NOTE TO USERS

This reproduction is the best copy available.

UMI®
Action hormonale sur le protéome du spermatide

Par

Stéphanie Lussier

Département de Biochimie

Mémoire présenté à la Faculté de Médecine en vue de l'obtention du grade de Maître ès sciences (M.Sc.) en Biochimie

17 janvier 2005
NOTICE:
The author has granted a non-exclusive license allowing Library and Archives Canada to reproduce, publish, archive, preserve, conserve, communicate to the public by telecommunication or on the Internet, loan, distribute and sell theses worldwide, for commercial or non-commercial purposes, in microform, paper, electronic and/or any other formats.

The author retains copyright ownership and moral rights in this thesis. Neither the thesis nor substantial extracts from it may be printed or otherwise reproduced without the author's permission.

In compliance with the Canadian Privacy Act some supporting forms may have been removed from this thesis.

While these forms may be included in the document page count, their removal does not represent any loss of content from the thesis.

Canada
TABLE DES MATIÈRES

Table des matières ... I
Liste des illustrations .. IV
Liste des abréviations .. VI
Résumé .. VII

1. INTRODUCTION .. 1
 1.1 Les tubules séminifères ... 1
 1.2 La spermatogenèse ... 3
 1.3 La compaction de l’ADN ... 5
 1.4 Le protéome du spermatide ... 8
 1.4.1 Les histones ... 8
 1.4.2 Les protéines de transition 10
 1.4.2.1 Protéine de transition 1 (TP1) 11
 1.4.2.2 Protéine de transition 2 (TP2) 12
 1.4.3 Les protamines ... 12
 1.4.3.1 Protamine 1 (P1) ... 13
 1.4.3.2 Protamine 2 (P2) ... 13
 1.5 La spermiogenèse ... 14
 1.6 La régulation hormonale ... 15
 1.6.1 L’axe hypothalamo-hypophysaire gonadien 15
 1.6.2 Modification hormonale .. 19
 1.6.2.1 Souris FORKO .. 19
 1.6.2.2 Inhibiteur de l’axe .. 20
 1.7 Analyse protéique ... 21
 1.8 Acétylation .. 28
 1.9 Objectifs de la recherche ... 29

2. MATÉRIEL ET MÉTHODES .. 31
 2.1 Préparation des noyaux résistants à la sonication (SRN) 31
 2.2 Extraction acide des protéines nucléaires basiques 31
 2.3 NEpHGE .. 33
2.4 Fabrication des IPG ... 33
2.5 Analyse bidimensionnelle .. 35
2.6 Gel tris-tricine ... 38
2.7 Gel acide-urée ... 38
2.8 Immunobuvardage des protéines 39
2.9 Souris FORKO ... 40
2.10 Acyline ... 41
2.11 Récupération des tissus et organes 41
2.12 Analyse sanguine .. 42
2.13 Acétylation ... 42
3. RÉSULTATS .. 43
 3.1 Électrophorèse 2D .. 43
 3.1.1 NEphGE ... 43
 3.1.2 IPG ... 45
 3.1.2.1 Vérification du gradient de pH 45
 3.1.3 Choix de la deuxième dimension 46
 3.1.3.1 Gel tris-tricine ... 46
 3.1.3.2 Gel acide-urée ... 49
 3.2 Identification des protéines ... 51
 3.2.1 Immunobuvardage ... 55
 3.2.2 Transfert .. 55
 3.3 Souris FORKO ... 58
 3.4 Acyline ... 62
 3.5 Acétylation ... 66
4. DISCUSSION ... 70
 4.1 Analyse protéique .. 71
 4.1.1 Première dimension .. 71
 4.1.1.1 NEphGE .. 71
 4.1.1.2 IPG ... 72
 4.1.2 Deuxième dimension .. 73
 4.2 Contrôle hormonal ... 74
4.2.1 Souris FORKO .. 75
4.2.2 Acyline ... 76
4.3 Protéines de transition 77
5. PERSPECTIVES ... 80
6. CONCLUSION ... 82
7. REMERCIEMENTS ... 84
8. BIBLIOGRAPHIE ... 86
LISTE DES ILLUSTRATIONS

Figure 1 : Testicule et tubule séminifère .. 2
Figure 2 : La spermatogénèse ... 4
Figure 3 : Mode de compaction de l’ADN ... 6
Figure 4 : Spermiogénèse ... 16
Figure 5 : Contrôle hormonal de la spermatogénèse 17
Figure 6 : Méthode d’analyse bidimensionnelle 23
Figure 7 : Ampholytes .. 25
Figure 8 : IPG .. 27
Figure 9 : Fabrication des IPG ... 34
Figure 10 : NEphGE ... 44
Figure 11 : Vérification du gradient de pH ... 47
Figure 12 : Gel 2D = IPG et gel tris-tricine .. 48
Figure 13 : Gel 2D = IPG et gel acide-urée .. 50
Figure 14 : Identification des protéines .. 52
Figure 15 : Gel bidimensionnel de l’extrait de 25% TCA 54
Figure 16 : Immunobuchodząage pour la détection de TP1 56
Figure 17 : Gel protéique acide-urée des extraits provenant des souris FORKO ... 60
Figure 18 : Gel protéique bidimensionnel des souris FORKO +/- 60
Figure 19 : Gel protéique bidimensionnel des souris FORKO +/- 60
Figure 20 : Gel protéique bidimensionnel des souris FORKO -/- 60
Figure 21 : Gel protéique acide-urée des extraits provenant des souris FORKO quantifié ... 63
Figure 22 : Acyline ... 65
Figure 23 : Acétylation ... 67

Tableau 1 : Caractéristiques du protéome du spermatide 9
Tableau 2 : Conditions de transfert optimisées .. 57
Tableau 3 : Données relatives aux souris FORKO 60
Tableau 4 : Distribution protéique des souris FORKO selon les différents génotypes

Tableau 5 : Variation des niveaux de testostérone selon différentes doses d'acyline
<table>
<thead>
<tr>
<th>Abbr</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>a.a.</td>
<td>Acide aminé</td>
</tr>
<tr>
<td>ABP</td>
<td>Androgen binding protein</td>
</tr>
<tr>
<td>ADN</td>
<td>Acide désoxyribonucléique</td>
</tr>
<tr>
<td>APS</td>
<td>Ammonium persulfate</td>
</tr>
<tr>
<td>Bis</td>
<td>N,N'-methylene-bis-acrylamide</td>
</tr>
<tr>
<td>cm</td>
<td>Centimètre</td>
</tr>
<tr>
<td>DMAA</td>
<td>N,N-Dimethylacrylamide</td>
</tr>
<tr>
<td>ECL</td>
<td>Enhanced chemiluminescence</td>
</tr>
<tr>
<td>EOF</td>
<td>Electroendosmotic flow</td>
</tr>
<tr>
<td>FSH</td>
<td>Follicle stimulating hormone</td>
</tr>
<tr>
<td>GnRH</td>
<td>Gonadotropin releasing hormone</td>
</tr>
<tr>
<td>HCl</td>
<td>Acide chlorhydrique</td>
</tr>
<tr>
<td>IEF</td>
<td>Isoelectric focusing</td>
</tr>
<tr>
<td>IPG</td>
<td>Immobilized pH gradient</td>
</tr>
<tr>
<td>kDa</td>
<td>kilodalton</td>
</tr>
<tr>
<td>LH</td>
<td>Luteinizing hormone</td>
</tr>
<tr>
<td>M</td>
<td>Molaire</td>
</tr>
<tr>
<td>mg</td>
<td>Milligramme</td>
</tr>
<tr>
<td>ml</td>
<td>Millilitre</td>
</tr>
<tr>
<td>mM</td>
<td>Millimolaire</td>
</tr>
<tr>
<td>nM</td>
<td>Nanomolaire</td>
</tr>
<tr>
<td>N</td>
<td>Normal</td>
</tr>
<tr>
<td>NP-40</td>
<td>Nonidet-P40</td>
</tr>
<tr>
<td>PM</td>
<td>Poids moléculaire</td>
</tr>
<tr>
<td>PMSF</td>
<td>Phenylmethylsulphonylfluoride</td>
</tr>
<tr>
<td>pI</td>
<td>Point isoélectrique</td>
</tr>
<tr>
<td>RIA</td>
<td>Radioimmunoassay</td>
</tr>
<tr>
<td>s</td>
<td>Seconde</td>
</tr>
<tr>
<td>SDS</td>
<td>Sodium dodécyl sulfate</td>
</tr>
<tr>
<td>SRN</td>
<td>Noyau résistant à la sonication</td>
</tr>
<tr>
<td>TCA</td>
<td>Acide trichloroacétique</td>
</tr>
<tr>
<td>TEMED</td>
<td>N,N,N’-tetraméthyleénylendiamine</td>
</tr>
<tr>
<td>TUNEL</td>
<td>Terminal deoxynucleotidyl transferase</td>
</tr>
<tr>
<td>TP</td>
<td>Protéine de transition</td>
</tr>
<tr>
<td>Microlitre</td>
<td>µl</td>
</tr>
<tr>
<td>Volt x heure</td>
<td>Vhre</td>
</tr>
</tbody>
</table>
RÉSUMÉ

Action hormonale sur le protéome du spermatide

La spermiogenèse constitue la phase haploïde de la spermatogenèse durant laquelle se produit un remaniement majeur de l’ADN qui permettra de passer d’un mode de compaction nucléosomal à une compaction lamellaire. Ce type de compaction permet une réduction importante de l’espace occupé par l’ADN et une plus grande protection par rapport à celle des cellules somatiques.

Ce remaniement peut être divisé en différentes étapes chez les mammifères. Premièrement, les histones, qui sont responsables de la compaction de l’ADN dans les cellules somatiques, sont remplacées par des protéines basiques appelées protéines de transition (TP1 et TP2). Ensuite, les protéines de transition sont enlevées pour faire place à la déposition des protamines qui amèneront une compaction lamellaire de l’ADN.

La GnRH, produite par l’hypothalamus, déclenche la production des gonadotropines (FSH et LH) sécrétées par l’hypophyse. Ces hormones iront stimuler la spermatogenèse. La FSH semble être impliquée dans la spermiation (souris FORKO).

Mon projet est de développer un système d’analyse protéique bidimensionnelle du protéome nucléaire du spermatide qui nous permettra de voir si une variation de l’expression des gonadotropines affecte les protéines impliquées dans la spermiogenèse. Différentes méthodes ont été expérimentées, mais n’atteignaient pas les objectifs visés. La technique convenant le plus à nos attentes a été mise sur pied en utilisant, en première dimension, une méthode de séparation par focalisation isoelectrique modifiée, appelée IPG, et un gel d’électrophorèse de type acide-urée. Pour induire la variation des gonadotropines, nous avons utilisé l’acyline qui est un antagoniste de la GnRH. Différentes doses d’acyline ont été injectées à des souris pendant 14 jours et l’analyse protéique bidimensionnelle a été effectuée. Les souris traitées avec l’acyline donnaient un profil différent des souris non-traitées (contrôle). Des profils 2D ont aussi été obtenus à partir de souris ne possédant pas de récepteur pour la FSH (FORKO). Ces signatures protéiques différent selon le gène de ces souris. Ces deux expériences démontrent un lien entre les protéines nucléaires basiques et les gonadotropines. Pour arriver à mieux comprendre le lien unissant ces protéines et les modulations hormonales, il faudra parfaire l’identification des protéines en se dirigeant vers la spectrométrie de masse. Ceci nous permettra d’observer la variation des taux protéiques et, s’il y a lieu, les modifications post-traductionnelles qui pourraient être reliées aux modulations hormonales.

Mots-clés : Spermiogenèse, gonadotropines, analyse bidimensionnelle, protéome du spermatide, compaction de l’ADN.
1. INTRODUCTION

1.1 LES TUBULES SÉMINIFÈRES

Chez les mammifères, la spermatogenèse est amorcée lors de la puberté et c’est dans les testicules qu’elle se déroule. Si on considère une coupe longitudinale d’un testicule (figure 1), on constate qu’il est composé de tubules séminifères. C’est dans ces tubules que se produit la spermatogenèse. Une coupe transversale d’un tubule séminifère (figure 1) nous permet de mieux comprendre comment la spermatogenèse s’effectue. Tout d’abord, il est important de remarquer que le tubule séminifère est entouré par une lame basale. Les spermatogonies, qui sont les cellules souches, sont situées près de la lame basale. Plus les cellules se différencient et passent par les différentes étapes mitotiques et méiotiques, plus elles s’éloignent de la lame basale et se rapprochent de la lumière du tubule séminifère située au centre de celui-ci (MARIEB, 1999; PARKS et al., 2003). Les spermatozoïdes immatures sont donc relâchés dans la lumière du tubule et poursuivent leur maturation dans l’épididyme pour finalement y être entreposés. Différentes composantes sont impliquées dans la spermatogenèse. Les cellules de Sertoli, situées dans le tubule séminifère, jouent un rôle de cellules nourricières pour les cellules germinales de façon à ce qu’elles aient tous les nutriments et autres facteurs essentiels à leur maturation. Les cellules de Leydig sont situées entre les tubules séminifères et elles sont principalement responsables de la synthèse de la testostérone.
Figure 1 : **Testicule et tubule séminifère.** La coupe longitudinale d’un testicule est représentée dans le haut de cette figure, tandis que la coupe transversale d’un tubule séminifère est schématisée en bas. Il est important de constater que la spermatogenèse, se produisant dans le tubule séminifère, commence près de la lame basale pour se terminer à la lumière du tubule (HADLEY, 2000).
1.2 LA SPERMATOGENÈSE

La spermatogenèse (figure 2) désigne le processus par lequel les cellules germinales mâles évoluent jusqu’à devenir des spermatozoïdes. Différentes étapes interviennent lors de ce phénomène. Avant la puberté, les spermatagonies, qui sont les cellules souches, subissent sans cesse des mitoses, ce qui permet d’augmenter le nombre de spermatagonies. Toutes les mitoses qui se produisent à la puberté donnent deux cellules filles différentes : spermatogonie de type A et spermatogonie de type B. Les spermatagonies de type A resteront près de la lame basale et subiront la mitose de façon continue (MARIEB, 1999; HUYNH et al., 2002). Les spermatagonies de type B vont se différencier en spermatocytes primaires. Celles-ci entrent dans la première division méiotique, ce qui nous donne des spermatocytes secondaires. Pour chaque spermatocyte primaire (4n chromosomes), nous obtenons deux spermatocytes secondaires diploïdes (SNUSTAD et SIMMONS, 2000). Ces derniers subissent la deuxième division méiotique sans réplication de l’ADN pour donner des spermatides qui sont haploïdes. À partir d’un spermatocyte secondaire, il y a formation de quatre spermatides. Les spermatides se différencient en spermatozoïdes. Il est important de souligner le fait que ces spermatozoïdes sont immatures. C’est lors de leur voyage dans l’épididyme, canal où sont entreposés les spermatozoïdes, que ceux-ci acquièrent leur maturité.
Figure 2 : La spermatogenèse. Ce processus débute avec la spermatogonie qui subit deux divisions méiotiques pour donner quatre spermatozoïdes haploïdes. La spermiogenèse est la phase haploïde de la spermatogenèse. Elle représente la différenciation des spermatides en spermatozoïdes (PARKS et al., 2003).
1.3 LA COMPACTION DE L’ADN

Chez l’homme, plusieurs problèmes de fertilité sont associés à une mauvaise condensation de l’ADN qui semble avoir pour conséquence la fragmentation de l’ADN. L’étude de remodelage de la chromatine du spermatide est donc très importante puisque c’est surtout à cette étape qu’est déterminée la condensation.

