calculated from initial binding slopes, see Materials and Methods for calculation) demonstrates that target mRNAs have a higher affinity (around 1 and above) for Hfq than non-target (below 1). Thus, our data suggests that Hfq binding is more effective on target mRNAs than non-target mRNAs or the sRNA RyhB.
Figure 3 Hfq binds targets and non-target mRNAs. (A) EMSA of *fumA*₂₄₇ mRNA with increasing amount of Hfq hexamers (0 nM; 0.05 nM; 0.1 nM; 0.5 nM; 1 nM; 2.5 nM; 10 nM; 20 nM; 40 nM). (B) EMSA of *uup₂₀₇* mRNA with increasing amount of Hfq hexamers (0 nM; 1 nM; 2.5 nM; 5 nM; 7.5 nM; 10 nM; 15 nM; 20 nM; 40 nM). (C) EMSA results plotted for *fumA*₂₄₇ target and *uup₂₀₇* non-target mRNAs, as well as the negative control *icd₁₅₆*. (D) EMSA results plotted for all tested target mRNAs and RyhB sRNA.
Table II Constants of Hfq binding on RNAs. The K_d initial slopes, and K_{app} for target mRNAs, the non-target uup, the sRNA RyhB, and the negative control icd. The initial slope is calculated from the data below 2.5 nM Hfq hexamers from Figure 3C and D. The K_{app} are calculated from the initial slope data divided by the reaction time (10 min).

<table>
<thead>
<tr>
<th>mRNA</th>
<th>KD (nM)</th>
<th>Initial slope (0-2.5 nM)</th>
<th>K_{app} (min⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>acnB₂₄₆</td>
<td>7</td>
<td>11.9</td>
<td>1.19</td>
</tr>
<tr>
<td>fumA₂₄₂</td>
<td>2.6</td>
<td>30.1</td>
<td>3.01</td>
</tr>
<tr>
<td>sdhCD₂₂₆</td>
<td>13</td>
<td>11.2</td>
<td>1.12</td>
</tr>
<tr>
<td>sodB₃₁₆</td>
<td>9.3</td>
<td>7.1</td>
<td>0.71</td>
</tr>
<tr>
<td>uup₂₀₀₇</td>
<td>11</td>
<td>3.3</td>
<td>0.33</td>
</tr>
<tr>
<td>icd₁₅₀</td>
<td>17</td>
<td>0.7</td>
<td>0.07</td>
</tr>
<tr>
<td>RyhB</td>
<td>13.6</td>
<td>1.7</td>
<td>0.17</td>
</tr>
</tbody>
</table>

A target mRNA outcompetes the non-target mRNA for Hfq binding. Our previous experiments suggest that Hfq binds preferentially to target mRNAs as compared to non-target mRNAs. To investigate this further, we developed a two-step competition assay to investigate if Hfq binds more tightly to target or to non-target mRNAs (Fig 4). The first step consists of allowing partial Hfq binding to the radiolabeled non-target uup (uup-Hfq, lane 3). In the second step, we added an increasing amount of competing target mRNA fumA from 1 to 8-fold molar excess as compared to uup (lane 4 to 10). As shown in Fig 4 (upper panel), our results demonstrate that the target mRNA fumA dislodges Hfq from the non-target uup at a low fold excess (2-fold). In comparison (fig 4, lower panel), the non-target mRNA uup
dislodges Hfq from the radiolabeled target mRNA _fumA_ at a higher fold excess (6-fold). This indicates that Hfq binds more tightly on a target mRNA than a non-target mRNA.

Figure 4
Hfq binds preferentially on target mRNAs._ (A) Competition assays with preformed _uup-Hfq_ in the presence of increasing amount of _fumA_. Asterisk indicates radiolabeled mRNA. Each lane contains 5 nM radiolabeled _uup_ or _fumA_ mRNA. Lane 1, mRNA alone; lane 2, mRNA with 50 nM competitor _fumA_; lane 3, with 25 nM (_uup_) or 12 nM (_fumA_) Hfq hexamer; lane 4 to 10, mRNA with 25 nM Hfq hexamer and increasing amount of competitor (_fumA_ or _uup_; 5, 10, 15, 20, 30, 40, and 50 nM) (B) Densitometry of the results from two independent experiments as in (A).
Hfq and target mRNAs forms ternary complexes with the sRNA RyhB. The previous data (Fig 3 and 4) suggest that Hfq binds specifically to target mRNAs (acenB, fumA, sodB, and sdh). Because of this, we questioned the potential role of Hfq in helping RNA-RNA interactions between RyhB and its target mRNA, specifically. To address this question, we reconstituted in vitro the RNA-RNA pairing between a radiolabeled target mRNA and RyhB in the absence or presence of Hfq. As shown in Fig 5A, the addition of RyhB to targets (without Hfq) produces a binary complex very rapidly in the first 5 min (acenB and fumA) or later after 10 min (sodB and sdh). Surprisingly, the non-target mRNA (uup) also forms a complex with RyhB after 5 min of incubation.

Next, we added Hfq at 10 nM to the reaction (Fig 5A, right panels). This generated a more complex series of bands: a certain fraction of all mRNAs shifted to binary complex in the presence of Hfq. In panels on the right, the kinetic demonstrates the formation of a ternary complex (mRNA-RyhB-Hfq) quite rapidly for all target mRNAs. Contrary to the target mRNAs, no complex was observed in the non-target uup panel suggesting that, even in the presence of the RNA chaperone Hfq, non-target mRNAs do not interact with RyhB. In fact the presence of Hfq decreased the formation of RNA-RNA pairing between RyhB and uup (compare uup panel, without and with Hfq). Thus, while RyhB can pair with target and non-target mRNAs without Hfq, the presence of Hfq allows RyhB to pair only with target mRNAs.

Figure 5B shows the plotting of time-lapse formation of binary complex (mRNA-RyhB) or ternary complexes (mRNA-RyhB-Hfq) as performed in Fig 5A. In all cases, the Hfq chaperone is accelerating the binary and ternary complexes.
formation as compared to the binary complex formed in absence of Hfq. Note that, in absence of Hfq, *sodB, sdh*, and *uup* form binary complex with RyhB at about the same rate. However, when Hfq is present, only *sodB* and *sdh* still form binary and ternary complexes with RyhB. Thus Hfq accelerates the interaction between both the sRNA and the target mRNA.

Hfq binds to target mRNAs and changes their secondary structure. To characterize the potential structural changes induced by Hfq, we proceeded to RNase T1 and T2 cleavage assays on target and non-target mRNAs in the presence of increasing amounts of Hfq. Figure 6 shows the cleavage (arrows) and protection (dots) induced by Hfq on *sdh, fumA, sodB, acnB*, and *uup*. All target mRNAs demonstrated important Hfq-induced cleavage, which suggests that the RNA chaperone melts the mRNAs in the translation initiation region. This would explain why RyhB pairs with ease with the target mRNAs. Opposing this, the non-target *uup* demonstrates an Hfq-induced protection downstream of the translation start. Overall, our results suggest that Hfq helps to open the target mRNAs in the RyhB-pairing region while reducing the pairing with the non-target *uup*.
Figure 5
Hfq promotes RyhB pairing specifically with target mRNAs. (A) Binary (b: sRNA-mRNA) and ternary (t: sRNA-mRNA-Hfq) complexes assays (radiolabeled mRNAs are at 5 nM). The RNA chaperone Hfq (at 10 nM) accelerates the formation of binary and ternary complexes after the addition of RyhB (40 nM) at time 0. (B) Densitometry of each of the complexes in (A) according to time. These results are representative of an experiment that has been repeated at least three times with similar results.
Figure 6

Hfq opens the initiation of translation region of target mRNAs. RNase T1 and T2 mapping of Hfq-induced structural changes in the target and non-target mRNAs in the presence of increasing amount of Hfq hexamers (0, 10, 20, 50 nM). See materials and methods for description. The control lane (+Hfq) is the tested RNA in the presence of 50 nM Hfq without any RNase. Arrows indicate that Hfq opens, and circles indicate that Hfq close some secondary structure.
Hfq specifically reduces translation of mRNA targets *in vitro*. The previous results suggested that Hfq binds to the 5'-UTR of mRNA targets. One possible consequence is that, by binding to the 5'-UTR region (Fig 6), Hfq interferes with the ribosome-binding site and reduces the translation initiation of the target mRNAs. Moreover, because Hfq binds target mRNAs more avidly (Fig 4), the translation initiation of target mRNAs should be more affected than that of the non-target mRNAs. To test this, we compared the effect of Hfq on the *in vitro* translation of *acnB* and *fumA* target mRNAs with *uup* non-target mRNA. As shown in Fig 7A and B, the translation of *acnB* and *fumA* is significantly more sensitive to Hfq than the translation of *uup*. In conditions where a two-fold molar excess of Hfq is present in the reaction, *acnB* and *fumA* translation is reduced to 50% of its original expression (compare 1:0 with 1:2). This is in contrast with *uup*, which in the same conditions as *acnB* and *fumA*, is only reduced to 90% of its original translation activity. Even at higher molar ratio (1:4), the non-target *uup* mRNA is still significantly more translated than both target mRNAs. These results suggest that Hfq binds on the mRNA targets at their ribosome binding site and reduces their translation initiation and/or ribosomes elongation.
Figure 7 **Hfq specifically reduces translation of mRNA targets in vitro.** (A) Effect of increasing amount of Hfq hexamers on the *in vitro* translation of target *acnB* and *fumA* and non-target *uap*. Translation were allowed to proceed for 15 min at 37°C before loading on SDS-PAGE. These data are representative of an experiment that has been repeated three times. (B) Densitometry of three independent experiments.

In vivo effect of the RNA chaperone Hfq on the mRNA targets. Reduced mRNA translation initiation *in vivo* increases the possible cleavage by ribonucleases (Deana and Belasco 2005; Kabaridin and Blasi 2006). A previous study has shown that Hfq binding to *ompA* mRNA reduced its translation and stability (Vytvytska et al. 2000). Because the Hfq protein has a strong affinity for mRNA targets and reduces
their translation *in vitro* (Fig 3, 4, and 7), we questioned the role of Hfq on these mRNAs *in vivo*. First, we looked at the *in vivo* effect of Hfq on the steady-state levels of *sdhCDAB, acnB, sodB*, and *fumA*. As shown in Fig 8A and B, we observed for target mRNAs, specifically, an increased mRNA level in absence of functional Hfq (compare lane 1 and 2). Because the first two lanes are RNA extracts from *ryhB::cat* backgrounds, the increase in steady-state level is independent from the sRNA RyhB. In addition, the control *iced* mRNA or the ribosomal RNA 16S are not affected by the absence of Hfq. It is also clear that *acnB* and *sodB* are significantly increased in the absence of Hfq as demonstrated in the Real-Time PCR results of Fig 8B. Interestingly, the non-target mRNA *uap* demonstrates no increased levels of the steady-state in the absence of Hfq. This suggests that Hfq binding *in vivo* specifically reduces the steady-state levels of target mRNAs.
Figure 8 *Hfq reduces the level of mRNA targets in vivo*. The steady-state level of target mRNAs is significantly reduced in the presence of Hfq *in vivo*. (A) Northern blots on *sdh* operon, *fumA*, and *acenB* target mRNAs. The lower panels *icd* and 23S are control RNAs. (B) Quantitative Real-Time PCR on *acenB, sodB*, and *uup*. These experiments have been repeated four times, independently.
Hfq reduces the target mRNAs half-life. The effect of Hfq on the steady-state level of mRNA targets could originate from a reduced promoter activity or from reduced mRNA stability. To verify whether the repressing effect of Hfq on mRNA steady-state was at the promoter level or post-transcriptional, we assayed the half-life of all target mRNAs by blocking transcription with rifampicin (see Fig 9). We observed an increased stability for *sdhCDAB, acnA*, and *fumA* in the absence of Hfq (*fumA* is shown in Fig 9A). The measured half-life of these mRNAs increased (see Fig 9B) from 2.6 min to 4.4 min for *sdhCDAB*, from 5.3 min to 10.4 min for *fumA*, and from 4.2 min to 10.4 min for *acnB*. Thus, the absence of Hfq roughly increases two-fold the half-life of these mRNAs, suggesting that Hfq destabilizes them *in vivo* at a post-transcriptional level. Our results demonstrated no effect of Hfq on the *sodB* mRNA stability. This is contrary to the previously published work of Geissmann and Touati (2004). However, in this work, the *sodB* mRNA is overproduced from a plasmid, which may have affected the mRNA stability.
Figure 9 **Hfq destabilizes target mRNAs in vivo.** (A) Northern blots showing the *fumA* target mRNA stability in different strain backgrounds. Rifampicin was added at time 0, and total RNA was extracted by the hot phenol technique at indicated time points. (B) Quantification of the half-life of *acnB*, *sdh* operon, *fumA*, and *sodB* target mRNAs extracted from various strains backgrounds.