Il y a une différence fondamentale et majeure, en ce qui a trait à la compaction de l’ADN, entre les cellules somatiques et les spermatozoïdes (figure 3). Dans les cellules somatiques, les histones sont regroupées en octamère et l’ADN est enroulé autour de cet octamère, ce qui amènera une compaction nucléosomale. Ce sont donc les histones qui sont responsables de la compaction de l’ADN dans les cellules somatiques. Une organisation particulière prend place au niveau des spermatozoïdes. Au début de la spermatogenèse, les histones sont responsables de la compaction de l’ADN comme dans les cellules somatiques. Ensuite, il y a déplacement des histones causé par des modifications post-traductionnelles qui changent leurs charge, conformation et habileté à lier l’ADN (POCCIA, 1986; MEISTRICH et al., 1992; GRIMES et HENDERSON, 1984). Les histones, qui assuraient la compaction de l’ADN, sont remplacées par les protéines de transition. Finalement, ces protéines de transition sont déplacées, possiblement par des modifications post-traductionnelles, pour être remplacées par les protamines qui sont responsables de la compaction lamellaire de l’ADN dans les spermatozoïdes. La liaison des protamines à l’ADN est
Figure 3 : Mode de compaction de l'ADN. L'ADN, présent dans les cellules somatiques, est compacté grâce aux histones. Dans les spermatozoïdes, différentes protéines (histones, protéines de transition et protamines) se succèdent pour compacter l'ADN. Les protéines qui sont responsables de la compaction lamellaire de l'ADN dans les spermatozoïdes sont les protamines (BRAUN, 2001).
facilitée par leur phosphorylation tandis que leur déphosphorylation est plutôt associée à une augmentation de la condensation de la chromatine (OLIVA et DIXON, 1991). Il est important de mentionner que, lorsque les histones se déplacent, une tension libre sous forme de superenroulement est présente dans l’ADN. La seule façon d’enlever cette tension est d’effectuer des bris dans l’ADN. Notre groupe a démontré la présence de cassures dans tous les spermatides en élongation chez la souris et l’humain (MARCON et BOISSONNEAULT, 2004). Ces bris doivent être réparés, mais on ne connaît pas encore le mécanisme de réparation de ces bris. Il est possible que les protéines de transition de même que les protamines soient impliquées dans ce processus de réparation (CARON et al., 2001 ; KIERSZENBAUM, 2001). Le mode de compaction lamellaire, fourni par les protamines, offre un facteur de compaction supérieur à celui des cellules somatiques. Le volume occupé par l’ADN représente moins de 5% du noyau d’une cellule somatique (CHO et al., 2001) et la protection de l’ADN est augmentée. L’acquisition d’une compaction optimale de l’ADN avec les protamines, grâce aux ponts disulfures, dépend du processus de phosphorylation-déphosphorylation de ces protéines (MARUSHIGE et MARUSHIGE, 1978; BALHORN et al., 1984). Le déplacement des protéines de transition n’est pas encore très bien connu. Des modifications post-traductionnelles pourraient être à l’origine du déplacement des protéines de transition comme c’est le cas pour les histones. Il serait donc intéressant d’approfondir nos connaissances à ce sujet, car des altérations dans ce processus peuvent causer des problèmes dans l’intégrité de la chromatine chez le spermatozoïde mature.
1.4 LE PROTÉOME DU SPERMATIDE

L’étiologie d’une majorité de cas d’infertilité masculine est toujours inconnue. Il importe d’explorer de nouvelles méthodes permettant d’investiguer l’intégrité du développement du gamète mâle. L’objectif de ma démarche expérimentale est d’étudier le protéome du spermatide. Celui-ci est composé des protéines nucléaires basiques suivantes : histones, protéines de transition et protamines. Certaines caractéristiques de ces protéines apparaissent au tableau 1. En se référant au tableau 1, il est possible de constater que les protéines nucléaires du spermatide sont de petites protéines (PM variant entre 6 et 16 kDa) et quelles sont très basiques (pI variant entre 10 et 12).

1.4.1 LES HISTONES

Ces protéines sont responsables de la compaction de l’ADN dans les cellules somatiques en s’assemblant en octamère. L’ADN s’enroule autour de l’octamère d’histones, composé d’histones H2A, H2B, H3 et H4, et c’est cet ensemble que l’on nomme nucléosome. Chez les mammifères mâles, les histones sont responsables de la compaction de l’ADN des cellules germinales au début de la spermatogenèse, c’est-à-dire des spermatogonies jusqu’aux spermatides, en passant par les spermatocytes primaires et secondaires. Les histones ne sont toutefois pas présentes en grande
<table>
<thead>
<tr>
<th>Protéines de la souris (Expasy)</th>
<th>Poids moléculaire (kDa)</th>
<th>Point isoélectrique théorique (pI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protamines</td>
<td>6.8</td>
<td>12.07</td>
</tr>
<tr>
<td>TP1 (STP1 mouse)</td>
<td>6.3</td>
<td>12.09</td>
</tr>
<tr>
<td>TP2 (STP2 mouse)</td>
<td>13.1</td>
<td>11.80</td>
</tr>
<tr>
<td>Histone 1 testiculaire (H1T)</td>
<td>21.5</td>
<td>11.78</td>
</tr>
<tr>
<td>Histone H2A</td>
<td>15.0</td>
<td>10.74</td>
</tr>
<tr>
<td>Histone H2B</td>
<td>13.8</td>
<td>10.32</td>
</tr>
<tr>
<td>Histone H3</td>
<td>15.3</td>
<td>11.13</td>
</tr>
<tr>
<td>Histone H4</td>
<td>11.2</td>
<td>11.36</td>
</tr>
</tbody>
</table>

Tableau 1 : Caractéristiques du protéome du spermatide. Ce tableau présente les poids moléculaires ainsi que les points isoélectriques théoriques (données obtenues grâce à Expasy) de certaines protéines nucléaires basses du spermatide. On peut constater que ces protéines sont petites (PM variant entre 6 et 16kDa) et qu’elles sont très basses (pI variant entre 10 et 12).

1.4.2 LES PROTÉINES DE TRANSITION

Les protéines de transition sont des intermédiaires entre les histones et les protamines. Quatre protéines font partie de la famille des protéines de transition : TP1, TP2, TP3 et TP4. Les protéines les plus connues dans cette famille sont TP1 et TP2. Ces deux protéines de transition sont prédominantes dans les spermatides des rongeurs (GRIMES et al., 1977), car elles représentent respectivement 55% et 40% des protéines nucléaires (WOUTERS-TYROU et al., 1998). Des expériences effectuées dans mon laboratoire d'accueil sur les protéines de transition 1 et 2
1.4.2.1 PROTEINE DE TRANSITION 1 (TP1)

TP1 est une petite protéine (54 a.a.) composée à 14% de sérine, 19% de lysine et 20% d’arginine. La région 29 à 42 est grandement conservée chez les mammifères. Cette région très basique de TP1 contient deux tyrosines qui seraient à l’origine de la capacité de cette protéine à déstabiliser l’ADN (SINGH et RAO, 1987; SINGH et RAO, 1988; AKAMA et al., 1998). Lors d’expérience de condensation de l’ADN, l’équipe du Dr Balhorn remarque que TP1 condense moins bien l’ADN que TP2 ou les protamines. Lorsqu’ils utilisent des fragments de TP1, ils se rendent compte que ceux-ci ne sont pas aussi efficaces que la protéine entière pour se lier à l’ADN (BREWER et al., 2002). La liaison de TP1 à l’ADN doit dépendre de la structure tridimensionnelle de cette protéine pour qu’il y ait une liaison stable de formée. Des études effectuées par l’équipe du Dr Meistrich ont démontré que, lorsque le gène de la protéine TP1 est invalidé, il y a compensation de ce manque par une augmentation de la production de TP2 (YU et al., 2000). Les conséquences de cette invalidation de gène sont une légère anomalie morphologique du spermatozoïde, une réduction de la motilité des spermatozoïdes et 60% des souris produites sont infertiles.
1.4.2.2 PROTÉINE DE TRANSITION 2 (TP2)

TP2 (13,1kDa) est de poids moléculaire plus élevé que TP1 et est composée à 13% de proline et 22% de sérine (WOUTERS-TYROU et al., 1998). TP2 se lie fortement à l’ADN et induit sa compaction (KUNDU et RAO, 1996). Cette protéine amène une stabilisation de l’ADN qui pourrait être due à la présence de motifs en doigts de zinc (BASKARAN et RAO, 1991; AKAMA et al., 1997). Lorsqu’un fragment de 25 résidus en C-terminal de TP2 est utilisé, les essais de condensation et de décondensation ont des vitesses équivalentes à celles obtenues avec la protéine entière. Cette séquence de TP2 doit donc représenter le domaine de liaison à l’ADN (BREWER et al., 2002). L’invalidation du gène de la protéine TP2 a aussi été effectuée par l’équipe du Dr Meistrich. Pour compenser le manque de TP2 occasionné par cette invalidation, la production de TP1 a été augmentée (ZHAO et al., 2001; ADHAM et al., 2001). Une mauvaise compaction de l’ADN ainsi qu’une réduction de la fertilité sont les autres conséquences de l’invalidation du gène de TP2.

1.4.3 LES PROTAMINES

Les protamines sont responsables de la compaction de l’ADN dans les spermatozoïdes. Ces protéines sont les plus basiques du protéome nucléaire du spermatide en plus d’être très petites (tableau 1). Chez les mammifères, les protamines sont composées de 10 à 15% de cystéines. Grâce à ces acides aminés, il
est possible de former des ponts disulfures, ce qui permet d’augmenter la condensation de l’ADN et de le stabiliser (BALHORN et al., 1991; WOUTERS-TYROU et al., 1998). C’est en déterminant le nombre de ponts disulfures formés entre les protamines différentes que l’on peut évaluer la stabilité de la chromatine (DADOUNE, 2003). Il existe deux membres de cette famille de protéines : P1 et P2.

1.4.3.1 PROTAMINE 1 (P1)

La protamine P1 est synthétisée sans précurseur (YELICK et al., 1987). Cette protéine de 50 a.a. est riche en arginine et en cystéine. Elle est composée d’une région N-terminale pouvant être reconnue comme étant la zone de phosphorylation grâce aux acides aminés qui la composent (sérine et thréonine). Sa région centrale pourrait être la zone de liaison à l’ADN grâce à la grande quantité d’arginines présentes (DADOUNE, 2003).

1.4.3.2 PROTAMINE 2 (P2)

La protamine P2 est produite grâce à un grand précurseur (CARRE-EUSEBE et al., 1991; YELICK et al., 1987). Lorsqu’il y a maturation de cette pré-protamine de 106 a.a., on peut constater que c’est la partie C-terminale du précurseur qui représente la protamine P2 constituée de 63 a.a.. La maturation se fait selon différentes étapes, ce qui produit des précurseurs de différentes longueurs. Il est important de noter que
certains précursieurs de P2 sont encore présents dans les spermatozoïdes matures (DEBARLE et al., 1995). P2 contient beaucoup d’histidines contrairement à P1. Certaines études suggèrent qu’une interaction de très haute affinité entre la protamine 2 et l’ADN est essentielle pour que la protéine de transition TP2 soit déplacée (WU et al., 2000).

1.5 LA SPERMIOGÈNE

Durant la spermatogenèse, les cellules germinales passent par différentes étapes de division et de différenciation pour que l’on obtienne des spermatozoïdes. La spermiogenèse est caractérisée par la différenciation des spermatides jusqu’à ce que ceux-ci deviennent des spermatozoïdes. C’est lors de cette phase haploïde qu’il y a remaniement de l’ADN pour passer d’un mode de compaction nucléosomal à une compaction lamellaire. Différentes protéines nucléaires basiques sont présentes pendant cette phase. Il est donc possible de voir l’apparition et la disparition des histones, protéines de transition et protamines au cours de cette phase. La figure 4 nous permet d’observer les différentes étapes durant lesquelles les protéines nucléaires basiques sont exprimées. Il est important de noter que les étapes de la spermiogenèse ne sont pas toutes représentées sur cette figure, car le but est d’associer les étapes de la spermiogenèse avec l’expression des différentes protéines nucléaires d’intérêt. En regardant la figure 4, on peut constater que les histones sont exprimées jusqu’aux étapes 10 de la spermiogenèse. L’expression des histones décroît pour finalement disparaître. Ensuite, les protéines de transition sont présentes des.