The mutant Hfq Y55A complements the target mRNAs half-life. The central cavity of the Hfq hexamer binds to AU-rich single strand sequence (Schumacher et al.
2002). It has been suggested that Hfq hexamers have a second RNA binding site (Brescia et al. 2003; Mikulecky et al. 2004). This second site however, has not been characterized yet. To verify the role of the central cavity as an RNA binding site in our system, we used the Hfq Y55A, which demonstrated a reduced binding to poly-A and AU-rich sequences as well as to DsrA sRNA (Mikulecky et al. 2004). First, we monitored mRNA targets stability in the presence of Hfq Y55A. When compared to the control strains (harboring either pBAD24 or pBAD-hfq), the strain expressing Hfq Y55A exhibits a normal stability for acnB and fumA mRNAs (Fig 10B). This indicates that the mutant Hfq Y55A corrects the observed longer half-life observed in hfq mutant (see Fig 9). Interestingly, Hfq Y55A only partially corrects the sdhCDAB mRNA target half-life.
Figure 10 The mutant Hfq Y55A complements the reduced half-life of target mRNAs in vivo. (A) Rifampicin (rif) was added at time 0 and total RNA extracted at indicated time points from different backgrounds without Hfq (pBAD24), with wild-type Hfq (pBAD-hfq), or with mutant Hfq Y55A (pBAD-hfq Y55A). (B) Densitometry of the signal for different target mRNAs.

The mutant Hfq Y55A does not complement the sRNA RyhB half-life. Next, we monitored the sRNA RyhB half-life in the same conditions as above. As show in
Fig 11, the sRNA RyhB is very unstable in the hfq mutant (pBAD24) and is very stable when wild-type Hfq is expressed (pBAD-hfq). The presence of mutant Hfq Y55A however, results in a very similar RyhB stability as hfq mutant (Fig 11, lower panel). This is in contrast with the stability of the mRNA targets where Hfq Y55A could correct to that of the wild-type background (Fig 10). Thus, the mutant Hfq Y55A discriminates in vivo between target mRNAs and the sRNA RyhB.

![Image](image-url)

Figure 11 The mutant Hfq Y55A does not complement the reduced half-life of the sRNA RyhB. Rifampicin (rif) was added at time 0 and total RNA extracted at indicated time points from different backgrounds without Hfq (pBAD24), with wild-type Hfq (pBAD-hfq), or with mutant Hfq Y55A (pBAD-hfq Y55A).
DISCUSSION

While the recent interest in sRNAs has led to a wide spectrum of new mechanism and function, the steps towards the specific pairing of a sRNA with its cognate mRNAs have remained obscure. Two models have been proposed for the role of Hfq in sRNAs mechanism. The first model describes how Hfq unfolds one or both RNAs to help pairing (Moll et al. 2003a; Geissmann and Touati 2004). The second model suggests that Hfq binds both RNAs to increase their concentration and chances of pairing. Our study suggests that the RNA chaperone Hfq preferentially binds to target mRNAs even in the absence of the sRNA that regulates them. Thus, Hfq seems to predetermine mRNAs that are sRNA-regulated. Our findings are summarized in Fig 12 where we describe our new model of specific pairing of a sRNA with its target mRNAs. Our data add to the global picture of the mechanism of sRNA.

A puzzling question is how the limited complementarity can suffice for specific pairing of RyhB with its target mRNAs while preventing the pairing with non-target mRNAs. In theory, both target and non-target mRNAs can pair with RyhB (Fig 1). However, our data show that Hfq binds preferentially target mRNAs as compared to non-target mRNAs. This preferential binding may contribute to the specific pairing of RyhB with target mRNAs. In the model shown in Figure 12, we propose that in the case of RyhB sRNA and its target mRNAs the protein Hfq binds to specific mRNAs first. Second, when the sRNA RyhB is expressed, the already formed Hfq-target mRNA complexes interact with RyhB to create ternary complexes that are subsequently recognized by the degradosome machinery.
Figure 12 Working model of the role of Hfq in the mechanism of sRNAs.

Our computational search for RyhB target has demonstrated potential pairing with many candidates, including uup. However, although uup and many other candidates had an apparently sufficient pairing with RyhB, none of them were downregulated by RyhB (Fig 2 and data not shown). Thus, our results with RyhB suggest that the potential pairing between a sRNA and a cognate target mRNA is not sufficient for specific regulation. This also suggests that computational searches for pairing will not necessarily predict a valid target.

Previous studies on rpoS and DsrA have determined that Hfq has a slightly higher affinity for the sRNA as compared to the mRNA target (Mikulecky et al. 2004). We have determined the affinity of RyhB and at least four of its mRNA targets (acnB, sdhCD, sodB, fumA). An example of the electrophoretic mobility shift assay for a
mRNA and for RyhB is shown in Fig 3. All initial binding of mRNAs are summarized in Table II. Contrary to DsrA and rpoS, our results demonstrate that Hfq has less affinity for RyhB as compared to the mRNA targets. Nevertheless, all the mRNAs tested have high affinities in the nanomolar range.

While the binding affinity of Hfq to uup and carA is much closer to the mRNA targets, the Kd of ics is relatively higher than mRNA targets. Nevertheless, the sigmoidal binding curve of ics is similar to the two other non-target uup and carA. This suggests that the cooperative binding of Hfq to the mRNA targets may reduce the affinity when compared to the hyperbolic binding to mRNA targets. Also, the asymptotic binding curve (cooperative binding) of Hfq target mRNAs demonstrates a much higher initial rate of binding (see Table II), which is more representative of the high affinity than the Kd. This suggests that Hfq will bind to the target mRNAs with more avidity than RyhB or non-target mRNAs.

In the cellular context, it is difficult to imagine that RyhB will diffuse passively to eventually pair with its cognate target mRNAs. Alternatively, if RyhB binds to Hfq first, the diffusion can only be more difficult. However, if target mRNAs are loaded with Hfq even before the expression of the sRNA (as in our Fig 5), it appears to be the most efficient way to assemble the ternary complex (sRNA-mRNA-Hfq). We have demonstrated that Hfq binds to target mRNAs with higher initial binding than non-targets or RyhB (Fig 3 and 4). This suggests that in a mixed population of RNAs, Hfq would bind best to target mRNAs. Thus, our experimental data supports the model of Hfq-loaded target mRNAs already “primed” for a possible sRNA expression (Fig 12).
In a previous study, it was shown that Hfq binding to the sRNA-regulated *ompA* mRNA reduced its translation (Vytvytska et al. 2000). Lately, *ompA* has been shown to be regulated by a sRNA, MicA. Thus, *ompA* is most likely recognized *in vivo* by Hfq. This study is in agreement with our results and model where Hfq pre-selects the mRNA target in the population of mixed transcripts.

It is difficult to address the possibility of additional sRNAs down-regulating the target mRNAs. In this context, when Hfq is absent, their repression would be alleviated and the target mRNAs would shown an increased level.

A previous study used a co-immunoprecipitation approach to characterize as many as 30 sRNAs bound to the chaperone Hfq (Zhang et al. 2003). In addition to sRNAs, many mRNAs also co-precipitated with Hfq, however only one of them is known to be regulated by a sRNA. Interestingly, none of the mRNAs studied in our work have been shown to co-immunoprecipitate with Hfq. The fact that RyhB down-regulates its target may explain this: only the Hfq-bound RyhB “free” of target mRNAs has been pulled-down in these studies.

The destabilizing role of Hfq has been shown in the case of *ompA* (Vytvytska et al. 1998), *hfq*, *sodB*, and (Moll et al. 2003b)*fur* (Vecerek et al. 2003). We report here several new Hfq-binding mRNAs. The negative effect of Hfq on the level of an mRNA has been described before (Vytvytska et al. 2000; Vecerek et al. 2003), however, we took the opportunity to test many mRNAs that are targeted by the same sRNA in order to find a common mechanism facilitating interaction between both RNAs.
Our results suggest that Hfq binding to target mRNAs decreases their stability. This can be explained by the fact that Hfq competes with the initiating ribosomes and reduces translation, which allows RNase E to cleave the untranslated RNA. Hfq could also contribute to the specific pairing by binding on the non-target mRNAs at the RyhB pairing site, which would block any possible interaction.

While the interaction between RyhB and the target mRNAs sodB has been described previously (Moll et al. 2003b; Vecerek et al. 2003; Geissmann and Touati 2004), the controls used in these studies were not potential targets (like uup). Our approach has focused on the comparison of target mRNA and a non-target mRNA, which has demonstrated the subtle but significant differences between both RNAs.

Because Hfq is a pleiotropic regulator, it is difficult to assess direct from indirect effects of the RNA chaperone in vivo. The hfq mutants demonstrate a phenotype of characteristic slow growth. We studied if this phenotype was directly linked to overexpression of many mRNAs that are normally reduced by wild-type Hfq. To test this, we transformed a plasmid expressing RyhB and monitored growth. Although the mRNA level of RyhB target decreased, no effect was observed on cellular growth (data not shown), suggesting that a lack of Hfq may increase the level of many mRNA other than RyhB targets.

It is tempting to imagine that Hfq binds to all mRNAs targeted by sRNAs. Once the sRNA is produced, it rapidly binds to Hfq already loaded with a target mRNA. Only then the sRNA can act on the mRNA. However, it is difficult to determine if Hfq binds only to mRNAs targeted by sRNAs. Even before MicA was found to control its
translation, *ompA* was characterized as an Hfq-regulated mRNA (Vytvytska et al. 1998; Udekwu et al. 2005). The majority of Hfq-binding mRNAs found by Zhang and colleagues are not regulated by sRNA, based on current knowledge. However, our work suggests that many, if not all mRNAs targeted by RyhB are Hfq-binding.

RyhB sRNA has the best pairing potential with mRNAs as shown with a computer software designed to find new targets (Tjaden et al. 2006). It is possible that the high potency of RyhB to degrade mRNA targets as compared to other sRNAs, which only block translation, may call for a more thorough pairing mechanism between both RNAs. Because RyhB pairing results in degradation of the target mRNA, the possible mispairing could produce more dire consequences than a sRNA that only blocks translation.

Our results suggest that the sRNA-mediated mRNA degradation is intrinsic to the mRNA. This may explain why so many artificial antisense approaches were unsuccessful in bacteria and why their success often varies depending on the target (Wagner and Flardh 2002). Thus, our results support the idea that the pairing between a sRNA and a target mRNA is not a one way pathway where the sRNA actively "search" for a target. Indeed, both RNAs involved seem to share the responsibility of specific pairing. Future investigation may help to understand this interaction in more details.
Supplementary Figure 1
Mfold sdhCD and RyhB pairing prediction. 5 nM RNAs at 37°C at 1 M NaCl. Constants are $\Delta G = -36.5$, $\Delta H = -335.4$, $\Delta S = -963.7$, Tm = 60.8°C. Free energy and enthalpy are in kcal/mol; entropy is in e.u. (cal/mol/K).
Supplementary Figure 2

*MFO*LD* sodB* and *RyhB* pairing prediction. 5 nM RNAs at 37°C at 1 M NaCl. Constants are $\Delta G = -18.9$, $\Delta H = -201.1$, $\Delta S = -587.5$, $Tm = 47.0°C$. Free energy and enthalpy are in kcal/mol; entropy is in e.u. (cal/mol/K).
Supplementary Figure 3 *Mfold fumA and RyhB pairing prediction.* 5 nM RNAs at 37°C at 1 M NaCl. Constants are ΔG = -26.5, ΔH = -304.3, ΔS = -895.7, Tm = 51.8°C. Free energy and enthalpy are in kcal/mol; entropy is in e.u. (cal/mol/K).