1.6 LA RÉGULATION HORMONALE

1.6.1 L’AXE HYPOTHALAMO-HYPOPHYSaire GONADiEN

La spermatogenèse dépend de certaines hormones pour que tout le processus de maturation fonctionne correctement (figure 5). Différents organes et hormones sont impliqués. L’hypothalamus est un organe neuroendocrinien qui est situé au-dessus du tronc cérébral (HADLEY, 2000). Il est le plus important centre de régulation hormonale, car il sert de relais entre le système nerveux central et le
Figure 4: Spermiogenèse. La spermiogenèse est la phase haploïde de la spermatogenèse caractérisée par un remodelage de la chromatine. Cette figure ne représente pas toutes les étapes de la spermiogenèse chez la souris, car elle a pour but de montrer les étapes durant lesquelles les différentes protéines nucléaires basiques sont présentes. On voit donc que les histones sont présentes jusqu'aux étapes 9-10. Elles sont ensuite remplacées par les protéines de transition durant les étapes 10 à 14. Les protamines entrent en jeu à partir de l’étape 12 et ce sont ces protéines qui régissent la compaction de l’ADN dans les spermatozoïdes.
Figure 5 : Contrôle hormonal de la spermatogenèse. Les gonadotropines, FSH et LH, sont sécrétées par l’hypophyse lorsque celle-ci est stimulée par la GnRH produite par l’hypothalamus. La testostérone et l’inhibine exercent un rétrocontrôle négatif sur la production des gonadotropines et de la GnRH.
système endocrinien périphérique. L'hypophyse, quant à elle, est une glande située à la base du crâne. Elle est constituée de trois parties : lobe antérieur ou adénohypophyse, lobe intermédiaire ou pars intermedia et lobe postérieur ou neurohypophyse (HADLEY, 2000). L'hypothalamus contrôle l'hypophyse par la sécrétion d'hormones. Dans le cas de la spermatogenèse, l'hormone d'intérêt sécrétée par l'hypothalamus est la GnRH. C'est en sécrétant cette hormone que l'hypothalamus stimule la production des gonadotropines hypophysaires, soit FSH et LH. Ces deux hormones jouent des rôles différents dans le processus de maturation des cellules germinales.

La FSH est impliquée dans le développement des tubules séminifères et l'activation de la spermatogenèse. Elle active la production de la protéine ABP (androgen binding protein) par les cellules de Sertoli. Cette protéine est libérée dans le tubule séminifère et a pour but de séquestrer la testostérone. Ceci aura pour conséquence l'augmentation de la concentration locale de testostérone. La LH stimule la synthèse de testostérone par les cellules de Leydig. La testostérone est ensuite impliquée dans l'activation de la spermatogenèse. Les rôles spécifiques de la FSH et de la testostérone durant la spermatogenèse ne sont pas encore très bien connus. On sait tout de même que la présence de ces deux hormones est essentielle pour qu'il y ait initiation et maintien de la spermatogenèse (HADLEY, 2000).

Certaines hormones sont responsables de l'inhibition de cet axe. L'augmentation de la concentration d'inhibine sécrétée par les cellules de Sertoli, lorsque le nombre de spermatozoïdes produits est élevé, exerce un rétrocontrôle négatif sur la sécrétion des gonadotropines par l'hypophyse et de la GnRH par l'hypothalamus (HADLEY,
La testostérone exerce le même rétrocontrôle négatif sur la libération des gonadotropines et de la GnRH.

1.6.2 MODIFICATION HORMONALE

1.6.2.1 SOURIS FORKO

Des modèles d'études sont utilisés pour évaluer l'importance de la FSH. Les souris FORKO sont des souris qui ont subi une invalidation du gène du récepteur de la FSH normalement présent sur les cellules de Sertoli. Il y a donc absence de récepteur de la FSH chez ces souris (KRISHNAMURTHY et al., 2000). Cette étude a été menée pour observer les effets de cette hormone sur les fonctions testiculaires et la fertilité. L'équipe du Dr Ram Sairam a observé que, chez les mutants mâles, il y a perte de poids de l'épididyme, du testicule et de la vésicule séminale. Le diamètre des tubules séminifères est réduit et les niveaux de testostérone sont aussi très bas. Certains résultats suggèrent une compaction inadéquate de l'ADN et la qualité des spermatozoïdes est diminuée. Tous ces résultats contribuent à la réduction de la fertilité de ces souris (KRISHNAMURTHY et al., 2000). Cette compaction inadéquate de l'ADN pourrait être due à des modifications des protéines nucléaires basiques normalement présentes au cours de la spermiogenèse (figure 4). Il se rait intéressant de faire une analyse protéomique bidimensionnelle de ces souris FORKO nous permettant de bien voir les modifications post-traductionnelles possibles de ces
petites protéines très basiques. Il est important de noter que la maturité sexuelle des souris FORKO est retardée par rapport aux souris de type sauvage (KRISHNAMURTHY et al., 2001). La spermatogenèse s'effectue difficilement et les spermatozoïdes qui en résultent sont déformés. La modulation des gonadotropines affecte donc grandement la spermatogenèse (KRISHNAMURTHY et al., 2001). Il serait alors intéressant de trouver un moyen de faire varier les concentrations de ces hormones sexuelles et d'observer si le protéome du spermatide est affecté.

1.6.2.2 INHIBITEUR DE L'AXE

L'hypothalamus sécrète la GnRH qui stimulera l'hypophyse à produire des gonadotropines (FSH et LH). Les gonadotropines peuvent ensuite déclencher l'effet escompté en se liant à leur récepteur. Les récepteurs de la FSH sont à la surface des cellules de Sertoli tandis que ceux de la LH sont sur les cellules de Leydig. L'axe hypothalamo-hypophysaire gonadien est finalement contrôlé négativement par l'inhibine et la testostérone. Certains modulateurs des gonadotropines sont disponibles. L'acyline est un antagoniste de la GnRH (JIANG et al., 1997). Il va donc se lier aux récepteurs de la GnRH qui sont situés à la surface des cellules gonadotropes de l'hypophyse (HUIRNE et LAMBALK, 2001). Ceci aura pour conséquence d'inhiber l'axe hypothalamo-hypophysaire gonadien, c'est-à-dire que la production de FSH et de LH sera bloquée ainsi que toutes les étapes subséquentes. Si l'acyline est utilisé dans les conditions optimales, il nous permettra de diminuer complètement les niveaux de gonadotropines. Le but de l'étude n'est pas
nécessairement d'inhiber complètement les niveaux de gonadotropines, mais de voir l'effet d'une diminution de la concentration de ces hormones. Étant donné que l'acyline nous permet d'affecter les concentrations des gonadotropines, on pourra voir, grâce à la méthode d'analyse bidimensionnelle, si cela a un effet sur les protéines nucléaires basiques du spermatide. L'acyline est donc un modulateur des gonadotropines advantageux pour les études que nous voulons effectuer. Les résultats obtenus avec les souris FORKO indiquent que la compaction de l'ADN était affectée (KRISHNAMURTHY et al., 2000), ce qui pourrait être la conséquence de modifications des protéines nucléaires basiques du spermatide. Nous devrions être en mesure de vérifier les bases moléculaires sous-jacentes à cette observation grâce à l'analyse bidimensionnelle une fois celle-ci mise au point.

1.7 ANALYSE PROTÉIQUE

L'objectif de ma démarche expérimentale est d'obtenir une technique nous permettant d'analyser les protéines nucléaires basiques du spermatide. Nous avons décidé d'utiliser une méthode d'analyse bidimensionnelle, car nous voulions obtenir une bonne résolution pour observer les modifications post-traductionnelles du protéome nucléaire du spermatide. La première dimension est basée sur la focalisation isoélectrique tandis qu'en deuxième dimension, la séparation est basée sur le poids moléculaire et sur la charge nette des protéines.

La focalisation isoélectrique est une technique basée sur la séparation des protéines selon leur point isoélectrique. Le point isoélectrique d'une protéine est le
pH auquel la charge nette de cette protéine est nulle. Le gel utilisé pour la focalisation isoélectrique contient un gradient de pH (figure 6). Lorsque les protéines sont déposées sur ce gel, elles sont distribuées partout dans le gel.

La protéine qui se trouve en condition acide par rapport à son pI sera protonée et donc chargée positivement. Plus le milieu sera acide par rapport au pI de la protéine, plus celle-ci sera chargée positivement. Lorsque le courant est appliqué, la protéine qui est chargée positivement se déplacera vers l'électrode négative (cathode) et plus elle avancera dans le gel, plus le pH environnant sera basique, ce qui modifiera sa charge nette qui sera de moins en moins positive. Lorsque les charges négatives et positives s'annuleront, cette protéine aura une charge nette nulle et elle ne se déplacera plus, car elle aura atteint son pI.

Si la protéine est dans un environnement plus basique que son pI, elle sera déprotonée et donc chargée négativement. Plus cette protéine sera dans un environnement basique par rapport à son pI, plus elle sera chargée négativement. Cette protéine chargée négativement sera attirée par l'électrode positive (anode). Plus elle se déplacera vers l'anode, plus le pH environnant sera acide. La charge nette de cette protéine sera de plus en plus positive et lorsque les charges négatives et positives s'annuleront, elle cessera de migrer, car cette protéine sera rendue à son pI. Normalement, la focalisation isoélectrique est effectuée de façon à laisser migrer les différentes protéines d'un mélange jusqu'à ce que chaque protéine ait atteint son pI. Il existe une variante de la focalisation isoélectrique nommée NEpHGE pour « non equilibrium pH gradient electrophoresis ». Cette technique est basée sur le principe
Figure 6 : Méthode d’analyse bidimensionnelle. Cette figure représente, dans la partie supérieure, la focalisation isoélectrique. Le gel est constitué d’un gradient de pH et les protéines migreront jusqu’à ce que leur charge nette soit nulle, c’est-à-dire jusqu’à leur point isoélectrique. La partie inférieure de cette figure représente la deuxième dimension qui nous permet de séparer les protéines sur la base du poids moléculaire. Dans notre cas, on utilise soit un gel tris-tricine, soit un gel acide-urée qui ont des principes de séparation protéique différents.
de séparation des protéines selon leur pH, sauf qu’on ne les laisse pas migrer jusque-là. Il y a un gradient de pH établi dans le gel et les protéines se déplacèrent grâce à leur charge nette qui change en fonction de deux éléments importants : le pH du milieu environnant et le pH de la protéine. Cette technique était intéressante pour les chercheurs qui travaillaient sur des protéines extrêmement basiques ou acides, car ces chercheurs ne pouvaient pas utiliser les ampholytes (O’FARRELL et al., 1977; TYRELL et al., 1982). Le poids moléculaire des différentes protéines est aussi un facteur important dans ce type de focalisation isoélectrique, car il a un impact direct sur la mobilité des protéines.

Pour faire de la focalisation isoélectrique, il est primordial d’avoir un gradient de pH. Ce gradient de pH peut être produit grâce à des ampholytes ou des immobilines. Les ampholytes doivent avoir des propriétés précises pour pouvoir établir un gradient de pH. Ce sont des substances amphotères, c’est-à-dire qu’elles possèdent des charges négatives et positives. Elles doivent aussi être capables de conduire le courant et avoir un bon pouvoir tampon (RIGHETTI, 1990). Ces petites molécules sont déposées sur le gel et, lorsque le courant est appliqué, elles se déplacent rapidement à leur état d’équilibre et établissent un gradient de pH grâce à leur pouvoir tampon (figure 7). Pour leur part, les IPG (immobilized pH gradient) sont fabriqués à partir de molécules, appelées immobilines, ayant une partie acrylamide et une partie acide ou basique. Ces molécules sont mélangées avec les autres composantes du gel et, lorsqu’il y a polymérisation, elles sont immobilisées.
Figure 7 : Ampholytes. Lorsqu’elles sont déposées sur un gel et que le courant est appliqué, elles se déplacent rapidement à cause de leur petite taille et établissent un gradient de pH (A) grâce à leur pouvoir tampon (RIGHETTI, 1990). Les ampholytes sont des substances amphotères, c’est-à-dire qu’elles possèdent des charges négatives et positives (B).
dans le gel grâce à leur partie acrylamide. Le gradient de pH est fixé définitivement et de façon permanente (figure 8).

La deuxième dimension est effectuée sur un gel protéique. Vu que les protéines étudiées ont des caractéristiques particulières (tableau 1), on doit utiliser des gels particuliers. Les gels tris-tricine sont des gels souvent utilisés pour étudier les petites protéines, ce qui est le cas des protéines chromatiniennes du spermatide. Comme avec les gels SDS-PAGE classiques, on utilise du SDS, ce qui confère une charge négative aux protéines qui est proportionnelle à leur masse. Les protéines migrent donc selon leur poids moléculaire. Les gels acide-urée offrent cependant une alternative intéressante. Avec ce type de gel, on n'utilise pas de SDS ou d'autres substances qui pourraient modifier la charge nette des protéines. Le gel est acide, ce qui permet de garder les protéines basiques sous leur forme naturellement protonée, donc chargées positivement. Les protéines vont donc migrer vers l'électrode négative (cathode). Dans cette deuxième dimension, la migration des protéines dépend donc de la charge nette et du poids moléculaire de celles-ci.

À partir de cette méthode d'analyse bidimensionnelle, il nous sera possible de séparer les protéines faisant partie du protéome du spermatide. Il sera aussi intéressant d'utiliser cette technique pour comparer différentes situations : souris FORKO versus souris de type sauvage, différentes doses d'acyline injectées versus souris contrôle. L'intérêt de faire ces comparaisons avec les souris FORKO est que nous savons que ces souris ont une fertilité réduite. Il est donc intéressant de voir si la réduction de fertilité est associée à des modifications post-traductionnelles ou à des problèmes
Figure 8: IPG. Les IPG sont des gels qui possèdent un gradient de pH immobilisé (A). Les molécules qui permettent l'établissement de ce gradient sont les immobilines qui peuvent être acides (B) ou basiques (C). Ces immobilines sont constituées d'une partie acrylamide et une partie soit acide (B), soit basique (C) (RIGHETTI, 1990).
d'expression de certaines protéines nucléaires basiques. Grâce à l'électrophorèse bidimensionnelle, il est possible de vérifier ces deux hypothèses. Prenons la phosphorylation comme exemple de modifications post-traductionnelles. Lorsqu'une protéine est phosphorylée, elle possède au moins un site de protonation de plus que son homologue non-phosphorylé. Le pI de cette protéine phosphorylée est donc plus bas que celui de la même protéine non-phosphorylée. Sur un gel 2D, on remarquera un déplacement de cette protéine vers les pH plus acides lorsque celle-ci sera phosphorylée. Le déplacement de la protéine est donc fonction du nombre de sites phosphorylés.

1.8 ACÉTYLATION

Il a été démontré que l'hyperacétylation des histones coïncide avec les étapes d'élongation des spermatides (étapes 9-12) durant lesquelles se produit la déposition des protéines de transition (LAHN et al., 2002). Les lysines, qui sont les cibles de l'acétylation, se retrouvent en grand nombre chez les protéines de transition. Il serait donc possible que des acétyltransférases acétylent les TPs. L'acétylation possible de ces protéines pourrait changer leur pI, ce qui serait théoriquement détectable par focalisation isoélectrique et une application supplémentaire de notre technique.
1.9 OBJECTIFS DE LA RECHERCHE

Le but de mon projet est de fournir une méthode d’analyse bidimensionnelle constituée de la focalisation isoélectrique de protéines basiques en première dimension et d’obtenir une bonne séparation dans la deuxième dimension. Cette technique nous permettra de séparer les protéines nucléaires basiques les unes des autres, mais aussi les différentes formes d’une même protéine, tel que décrit plus haut.

Après la mise au point de cette technique, une étape complémentaire serait de voir si la modulation des gonadotropines a un effet sur les protéines basiques du spermatide qui orchestrent la condensation de l’ADN. Cette technique nous permettra également de déterminer si d’autres conditions peuvent modifier l’intégrité du protéome nucléaire et affecter la fertilité. D’un côté, nous savons que les protéines nucléaires basiques sont impliquées dans le remaniement de l’ADN lors de la spermiogenèse. Il est aussi connu que certaines modifications hormonales (souris FORKO) ont pour conséquence une mauvaise compaction de l’ADN. Il serait donc intéressant de comprendre comment ces modifications hormonales ont un impact sur la compaction de l’ADN. Nous pouvons supposer que certaines variations des concentrations de gonadotropines peuvent affecter les protéines nucléaires basiques par le biais de modifications post-traductionnelles ou en modulant les quantités de ces protéines. L’étude du protéome du spermatide est donc essentielle pour observer l’effet potentiel des modifications hormonales sur ces protéines. Il est anticipé que l’analyse protéique bidimensionnelle nous permettra de séparer convenablement les
protéines nucléaires basiques. Nous pourrons observer, en comparant les souris FORKO à des souris contrôles, si les modifications hormonales affectent ces protéines. Les expériences avec l’acyline nous permettront aussi de voir l’effet de la variation des gonadotropines, car, contrairement aux souris FORKO où il n’y a aucun récepteur de FSH, l’acyline diminue les quantités de gonadotropines produites. Le but de cette expérience n’est pas d’inhiber complètement les gonadotropines, mais de faire varier leur concentration pour observer l’impact de cette modulation sur le protéome du spermatide.
2. MATÉRIEL ET MÉTHODES

2.1 PRÉPARATION DES NOYAUX RÉSISTANTS À LA SONICATION (SRN)

Chaque étape de l’extraction doit être effectuée, le plus souvent possible, sur la glace. Les testicules de souris sont prélevés. La tunique albuginée, membrane entourant le testicule, est enlevée et les tubules séminifères sont transférés dans un tube avec 1ml de tampon ABP (0,15M NaCl, 10mM Tris-Cl). On broie ensuite les tubules grâce à un pilon pour bien homogénéiser le tout. On filtre avec du coton fromage placé dans une seringue 5ml. Le mélange est ensuite traité aux ultrasons. On traite aux ultrasons 3 fois 15s chaque tube. Après chaque traitement de 15s, on laisse reposer le mélange 45s sur glace avant de recommencer. Par centrifugation, on récolte les SRN et on se débarrasse des noyaux qui ont éclaté. Le culot qui en résulte contient les SRN.

2.2 EXTRACTION ACIDE DES PROTÉINES NUCLÉAIRES BASIQUES

Le culot obtenu lors de la préparation des SRN est resuspendu dans 200μl d’une solution guanidine-HCl (6M guanidine-HCl, 0,5mg/ml protamine sulfate, 5% β-mercaptoéthanol, 0,1mM PMSF, 10mM Tris-Cl pH 8,0). Le mélange est incubé 1 heure sur la glace pour permettre l’éclatement des membranes, la séquestration de l’ADN et la solubilisation des membranes. On ajoute 1ml d’une solution Urée-NaCl-
β-mercaptoéthanol (3M urée, 2,5M NaCl, 2% β-mercaptoéthanol) et 54 μl HCl 11,6N. L'incubation d'une heure sur glace permet à l'ADN et aux débris de précipiter et c'est grâce à la centrifugation qui suit que nous pourrons nous en débarrasser. Le surnageant est ensuite placé dans un sac à dialyse. Ces sacs sont mis dans des béchers contenant une solution HCl 10mM. La dialyse s'effectue toute la nuit à 4°C sous agitation. Elle permet l'élimination de la guanidine-HCl et du HCl concentré. On doit prévoir 700 ml de HCl 10mM par testicule pour la dialyse. Le lendemain, le contenu des sacs à dialyse est transféré dans des tubes de 1,5 ml. Si on veut séparer les histones et les protamines des protéines de transition, on peut faire une précipitation différentielle au TCA. On ajuste la concentration finale de TCA à 5%, ce qui nous permettra de faire précipiter, pendant 1 heure sur la glace, les histones et les protamines. On effectue une centrifugation pour recueillir ce mélange protéique. À partir du surnageant, on ajuste la concentration finale de TCA à 20 ou 25% pour obtenir les protéines de transition par précipitation pendant 1 heure sur la glace. On centrifuge le mélange pour obtenir les protéines de transition. Ce type de précipitation ne nous permet pas d'obtenir exclusivement les protéines de transition. On se retrouve donc avec quelques histones. Si on veut seulement récolter toutes les protéines basiques, on adjoute du TCA de façon à avoir une concentration finale de 20 ou 25% TCA. Une centrifugation nous permet de garder les protéines basiques seulement. On lave le culot avec une solution acétone-HCl pour enlever la guanidine-HCl qui pourrait rester. On centrifuge et on lave le culot avec 1ml d'acétone. On centrifuge et on laisse l'acétone s'évaporer. Le culot est resuspendu avec une solution de 0,9N en acide acétique. Les échantillons sont conservés à -20°C. Ce protocole est inspiré de
deux protocoles (BALHORN et al., 1977; PLATZ et al., 1977) avec certaines variantes.

2.3 NEpHGE

La solution (4% NP-40, 5% acrylamide, 0,25% Bis, 2% Pharmalytes pH 8-10,5, 9,5% urée) servant à faire le gel NEpHGE doit absolument être dégazée et filtrée, car on doit éviter à tout prix les bulles d’air. On coule cette solution dans des tubes cylindriques en verre et il y a polymérisation. Le gel est ensuite placé dans l’appareil à électrophorèse qui est constitué de deux réservoirs. Le réservoir du bas, où est située la cathode (-), est rempli du tampon basique (20mM NaOH) dégazé et celui du haut, où est située l’anode (+), est rempli du tampon acide (10mM H₃PO₄) dégazé. L’électrophorèse est ensuite effectuée jusqu’à 8000Vhre (volt-heure).

2.4 FABRICATION DES IPG

La méthode utilisée pour fabriquer les gels IPG est illustrée par la figure 9 (GÖRG et al., 1998). Tout d’abord, on doit assembler l’appareil qui servira de moule. On utilise deux vitres et un espaceur en forme de U. Sur une des deux vitres, on dépose le « Gelbond PAG film » qui est constitué d’un côté hydrophile et d’un côté hydrophobe. Le côté hydrophobe du film est en contact avec la vitre. Lorsque le gel
Figure 9 : Fabrication des IPG. Pour fabriquer des IPG, on utilise un moule (A) composé de deux vitres, d’un espaceur en forme de U et un film sur lequel le gel sera polymérisé. Dû au côté hydrophile de ce film, le gel restera toujours de la même grandeur. L’utilisation d’un appareil à gradient (B) est essentielle pour créer le gradient de pH. Après la polymérisation et le séchage du gel, on coupe celui-ci en petites bandelettes. Ce sont ces bandelettes qui seront utilisées pour effectuer la focalisation isoélectrique (GÖRG et al., 1998).
sera coulé, il sera en contact avec le côté hydrophile du film. Le gel sera donc collé sur le film et, de cette façon, sa forme ne sera jamais altérée, c’est-à-dire qu’il ne changera pas de grandeur. Ensuite, on dépose la solution de pH 10 (7,5 mM Immobiline pK 4,6, 10,8 mM Immobiline pK 10,3, 0,64 mM DMAA, 0,2% Bis, 25% Glycérol) dans la chambre à mélanger de l’appareil à gradient et la solution de pH 12 (10 mM Immobiline pK > 13, 0,64 mM DMAA, 0,2% Bis) dans le réservoir de l’appareil à gradient (GÖRG et al., 1997). Les valves sont ouvertes et les solutions coulent en créant un gradient de pH. On laisse polymériser à 50°C pendant 1 heure. On sépare les vitres et on effectue quelques lavages et un équilibre du gel avant de le laisser sécher toute la nuit à 37°C. Le lendemain, on coupe le gel en petites bandelettes que l’on entrepose à -20°C jusqu’à ce qu’on les utilise.

2.5 ANALYSE BIDIMENSIONNELLE

L’analyse protéique 2D conjugue la focalisation isoélectrique et un autre gel protéique soit, dans notre cas, le gel tris-tricine ou le gel acide-urée. Si on utilise les gels IPG de 7cm, on doit les réhydrater avec 100µl de tampon de réhydratation (8,3 M urée, 0,5% CHAPS, 10 mM DTT, 0,1% Pharmalytes, 0,001% bleu de bromophéno) et les recouvrir avec 1ml d’huile minérale pour éviter l’évaporation. On laisse réhydrater les bandes IPG de 12 à 16 heures de façon à ce que la porosité du gel soit assez grande pour que les protéines puissent entrer dans le gel. Lorsque cette étape est terminée, on ajoute des morceaux de papier humides sur les électrodes, ce qui empêchera les sels de s’accumuler directement sur les électrodes. On mélange nos
protéines avec le tampon de réhydratation et on dépose le tout sur la bande IPG. Chaque composante de ce tampon joue un rôle important affectant les protéines à analyser (BERKELMAN et al., 1998). L’urée permet de dénaturer et solubiliser les protéines en brisant les ponts hydrogènes. Le Chaps, un détergent zwitterionique, aide la solubilisation des protéines et minimise l’agrégation de celles-ci en se liant aux parties hydrophobes des protéines, ce qui a pour but de briser les liens hydrophobes. Le DTT brise les ponts disulfures. Les ampholytes augmentent la solubilité de l’échantillon protéique et produisent une conductivité uniforme durant l’IEF sans altérer le gradient de pH instauré dans la bande IPG. On s’assure que notre bande IPG est recouverte de 1,5ml d’huile minérale et on peut effectuer la focalisation isoélectrique. Tout dépendant de l’appareil disponible et des bandes IPG utilisées, l’électrophorèse est divisée en différentes étapes. Dans notre cas, il y a trois étapes principales.

La première est d’une durée de 15min à 250Volt. Cette étape est nécessaire pour se débarrasser des sels présents dans l’échantillon protéique. La deuxième étape dure 2hres et le voltage montera progressivement jusqu’à 4000Volt. Si l’appareil n’a pas atteint 4000Volt dans la deuxième étape, c’est dans la dernière qu’il aura la possibilité de le faire. Cette étape n’a pas de limite de temps, ce qui veut dire qu’on doit surveiller l’appareil pour pouvoir l’arrêter dès que l’électrophorèse sera terminée. Avec ce type d’électrophorèse, on doit surtout considérer le voltage-heure, car c’est cette unité de mesure qui nous permettra de savoir quand l’électrophorèse sera terminée. Avec les IPG de 7cm, on arrête la migration lorsque l’appareil a atteint 8000Vhres. La seule limite imposée par l’appareil, c’est une limite de 50µA par gel. À cause de cette limite et de la variabilité des paramètres entourant la focalisation
isoélectrique, ce type d'électrophorèse peut être plus ou moins long d'une fois à l'autre. C'est pour cela qu'il est important de se fier aux Vhres et non pas à la durée de celle-ci. Lorsque la focalisation isoélectrique est terminée, on doit équilibrer les bandes IPG.

Si le gel de la deuxième dimension est un gel tris-tricine, on équilibre avec deux tampons différents : tampon I (6M urée, 2% SDS, 0,375M Tris-Cl, 20% Glycérol, 0,130mM DTT) et tampon II (6M urée, 2% SDS, 0,375M Tris-Cl, 20% Glycérol, 0,128mM Iodoacétamide). Le tampon I permet de réduire les ponts disulfures tandis que le tampon II empêche la réoxydation des groupements sulfhydryls en alkylant ceux-ci ainsi que le DTT résiduel. Le SDS présent dans les deux tampons d'équilibre permet de charger négativement les protéines et de changer leur conformation pour qu'elles migrent seulement selon leur poids moléculaire. On est ensuite prêt au transfert de la bande IPG sur le gel tris-tricine.

Si la deuxième dimension est effectuée sur un gel acide-urée, on équilibre la bande IPG grâce au tampon d'échantillon (0,9N Acide acétique, 7M Urée, 2% β-mercaptoéthanol, 10% Sucrose) normalement utilisé avec les gels acide-urée.

On peut maintenant transférer la bande IPG équilibrée sur le gel de la deuxième dimension. On utilise une solution d'agarose (1% Agarose, Tampon d'électrophorèse) pour permettre un bon contact entre la bande IPG et le gel de façon à ce que les protéines puissent transférer de la bande IPG au gel. Il est donc essentiel qu'il n'y ait pas de bulle d'air entre ces deux gels. L'agarose permet aussi de bien fixer la bande IPG pour qu'elle ne puisse pas se déplacer durant l'électrophorèse. La deuxième dimension peut maintenant avoir lieu sur le gel choisi.
2.6 GEL TRIS-TRICINE

Il est très difficile de séparer les petites protéines de 15kDa ou moins avec un gel SDS-PAGE conventionnel à cause de la co-migration du SDS et de petites protéines affectant la résolution. C'est donc pour la migration de petites protéines que le gel tris-tricine est utilisé. Le gel séparateur (10% Acrylamide, 0,2% Bis, 1 0,5% Glycérol, 1M Tris-Cl/0,01% SDS pH 8,45) et le gel concentrateur (4% Acrylamide, 0,1% Bis, 1M Tris-Cl/0,01% SDS pH 8,45) sont en contact direct avec deux tampons différents (AUSUBEL et al., 1995). Le tampon de l'anode (20mM Tris-Cl pH 8,9) est dans le réservoir du bas et le tampon de la cathode (0,1M Tris base, 0,1M Tricine, 3,5mM SDS) est dans le réservoir du haut. Les échantillons sont mélangés avec le tampon d'échantillon (0,1M Tris-Cl/SDS pH6,8, 24% Glycérol, 0,28M SDS, 0,2M DTT, 0,002% Coomassie blue G-250) avant d'être déposés dans les puits du gel. Dans ce type de gel, les protéines sont en contact avec du SDS, ce qui leur donne une charge négative relative à leur poids moléculaire et défait leur conformation tridimensionnelle. Ces protéines migrent donc de la cathode (-) vers l'anode (+).