Supplementary Figure 4 *Mfold acnB and RyhB pairing prediction.* 5 nM RNAs at 37°C at 1 M NaCl. Constants are ΔG = -27.9, ΔH = -233.8, ΔS = -663.9, Tm = 72.1°C. Free energy and enthalpy are in kcal/mol; entropy is in e.u. (cal/mol/K).
Supplementary Figure 5

MFOLD up and RyhB pairing prediction. 5 nM RNAs at 37°C at 1 M NaCl. Constants are ΔG = -27.0, ΔH = -238, ΔS = -681.0, Tm = 56.9°C. Free energy and enthalpy are in kcal/mol; entropy is in e.u. (cal/mol/K).
<table>
<thead>
<tr>
<th>PRIMER</th>
<th>DESCRIPTION AND USE</th>
<th>SEQUENCE (5’-3’)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EM36</td>
<td>Random Hexamers</td>
<td>NNNNNN</td>
</tr>
<tr>
<td>EM88</td>
<td>Forward T7-RyhB (in vitro transcription)</td>
<td>TGATAATCGACTCTATAGGGCAAGGACCGCTGC</td>
</tr>
<tr>
<td>EM89</td>
<td>Reverse RyhB (in vitro transcription)</td>
<td>AAAAGCCAGCCACCCGCTGGC</td>
</tr>
<tr>
<td>EM90</td>
<td>Forward T7-sodB (in vitro transcription)</td>
<td>TGATAATCGACTCTATAGGGCAACAAATAAGGCTATTTT</td>
</tr>
<tr>
<td>EM91</td>
<td>Reverse sodB (in vitro transcription)</td>
<td>CAACCGGCTTCCGTCGGCAGC</td>
</tr>
<tr>
<td>EM92</td>
<td>Forward T7-sadhCD (in vitro transcription)</td>
<td>TGATAATCGACTCTATAGGGCAATGATGGAGTTT</td>
</tr>
<tr>
<td>EM123</td>
<td>Forward Hfx Ndel (PCR for Hfx cloning)</td>
<td>GTCAACGCCATAGCGCAATCTCTTA</td>
</tr>
<tr>
<td>EM124</td>
<td>Reverse Hfx HindIII (PCR for Hfx cloning)</td>
<td>CGCTGGAAGCCTTTATCCGTTTTCGCTTGCTCG</td>
</tr>
<tr>
<td>EM125</td>
<td>Forward T7-acnβ (in vitro transcription)</td>
<td>TGATAATCGACTCTATAGGGCTGACTGGGCATTATTTT</td>
</tr>
<tr>
<td>EM126</td>
<td>Reverse acnβ (in vitro transcription)</td>
<td>GGTAAACAGATCAAACGGAAATTC</td>
</tr>
<tr>
<td>EM127</td>
<td>Forward T7-fumA (in vitro transcription)</td>
<td>TGATAATCGACTCTATAGGGCTTATACAGGGCAACG</td>
</tr>
<tr>
<td>EM128</td>
<td>Reverse fumA (in vitro transcription)</td>
<td>GAACCGACGCATCATGAAACGCC</td>
</tr>
<tr>
<td>EM131</td>
<td>Forward T7-sadhC (Antisense probe Northern blot)</td>
<td>TAAATACGACTCATATAGGGAGATTCGATACAGAGGACTCCTG</td>
</tr>
<tr>
<td>EM132</td>
<td>Reverse sadhC (Antisense probe Northern blot)</td>
<td>TGGTTAACTGAGACCTACAGGCC</td>
</tr>
<tr>
<td>EM133</td>
<td>Forward T7-fumA (Antisense probe Northern blot)</td>
<td>TAAATACGACTCATATAGGGAGAGTGGGCAGAAACCGCTT</td>
</tr>
<tr>
<td>EM134</td>
<td>Reverse fumA (Antisense probe Northern blot)</td>
<td>CTTGAGTATTACCTCCTTACGAC</td>
</tr>
<tr>
<td>EM136</td>
<td>Forward T7-23S (Antisense probe Northern blot)</td>
<td>TAAATACGACTCATATAGGGAGATTTCCGCAAAACGTGCTTAC</td>
</tr>
<tr>
<td>EM137</td>
<td>Reverse 23S (Antisense probe Northern blot)</td>
<td>AGCGGATCGTCTGCTG</td>
</tr>
<tr>
<td>EM140</td>
<td>Forward T7-acnβ (Antisense probe Northern blot)</td>
<td>TAAATACGACTCATATAGGGAGAGATTCGATACAGAGGACTCCTG</td>
</tr>
<tr>
<td>EM141</td>
<td>Reverse acnβ (Antisense probe Northern blot)</td>
<td>GATGAAATGCGGCTGGTGGTGG</td>
</tr>
<tr>
<td>EM156</td>
<td>Forward T7-icd (Antisense probe Northern blot)</td>
<td>TAAATACGACTCATATAGGGAGACATATCGGTACGTCAGTCAAGGTG</td>
</tr>
<tr>
<td>EM157</td>
<td>Reverse icd (Antisense probe Northern blot)</td>
<td>AGCCGAGCGTAAATTCCTTG</td>
</tr>
<tr>
<td>EM160</td>
<td>Forward T7-icd (in vitro transcription)</td>
<td>TGATAATCGACTCTATAGGGCAACGCTG</td>
</tr>
<tr>
<td>EM161</td>
<td>Reverse icd (in vitro transcription)</td>
<td>CACCTTCAATGTAAGGCACTCGG</td>
</tr>
<tr>
<td>PRIMER</td>
<td>DESCRIPTION AND USE</td>
<td>SEQUENCE (5'-3')</td>
</tr>
<tr>
<td>--------</td>
<td>---------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>EM188</td>
<td>Forward T7-sodB (Antisense probe Northern blot)</td>
<td>TAATACGACTCACTATAGGGAGACCGAGGGGTTCGTTAGAAAG</td>
</tr>
<tr>
<td>EM189</td>
<td>Reverse sodB (Antisense probe Northern blot)</td>
<td>GCTAAAAGATGGCTGCGACCC</td>
</tr>
<tr>
<td>EM200</td>
<td>Reverse sadCD26 (in vitro transcription)</td>
<td>CGGACCATATAAAAGGTAGTAGAGC</td>
</tr>
<tr>
<td>EM247</td>
<td>Forward acnB (qPCR)</td>
<td>GTAACCCCGAGCCAGTGTCG</td>
</tr>
<tr>
<td>EM248</td>
<td>Reverse acnB (qPCR)</td>
<td>CAGCAGTCAGGCTAGTGACT</td>
</tr>
<tr>
<td>EM251</td>
<td>Forward fum1 (qPCR)</td>
<td>TATGTCGATCACTGCAAG</td>
</tr>
<tr>
<td>EM252</td>
<td>Reverse fum1 (qPCR)</td>
<td>CGATATCGCCAAGGTAGAAG</td>
</tr>
<tr>
<td>EM263</td>
<td>Forward icd (qPCR)</td>
<td>GCTGAAAGGAGAGGTGAATG</td>
</tr>
<tr>
<td>EM264</td>
<td>Reverse icd (qPCR)</td>
<td>TGCTGAGGCTTACATCTACA</td>
</tr>
<tr>
<td>EM281</td>
<td>Forward T7-asp (in vitro transcription)</td>
<td>TGTTAAACGACTCAGCTATAGGGCGAAAACTGGGACTGAAAG</td>
</tr>
<tr>
<td>EM282</td>
<td>Reverse asp (in vitro transcription)</td>
<td>CGTTCGTTATCTTGATATGCAAG</td>
</tr>
<tr>
<td>EM287</td>
<td>Reverse acnB 5'-UTR (in vitro transcription)</td>
<td>CACGACGGTTCCTCTGCTCT</td>
</tr>
<tr>
<td>EM288</td>
<td>Reverse fum1 5'-UTR (in vitro transcription)</td>
<td>CAGTGTTTCCTCCTACTACTG</td>
</tr>
<tr>
<td>EM317</td>
<td>Forward asp (qPCR)</td>
<td>GTTTAGGAGGCGGATTTAG</td>
</tr>
<tr>
<td>EM318</td>
<td>Reverse asp (qPCR)</td>
<td>CACGCGGTGATGGCGTTT</td>
</tr>
<tr>
<td>EM321</td>
<td>Forward sodB (qPCR)</td>
<td>TACGCGAAGCACCACACATG</td>
</tr>
<tr>
<td>EM322</td>
<td>Reverse sodB (qPCR)</td>
<td>CGTGTGGAATACGCGCACCT</td>
</tr>
<tr>
<td>EM325</td>
<td>Reverse acnB full length mRNA (in vitro transcription)</td>
<td>CGGGACTTGTGTCGTTATGG</td>
</tr>
<tr>
<td>EM326</td>
<td>Reverse fum1 full length mRNA (in vitro transcription)</td>
<td>GTCGACTATATATATCTACCATAA</td>
</tr>
<tr>
<td>EM332</td>
<td>Reverse asp full length mRNA (in vitro transcription)</td>
<td>GATGACCTACAAAAGGTGTTT</td>
</tr>
<tr>
<td>EM401</td>
<td>Reverse asp 5'-UTR (in vitro transcription)</td>
<td>CATTACTATTCCTCAGGCTG</td>
</tr>
</tbody>
</table>
ACKNOWLEDGMENTS

We are grateful to G. Storz for Hfq antibodies, A. Feig for plasmids, M. Bisaillon for the use of the fluorometer, and Simon Labbé for the RNase T2. We also thank Marie Soulière for discussions on the initial binding. M.A. was supported by a scholarship from the George Phoenix foundation. This work was funded by an operating grant MOP69005 to E.M. from the Canadian Institute for Health Research (CIHR). E.M. is a Canadian Institutes for Health Research (CIHR) new investigator scholar.
REFERENCES

2.1 MATÉRIELS ET MÉTHODES SUPPLÉMENTAIRES

2.1.1 Construction des souches utilisées pour la purification des protéines

2.1.2 Purification des protéines Hfq WT-His₆ et Hfq Y55A-His₆.

En premier lieu, les souches MA33 et MA34 sont incubées 16 heures à 37°C dans un milieu de croissance LB en présence de 50μg/ml de kanamycine. Ensuite, les cultures sont diluées 1/1000 dans 50ml de LB avec kanamycine et incubées à 37°C avec agitation. Lorsque les cultures atteignent une DO₆₀₀ de 0.5, l’expression des protéines est induite durant quatre heures par l’ajout de 1mM d’IPTG. Les protéines sont purifiées selon Prévost et al. (2007). En bref, après l’étape des trois dialyses consécutives dans le tampon C (50mM Tris-HCl pH 7.5, 1mM EDTA, 0.25M NH₄Cl, 5% glycérol), l’échantillon est dialysé dans le tampon de lyse (50mM NaH₂PO₄ pH 7.5, 300mM NaCl, 10mM imidazole) du protocole de billes de Ni-NTA Agarose de Qiagen (Hilden, Allemagne) durant 1 heure à 4°C. Le dialysat est soumis à deux
passages consécutifs sur une colonne de bille Ni-NTA agarose. La colonne est lavée deux fois avec le tampon de lavage (50mM NaH₂PO₄ pH 7.5, 300mM NaCl, 20mM imidazole). Par la suite, la protéine est élueée deux fois avec 0.5ml de tampon d’élution 1 (50mM NaH₂PO₄ pH 7.5, 300mM NaCl, 250mM imidazole), et deux fois avec le tampon d’élution 2 (50mM NaH₂PO₄ pH 7.5, 300mM NaCl, 8M urée). Les fractions les plus pures et concentrées sont réunies et dialysées deux fois dans 1L de tampon de dialyse, décrit dans Prévost et al.(2007). Après concentration des protéines dans des colonnes Amicon® Ultra-15 de Millipore (Billerica, MA), la concentration des protéines est dosée avec la méthode BCA de Pierce (Rockford, IL). Du glycérol est ajouté aux échantillons à une concentration finale de 10% pour conservation à -80°C.