2.7 GEL ACIDE-URÉE

Le gel acide-urée est constitué d'un gel séparateur (15% Acrylamide, 0,1% Bis, 2,5M Urée, 0,9N Acide acétique) et d'un gel concentrateur (7,2% Acrylamide, 0,1% Bis, 2,4M Urée, 0,9N Acide acétique). Il est primordial de dégazer et de filtrer
ces deux solutions avant d'y ajouter l'APS et le TEMED. Le tampon d'électrophorèse est composé de 0,9N acide acétique. Avant d'effectuer l'électrophorèse avec les protéines que l'on veut séparer, on doit faire passer le courant à travers le gel pendant 1 heure à 100Volt sans l'échantillon à séparer. On doit ensuite ajouter une solution nettoyante (1M cystéamine, 0,9N acide acétique, 8M urée) qui nous permet de se débarrasser des radicaux libres. On peut ensuite ajouter les échantillons qui sont mélangés au tampon d'échantillon (0,9N Acide acétique, 7M Urée, 2% β-mercaptoéthanol, 10% Sucrose, 0,01% Pyronine Y). On peut maintenant effectuer l'électrophorèse, mais il est important de prendre conscience qu'il n'y a aucune substance, comme le SDS, qui donne une charge négative aux protéines. Vu que les protéines sont dissoutes dans une solution acide, elles possèdent une charge nette positive, ce qui veut dire que l'on fait migrer les protéines de l'anode (+) à la cathode (-) contrairement aux conditions d'un SDS-PAGE classique dans lequel les protéines migrent de la cathode (-) à l'anode (+). Le gel est ensuite placé dans une solution de coloration (0,13% Coomassie Brilliant Blue R-250, 5% acide acétique, 20% éthanol) pendant 1 heure et décoloré dans une solution d'acide acétique 5% (PLATZ et al., 1977).

2.8 IMMUNOBUVARDAGE DES PROTÉINES

Le transfert est effectué sur une membrane 0,22μm, nitrocellulose ou PVDF Sequi-blot, sous différentes conditions (tableau 2). Suite au transfert, la membrane est déposée dans une solution de lavage (150mM NaCl, 20mM Na₂HPO₄, 0,3% Tween
20). Elle est ensuite placée dans une solution de blocage (150mM NaCl, 20mM Na₂HPO₄, 0,3% Tween 20, 10% lait) pendant 30 minutes à la température de la pièce. La membrane est rincée trois fois avec la solution de lavage et transférée dans une solution contenant l’anticorps primaire (150mM NaCl, 20mM Na₂HPO₄, 0,3% Tween 20, 1% lait, dilution 1/10000 de l’anticorps primaire pour TP1 et TP2 ou 1/5000 pour les protamines) pendant 1 heure à la température de la pièce. On rince trois fois la membrane avec la solution de lavage et la membrane est incubée avec l’anticorps secondaire approprié conjugué à la peroxydase (150mM NaCl, 20mM Na₂HPO₄, 0,3% Tween 20, 1% lait, dilution 1/20000 de l’anticorps secondaire) à la température de la pièce pendant 1 heure. Suite aux trois lavages, la détection est effectuée grâce au système de détection ECL⁺ (Amersham). L’identification des protéines de transition TP1 (KISTLER et al., 1996; HEIDARAN et al., 1989) et TP2 (GREEN et al., 1994) est possible grâce aux anticorps polyclonaux généreusement fournis par le Dr S. Kistler (Université de la Caroline du Nord). Pour ce qui est des protamines (STANKER et al., 1992), l’anticorps est une gracieuseté du Dr Balhorn.

2.9 SOURIS FORKO

Les souris FORKO sont des souris qui ont subi une délétion du gène du récepteur de la FSH. Nous avons accès aux génotypes +/+ , +/- et -/-. Ces souris sont généreusement fournies par le Dr Ram Sairam (Unité de Recherche en Reproduction, Institut de Recherche Clinique de Montréal).
2.10 ACYLINE

Les injections d'acyline sous-cutanées ont été effectuées sur des souris CD-1 mâles. Comme contrôle, nous avons injecté une solution saline (0,9% NaCl) à 5 souris et 5 autres souris n'ont pas subi d'injection. Pour chaque groupe contrôle et de concentrations d'acyline différentes, on utilise 5 souris. Différentes concentrations d'acyline furent utilisées pour voir l'effet que la modulation des gonadotropines peut avoir sur le protéome nucléaire du spermatide. L'injection se fait à tous les jours pendant plusieurs jours. L'acyline nous a généreusement été fourni par le « National Institutes of Health ».

2.11 RÉCUPERATION DES TISSUS ET ORGANES

Les animaux sont sacrifiés pour prélever les tissus d'intérêt. Au début, on anesthésiait l'animal grâce à une solution de xylazine-kétamine injectée de façon intra-musculaire. On effectuait par la suite le prélèvement sanguin par ponction cardiaque avec une seringue préalablement traitée avec une solution d'héparine pour éviter la coagulation lors du prélèvement. L'animal subissait ensuite une dislocation cervicale et il y avait prélèvement des testicules et des épédidymes. Malheureusement, nous avons découvert que l'utilisation d'anesthésiant affectait les niveaux de testostérone. L'utilisation de la guillotine suivie d'un prélèvement sanguin a permis de corriger la situation.
2.12 ANALYSE SANGUINE

Le sang récolté est centrifugé à 3000rpm pendant 5-10min. Cette centrifugation permet de séparer le plasma des autres constituants du sang. On transfère le plasma dans un tube de 1,5ml et on le conserve à -20°C. Les échantillons sont envoyés en clinique pour le dosage des niveaux de testostérone par la méthode RIA.

2.13 ACÉTYLATION

La technique d'acétylation a déjà été effectuée dans mon laboratoire d'accueil ce qui m'a permis d'utiliser un protocole qui avait été mis au point antérieurement. La réaction est exécutée 10 minutes à 30°C dans un volume de 10µl contenant un tampon d'acétylation (50mM Tris-Cl pH8,0, 2% glycérol, 1mM DTT, 1mM PMSF, 0,1mM EDTA, 50mM Butyrate), un extrait de cellules Hela, 0,855nCi [1-14C]Acétyl-coenzyme A et des protéines à acétyler. Les protéines sont ensuite déposées sur un gel acide-urée pour l'électrophorèse. Par la suite, le gel est séché et exposé sur une plaque « Phosphor screen » pendant plusieurs heures. Après une exposition suffisante, la radioactivité est détectée à l'aide du PhosphoImager.
3. RÉSULTATS

Avant de commencer la section des résultats, il est important de savoir que les différents gels qui y sont présentés ont été sélectionnés parmi plusieurs gels et que ce sont des gels typiques et ont tous été colorés avec le bleu de Coomassie brillant R-250. Les expériences ont été effectuées à plusieurs reprises pour s'assurer de la reproductibilité des résultats. Seuls les gels les plus importants figurent dans ce mémoire.

3.1 ÉLECTROPHORÈSE 2D

3.1.1 NEpHGE (Non Equilibrium pH Gradient Electrophoresis)

Au début de ma démarche expérimentale, nous voulions utiliser les ampholytes, car c'était une méthode économique. L'utilisation des ampholytes amène deux types d'analyse : l'IEF conventionnel ou le NEpHGE. Vu que les ampholytes disponibles ne sont pas assez basiques pour nos expériences, nous avons opté pour le NEpHGE. En observant la figure 10, on constate que ce type d'électrophorèse n'est pas utile pour bien séparer les protéines nucléaires basiques du spermatide. Ce résultat n'est pas étonnant, car les protéines étudiées ne sont pas très différentes les unes des
Figure 10 : NEpHGE. Ce type de focalisation isoélectrique diffère des autres parce qu'on ne laisse pas les protéines atteindre leur pl. La séparation du protéome nucléaire du spermatide (extrait avec une solution de TCA 20%) n'est pas utile, car les protéines se retrouvent toutes dans la même zone, ce qui nous empêche de les distinguer les unes des autres. Dans la première dimension, les protéines sont séparées selon la technique NEpHGE. Elles migrent selon leur poids moléculaire et leur charge nette dans la deuxième dimension grâce au gel acide-urée.
autres pour ce qui est de leur poids moléculaire et leur pI (tableau 1). Le NEpHGE ne donnant pas les résultats escomptés, nous avons opté pour une technique de focalisation isoélectrique différente.

3.1.2 IPG (Immobilized pH Gradient)

L’utilisation des IPG pour séparer les protéines nucléaires basiques amène certains problèmes. Les bandes IPG commerciales sont disponibles sur plusieurs étendues de pH, mais aucune bande ne correspond à la plage qui nous intéresse, c’est-à-dire de pH 10 à 12. C’est pour cette raison qu’on a dû fabriquer nos bandes IPG nous-même. La composition des solutions acide et basique est décrite par Görg et al. publié en 1997. La fabrication des IPG (figure 9) est dépendante de différents paramètres et on ne peut pas seulement se fier à la méthode pour assumer obtenir un gradient de pH convenable. On doit donc s’assurer de la linéarité du gradient de pH qui, dans notre cas, commence à pH 10 et se termine à pH 12.

3.1.2.1 VÉRIFICATION DU GRADIENT DE pH

Différents méthodes permettent de mesurer le gradient de pH : l’utilisation d’une électrode de surface, l’équilibre de petits morceaux de la bande IPG dans une solution de KCl suivi de la mesure du pH de la solution à l’aide d’un pHmètre et l’utilisation de protéines de pI connus. Nous avons commandé une électrode de
surface pour vérifier le gradient de pH des bandes IPG. Malgré les différentes tentatives déployées, nous n'avons pas obtenu de résultats concluants. Nous avons décidé d'utiliser des protéines de pI connus, car les autres techniques n'ont pas été fructueuses dans notre cas. La figure 11 présente les différentes protéines commercialement disponibles utilisées (histones, cytochrome C, lysosyme et protamines) pour vérifier le gradient de pH qui s'étend de 10 à 12. Notez que les protéines choisies couvrent tout le gradient que nous avons fabriqué : histones (pI entre 10,5 et 12), cytochrome C (pI de 10,05), lysosyme (pI de 11,5) et protamines (pI de 12). On peut donc évaluer la linéarité du gradient de pH. Cette vérification est faite à chaque fois que de nouvelles bandes IPG sont produites de façon à valider la comparaison des résultats obtenus avec des bandes IPG qui n'ont pas nécessairement été produites en même temps.

3.1.3 CHOIX DE LA DEUXIÈME DIMENSION

3.1.3.1 GEL TRIS-TRICINE

Pour effectuer la deuxième dimension, nous avons le choix entre un gel tris-tricine et un gel acide-urée. Le gel tris-tricine a été utilisé, car, lorsqu'on fait migrer le protéome du spermatide sur celui-ci en une seule dimension, les bandes obtenues sont très claires et minces contrairement au gel acide-urée. À la figure 12, on observe
Figure 11 : Vérification du gradient de pH. L'utilisation de protéines de pI connus permet de vérifier le gradient de pH que nous avons fabriqué. Différentes protéines commercialement disponibles couvrant le gradient de pH 10 à 12 sont utilisées (histones, protamines, cytochrome C, lysosome). Les gels présentés sur cette figure sont des gels 2D (IPG en première dimension et gel acide-urée en deuxième dimension). Cette figure n'illustre pas correctement la migration de certaines protéines (cytochrome C, lysosome et protamines) selon la deuxième migration, mais la migration par focalisation isoélectrique est respectée. Ce montage permet de voir rapidement que le gradient de pH est correct, car c'est l'objectif de cette figure.
Figure 12 : Gel 2D = IPG et gel tris-tricine. L'utilisation du gel tris-tricine comme deuxième dimension a pour conséquence un manque de résolution. On observe des trainées au lieu d'obtenir des points distincts pour la plupart des protéines de cet extrait du protéome nucléaire basique du spermatide obtenu grâce au TCA 20%.
l'électrophorèse 2D qui combine la bande IPG au gel tris-tricine. Avant d'analyser cette figure, il serait important de se rappeler que le gel tris-tricine est utilisé pour séparer les petites protéines selon leur poids moléculaire grâce au SDS qui est mis en contact avec les protéines à analyser. Les protéines apparaissent sur le gel sous forme de traînées au lieu d'être des points distincts. Une comparaison effectuée entre deux tissus traités différemment ne pourrait pas être bien mise en évidence avec un gel qui ne distingue même pas les protéines nucléaires présentes dans les spermatides et qui n'ont subi aucune altération. Même en optimisant le gel tris-tricine par une augmentation de son pourcentage d'acrylamide, on n'obtient pas de meilleur résultat. Ce type de gel bidimensionnel n'a donc pas été retenu.