2.1.3 Expériences avec carA

Les techniques utilisées pour l’étude de carA sont les mêmes que celles décrites dans la section « Materials and methods » du Chapitre 1, et les oligonucléotides utilisés sont montrés dans la Table 1.

Table 1 Oligonucléotides utilisés dans l’étude de carA

<table>
<thead>
<tr>
<th>OLG1</th>
<th>DESCRIPTION AND USAGE</th>
<th>SEQUENCE (5'→3')</th>
</tr>
</thead>
</table>
| EM279 | Forward carA (transcription in vivo) | TThis |```
2.2 RÉSULTATS SUPPLÉMENTAIRES

2.2.1 Étude de la protéine Hfq Y55A

2.2.1.1 Hfq Y55A-His$_6$ ne complémente pas la demi-vie de DsrA in vivo

Le groupe de Feig (Mikulecky et al. 2004) suggère que la mutation Y55A dans la protéine Hfq n'affecte pas sa liaison avec le petit ARN DsrA. Les résultats de ce groupe démontrent que DsrA demeure stable en présence de Hfq Y55A-His$_6$. Un résultat similaire était attendu pour RyhB. En réalité, RyhB est très instable en présence de Hfq Y55A-His$_6$ (voir Figure 11, Chapitre 1). Afin d'expliquer cette différence, nous avons envisagé la possibilité que RyhB et DsrA puissent avoir des affinités différentes pour Hfq Y55A-His$_6$. Pour confirmer l'expérience de Mikulecky, l'expérience de la demi-vie de DsrA a été reprise, dans trois conditions différentes, c'est-à-dire en présence de Hfq WT-His$_6$, en présence du mutant Hfq Y55A-His$_6$ ainsi qu'en absence de Hfq. La demi-vie de DsrA a été vérifiée en hybridant une sonde radiomarquée contre DsrA sur la même membrane que celle qui avait été utilisée pour l'expérience de stabilité de RyhB (voir Figure 11, Chapitre 1). Nous avons obtenu des résultats en tous points similaires à cette figure : en présence de Hfq WT-His$_6$, la demi-vie de DsrA est de 74 minutes, mais elle chute à 14 minutes en présence de Hfq Y55A-His$_6$. En absence de Hfq, la demi-vie du petit ARN DsrA est de 13 minutes (voir Figure 2.1). Ces résultats sont donc contradictoires à ceux d'une expérience similaire qui a été publiée par Mikulecky et al. (2004).
Figure 2.1 *Demi-vie du petit ARN DsrA*. Les souches contenant le vecteur pBAD/Hfq WT-His$_6$, pBAD/Y55A-His$_6$ ou le vecteur vide pBAD24 sont cultivées en présence de 0.02% arabinose jusqu’à une DO$_{600}$ de 0.5, puis 250µM de 2,2’-dipyridyl est ajouté à la culture pour induire l’expression de RyhB. Après 10 minutes d’expression de RyhB, 10 mg/ml de rifampicine est ajouté. Des extractions d’ARN totaux sont effectuées aux temps 0, 2, 4, 6, 10, 20 et 30 minutes avec la méthode du phénol chaud. 5µg de chaque extrait d’ARN total sont analysés par Northern blot avec une sonde contre DsrA.

2.2.1.2 Purification des protéines Hfq WT-His$_6$ et Hfq Y55A- His$_6$

Les protéines clonées par le groupe de Feig (Mikulecky et al. 2004) arborent une étiquette d’hexahistidine à l’extrémité C-terminale. La méthode de purification de protéines His$_6$ publiée par ce groupe (utilisant une colonne d’affinité au Co$^{2+}$) n’était pas accessible dans notre laboratoire. Nous avons d’abord utilisé la technique classique de purification avec des billes de Ni-NTA agarose, mais ceci s’est avéré tout
à fait inefficace. D'une part, les protéines obtenues étaient très peu concentrées. D'autre part, après utilisation d'une colonne de concentration de protéines, nous avons remarqué que ladite protéine était impure (données non montrées). De plus, il n'est pas possible d'utiliser notre propre technique de purification de Hfq (une colonne de poly-A sépharose), puisque cette technique de chromatographie d'affinité ne permet pas de distinguer Hfq-His₆ de la protéine Hfq endogène présente dans la souche d'expression. Notre méthode, spécifique à Hfq, comporte toutefois un avantage par rapport à la méthode des billes de Ni-NTA agarose: elle inclut une étape d'incubation à haute température. Cette étape simple se base sur la grande thermostabilité de Hfq, et permet d'éliminer de nombreuses protéines contaminantes par dénaturation thermique. Puisque Hfq Y55A n'est pas supposée être affectée par un traitement à la chaleur (Dr Andrew Feig, communication personnelle), une méthode de purification combinant ces deux techniques a donc été élaborée. La première étape inclut un traitement à la chaleur et une colonne de poly-A, suivie d'une seconde étape qui utilise une colonne de nickel. De cette manière, nous avons obtenu les protéines Hfq WT-His₆ et Hfq Y55A-His₆ (voir Figure 2.2).
Figure 2.2 Protéines Hfq WT-His6 et Hfq Y55A-His6 purifiées. SDS-PAGE montrant les deux protéines purifiées à l’aide de deux techniques de chromatographie d'affinité consécutives, le poly-A sépharose et le Ni-NTA agarose. Le puits 1 montre le marqueur de poids moléculaire. Le puits 2 contient 4.15μg de Hfq recombinante purifiée. La protéine Hfq WT-His6 est montrée dans le puits 3 (4.24 μg) et dans le puits 4 (10.6μg). La protéine Hfq Y55A-His6 est montrée dans le puits 5 (1.7μg) et dans le puits 6 (4.25μg).

De manière étonnante, une bande spécifique d’un poids moléculaire d’environ 20 kDa est visible pour les deux protéines, alors qu’un monomère de Hfq possède un poids moléculaire de 11kDa. Cette bande diffère aussi de celle qu’on obtient avec la méthode de purification de la protéine Hfq recombinante par poly-A sépharose. La bande de 20kDa correspond bien à Hfq, tel que confirmé par immunobuvardage de type Western avec un anticorps contre Hfq (donnée non montrée). Un complexe de poids moléculaire élevé correspondant à des multimères de Hfq a aussi été obtenu pour la protéine Hfq WT-His6, mais pas pour Hfq Y55A-His6.
2.2.1.3 La protéine Hfq Y55A-His6 ne lie pas RyhB et les ARNm *in vitro*

Les résultats de demi-vie des ARN obtenus précédemment suggéraient que Hfq Y55A-His6 pouvait lier les ARNm cibles, mais pas RyhB *in vivo*. Nous voulions savoir si tel était le cas *in vitro*. Pour vérifier si la présence d’une étiquette His6 C-terminale affectait la liaison de la protéine, nous avons effectué un essai de liaison en gel de retardement avec la protéine Hfq WT-His6 et les ARNm cibles (voir Figure 2.3A). Par exemple, nous avons obtenu un Kd de 20 nM avec l’ARNm *sdh*226, ce qui est comparable avec les résultats de gel de retardement avec la protéine Hfq. Des résultats similaires ont été obtenus avec trois autres ARNm cibles, *acnB, sodB* et *fumA* (données non montrées). Nous concluons donc que l’étiquette His6 n’affecte pas la capacité de Hfq WT-His6 à lier l’ARNm.

Étonnamment, la protéine Hfq Y55A-His6 ne lie aucun des ARNm cibles *in vitro* (voir Figure 2.3B pour l’ARNm *sdh*226, données non montrées pour *acnB, fumA* et *sodB*), même à des concentrations très élevées de protéine Hfq Y55A-His6. Tel qu’attendu, la protéine Hfq Y55A-His6 ne possède aucune affinité pour le petit ARN RyhB (voir Figure 2.3C). On n’aperçoit aucun complexe qui se forme en présence de Hfq. Toutefois, la bande correspondant à l’ARN radiomarqué semble diminuer légèrement en présence de Hfq, nous ne croyons pas que cet effet soit dû à une liaison à Hfq Y55A-His6. Cela pourrait être dû, par exemple, à de la dégradation causée par un facteur présent dans la préparation de protéines, qui n’est pas complètement pure.
Figure 2.3 *Hfq Y55A-His6 ne lie ni les ARNm, ni le petit ARN RyhB.* A. Essais de gel de retardement de 5 nM *sdhCD* avec 5, 10, 20, 40, 60, 80, 100 nM Hfq WT-His6, et B. avec 5, 10, 20, 40, 60, 80, 100 et 500 nM Hfq Y55A-His6. C. Gel de retardement de 5 nM RyhB avec 5, 10, 20, 40, 60, 80, 100 et 500 nM Hfq Y55A-His6. Ces essais sont faits en présence de 0.1 μg ARNt de levure par réaction, et les ARN sont incubés 10 min avec Hfq à 37°C dans le tampon de liaison (10 mM Tris-HCl, pH 7.5, 5 mM magnésium acetate, 100 mM NH₄Cl, 0.5 mM DTT). Les réactions de liaison sont chargées sur gel d’acrylamide 5% dans du TBE 1X.
2.2.2 Étude de l’ARNm *carA*

L’objectif de cette étude était d’établir un système de comparaison entre les cibles et les non-cibles de RyhB en opposant les quatre ARNm cibles (*acnB, fumA, sdhCD* et *sodB*) à deux ARNm non-cibles (*uup* et *carA*). Cependant, les travaux effectués avec l’ARNm *carA* ont amené des résultats souvent inattendus. Ces résultats n’ont pas été l’objet de l’article présenté au Chapitre 1, mais seront élaborés dans cette section.

2.2.2.1 *carA*, un ARNm non-cible de RyhB

L’ARNm *carA*, au même titre que *uup*, correspond en tous points à notre définition de non-cible de RyhB. En effet, comme le montre la Figure 2.4, *carA* possède une région d’appariement potentielle à RyhB dans sa région d’initiation de la traduction, exactement comme dans le cas des ARNm cibles.