3.1.3.2 GEL ACIDE-URÉE

Le gel acide-urée est le gel le plus utilisé pour séparer les protéines nucléaires basiques comme les protéines de transition ou les protamines. Ce type de gel permet une séparation des protéines selon leur charge nette ainsi que leur poids moléculaire. La figure 13 représente l'analyse protéique bidimensionnelle constituée d'une première dimension effectuée sur une bande IPG et de la deuxième dimension réalisée sur un gel acide-urée. Le profil obtenu nous permet de voir les différentes protéines de notre mélange de façon plus distincte qu'avec le gel tris-tricine. La séparation du protéome nucléaire du spermatide est à son meilleur grâce à différentes expériences qui m'ont permis d'optimiser le gel 2D. En ce qui concerne le gel acide-
Figure 13 : 2D = IPG et gel acide-urée. Séparation du protéome nucléaire du spermatide selon une dimension (A) et deux dimensions (B). Le gel acide-urée est souvent utilisé pour l'étude des protéines nucléaires basiques comme les protéines de transition et les protamines. La migration des protéines extraites avec une solution de TCA 20% sur ce type de gel dépend de la charge nette de la protéine et de son poids moléculaire.
urée, la mise au point a été faite au niveau du pourcentage d’acrylamide qui est passé progressivement de 15 à 25%, au traitement du gel en effectuant une pré-électrophorèse avant d’ajouter les protéines ainsi qu’une étape de « nettoyage » du gel qui permet d’enlever les radicaux libres à l’aide de la cystéamine. L’utilisation combinée des bandes IPG et du gel acide-urée comme méthode d’analyse protéique bidimensionnelle donne de meilleurs résultats et c’est donc cette technique qui fut retenue pour les autres étapes du projet.

3.2 IDENTIFICATION DES PROTÉINES

Ayant trouvé la meilleure approche pour la séparation bidimensionnelle des protéines nucléaires basiques, l’identification des protéines majeures est essentielle aux étapes subséquentes de notre approche. En se basant sur la littérature (YU et al., 2000; PLATZ et al., 1977), on peut identifier, de façon approximative, les protéines qui sont présentées sur le gel 2D. En particulier, la position des protéines de transition TP1 et TP2 demeure au centre de nos préoccupations. L’identification de ces protéines majeures est représentée à la figure 14 et basée sur les protocoles du Dr Meistrich (YU et al., 2000; PLATZ et al., 1977). Cette figure nous montre la position des protéines majeures en se reportant au patron de migration obtenu à la première dimension. Il reste donc à effectuer ces immunobuvardages de façon à savoir avec certitude les positions occupées par ces protéines sur le gel 2D.

Même si l’immunobuvardage semble être la façon préférable d’identifier les
Figure 14 : Identification des protéines. Les protéines nucléaires basiques sont identifiées selon leur profil habituel sur le gel acide-urée en une seule dimension (A). Cette identification nous permet de prédire leur position lorsqu'elles migrent selon deux dimensions, soit l'IPG et le gel acide-urée (B).
protéines nucléaires basiques, on peut aussi profiter de la purification partielle pour reconnaître certaines protéines. Cette méthode permet d'identifier plus rapidement les protéines tandis que l'immunobuvardage est très complexe à cause des différents problèmes reliés au transfert des protéines nucléaires basiques à partir d'un gel acide-urée. Bien entendu, il est préférable d'être capable de séparer les protéines d'intérêt pour que, une fois appliquées sur le gel, il soit facile de les identifier convenablement. Grâce aux différentes techniques d'extraction protéique disponibles, il est possible de séparer les protéines en deux fractions différentes. Ceci ne permet pas de séparer toutes les protéines les unes des autres, mais nous obtenons tout de même deux fractions intéressantes grâce à différentes concentrations de TCA. La première fraction est constituée des protéines nucléaires basiques qui précipitent à une concentration de 5% de TCA. Elle contient les protamines et la plupart des histones. La deuxième fraction est composée principalement de TP1, TP2 et de quelques histones en quantité relativement faible. Ces protéines basiques précipitent dans une solution ayant une concentration de 25% de TCA. Nous avons appliqué cette deuxième fraction sur un gel bidimensionnel (figure 15) pour nous aider à identifier la position des protéines TP1 et TP2. Les protéines TP1 et TP2 se retrouvent donc aux positions prédites dans l'analyse de l'extrait plus complexe.
Figure 15 : Gel bidimensionnel de l'extrait de 25% TCA. L'extraction partielle du protéome nucléaire du spermatide nous permet de nous défaire des protamines et de la plupart des histones. Toutefois, il reste certaines histones. Voici le profil de cet échantillon en une dimension (A) et deux dimensions (B).
3.2.1 IMMUNOBUVARDAGE

Nous avons déjà effectué l’immunobuvardage dirigé contre TP1 sur le gel bidimensionnel (figure 16). Nous sommes donc certains de l’endroit où se situe cette protéine. Ce résultat est très important pour valider le choix du gradient de pH de nos bandes IPG, car certaines protéines, TP1 et les protamines, ont des pI très élevés et pourraient sortir des bandes IPG durant la première dimension. Le gradient que j’ai fabriqué couvre la région comprise entre les pH 10 et 12. TP1 a un pI théorique de 12,07. Il serait donc possible qu’elle migre jusqu’à l’électrode négative (cathode) et qu’elle ne soit pas présente lors de la deuxième dimension. La figure 16 prouve que TP1 est bel et bien présente sur le gel 2D à la position anticipée à la figure 14. Les autres protéines nucléaires basiques n’ont pas pu être identifiées par immunobuvardage sur cette membrane, car les conditions de transfert n’étaient pas optimales. Nous avons dû procéder à une optimisation des conditions de transfert.

3.2.2 TRANSFERT

Les conditions de transfert utilisées (tableau 2) lors de l’immunobuvardage contre TP1 étaient les suivantes : transfert des protéines d’un gel 2D à une membrane de nitrocellulose dans le tampon de transfert (0,23M Tris base, 0,72M Glycine, 20% Méthanol) de pH 8,3 toute la nuit à 15Volt, à 4°C. Ces conditions sont normalement
Figure 16 : Immunobuvardage pour la détection de TP1. Cette figure représente l’immunobuvardage porté contre TP1 présent dans le protéome nucléaire du spermatide chez la souris. Nous sommes donc certains que cette protéine, qui a un pl de 12,07, n’est pas sortie lors de la première dimension qui est effectuée sur des bandes IPG de pH 10 à 12.
<table>
<thead>
<tr>
<th></th>
<th>Conditions normales de transfert</th>
<th>Optimisation pour le protéome nucléaire basique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Membrane</td>
<td>Nitrocellulose</td>
<td>PVDF Sequi-blot</td>
</tr>
<tr>
<td>Tampon</td>
<td>0,23M Tris base, 0,72M Glycine, 20% Méthanol</td>
<td>0,7% acide acétique</td>
</tr>
<tr>
<td>Électrophorèse</td>
<td>Toute la nuit</td>
<td>20 minutes</td>
</tr>
<tr>
<td>• Temps</td>
<td>15 Volt</td>
<td>100mA</td>
</tr>
<tr>
<td>• Courant</td>
<td>4°C</td>
<td>4°C</td>
</tr>
</tbody>
</table>

Tableau 2 : Conditions de transfert optimisées. Le transfert des protéines nucléaires basiques doit être effectué sous les conditions présentées dans la colonne de droite de ce tableau pour être efficace.
utilisées pour le transfert de la plupart des protéines. Comme les protéines basiques constituent le protéome du spermatide ont des pI extrêmes et de petits poids moléculaires, il est important de trouver les conditions optimales pour leur transfert. Les conditions de transfert améliorées sont les suivantes : transfert des protéines sur une membrane PVDF Sequi-blot dans un tampon de transfert 0,7% acide acétique à 100mA pendant 20min. Ces conditions optimisées ont été effectuées sur des gels acide-urée en une dimension seulement. Différentes techniques ont été utilisées pour identifier les protéines d’intérêt et nous ont permis d’obtenir les informations escomptées. La technique de purification partielle nous semblant plus prometteuse, nous avons mis de côté l’immunobuvardage et nous n’avons pas eu le temps d’y revenir. Toutefois, cette optimisation des conditions de transfert pourra être utilisée par les membres du laboratoire lorsqu’ils auront à identifier ces protéines. Au lieu d’utiliser ces conditions de transfert dans le but d’identifier les protéines, j’ai plutôt opté pour un gel bidimensionnel sur lequel a été déposé un échantillon du protéome du spermatide extrait avec 25% de TCA (figure 15).

3.3 SOURIS FORKO

Les souris FORKO nous ont été gracieusement fournies par le Dr Ram Sairam de l’Institut de Recherche Clinique de Montréal. Des souris homozygotes, hétérozygotes et des souris contrôles nous ont été confiées. Nous avons pris certaines précautions pour confirmer l’identité des souris à partir de différentes méthodes. Tout d’abord, nous avons anesthésié les souris pour prélever une quantité suffisante de
sang. Avant d’effectuer l’extraction protéique, nous avons pesé les testicules des souris. Cette étape est importante, car elle est un bon indicateur de la nature de la souris. Par exemple, si la souris est homozygote, ses testicules seront plus petits que la souris hétérozygotes. Les protéines extraites ont été déposées sur un gel acide-urée pour que l’on puisse observer s’il y a des différences entre les souris FORKO homozygotes, hétérozygotes et les souris contrôles sur un gel protéique couvrant seulement une dimension (figure 17). Si on prend en considération que chaque piste contient la même quantité de protéines, on peut déduire que les souris FORKO homozygotes (-/-) contiennent une plus grande proportion de TP1 et de protamines. Les souris FORKO de type sauvage (+/+), semblent avoir une distribution protéique similaire au contrôle externe que j’ai ajouté tandis que les souris FORKO hétérozygotes (-/+), ressemblent au groupe contrôle avec une quantité plus élevée de pré-protamine, TP1 et protamines et avec de légères variations dans les protéines de PM plus élevé.

À l’aide de l’analyse bidimensionnelle, nous avons observé s’il y avait des différences marquées au niveau protéique entre les groupes de souris FORKO. Étant donné que les souris FORKO homozygotes présentent un profil abondant en TP1 et protamines, l’utilisation de l’analyse bidimensionnelle n’est pas intéressante, car ces protéines ont des pI très semblables et se rapprochent beaucoup de la limite supérieure de mes IPG, qui est de pH 12. Le résultat ne serait pas plus explicite que celui obtenu avec le gel acide-urée effectué sur une seule dimension (figure 17). Nous nous sommes donc retournés vers les groupes +/+ et -/+ pour faire une analyse
<table>
<thead>
<tr>
<th>Groupe de souris</th>
<th>n</th>
<th>Poids des testicules (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Groupe -/+</td>
<td>4</td>
<td>0,0867 ± 0,0010</td>
</tr>
<tr>
<td>Groupe +/-</td>
<td>4</td>
<td>0,0961 ± 0,0026</td>
</tr>
<tr>
<td>Groupe -/-</td>
<td>4</td>
<td>0,0436 ± 0,0012</td>
</tr>
</tbody>
</table>

Tableau 3: Données relatives aux souris FORKO

Figure 17: Gel protéique acide-urée des extraits provenant des souris FORKO

Figure 18: Gel protéique bidimensionnel des souris FORKO ++

Figure 19: Gel protéique bidimensionnel des souris FORKO -/+

Figure 20: Gel protéique bidimensionnel des souris FORKO -/-
protéique bidimensionnelle. Nous avons commencé en analysant les extraits protéiques des groupes +/+ et -/+ de façon à arrêter la migration pour garder toutes les protéines extraites. Voyant qu'il semblait y avoir une différence de répartition dans les protéines de PM élevé, nous avons effectué une analyse protéique bidimensionnelle en laissant sortir les plus petites protéines (TP1 et protamines). Les figures 18, 19 et 20 représentent les analyses protéiques bidimensionnelles des groupes +/+; -/+ et -/- . Le profil du groupe homozygote est représenté par la figure 20 non pas pour l'intérêt du profil des protéines de haut PM, mais plutôt pour vous montrer la complexité de la séparation bidimensionnelle. Les différentes protéines qui participent à l'élaboration du profil 1D sont toutes déposées au même endroit et migrent selon leur PM et leur charge nette, ce qui fait en sorte que des protéines différentes peuvent être retrouvées dans une même bande. Contrairement à cela, le gel bidimensionnel donne la possibilité aux protéines de se séparer, en premier lieu, selon leur pI et, en deuxième partie, selon leur PM et leur charge nette. Ayant moins de contrainte, les protéines sont donc mieux séparées des autres protéines. Ce faisant la quantité protéique est moins grande à un endroit précis qu'en 1D, ce qui donne un profil protéique moins net et distribué sur une plus grande superficie. Les groupes +/+ et -/+ présentent des profils différents lorsqu'on les regarde très attentivement. Sachant que chaque piste de la figure 17 contient la même quantité protéique, on remarque que le groupe -/+ contient plus de protéines de faible PM (pré-protamines, TP1 et protamines, 60.8%) et moins de protéines de PM élevé (histones et TP2, 38.4%) que le groupe +/+ , respectivement 52.9% et 45.4%. Il est donc normal que le profil 2D du groupe -/+ (figure 19) soit plus flou, car cette portion du gel présente
seulement les protéines de PM élevé (histones et TP2) du protéome nucléaire du spermatide. La proportion des protéines de haut PM (histones et TP2) étant plus petite que celle des protéines de faible PM (pré-protamines, TP1 et protamines), le profil des grosses protéines sera moins précis. Chez le groupe +/-, les proportions des protéines de PM élevé (45.4%) et faible (52.9%) sont plutôt équivalentes, ce qui permet d’avoir un profil 2D mieux défini (figure 18) que pour le groupe -/- . Bien sûr, les images obtenues ne sont pas parfaites, mais elles nous permettent de faire ressortir certaines différences entre ces deux groupes de souris FORKO. Pour démontrer clairement les distinctions concernant la distribution protéique des différents génotypes, nous avons quantifié le gel 1D des souris FORKO (figure 17) grâce au programme Quantity 1 de Bio-Rad® (figure 21). L’information obtenue suite à cette analyse est présentée par le tableau 4. À partir du tableau 4, nous observons que les protéines de PM élevé sont plus présentes pour le groupe +/- (45.4%), diminuent pour le groupe -/+ (38.4%) et sont minimales pour le groupe -/- (19.9%). Quant aux protéines de faible PM, elles sont de 52.9% pour le groupe +/-, augmentent à 60.8% pour le groupe -/+ et atteignent 78.7% pour le groupe -/- . Il est à noter que notre but est de voir si l’invalidation du gène de la FSH peut amener des modifications du protéome du spermatide.

3.4 ACYLINE

L’acyline, gracieuseté du « National Institutes of Health », a été injecté à des souris CD-1 selon différentes concentrations dans le but d’observer si son effet sur la
Figure 21 : Gel protéique acide-urée des extraits provenant des souris FORKO quantifié. Le gel 1D des souris FORKO (figure 17) a été quantifié avec le programme Quantity 1 de Bio-Rad®.