<table>
<thead>
<tr>
<th>carA</th>
<th>SD</th>
<th>Start</th>
</tr>
</thead>
<tbody>
<tr>
<td>5'-uaugcaaaau-aaagu-gaqugaa-uaucuc-uggacggguguuugauuaaguc-3'</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>3'-CU-CGUU-ACAG-CACGAAAGUCCA-AGAGCGCUCCCAGAGGACUAG--CG-5'</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 2.4 **Région d’appariement potentielle de RyhB sur l’ARNm *carA*:** Cette séquence d’appariement partielle est située dans la région 5' non-traduite de l’ARNm, et chevauche le Shine-Dalgarno, ainsi que le codon d’initiation de la traduction (Start).
Néanmoins, les résultats d’une puce à ADN (Masse et al. 2005) montraient que RyhB n’avait pas d’effet sur les niveaux de l’ARNm *carA*. Bien que de tels résultats soient fiables en général, il est possible d’obtenir des faux-positifs. Nous avons voulu confirmer l’absence de l’effet de RyhB sur les non-cibles par une méthode alternative. Pour ce faire, une souche dont le gène chromosomique *ryhB* avait été interrompu (*ryhB::cat*) a été utilisée afin de créer une première souche portant le vecteur contenant RyhB (pBAD-*ryhB*, inductible à l’arabinose), et une seconde contenant le vecteur vide (sans RyhB, pNM12). Après dix minutes d’expression de RyhB en présence d’arabinose, une extraction de l’ARN total a été effectuée. Dans un premier temps, nous avons tenté de déterminer l’effet de RyhB sur *carA* et *uup* par Northern blot. Toutefois, étant donné la faible expression de ces deux gènes dans les conditions utilisées, le signal n’était pas détectable (données non montrées). Une méthode plus sensible, le PCR quantitatif (aussi appelé qPCR) a donc été utilisée. Après avoir procédé à la transcription inverse des extraits d’ARN totaux, les niveaux de chacun des ARNm à l’étude ont été quantifiés avec précision dans les deux extraits, avec et sans RyhB. Ainsi, il fut déterminé que l’expression de RyhB n’affectait en rien le niveau de *carA*, un ARNm non-cible (voir Figure 2.5).
Figure 2.5 **Effet de RyhB sur les ARNm cibles, non-cibles et sur l’ARNm contrôlé négatif.** PCR quantitatif d’extraits d’ARN totaux prélevés de souches *ryhB::cat* arborant soit un vecteur pBAD-ryhB (en noir) ou le vecteur vide pNM12 (en gris). Pour chaque ARNm, la quantité d’ARNm détecté est relativisée par rapport à la quantité de cet ARNm dans la souche pNM12.

2.2.2.2 Hfq lie *carA* in vitro

L’essai de gel de retardement de la Figure 2.6A montre bien que Hfq peut lier l’ARNm *carA*, avec une affinité plutôt grande, de l’ordre du nanomolaire. Nous observons un Kd pour Hfq de ~12nM, ce qui est similaire à l’affinité observée pour les ARNm cibles. Cependant, l’allure de la courbe d’interaction diffère fortement entre *carA* et les ARNm cibles (comme dans le cas de *uup*) (voir Figure 2.6B). Cette courbe de liaison, de type coopératif, indique bien qu’il faut atteindre une certaine concentration de Hfq avant d’avoir une liaison efficace de Hfq sur l’ARNm.
Autrement dit, la liaison d’un premier hexamère de Hfq facilite la liaison d’un second hexamère sur l’ARNm *carA*. De plus, il semble que même si Hfq lie *carA* et *uup* de la même manière, l’affinité de Hfq pour *carA* est plus grande.

Figure 2.6 *Hfq* lie l’ARNm *carA* de façon coopérative. A. Gel de retardement de *carA* avec la protéine Hfq. 5nM *carA* radiomarqué a été mis en absence ou en présence de 1, 2.5, 5, 7.5, 10, 15, 20 et 40nM d’hexamères de Hfq. B. Courbe de liaison de Hfq sur *carA*. On peut observer une liaison de type coopérative, avec un Kd de 11.75nM de Hfq.

2.2.2.3 Hfq ne distingue pas la non-cible *carA* de la cible *acenB*

Sachant que l’affinité de Hfq pour *carA* est élevée, nous avons voulu savoir si *carA* pouvait entrer en compétition contre un ARNm cible (ici *acenB*) pour la protéine Hfq. Dans le cas de *uup*, celui-ci ne compétitionnait que très faiblement avec l’ARNm cible *fumA* pour lier Hfq (Figure 4, Chapitre 1). De façon surprenante, *carA* peut séquestrer la protéine Hfq déjà liée sur la cible *acenB*, avec la même efficacité que *acenB* séquestre
Hfq lié sur carA (Figure 2.7). Autrement dit, dans cette population composée de deux ARNm, la protéine Hfq ne peut distinguer une cible d’une non-cible, contrairement au cas de l’ARNm uup.

Figure 2.7 Essai de compétition entre l’ARNm cible acnB et l’ARNm non-cible carA pour la protéine Hfq. A. Essais de gel de retardement de 5nM d’ARNm marqué de façon radioactive mis en présence de 12nM Hfq, et de quantités croissantes d’ARNm compétiteur non marqué. Le puits 1 contient l’ARNm radiomarqué, le puits 2 contient en plus 50nM d’ARNm compétiteur, le puits 3 consiste en un contrôle contenant l’ARNm à l’étude et Hfq. Les puits 4 à 10 contiennent ces mêmes réactifs, additionnés de 5, 10, 15, 20, 30, 40 et 50nM d’ARNm compétiteur. B. La bande correspondant au complexe ARNm-Hfq a été quantifiée et relativisée par rapport au signal du complexe ARNm-Hfq en absence de compétiteur pour donner le pourcentage du complexe ARNm-Hfq.
2.2.2.4 Hfq permet l’appariement de RyhB sur *carA*

Puisque Hfq lie *carA* avec une affinité plutôt grande, il était logique de se demander si Hfq pouvait permettre l’appariement de RyhB sur l’ARNm non-cible *carA*. Dans le cas de *uup*, l’inhibition de toute interaction entre RyhB et la non-cible *uup* en présence de Hfq est observée *in vitro* (Figure 5A, panneau inférieur, Chapitre 1). Par contre, la même expérience avec l’ARNm non-cible *carA* (Figure 2.8A) montre que la présence de Hfq favorise légèrement l’appariement de RyhB sur cet ARNm. Les courbes de la Figure 2.8B montrent que davantage de complexes binaires se forment en présence de Hfq qu’en son absence. Toutefois, l’efficacité de formation des complexes binaires et ternaires par Hfq est moins grande pour *carA* que dans le cas des ARNm cibles, mais plus grande que dans le cas de l’autre non-cible, *uup*.

Figure 2.8 *Hfq favorise l’appariement entre RyhB et un ARNm non-cible.* A. Cinétique des complexes formés entre 5nM ARNm non-cible *carA* et RyhB en absence (à gauche) ou en présence de Hfq (à droite). Les complexes formés sont quantifiés et représentés sur le graphique en B.
2.2.2.5 Hfq inhibe très fortement la traduction de l’ARNm *carA*

Dans le cadre de la caractérisation des ARNm cibles et non-cibles, nous avons observé que Hfq, en liant la région d’initiation de la traduction, inhibait la traduction de ces ARNm *in vitro*. Comme pour les autres ARNm, nous avons procédé à des essais de traduction *in vitro* de l’ARNm *carA* en présence de quantités croissantes de Hfq (Figure 2.9A), et nous avons observé une forte inhibition de la traduction de *carA* proportionnelle à la concentration de Hfq. Cette inhibition est représentée sur le graphique de la Figure 2.9B. Le graphique de la Figure 2.9C superpose les courbes d’inhibition de la traduction de deux cibles, *acnB* et *fumA*, ainsi que des deux non-cibles, *carA* et *uup*. On peut y voir que *carA* est l’ARNm dont la traduction est le plus inhibée, à l’opposé de l’autre non-cible, *uup*, pour qui la traduction est peu affectée en présence de Hfq.
Figure 2.9 *Hfq inhibe la traduction in vitro de carA.* A. L’ARNm *carA* de pleine longueur est traduit en absence ou en présence d’excès molaires croissants de protéine Hfq. B. Graphique de l’inhibition de la traduction de l’ARNm *carA* en fonction de la quantité de protéine Hfq. C. Comparaison de l’inhibition de la traduction en présence de Hfq des ARNm cibles *fumA* et *acnB* et des ARNm non-cibles *uup* et *carA*.
DISCUSSION

3.1 DISTINCTION ENTRE LES ARNs CIBLES ET NON-CIBLE

La présente étude a éclairé plusieurs aspects importants du mécanisme de reconnaissance d'ARNm cibles par le petit ARN RyhB. Nous avons démontré le rôle de la chaperonne ARN Hfq dans cette reconnaissance, mais également pour l'appariement de RyhB avec ces mêmes ARNm. Nous savons que Hfq reconnaît de façon différente les cibles et les non-cibles, et que cette différence semble déterminante pour l'interaction avec RyhB. Toutefois, nous ne possédons pour l'instant aucune donnée expliquant cette distinction. Il est évident que cette différence n'est pas dictée par la force d'appariement entre RyhB et l'ARNm, puisque celles des cibles et des non-cibles sont comparables. Nous émettons ici deux hypothèses pouvant expliquer la reconnaissance spécifique des ARNm cibles par Hfq.

D'abord, l'information spécifiant l'interaction avec Hfq pourrait être contenue dans la structure secondaire et tertiaire de la séquence 5' non-traduite des ARNm. Une seconde possibilité serait qu'un facteur protéique inconnu soit impliqué dans cette reconnaissance, en liant spécifiquement ces ARNm, et qu'il pourrait jouer un rôle dans le recrutement soit de Hfq, ou de RyhB.
3.1.1 Hypothèse #1 : Structure des ARNm

À notre avis, il est très probable que l’information qui détermine qu’un ARNm est ciblé par RyhB puisse résider à même la structure de ces ARNm. Nous savons que la protéine Hfq lie la région 5’ non-traduite des ARNm cibles; la prochaine étape consiste à vérifier si quelque(s) structure(s) secondaire(s) ou tertiaire(s) dans cette région serait(ent) commune(s) à tous les ARNm cibles (par exemple, des tiges-boucles ou des pseudonoeuds). De telles caractéristiques structurales pourraient déterminer la reconnaissance des ARNm cibles par Hfq. Quelques programmes informatiques prédisant la structure secondaire des acides nucléiques sont disponibles, comme MFOLD (Mathews et al. 1999). Il s’agit de fournir au programme une séquence d’ARN à replier, et MFOLD propose différentes structures secondaires énergétiquement favorables (qui ont une énergie libre de Gibbs minimale), et qui sont donc théoriquement réalistes. Ces programmes sont utiles, mais ils ont certaines limites. Par exemple, ils ne peuvent prédire les structures tertiaires, les pseudonoeuds, ou les interactions impliquant des bases modifiées. Les prédictions bioinformatiques peuvent servir de base à la détermination d’une structure d’ARN, mais celle-ci doit être confirmée expérimentalement. D’autre part, il n’est pas possible de prédire la structure d’un ARN en interaction avec une protéine.

Il a été montré, par cartographie avec des RNases, que la liaison de Hfq sur l’ARNm cible sodB affectait sa structure secondaire (Geissmann and Touati 2004). Nos propres expériences d’empreinte à la RNase T1 et T2 ont également suggéré ce changement structural, précisément au niveau de la région d’initiation de la traduction des ARNm cibles étudiés (sodB, fumA, acnB et sdh), ce qui n’était pas le cas chez une non-cible,
uup (Figure 6, Chapitre 1). Toutefois, ces expériences n'ont pas permis de déterminer avec précision le site d'interaction de Hfq sur ces ARN, ni la structure des ARN étudiés. Afin de mieux comprendre le rôle de Hfq dans cette interaction, le site de liaison de la protéine doit être déterminé précisément, et le changement structural des ARNm induit par Hfq doit être caractérisé. Pour ce faire, nous proposons d'étudier la structure de chaque ARNm seul d'abord, pour ensuite déterminer la structure des ARNm en présence de Hfq. Plusieurs techniques existent pour obtenir des informations sur la structure des ARN.

3.1.1.1 Structure des ARNm (en absence de Hfq)

D'abord, des expériences d'empreinte à la RNase plus exhaustives pourraient être effectuées en utilisant une gamme d'endoribonucléases aux spécificités différentes. Par exemple, la RNase T1 (clive en 3' des G non-appariés), la RNase V1 (coupe des régions d'ARN double brin), la RNase U2 (clive en 3' des A simple brin) ou la RNase A (coupe en 3' des U et de G non-appariés). En digérant l'ARNm marqué en 5' par plusieurs ribonucléases, on obtiendra des patrons de dégradation différents dépendants de la spécificité de chaque enzyme. Cette spécificité étant due à la séquence et à la structure des ARNm, il sera possible de reconstituer cette structure en se basant sur la structure secondaire prédite par MFOLD.

Des techniques alternatives existent pour obtenir des informations sur la structure des ARN. L'une d'entre elles utilise aussi une endoribonucléase, la RNase H. Cette enzyme possède une spécificité particulière, qui est de reconnaître et cliver l'ARN d'un duplex ADN-ARN. En conditions natives, si l'on place un ARNm (cible ou non-
cible) marqué en 5' en présence d’un hexamère ADN aléatoire (de séquence 5'-NNNNNN-3'), ceux-ci seront libres d’interagir avec l’ensemble de l’ARN simple brin (qui n’est pas engagé dans des structures secondaires). La RNase H reconnaît spécifiquement et clive ces hétéroduplex, générant un certain patron de dégradation après migration sur gel dénaturant. Les régions initialement double-brin sont protégées de ce clivage.

Une autre méthode qui peut révéler les caractéristiques structurales de l’ARN est nommée « in-line probing ». Le principe de cette technique repose sur le fait que le squelette de l’ARN est naturellement susceptible à un clivage spontané des liens phosphodiester, dû à une réaction de transestérification intramoléculaire. Dans l’ARN, l’oxygène nucléophile du groupement 2'-hydroxyle est orienté à proximité du lien phosphodiester (« in-line »), et peut attaquer cette liaison (voir Figure 3.1). Ceci peut expliquer pourquoi l’ARN est environ 100 000 fois plus instable que l’ADN en conditions physiologiques (Li et al. 1999).
Figure 3.1 Réaction de transestérification intramoléculaire de l’ARN. Dans une molécule d’ARN, le 2’OH d’un nucléotide peut faire une attaque nucléophile sur le lien phosphodiester, provoquant le clivage de cet ARN. Figure tirée de (Soukup and Breaker 1999).

Une étude a également démontré que l’ARN structuré était moins susceptible à ce clivage spontané (Soukup and Breaker 1999). L’ARN double brin, moins flexible que l’ARN simple brin, n’est pas enclin à adopter une orientation « in-line ». Les régions plus structurées des ARN sont beaucoup plus stables, tout comme une région liée à une protéine demeure protégée. Cette instabilité intrinsèque de l’ARN est mise à profit dans la technique « In-line probing ».

Pour notre étude, il s’agirait d’incuber nos ARNm cibles et non-cibles (radiomarqués à leur extrémité 5’) à la température de la pièce durant 72 heures à pH neutre, pour ensuite séparer les produits de clivage sur gel dénaturant (Soukup and Breaker 1999; Lemay and Lafontaine 2007). Cette technique, en plus des méthodes d’empreinte à la RNase, compléterait bien notre étude de la structure secondaire des ARNm cibles et non-cibles en absence de protéine Hfq.
En plus des techniques d’empreinte, il existe d’autres façons de déterminer la structure des ARN. L’une de ces techniques, la cristallographie aux rayons-X, est nettement plus ardue et laborieuse, mais peut révéler la structure des ARN avec une très grande résolution. Cette méthode nécessite de l’équipement et de l’expertise auxquels nous n’avons pas accès pour l’instant, mais que de futures collaborations avec des laboratoires équipés pourraient éventuellement permettre. Nous aimerions cristalliser l’extrémité 5’ non-traduite, et le début de la région codante de chaque ARN de notre système comparatif. Brièvement, il faut synthétiser in vitro de grandes quantités de nos ARNm tronqués (de la même façon que dans la présente étude), et soumettre ces transcrits à différentes conditions (pH, concentrations en sels, ajout de dénaturants, agents de précipitation), ou encore à une combinaison de ces conditions. Après une certaine période, des cristaux d’ARN peuvent apparaître. C’est l’obtention des cristaux qui est la plus ardue, car la cristallisation se fait dans des conditions très particulières qui sont, au départ, inconnues. Il est très important que le matériel de départ soit extrêmement pur, afin d’avoir des cristaux uniformes. Ces cristaux sont soumis à des rayons-X, grâce à un diffractomètre, et un patron de diffraction est alors obtenu. Les données cristallographiques sont analysées à l’aide de programmes informatiques spécialisés qui produisent des cartes de densité électronique, transformées ensuite en modèles atomiques, c’est-à-dire en images tridimensionnelles (pour revues, voir (Holbrook and Kim 1997; Egli 2004)).

Cette technique permettrait d’obtenir des images de nos ARNm cibles et non-cibles en trois dimensions avec une résolution très élevée. La comparaison des structures des cibles entre elles permettraient de savoir si ces ARNm possèdent des caractéristiques structurales communes, et de vérifier ensuite si ces structures sont présentes ou
absentes chez les ARNm non-cibles. De telles observations pourraient donner un appui énorme à notre étude comparative des ARNm cibles et non-cibles de RyhB, en plus d'expliquer la liaison préférentielle de Hfq aux ARNm cibles. La mutagénèse de ces structures, pour mesurer leur importance dans la reconnaissance de Hfq, pourrait poursuivre cette caractérisation.

3.1.1.2 Structure des ARNm liés à Hfq

Un autre volet essentiel à la poursuite de ce projet consiste en l'étude détaillée de la structure des ARNm suite à leur liaison avec Hfq. Les trois techniques d'empreinte présentées plus haut (section 2.1.1.1) peuvent être facilement adaptées pour la détermination de ces structures. Par la même occasion, elles permettront d'identifier le lieu de cette interaction. Il suffirait de pré-incuber les ARNm avec Hfq dans les conditions de liaison habituelles avant de procéder aux traitements. Aussi, il serait extrêmement pertinent de générer des cristaux des différents ARNm liés à Hfq, afin de pouvoir visualiser les changements structuraux survenant suite à la liaison. En étudiant et en comparant les structures finales des ARNm cibles liés à Hfq, on pourrait s'attendre à constater un changement de structure causé par la liaison à Hfq aux ARNm cibles. Ce changement de structure hypothétique pourrait exposer la région d'appariement, la rendant accessible pour la reconnaissance de ces ARNm par RyhB.
3.1.2 Hypothèse #2 : Implication d’un facteur protéique inconnu dans la reconnaissance de Hfq par les ARNm cibles

La seconde hypothèse à étudier est l’implication potentielle d’un facteur protéique inconnu (dénommé arbitrairement Facteur X dans ce mémoire) dans la reconnaissance des ARNm cibles de RyhB par Hfq. Par exemple, ce facteur protéique pourrait, d’une part, reconnaître spécifiquement les ARNm cibles via un site de liaison unique à ces ARNm, et d’autre part, recruter Hfq. Il a été suggéré que la face distale de Hfq, à caractère polaire, pouvait être impliquée dans une, ou même plusieurs interactions protéine-protéine (Mikulecky et al. 2004; Arluison et al. 2006). La protéine Hfq peut former des dodécamères (interaction de deux hexamères via leurs faces distales), et un hexamère de Hfq peut interagir avec d’autres protéines. Plus précisément, il est connu que Hfq peut interagir avec la poly-A polymérase (PAP 1) et la polynucléotide phosphorylase (PNP) (Mohanty et al. 2004), la RNase E (Morita et al. 2005), ainsi que la protéine ribosomale S1 (Sukhodolets and Garges 2003) (revue dans Brennan et Link (2007)). Parmi ces protéines, seule la RNase E est vraisemblablement liée au mécanisme d’action de RyhB : certaines évidences montrent que cette enzyme co-immunopréципite avec un complexe Hfq-RyhB (Morita et al. 2005). Cependant, cette interaction intervient forcément suite à l’appariement entre le petitARN et sa cible, sinon la RNase E dégraderait les cibles de RyhB même en son absence.

La participation d’un facteur protéique inconnu, le Facteur X, est plausible. Nous proposons une méthode pour identifier ce facteur. Il s’agit d’une approche in vivo de mutagénèse par transposon, suivie d’un criblage pour une perte de fonction du gène codant le Facteur X. L’objectif est de trouver une protéine (autre que Hfq) nécessaire à
la fonction de RyhB sur un ARNm cible, de l’inactiver, et de vérifier l’effet de cette perte sur le mécanisme d’action de RyhB. Pour ce faire, nous proposons d’exprimer RyhB de façon constitutive dans une souche fur::kan (RyhB n’est plus réprimé par Fur et est donc exprimé constitutivement) contenant une fusion d’un ARNm cible (par exemple, sodB) avec le gène rapporteur lacZ. Une telle fusion inclut la région promotrice du gène de sodB avec les premiers codons du gène. Grâce à cette fusion sodB-lacZ intégrée dans le chromosome, nous pouvons détecter de façon colorimétrique des souches mutées par l’insertion du transposon, qui portent une défaillance dans le processus de ciblage de RyhB; cette défaillance est causée par l’inactivation du Facteur X. Il sera ensuite possible d’identifier le(s) gène(s) mutant(s) correspondant au Facteur X et de procéder à leur caractérisation.

La mutagénèse par le mini-transposon Tn10 pour l’interruption de gènes est un outil très intéressant pour l’analyse génétique chez les procaryotes. Ces éléments génétiques mobiles peuvent s’insérer au hasard dans l’ensemble du génome bactérien, parfois à proximité ou à l’intérieur de régions codantes, altérant l’expression de ces gènes. Deux techniques principales sont utilisées pour introduire les transposons dans l’hôte : d’abord, via un bactériophage, comme P22 (Hughes 2007). On peut aussi introduire dans la cellule un plasmide codant le transposon. Ces plasmides permettent la réplication du transposon (Rossignol et al. 2001), et celui-ci peut s’intégrer dans le génome de manière aléatoire. Ces éléments transportent entre autres une origine de réplication, et un gène de résistance à un antibiotique (dans notre cas la tétracycline), qui permet de cribler et de sélectionner le transposon à différentes étapes de la mutagénèse.
Il est possible d’appliquer cette approche à notre projet pour générer des souches portant le gène facteurX muté. Une fois les transposons intégrés dans le chromosome bactérien, on peut extraire l’ADN génomique, puis le fractionner à l’aide d’une enzyme de restriction (qui ne coupe pas dans le transposon). Ceci génère des fragments que l’on peut liguer pour former des molécules circulaires (plasmides) dont certains comportent le transposon, entouré de part et d’autre par le gène facteurX interrompu. Ces plasmides sont introduits dans des souches particulières, et les transformants sont sélectionnés grâce à une résistance à la tétracycline originaire du transposon présent sur le plasmide.

Les souches utilisées pour transformer les plasmides portent une mutation chromosomique fur::kan (ces cellules expriment RyhB de façon constitutive), ainsi qu’une fusion sodB-lacZ. La présence de la β-galactosidase dans ces souches permet de visualiser de façon phénotypique l’effet de RyhB sur cette fusion lorsque les bactéries sont en présence de X-gal : le X-gal est un substrat de la β-galactosidase qui, une fois hydrolysé, génère un produit (5,5'-dibromo-4,4'-dichloro-indigo) qui s’accumule dans les cellules et donne aux colonies une coloration bleue. Dans les cellules dont le mécanisme d’action de RyhB n’est pas altéré, RyhB cible sodB-lacZ, induit sa dégradation et la β-galactosidase n’est pas exprimée. Ces colonies sont phénotypiquement blanches. À l’opposé, si la mutation du Facteur X affecte ce mécanisme, on observe une coloration bleue chez cette colonie.

Pour découvrir l’identité du gène facteurX (interrompu par le transposon), il suffit d’extraire des plasmides issus de différentes colonies bleues et d’identifier le gène interrompu par séquençage. Il est également possible que différents gènes soient
impliqués, ce qui indiquerait un niveau de complexité supérieur à celui qu’on connaît aujourd’hui.

À cette étape, il est possible d’obtenir des faux-positifs. En effet, il se peut que le transposon interrompe le gène *ryhB*, alors des colonies bleues seraient obtenues. Le séquençage permet de distinguer ces mutants faux-positifs des mutants *facteurX* recherchés.