<table>
<thead>
<tr>
<th></th>
<th>++ (contrôle)</th>
<th>---</th>
<th>---</th>
</tr>
</thead>
<tbody>
<tr>
<td>Histones</td>
<td>30.1%</td>
<td>27.5%</td>
<td>14.8%</td>
</tr>
<tr>
<td>TP2</td>
<td>15.3%</td>
<td>10.9%</td>
<td>5.1%</td>
</tr>
<tr>
<td>Protéines de PM élevé</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Histones et TP2)</td>
<td>45.4%</td>
<td>38.4%</td>
<td>19.9%</td>
</tr>
<tr>
<td>Pré-protamines</td>
<td>9.4%</td>
<td>7.1%</td>
<td>4.9%</td>
</tr>
<tr>
<td>TP1 et protamines</td>
<td>43.5%</td>
<td>53.7%</td>
<td>73.8%</td>
</tr>
<tr>
<td>Protéines de faible PM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Pré-protamines, TP1 et protamines)</td>
<td>52.9%</td>
<td>60.8%</td>
<td>78.7%</td>
</tr>
<tr>
<td>Total</td>
<td>98.3%</td>
<td>99.2%</td>
<td>98.6%</td>
</tr>
</tbody>
</table>

Tableau 4 : Distribution protéique des souris FORKO selon les différents génotypes. La quantification protéique a été effectuée grâce au programme Quantity 1. Elle nous permet d’observer la répartition protéique des souris FORKO selon chaque génotype.
modulation des gonadotropines affecterait le profil protéique bidimensionnel du protéome du spermatide de ces souris. Les injections d'acyline ont été effectuées une fois par jour pendant 14 jours. Les souris sont ensuite sacrifiées à l'aide d'une guillotine et le sang est récolté. Les testicules et les épipidymes sont prélevés. Le sang est analysé dans le but de vérifier le niveau de testostérone des différentes souris. Ce résultat nous permet de voir l'effet des différentes doses de l'acyline sur la modulation des gonadotropines. C'est une analyse indirecte, car on aurait pu doser la FSH ou la LH, mais le dosage de la testostérone était moins dispendieux que celui des gonadotropines. Néanmoins, le dosage de la testostérone nous donne une bonne indication de la modulation des gonadotropines, car la LH stimule la synthèse de testostérone par les cellules de Leydig. Dans notre cas, si les gonadotropines sont inhibées par l'acyline, le niveau de testostérone sera inférieur à la normale. Le tableau 5 présente les niveaux de testostérone obtenus pour les différentes doses utilisées. Toutes les doses d'acyline utilisées ont permis d'inhiber fortement les niveaux plasmatiques de testostérone.

L'effet des différentes doses sur le protéome nucléaire du spermatide a été analysé grâce au gel protéique bidimensionnel. Un profil typique est obtenu avec la plus faible dose d'acyline, soit 500µg/kg/jour. Une comparaison de ce gel avec un gel contenant un extrait protéique normal, utilisé en tant que contrôle, est présentée par la figure 22. Comparativement au contrôle, la proportion des protéines de faible PM (TP1, protamines) est plus grande que celle des protéines de PM élevé (histones, TP2) pour cette dose d'acyline. Ce résultat ressemble au résultat des souris FORKO.
Tableau 5 : Variation des niveaux de testostérone selon différentes doses d'acyline

<table>
<thead>
<tr>
<th>Dose d'acyline</th>
<th>n</th>
<th>Niveau de testostérone (nmol/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1500 µg/kg/jour</td>
<td>5</td>
<td>< 0,4</td>
</tr>
<tr>
<td>1000µg/kg/jour</td>
<td>5</td>
<td>< 0,4</td>
</tr>
<tr>
<td>500µg/kg/jour</td>
<td>5</td>
<td>< 0,4</td>
</tr>
<tr>
<td>Contrôle injecté avec une solution saline</td>
<td>5</td>
<td>> 86,8</td>
</tr>
</tbody>
</table>

![Image A](imageA.jpg) ![Image B](imageB.jpg)

Figure 22 : Acyline. A) Contrôle B) 500µg/kg/jour d'acyline. Résultats obtenus lors des injections d'acyline faites sur des souris mâles pendant 14 jours.
homozygote. Il serait intéressant d’approfondir davantage cette similitude pour mieux comprendre ce qui explique cette distribution particulière.

3.5 ACÉTYLATION

Une augmentation importante de l’activité acétyltransférase a été démontrée durant le remodelage de la chromatine. L’augmentation de l’activité HAT se reflète clairement par la présence d’histone H4 hyperacétylée aux étapes 9-12 de la spermiogenèse. La technique 2D pour l’analyse du protéome nucléaire du spermatide pourra alors permettre d’identifier les autres protéines acétylées après marquage in vitro. L’activité HAT présente dans un extrait nucléaire des cellules Hela peut être utilisée pour marquer les histones en présence de l’acétyl Co-A marqué.

Des essais d’acétylation ont déjà été réalisés dans mon laboratoire d’accueil. J’ai pu me baser sur les protocoles établis pour effectuer mes expériences. Toutefois, j’ai dû faire quelques mises au point pour m’assurer que les conditions étaient optimales pour qu’il y ait acétylation. Par exemple, un des problèmes était dû au changement de pH de la solution. La cause était la solution de solubilisation des protéines nucléaires basiques. Ces protéines doivent être dissoutes dans une solution acide pour qu’elles ne précipitent pas. Le simple fait d’ajouter les protéines changeait le pH et les conditions d’acétylation n’étaient plus optimales. Mon problème s’est réglé lorsque j’ai ajouté une solution basique, ce qui a rétabli le pH. La figure 23 présente les résultats de mes essais d’acétylation. Les trois dernières pistes de ce gel contiennent
Figure 23 : Acétylation. Différents essais ont été effectués pour que les conditions optimales d'acétylation par les extraits Hela soient en place de façon à observer leur potentiel d'action sur les protéines de transition.
des histones commerciales sous différentes conditions. La piste 10 contient 5μg d’histones commerciales. Les pistes 9 et 8 contiennent aussi des histones commerciales (2,5μg), mais elles ont été dissoutes dans une solution acide utilisée pour dissoudre les protéines nucléaires basiques. Le pH est rétabli de deux façons différentes : avec une solution de tris-Cl (piste 9) ou avec une solution de NaOH (piste 8). Les pistes 5, 6 et 7 contiennent des histones extraîtes des testicules de souris et le pH est rétabli avec du NaOH (pistes 5 et 6) ou avec du tris-Cl (piste 7). Les pistes 2, 3 et 4 contiennent des extraits contenant les protéines de transition et le pH est maintenu avec du tris-Cl (piste 4) ou avec du NaOH (pistes 2 et 3). La piste 1 contient un contrôle négatif sans Hela. Les histones commerciales ont été utilisées pour mettre au point la technique. Elles me servent donc de contrôle positif. Les histones extraîtes des testicules de souris ont été utilisées pour m’assurer que, dans leurs conditions, l’expérience d’acétylation fonctionnait. Ces histones sont dans des conditions très similaires aux protéines de transition. Vu que l’acétylation a fonctionné sur ces histones, ceci confirme que les conditions étaient favorables pour que l’acétylation ait lieu. Si les protéines de transition étaient susceptibles d’être acétylées par les extraits Hela, elles auraient dû apparaître sur cette figure. Comme ce n’est pas le cas, elles ne sont pas acétylées par les extraits Hela, mais elles pourraient peut-être l’être par une acétyltransférase plus spécifique qui se trouve dans les cellules germinales. Par exemple, la protéine CDYL est exprimée aux étapes de remodelage et possède une activité HAT. Mon laboratoire d’accueil est à purifier la protéine CDYL afin de refaire une expérience visant à identifier les substrats de cette
enzyme. Les conditions établies dans ce mémoire pour l’analyse 2D et l’acétylation \textit{in vitro} pourront permettre de répondre à cette question.
4. DISCUSSION

La protéomique s’est développée de façon prodigieuse grâce aux récentes percées technologiques telles que l’électrophorèse bidimensionnelle permettant de séparer des quantités importantes de polypeptides, la spectrométrie de masse donnant l’opportunité d’identifier des protéines et la bioinformatique amenant la possibilité d’analyser précisément les images obtenues et d’effectuer des statistiques plus poussées (HE et CHIU, 2003). Toutefois, il est important de préciser que, même si ces technologies sont disponibles, elles ne sont pas nécessairement à la portée de la main. Certaines sont onéreuses et vous devez avoir un profil 2D très bien défini pour y accéder.

Il faut aussi penser aux protéines à analyser. Lorsqu’elles ont des points isoélectriques compris entre les étendues de pH des bandes IPG commercialement disponibles, tout va pour le mieux. Si ce n’est pas le cas, vous devez passer par une voie différente. Malheureusement, les protéines nucléaires basiques ont des pI compris entre 10 et 12, ce qui rend la tâche plus ardue. Compte tenu de cette difficulté supplémentaire, plusieurs techniques ont dû être développées et peaufinées, ce qui augmente l’ampleur de la tâche à accomplir et qui diminue la quantité de résultats obtenus. En considérant ces difficultés, nous avons dû nous résoudre à viser l’obtention d’un profil protéique bidimensionnel et non pas à l’identification des protéines le constituant, faute de temps. Ayant pour objectif de comparer différentes situations (FORKO, acyline), nous nous dirigeons surtout vers une protéomique différentielle (XIAANG et al., 2004).
Mon projet était de développer une méthode d'analyse protéique bidimensionnelle permettant d'obtenir un profil intéressant du protéome nucléaire du spermatide, ce qui a été fait. Différentes techniques ont été mises à profit pour atteindre ce but.

4.1 ANALYSE PROTÉIQUE

4.1.1 PREMIÈRE DIMENSION

Étant donné que notre objectif était de séparer les protéines nucléaires basiques de façon à ce que nous puissions distinguer leurs différentes formes résultant des modifications post-traductionnelles, nous avons opté pour une séparation protéique basée sur la focalisation isoélectrique. Il existe différentes variantes de cette technique permettant de séparer les protéines selon leur point isoélectrique.

4.1.1.1 NEpHGE

La première technique envisagée est le NEpHGE. Cette technique particulière s'appuie sur la focalisation isoélectrique des protéines, mais elle doit être arrêtée avant que les protéines atteignent leur point isoélectrique. L'utilisation de cette méthode est une des seules alternatives lorsque les protéines étudiées ont des pI trop élevés et qu'il n'existe aucune ampholyte couvrant l'étendue de pH voulue. Étant
donné que nos protéines ont des pI situés entre 10 et 12 (tableau 1) et que les ampholytes les plus alcalines disponibles étaient de pH 8 à 10,5, nous avons opté pour le gel NEpHGE. Différents paramètres sont à considérer : pré-électrophorèse, temps de l'électrophorèse, reproductibilité, résolution, composition des solutions utilisées (O’FARRELL et al., 1977; TYRELL et al., 1982; YAMAGUCHI et PFEIFFER, 1999). Malgré ces considérations, les différentes tentatives nous ont pas permis d'obtenir un profil protéique intéressant (figure 10), car il n’est pas bien distribué sur tout le gel.

4.1.1.2 IPG

Les IPG sont constitués d’immobilines pour établir le gradient de pH. L’utilisation de ces molécules permet d'obtenir un gradient qui sera littéralement immobilisé dans le gel. Il n’aura pas tendance à se déplacer durant l’électrophorèse, ce qui est souhaitable lorsqu’on vise la reproductibilité des résultats. C’est une caractéristique essentielle lorsqu’on veut étudier les différences engendrées par la modulation de certaines conditions d’un groupe de protéines et comparer les différents profils protéiques résultants. Cette caractéristique permet aussi de réduire les problèmes de traînées horizontales et verticales obtenues lorsqu’on utilise les ampholytes pour produire le gradient de pH (GÖRG et al., 1988).

Plusieurs bandes IPG sont commercialement disponibles présentant toute une gamme de différents gradients de pH. Malheureusement, ces produits ne couvrent pas des gradients très alcalins. Étant donné que les pIs de nos protéines varient entre 10 et
12 (tableau 1), nous avons décidé de fabriquer nos propres bandes IPG. Certains contrôles doivent être faits pour s’assurer que notre gradient de pH se situe entre 10 et 12 et qu’il est linéaire. Différentes méthodes peuvent être utilisées pour évaluer le gradient de pH (RIGHETTI, 1990), mais nous avons choisi d’utiliser des protéines de plas connus en guise de standard. La linéarité du gradient de pH que nous avons fabriqué a donc été confirmée. Cette évaluation doit être effectuée à chaque fois que des bandes IPG sont fabriquées de façon à s’assurer que notre gradient est linéaire et qu’il se situe réellement entre 10 et 12.

Les IPG couvrant des étendues de pH très alcalins comportent certaines difficultés devant être contournées pour développer une analyse protéique bidimensionnelle satisfaisante. Par exemple, l’utilisation d’acyrylamine pour fabriquer le gel est risquée, car il pourrait y avoir hydrolyse et formation de produits chargés qui augmenteraient l’EOF inverse (« reverse electroendosmotic flow »). Pour éviter ce problème, il est conseillé d’utiliser un monomère reconnu pour former les gels les plus stables même dans les conditions extrêmes, le DMAA («N,N-Dimethylacrylamide») (GÖRG et al., 1997; GÖRG et al., 2000).

4.1.2 DEUXIÈME DIMENSION

Les caractéristiques particulières du protéome du spermatide (tableau 1) rendent l’étude de ces protéines nucléaires basiques laborieuse. On ne peut utiliser les gels protéiques conventionnels pour faire migrer ces protéines. Toutefois, un gel spécifique a été conçu pour ces protéines : le gel acide-urée. Ce gel permet la
séparation des protéines nucléaires basiques selon leur poids moléculaire ainsi que leur charge nette. Certaines mises au point ont été apportées pour obtenir un profil présentant le protéome du spermatide de façon à ce qu'il soit le plus clair possible. La figure 13 présente les conditions optimales suite à ces mises au point. Conformément à notre objectif initial, la séparation est acceptable, ce qui m'a permis d'utiliser ces conditions pour observer l'effet des variations d'expression des gonadotropines sur le protéome du spermatide.