Après l’identification de la mutation chromosomique du gène *facteurX* de la souche *fur::kan, sodB-lacZ, facteurX::Tn10* nouvellement générée, il est important de s’assurer que le transposon ne s’est inséré qu’une seule fois dans le chromosome. On peut utiliser la technique de transduction par le phage P1Vir : il s’agit d’infécter une souche *fur::kan, sodB-lacZ, facteurX::Tn10* avec ce phage. Au cours de leur réplication, les phages intègrent de manière fortuite dans leur capsid des fragments chromosomiques de la bactérie hôte. On suppose donc que le gène *facteurX::Tn10* sera lui aussi encapsidé, tout comme d’autres insertions du transposon survenues ailleurs dans le chromosome. En infectant une nouvelle souche *fur::kan, sodB-lacZ* avec ces phages P1Vir, les gènes mutants portés par le phage seront incorporés dans le chromosome de l’hôte par recombinaison homologue. Les probabilités que plus d’un phage ayant encapsidé un transposon infecte la même bactérie sont très faibles. On pourra sélectionner les souches qui portent une mutation *facteurX::Tn10* grâce à leur résistance à la tétracycline et les cribler grâce à leur coloration bleue, montrant l’effet de la mutation *facteurX* sur le mécanisme d’action de RyhB, en assumant qu’une seule insertion du transposon est présente dans la souche.
Après l’obtention de ces souches mutantes facteurX::Tn10 à insertion unique, on peut mesurer de façon quantitative les conséquences de mutations dans le gène facteurX avec des essais de l’enzyme β-galactosidase. L’objectif est de mesurer et comparer l’activité β-galactosidase dans les souches générées : une souche fur::kan, sodB-lacZ, et une souche fur::kan, sodB-lacZ, facteurX::Tn10. On s’attend à obtenir une très faible activité dans la première souche, car RyhB peut librement exercer son action sur la fusion sodB-lacZ. Par contre, la souche qui n’a plus le Facteur X ne devrait pas pouvoir permettre à RyhB d’être actif sur sodB-lacZ, et devrait donc exprimer la β-galactosidase. Aussi, si on a identifié plusieurs gènes impliqués dans ce mécanisme, on peut construire des souches portant des combinaisons de mutations, et mesurer l’importance de chaque facteur dans ce mécanisme.

Cette méthode peut nous informer sur la participation d’un ou de plusieurs facteurs inconnus dans le mécanisme d’action de RyhB sur un ARN cible. Le Facteur X découvert pourrait être impliqué dans le mécanisme d’appariement entre RyhB et un ARNm cible, ou encore dans d’autres étapes du processus. Par exemple, ce facteur pourrait intervenir dans le recrutement de Hfq, ou encore du dégradosome. C’est pourquoi d’autres expériences seront nécessaires pour situer plus exactement le rôle de ce facteur dans le mécanisme d’action de RyhB.

Il est important de mentionner que la détermination de la structure des ARNm, tout comme la participation d’un Facteur X sont intéressants à éclaircir, car il est probable que la spécificité de liaison de Hfq sur les ARNm soit dictée par une combinaison de ces deux caractéristiques.
3.2 LA MUTATION Y55A AFFECTE LES CAPACITÉS DE Hfq À LIER LES ARN

Tel que mentionné précédemment, le groupe de Feig a généré des mutants Hfq qui provoquaient des conséquences diverses sur les fonctions de la protéine Hfq (Mikulecky et al. 2004). Parmi ces mutations, Y55A (un acide aminé situé à la périphérie de la cavité centrale de Hfq) réduisait la propension de Hfq à lier certains ARN : le petit ARN DsrA, un oligoribonucléotide de séquence AU₅G, et un oligonucléotide poly-A de 27 nucléotides. Son affinité pour l’ARNm cible de DsrA, rpoS, s’est trouvée légèrement altérée par cette substitution.Plusieurs études proposent que les divers types d’ARN pourraient lier Hfq sur des sites d’interaction différents; ce résultat de Mikulecky et al. (2004) suggère, en effet, que les ARNm cibles pourraient se lier ailleurs qu’à la périphérie de la cavité centrale de Hfq, puisque leur capacité à lier le mutant Hfq Y55A n’est pas affectée.

Dans le cadre de ce projet, il était intéressant d’inclure cette protéine mutante dans notre système, pour déterminer si la mutation Y55A avait un impact sur la liaison avec RyhB et les ARNm cibles. Ce système permettait du même coup de voir si la mutation Y55A pouvait affecter la formation de complexes entre RyhB et ses ARNm cibles. L’équipe d’Andrew Feig nous a généreusement fourni les constructions plasmidiques permettant d’exprimer et de purifier les protéines Hfq WT (de type sauvage) et Hfq Y55A, marqués avec une étiquette d’hexahistidine (Hfq WT-His₆ et Hfq Y55A-His₆). La Figure 10 de l’article ci-joint (Chapitre 1) montre que la mutation Y55A ne semble pas altérer la liaison efficace de Hfq in vivo sur au moins trois ARNm cibles, soit
sodB, acnB et fumA, puisque la demi-vie de ces ARNm dans une souche exprimant Hfq Y55A-His6 est similaire à celle d’une souche qui exprime Hfq WT-His6. En ce qui concerne RyhB, nous observons que sa stabilité est normale avec Hfq WT-His6. À l’inverse, la Figure 11 (Chapitre 1) illustre que Hfq Y55A-His6 ne permet pas à RyhB d’être aussi stable qu’en présence de Hfq WT-His6. L’instabilité de RyhB que l’on observe est similaire à celle que l’on obtient en l’absence de Hfq (une demi-vie de moins de deux minutes). Ceci suggère que Hfq Y55A-His6 ne lie pas RyhB in vivo. Ceci est étonnant, car dans l’étude de (Mikulecky et al. 2004), la demi-vie du petit ARN DsrA en présence de Hfq WT-His6 est de 55 minutes, et passe à 29 minutes lorsque Hfq Y55A-His6 est présent. Pour confirmer cet effet sur DsrA, nous avons vérifié la demi-vie de DsrA en présence ou en absence de Hfq, ainsi qu’en présence de la protéine Hfq Y55A-His6 (voir Figure 2.1). De façon surprenante, nous obtenons une très courte demi-vie de DsrA en présence de Hfq Y55A-His6. Ce résultat contredit celui de Mikulecky (2004), ce que nous avons du mal à expliquer. D’un point de vue plutôt sévère, nous nous sommes permis de douter soit des constructions qui nous ont été fournies, soit des résultats publiés par ce groupe (qui ne sont pas montrés). Tenant compte de la demi-vie altérée de RyhB et de DsrA, nous pouvons émettre l’hypothèse que la protéine Hfq Y55A-His6 ne lie pas ces petits ARN efficacement in vivo.

Pour résumer, il semble que Hfq Y55A-His6 puisse lier les ARNm in vivo, mais pas les petits ARN. Cette distinction de spécificité induite par la mutation de Y55 indique que la protéine Hfq pourrait posséder deux sites de liaison à l’ARN distincts. Les petits ARN, dont la liaison à Hfq est affectée par la mutation Y55A lieraient la périphérie de la cavité centrale de la protéine. Nos résultats de stabilité des ARNm cibles indiquent que ceux-ci pourraient lier un site alternatif. Une autre étude de mutagénèse pourrait
être faite pour effectuer des mutations dans des sites de liaison potentiels d'ARNm cibles pour étudier plus particulièrement cette interaction (voir section 1.3.4).

Nous avons purifié la protéine Hfq Y55A-His6 afin de déterminer son affinité pour RyhB et les ARNm cibles in vitro, par gel de retardement. Nous avons également purifié la protéine Hfq WT-His6 (voir Figure 2.2) comme contrôle pour les expériences de gel de retardement, afin de vérifier si l’étiquette His6 nuisait à l’activité de liaison. La protéine purifiée Hfq WT-His6 se comportait de manière identique à notre protéine Hfq en présence d’un ARNm cible (voir Figure 2.3A), ce qui démontre que la liaison aux ARN n’est pas affectée par la présence de l’étiquette His6. Toutefois, les résultats obtenus avec la protéine mutante Y55A sont moins concluants.

Nous n’avons obtenu aucun complexe entre Hfq Y55A-His6 et les ARNm cibles (voir Figure 2.3B), ce qui va à l’encontre des résultats de demi-vie des ARNm cibles en présence de Hfq Y55A-His6. Nous ignorons la cause des différences entre les résultats des Northern blots et ceux des gels à retardement en ce qui concerne la faculté de Hfq Y55A-His6 à lier les ARNm cibles.

Des essais de gel de retardement de RyhB avec Hfq Y55A-His6 se sont avérés négatifs, même à concentration très élevée de protéine (Figure 2.3C). Ce résultat concorde bien avec le résultat de demi-vie de RyhB in vivo, mais s’oppose aux résultats de l’expérience du groupe de Feig (Mikulecky et al. 2004) avec DsrA, bien que dans cet article, les gels à retardement ne sont pas montrés.
Quoiqu'il en soit, il est évident que la protéine Hfq Y55A-His₆ purifiée recèle un défaut. Il est possible que la mutation Y55A, combinée à l'ajout d'une étiquette histidine ait altéré sa capacité à lier l'ARN, quel qu'il soit. Il est également probable que la protéine mutante utilisée ait été altérée au cours de sa purification et ne soit plus apte à lier les ARN. Il est admissible que Hfq Y55A-His₆ soit plus sensible au traitement à la chaleur que Hfq WT-His₆, et aurait subi des dommages lors de cette étape de la purification. À la Figure 2.2, il y a absence de multimères de Hfq Y55A-His₆, tels que l'on retrouve chez Hfq WT-His₆. Ces complexes de poids moléculaire élevé sont toujours présents sur des gels de protéine dénaturants, comme c'est le cas pour la protéine Hfq recombinante à la Figure 2.2 (puits 2), et tel que publié (Sukhodolets and Garges 2003). L'absence de ces complexes normalement très stables est peut-être un indice d'une faiblesse dans la conformation, ou d'un défaut dans l'assemblage de cette protéine. Aussi, pour les deux protéines Hfq-His₆, une bande spécifique de poids moléculaire d'environ 20 kDa est visible sur gel dénaturant, au lieu du poids moléculaire de 11 kDa attendu. Ceci correspond approximativement au poids moléculaire d'un dimère de Hfq, mais nous ignorons quelle pourrait être la cause, ni la conséquence d'une telle conformation dimérique, que l'on observe sur gel. La protéine Hfq WT-His₆ était toutefois aussi active que notre Hfq recombinante in vitro. Nous émettons des doutes quant à la qualité de la préparation de protéines Hfq Y55A-His₆, car nous avons obtenu in vitro et in vivo des résultats contradictoires.
3.3 *carA*, UN ARNm NON-CIBLE?

La plupart des résultats obtenus lors de la caractérisation de l'ARNm *carA* différeraient des attentes que nous avions envers un ARNm non-cible. Certaines données, comme la liaison initiale de Hfq sur *carA* (voir Figure 2.6B) et l'absence d'effet de RyhB sur les niveaux de cet ARNm (Figure 2.5) indiquent que *carA* semble se comporter comme une non-cible. À l'opposé, des essais de compétition (Figure 2.7) et de formation de complexes ternaires (Figure 2.8), de même que les essais de traduction *in vitro* (Figure 2.9) rappellent le comportement des ARNm cibles. Ces résultats nous portent à croire que *carA* pourrait être un ARNm ciblé par RyhB, mais sa stabilité ne serait pas affectée par RyhB. RyhB pourrait avoir un autre effet sur *carA* : par exemple, pour activer ou inhiber sa traduction. *In vitro*, nous avons montré que *carA* pouvait, tout comme les ARNm cibles, lier la protéine Hfq (Figure 2.6). Bien que l'affinité de Hfq pour *carA* soit bonne, il n'en reste pas moins que la liaison de type coopératif se distingue toujours du type de liaison observé pour tous les ARNm cibles. Par contre, cette différence ne semble pas suffisante pour empêcher Hfq de reconnaître *carA in vitro* au même titre qu'une véritable cible, tel que proposé par les résultats de compétition entre *carA* et *acenB* à la Figure 2.7.

La Figure 2.8 montre que RyhB peut s'apparier avec *carA in vitro*, et que Hfq favorise modérément cet appariement (par rapport aux ARNm cibles). Il serait intéressant de confirmer la possibilité d'une interaction entre RyhB et *carA* avec une autre technique. Par exemple, le FRET (Fluorescence Resonance Energy Tranfer) est une technique très sensible qui peut être utilisée pour montrer une interaction en temps réel entre
deux ARN (coulés à des fluorophores différents). On peut aussi utiliser le FRET pour montrer le rôle d'une protéine chaperonne dans cette interaction. Tout récemment, un groupe de recherche a utilisé cette technique pour démontrer qu'un changement structural dans l'ARNm rpoS se produisait lors d'une interaction avec le petit ARN DsrA, et que cette interaction était favorisée par Hfq (Arlusison et al. 2007). En procédant à une expérience de ce type avec toutes les cibles et les non-cibles de RyhB (incluant carA), il serait possible d'analyser de façon très précise les différences entre les deux groupes d'ARN, et surtout déterminer si l'ARNm carA diffère de uup en tant que non-cible.

Ultimement, il serait intéressant de déterminer si une interaction entre carA et RyhB peut avoir lieu in vivo. Une fusion traductionnelle de l'ARNm carA avec lacZ, qui code le gène rapporteur de la β-galactosidase (voir Figure 3.2) pourrait répondre à cette interrogation. En exprimant RyhB dans une souche contenant une fusion carA-lacZ, s'il y a interaction de RyhB avec carA au niveau de la région d'initiation de la traduction, il devrait y avoir une différence dans l'activité de la β-galactosidase par rapport à l'activité dans une souche n'exprimant pas RyhB.
Figure 3.2 *Fusion traductionnelle du gène carA avec le gène lacZ*. La construction comprend la région promotrice de *carA*, de même que la région 5’ non-traduite et les 10 premiers codons de la protéine CarA. Le gène *lacZ* est inséré en phase avec *carA*, immédiatement après.

Nous avons montré à la Figure 2.9 la forte répression traductionnelle de l’ARNm *carA* induite en présence de Hfq *in vitro*. Bien que nous ne connaissions pas le site de liaison exact de Hfq sur *carA*, le fait que la présence de Hfq diminue de façon dramatique sa traduction (*in vitro*) suggère que Hfq se lie près de la région d’initiation de la traduction de *carA*. Il est tentant de penser que RyhB, exprimé en condition de stress nutritionnel, inhibe la traduction de l’ARNm *carA*. Des essais β-galactosidase, en plus de prouver une interaction, pourront indiquer le type d’effet que RyhB exerce sur l’ARNm *carA*. De plus, des essais de traduction *in vitro* de *carA* en présence de Hfq et de RyhB pourraient nous indiquer si RyhB permet de diminuer davantage l’efficacité de la traduction.

Si RyhB régule réellement la traduction de *carA*, plusieurs questions se posent: quel est le lien de *carA* avec le métabolisme du fer, et pourquoi réguler cet ARNm de façon post-transcriptionnelle?
Au premier abord, le fer ne semble pas être relié à la carbamoyl phosphate synthétase ([CarB]₂[CarA]₂). En effet, tous les ARNm cibles de RyhB encodent des protéines liant le fer, qui leur sert de cofacteur ou fait partie de centres fer-soufre. La carbamoyl phosphate synthétase peut utiliser plusieurs ions divalents comme cofacteurs (Mg²⁺, Mn²⁺, Co²⁺, Cd²⁺ et Zn²⁺), mais ne lie pas le Fe²⁺ : il est donc possible que ce lien avec le fer soit indirect.

En effet, ce lien semble être au niveau de la régulation du gène carA. Comme le montre la Figure 3.3, l'unité transcriptionnelle carAB est régulée négativement par le répresseur de transcription PurR, actif en présence d'hypoxantine et de guanine (Rolfes and Zalkin 1988). Or, la transcription de ce répresseur est elle-même régulée par un autre répresseur de transcription, Fur. En présence de fer, Fur réprime la synthèse du répresseur PurR, ce qui active la transcription de carAB. Ceci résulte en l'expression des deux sous-unités de la carbamoyl phosphate synthétase, pour produire des purines et de l'arginine. Toutefois, en absence de fer, on assiste à l'inactivation de Fur, ce qui peut avoir deux effets : d'abord, la répression de PurR est levée, et ce régulateur de transcription peut arrêter la synthèse des purines et de l'arginine. Aussi, suite à l'inactivation de Fur, RyhB est transcrit. Si notre hypothèse est vraie, il pourrait aller cibler l'ARNm carAB au niveau de la région d'initiation de la traduction de carA. En plus d'être réprimé au niveau de la transcription, carA serait réprimé au niveau traductionnel. Cette sur-inhibition par RyhB en absence de fer serait un moyen de cesser toute activité de synthèse de pyrimidines et d'arginines, processus requérant beaucoup d'énergie et peu utiles à la cellule en condition de stress.
Figure 3.3 Régulation transcriptionnelle de l’opéron carAB par Fur et régulation post-transcriptionnelle du transcrit carAB par RyhB. En présence de fer, Fur activé inhibe l’expression de purR, qui code pour un répresseur de transcription de l’opéron carAB, ce qui permet l’expression de la carbamoyl phosphate synthétase. En absence de fer, Fur inactif permet de produire le répresseur de transcription PurR, qui réprime l’opéron carAB. L’inactivation de Fur permet également la transcription de RyhB, qui pourrait s’apparenter sur la région d’initiation de la traduction de l’ARNm carA et empêcher la traduction de la sous-unité A de la carbamoyl phosphate synthétase.

Cette hypothèse reste à démontrer. Des essais β-galactosidase permettront d’évaluer les fluctuations de la traduction de protéines CarA en réponse à une carence en fer, soit
en condition d'expression de RyhB. Ceci est d'un grand intérêt, puisque ce serait le premier exemple d'un nouveau mécanisme d'action de RyhB, soit celui de l'inhibition de la traduction d'un ARNm sans en affécter la stabilité. Un article récent de notre laboratoire a démontré que RyhB pouvait activer la traduction d'un ARNm codant pour un transporteur du shikimate (un précurseur de sidériophore), *shiA*, en ouvrant une structure inhibitrice de la traduction (Prevost et al. 2007). Un effet de répression traductionnelle de *carA* par RyhB serait donc le troisième mécanisme d'action connu pour ce petit ARN. Si tel était le cas, il faudrait mieux définir les cibles de RyhB; notre définition actuelle d'une cible de RyhB correspond à « un ARNm dont la stabilité est réduite en présence de RyhB ». Connaissant l'existence de l'ARNm cible *shiA* et de l'ARNm cible potentiel *carA*, nous pouvons désormais modifier notre définition de cible pour « un ARNm dont la stabilité ou la traduction est modulée par RyhB».
CONCLUSIONS

L’engouement récent pour les petits ARN comme régulateurs métaboliques bactériens s’explique très bien par leur étonnante spécificité, efficacité et rapidité d’action. Il n’en serait probablement pas ainsi sans la protéine Hfq. Cette étude illustre bien le rôle crucial de Hfq dans la spécificité d’action du petit ARN RyhB : Hfq reconnaît parmi le pool d’ARN de la cellule uniquement les ARNm ayant été ciblés par RyhB. Hfq semble faire subir aux ARNm une étape de présélection, dans laquelle seuls les ARNm cibles sont étiquetés par Hfq en attendant l’expression du petit ARN. À la lumière de nos travaux, il semble de plus en plus évident que les ARNm cibles possèdent des caractéristiques intrinsèques reliées à leur région 5’ non-traduite, qui dictent leur reconnaissance exclusive par Hfq.

En général, les petits ARN possèdent des mécanismes uniques, ce que l’on croyait vrai aussi pour RyhB. Les travaux de notre laboratoire ont récemment démenti cette hypothèse, en démontrant que RyhB, en plus de pouvoir induire la dégradation d’une vingtaine d’ARNm, pouvait aussi stimuler la traduction d’un ARNm. Les résultats obtenus avec l’ARNm carA nous laissent soupçonner l’existence d’un troisième mécanisme d’action pour ce petit ARN. Bien que ce mécanisme reste à démontrer, une telle idée est attrayante : en condition de carence nutritionnelle en fer, un petit ARN, via la protéine Hfq, pourrait à lui seul inhiber la traduction de plusieurs ARNm (par obstruction de la machinerie traductionnelle et par dégradation de ces transcrits) et activer l’expression de d’autres (en modifiant la structure secondaire de l’ARNm) pour
répondre à ce stress particulier. L’étude plus approfondie de ces différents rôles nous aidera à mieux comprendre l’effet global de RyhB dans la régulation du fer intracellulaire.

Le mécanisme d’appariement de RyhB sur ce complexe Hfq-cible n’est toutefois pas encore très clair. Nos observations semblent appuyer un modèle qui stipule la participation indépendante de deux hexamères de Hfq, chacun liant un des deux ARN. La reconnaissance de Hfq sur RyhB et sur la cible se ferait sur des sites d’interaction distincts sur Hfq. Il est probable que les deux hexamères chargés en ARN puissent alors interagir ensemble via leur côté distal, rapprochant les deux ARN dans l’espace. Pour le petit ARN, cette proximité permettrait la reconnaissance d’une séquence partiellement complémentaire, s’il y a lieu. En effet, beaucoup de petits ARN, tout comme RyhB, lient Hfq. Il est probable que ce soit aussi le cas pour leurs ARNm cibles. On peut imaginer qu’il y aurait une certaine proportion d’ARNm et de petits ARN liés à des hexamères de Hfq, se liant et se dissociant de d’autres hexamères de façon dynamique, jusqu’à ce qu’un appariement surviennent entre les ARN associés à leur hexamère respectif.

Hfq pourrait alors être considéré comme un médiateur d’envergure pour la spécificité d’action d’un grand nombre de petits ARN. Puisque plusieurs petits ARN sont très conservés, les connaissances acquises par l’étude du rôle de Hfq dans le mécanisme d’appariement de RyhB chez _E. coli_ pourraient potentiellement s’appliquer à de nombreux petits ARN, chez plusieurs espèces.
REMERCIEMENTS

Je me dois avant tout de remercier sincèrement mon directeur de recherche, Dr Eric Massé, de m’avoir accueillie comme première étudiante de son laboratoire. Ces deux années de maîtrise ont été extrêmement formatives autant du point de vue expérimental qu’académique, en très grande partie grâce à Eric qui m’a consacré énormément de temps pour discuter de concepts, de résultats et de projets. Cette implication a été extrêmement appréciée.

Je remercie aussi Jean-François Jacques et Karine Prévost, les deux assistants de recherche, aussi pour les discussions, mais surtout pour leur support, leur amitié et pour avoir rendu, chacun à leur façon, ces deux années si agréables. Un merci particulier à Jean-François qui m’a été d’un grand secours au niveau technique et scientifique à plusieurs étapes de la rédaction de ce mémoire. Je salue aussi les autres étudiants et stagiaires du laboratoire, à qui ce fut un plaisir de transmettre des connaissances et de partager des moments agréables. Merci à Audrey Dubé pour ses commentaires sur ce travail. Un merci très sincère aux Drs Xavier Roucou et Daniel Lafontaine, qui ont sacrifié de leur précieux temps pour la correction de ce mémoire.

Pour finir, je remercie sincèrement ma famille et mes amis pour tout le support et l’encouragement qu’ils ont manifesté à mon égard tout au long de mes études. Merci pour la patience et la compréhension dont ils ont fait preuve, dans les pires comme dans les meilleurs moments.

Rossignol, M., Basset, A., Espeli, O., and Boccard, F. 2001. NKBOR, a mini-Tn10-based transposon for random insertion in the chromosome of Gram-negative