4.2 CONTRÔLE HORMONAL

Plusieurs hormones sont impliquées dans la régulation de la spermatogenèse (figure 5). Les gonadotropines, FSH et LH, sont directement et différemment reliées à ce processus. Les rôles spécifiques des gonadotropines ne sont pas encore complètement connus. La FSH est importante pour initier la spermatogenèse, mais certains résultats suggèrent qu'elle ne serait pas essentielle pour que ce processus ait lieu (KUMAR et al., 1997). Contrairement à ces résultats, une étude révèle l'infertilité d'un homme ne sécrétant pas de FSH (PHILLIP et al., 1998). La FSH est impliquée dans la régulation de la prolifération des cellules de Sertoli, dans la taille des testicules et leur quantité de cellules germinales (HECKERT et GRISWOLD, 2002). La testostérone est synthétisée par les cellules de Leydig grâce à la LH. Pour que la spermatogenèse se déroule normalement, il est primordial que la FSH et la testostérone soient présentes (SIMONI et al., 1999; AMORY et BREMNER, 2003).
4.2.1 SOURIS FORKO

L’invalidation du gène du récepteur de la FSH a donc plusieurs conséquences sur la spermatogenèse. L’augmentation de la grosseur de la tête des spermatozoïdes des souris FORKO homozygotes ainsi que les résultats provenant du test de décondensation utilisant le DTT et l’iodure de propidium suggèrent une condensation inadéquate de la chromatine de ces spermatozoïdes. Le test de décondensation consiste à exposer les spermatozoïdes à différentes concentrations de DTT et, par la suite, à les colorer grâce à l’iodure de propidium, un chromophore. Plus il y a décondensation, plus l’accessibilité du chromophore est grande, ce qui résulte en une augmentation de la coloration à l’iodure de propidium (KRISHNAMURTHY et al., 2000).

La condensation inadéquate des noyaux des spermatides appartenant aux souris FORKO homozygotes pourrait être reliée à un problème survenu durant le remodelage de la chromatine impliquant le déplacement des histones et l’arrivée des protamines. Une modification dans l’intégrité des protéines sous-jacentes à ce phénomène est donc anticipée. Pour vérifier cette hypothèse, nous avons effectué l’extraction protéique du protéome du spermatide des souris qui nous ont gracieusement été offertes par Dr Ram Sairam. Nous avons pu appliquer les extraits protéiques des trois génotypes (+/+ , -/+ , -/-) des souris FORKO sur différents gels protéiques. Même appliqués sur un gel acide-urée en une seule dimension (figure 17), on peut remarquer que la répartition du protéome du spermatide diffère d’un génotype à l’autre. L’extrait protéique des souris FORKO homozygotes semble contenir u ne
plus grande quantité de protamines et de TP1. Toutes les autres protéines sont beaucoup moins présentes. L’extrait protéique des souris FORKO hétérozygotes ressemble à l’extrait des souris de type sauvage, mais la distribution protéique diffère quelque peu. La quantité de protamines, TP1 et pré-protamines est plus grande (figure 17). L’analyse protéique bidimensionnelle des groupes hétérozygotes (figure 19) et de type sauvage (figure 18) démontre une différence de répartition des protéines nucléaires basiques. Les souris de type sauvage présente un extrait protéique plus précis et mieux défini tandis que les souris hétérozygotes ont un profil protéique plus flou. Il est important de souligner que les figures 18 et 19 présentent seulement les histones et TP2. Les pré-protamines, les protamines et TP1 ne sont pas présentées par ces figures. Ces résultats nous permettent de voir que l’invalidation du gène du récepteur de la FSH a bel et bien un effet sur la distribution du protéome du spermatide. Nos résultats suggèrent donc que la compaction inadéquate de la chromatine des spermatozoïdes pourrait être reliée à des modifications de l’abondance relative des protéines majeures présentes durant le remodelage de la chromatine qui semble être affecté chez les souris FORKO.

4.2.2 ACYLINE

Différentes méthodes sont disponibles pour moduler la sécrétion des gonadotropines. La facilité à se procurer l’acyline, qui est un antagoniste de la GnRH, et la gratuité du produit sont les facteurs qui nous convaincu à utiliser ce produit. Comme nous savions que certaines modifications affectant les gonadotropines avaient
des conséquences sur la compaction de l'ADN et la fertilité (AMORY et BREMNER, 2003 ; KRISHNAMURTHY et al., 2000), nous voulions faire varier l'expression de ces hormones pour observer si ces variations avaient un effet sur le profil du protéome du spermatide et ainsi fournir des évidences complémentaires de l'influence des gonadotropines sur la condensation nucléaire. Différentes doses d'acyline ont été injectées à trois groupes de souris pendant 14 jours (tableau 5). Les analyses bidimensionnelles des extraits protéiques du groupe contrôle et d'une dose d'acyline (500ug/kg/jour) sont présentées par la figure 22. La distribution protéique de l’extrait illustré par la figure 22 B semble contenir une plus grande quantité de protéines de faibles PM (protamines et TP1) que de protéines de PM élevés (histones et TP2), ce qui est aussi le cas pour les souris FORKO homozygotes (figure 20). On peut donc suggérer qu’une modulation des gonadotropines a un effet sur le profil protéique nucléaire du spermatide et donc qu’il s’agit d’un processus sensible au statut endocrinien.

4.3 PROTÉINES DE TRANSITION

Le rôle spécifique des protéines de transition n’est pas encore connu. L’invalidation des gènes des protéines de transition ont permis de produire des souris n’exprimant pas TP1 ou TP2 ou les deux protéines de transition. Ces recherches nous ont permis de comprendre un peu mieux les rôles distinctifs de ces deux protéines. L’absence d’une seule protéine de transition ne permettait pas d’observer clairement
l'impact de sa disparition, car l'autre protéine de transition semblait avoir un effet compensatoire (YU et al., 2000; ZHAO et al., 2001).

Grâce à l'invalidation des gènes des deux protéines de transition, nous pouvons avoir une idée plus précise de leur rôle. Dans cette étude, il est démontré que la condensation de la chromatine est inadéquate dans les spermatides et ces souris sont infertiles. Cet article démontre que les protéines de transition jouent un rôle primordial dans le développement fonctionnel des spermatozoïdes. Elles sont essentielles pour que la condensation de l'ADN dans les spermatides soit adéquate. Il est intéressant d'observer que, sans les protéines de transition, les cassures dans l'ADN persistent dans les spermatides (ZHAO et al., 2004). Cette observation pourrait valider les suggestions impliquant les protéines de transition dans la réparation et la ligation de l'ADN (CARON et al., 2001; LEVESQUE et al., 1998).

En accord avec les observations faites par d'autres groupes, nous proposons une procédure de remodelage de l'ADN dans les cellules germinales (ZHAO et al., 2004). TP1 déstabiliserait les nucléosomes et diminuerait leur interaction avec l'ADN, ce qui contribuerait au déplacement des histones (BASKARAN et RAO, 1990; LEVESQUE et al., 1998). Ensuite, TP2 réprimerait la synthèse de l'ARN grâce aux motifs en doigt de zinc (KUNDU et RAO, 1996). Par la suite, les protéines de transition seraient des facteurs d'alignement des brins d'ADN. TP1 serait impliquée dans la réparation des bris dans l'ADN (BOISSONNEAULT, 2002; CARON et al., 2001). Finalement, les protéines de transition condenseraient l'ADN (BASKARAN et RAO, 1990; LEVESQUE et al., 1998).
Le déplacement des protéines de transition n’est pas encore bien connu. Toutefois, le déplacement des histones semble être associé à des modifications post-traductionnelles telles l’acétylation (MEISTRICH et al., 1992). De telles modifications post-traductionnelles pourraient aussi être à l’origine du déplacement des protéines de transition. Il est donc intéressant de considérer cet aspect dans de futurs projets de recherche.
5. PERSPECTIVES

Différentes expériences devraient être effectuées pour poursuivre les efforts initiés dans mon projet de recherche. Tout d’abord, il serait intéressant de poursuivre l’identification des protéines plus mineures constituant le protéome du spermatide sur le gel bidimensionnel grâce à l’immunobuvardage. Les conditions de transfert mises au point durant cette démarche faciliteront l’atteinte de cet objectif.

L’utilisation d’un logiciel permettant d’optimiser le gradient de pH pourrait améliorer la linéarité de mon gradient de pH. Certains programmes informatiques ont la capacité de calculer et d’améliorer le gradient de pH (RIGHETTI et BOSSI, 1997). L’analyse protéique bidimensionnelle pourrait être associé à la spectrométrie de masse pour identifier les protéines (VOIGT et al., 2004) et observer des modifications post-traductionnelles possibles (KIZAWA et al., 2002). Cette option pourrait être une alternative à l’immunobuvardage. La spectrométrie de masse permettrait d’obtenir différentes informations concernant les protéines d’intérêt comme, par exemple, les modifications post-traductionnelles, la séquence d’acides aminés et la masse (HE et CHIU, 2003).

Divers résultats complémentaires pourraient être obtenus avec les expériences reliées au contrôle hormonal de la condensation de la chromatine (FORKO et acyline). Des expériences de coloration à l’acridine orange permettraient d’évaluer la structure de la chromatine, car ce colorant s’intercale entre les doubles brins de l’ADN, ce qui donne une fluorescence verte. Lorsqu’il est lié à un seul brin d’ADN, il fluoresce en rouge (KRISHNAMURTHY et al., 2000). Le TUNEL (« terminal
deoxynucleotidyl transferase ») nous indiquerait si ces modulations hormonales causent des bris de l'ADN souvent associés à des perturbations dans la structure de la chromatine parce que cette technique permet de visualiser les bris dans l'ADN grâce au dUTP-marqué qui se liera aux extrémités 3' hydroxylés des fragments d'ADN (SAKKAS et al., 1999). Étant donné que toutes les doses d'acyline utilisées ont grandement inhibé la testostérone, il serait intéressant d'injecter des doses intermédiaires d'acyline pour tenter d'évaluer les protéines principalement affectées par une modulation du statut endocrinien. Grâce à la mise au point de l'analyse bidimensionnelle, il serait possible d'observer un changement au niveau du protéome nucléaire du spermatide pouvant être engendré par le statut endocrinien. Des essais de fécondation pourraient être effectués pour confirmer que les injections d'acyline rendent le gamète mâle moins compétent pour la fertilisation.

Pour les tests d'acétylation, la purification de l'acétyltransférase spécifique à la spermatogenèse pourrait être effectuée par une extraction « high salt » à partir de testicules. La caractérisation d'une histone acétyltransférase surexprimée au niveau haploïde qui a été récemment découverte (LAHN et al., 2002), est d'ailleurs présentement en cours dans mon laboratoire d'accueil.
6. CONCLUSION

L'infertilité masculine est une problématique importante que nous devons tenter de régler par différents moyens. Jusqu'à ce jour, les différentes techniques qui permettent de détecter l'infertilité masculine sont l'évaluation de la motilité, de la morphologie et le dénombrement des spermatozoïdes. Toutes ces méthodes donnent seulement la possibilité de détecter l'infertilité sans que l'on puisse en connaître la cause. La condensation de la chromatine du spermatozoïde devient un paramètre qui s'implante en milieu clinique (EVENSON et al., 1999).

Il est donc intéressant de développer une méthode d'analyse protéique permettant d'observer si l'infertilité est due à des modifications du protéome nucléaire du spermatide. La technique développée durant ce projet de recherche pourrait devenir une technique utilisée pour déterminer la cause de l'infertilité associée à des problèmes de condensation.

Les différentes expériences préliminaires reliées à la régulation hormonale de la spermatogenèse ont permis d'observer l'effet de la variation des gonadotropines sur le protéome du spermatide. Ces résultats suggèrent que des modifications dans le statut endocrinien peuvent influencer grandement le processus de remodelage de la chromatine et la condensation de l'ADN du spermatide. Une étude plus approfondie de ces modulations devra être effectuée.

Tout au long de ma démarche expérimentale, j'ai dû mettre sur pied ou optimiser plusieurs techniques : analyse protéique bidimensionnelle, transfert (immunobuvardage), tests d'acétylation. Les mises au point de ces différentes
méthodes pourront être utilisées par les étudiants qui travailleront sur le protéome du spermatide.
7. REMERCIEMENTS

Je tiens à remercier Dr Guylain Boissonneault de m’avoir accepté dans son laboratoire et d’avoir cru en moi. Il m’a permis de solidifier ma formation académique et de voir les différentes facettes de la recherche. Je voudrais aussi remercier Stéphane Veilleux d’avoir été présent lors de la première année de ma maîtrise. Il fait partie de ces gens qui ont beaucoup de connaissances et qui ne cesse de se documenter pour en savoir toujours plus. Il m’a aidé à régler certains problèmes épineux auxquels j’ai été confrontée durant mes études de deuxième cycle. C’est un homme au grand cœur qui est toujours prêt à aider ses collègues et qui ne compte surtout pas son temps. Je ne peux pas non plus passer sous silence l’aide que Rémi-Martin Laberge m’a apportée au tant au point de vue professionnel qu’émotionnel. Merci de m’avoir supportée dans tous les aspects de ma vie et d’être resté au près de moi dans les moments les plus difficiles. J’ai été heureuse de côtoyer Christiane St-Amant, même si nous travaillions dans deux locaux séparés. Merci pour ton support et ton écoute dans les moments difficiles comme dans les moments heureux. Je remercie tous les membres du laboratoire, actuels ou passés, qui ont amené une dynamique enrichissante et stimulante au sein de notre équipe. Je remercie aussi tous les membres du département de biochimie de l’Université de Sherbrooke qui ont su amener une atmosphère stimulante et plaisante. Merci à Alain Fleury pour son support technique et informatique. Je voudrais dire un merci spécial à Jacques Lehoux qui m’a beaucoup aidé au point de vue technique. Merci pour ta disponibilité et ton grand cœur. Finalement, je remercie mes parents et mes amis pour tout le support
qu'ils ont su m'apporter lorsque j'en avais besoin. Merci à vous tous de m'avoir permis d'effectuer ma maîtrise et d'être mieux équipée pour affronter les prochains défis que la vie me réserve.
8. BIBLIOGRAPHIE

protamine P1 and assignment of the mouse Stp-1 gene to chromosome 1. » Gene 75 : 39-46.

