LE RECRUTEMENT DES CANAUX DE LIBÉRATION DU CALCIUM (Ca²⁺), PAR LA LIBÉRATION DU Ca²⁺ INDUITE PAR LE Ca²⁺ (LCIC), ÉVALUÉ PAR L’INTRODUCTION DE 8 mM BAPTA DANS LE MYOPLASME DE LA FIBRE MUSCULAIRE COUPÉE DE LA GRENOUILLE

PAR: Karine Fénelon

Département de physiologie et biophysique

Mémoire présenté à la Faculté de médecine en vue de l'obtention de maître ès sciences (M.Sc.) en physiologie et biophysique

29 août 2002
The author has granted a non-exclusive licence allowing the National Library of Canada to reproduce, loan, distribute or sell copies of this thesis in microform, paper or electronic formats.

The author retains ownership of the copyright in this thesis. Neither the thesis nor substantial extracts from it may be printed or otherwise reproduced without the author's permission.

L’auteur a accordé une licence non exclusive permettant à la Bibliothèque nationale du Canada de reproduire, prêter, distribuer ou vendre des copies de cette thèse sous la forme de microfiche/film, de reproduction sur papier ou sur format électronique.

L’auteur conserve la propriété du droit d’auteur qui protège cette thèse. Ni la thèse ni des extraits substantiels de celle-ci ne doivent être imprimés ou autrement reproduits sans son autorisation.
TABLE DES MATIÈRES

1 - INTRODUCTION

1.1 - Couplage excitation-contraction
1.2 – Les récepteurs impliqués dans le couplage excitation-contraction
 1.2.1 - Les senseurs de voltage
 1.2.2 - Les canaux de libération de Ca du RS
1.3 – Couplage des DHPRs et des RyRs
1.4 – Régulation des DHPRs
 1.4.1 – Régulation des RyRs par le Ca\(^{2+}\), Mg\(^{2+}\) et les nucléotides d’adénine
 1.4.2 - Régulation des RyRs par les lipides et les métabolites polycationiques
 1.4.3 - Régulation des RyRs par la calmoduline
 1.4.4 – Autres protéines qui régulent les RyRs
1.5 - Mécanismes rétroactifs du calcium
1.6 – Libération du Ca du RS
1.7 – But du projet de maîtrise

2 - MATÉRIEL ET MÉTHODES

2.1 – Chambre expérimentale et montage optique
2.2 - Composition des solutions internes et externes
2.3 - Méthode de l’EGTA et du Rouge de phénol
2.4 - Estimation du pH myoplasmique par absorbance du Rouge de Phénol
2.5 - Estimation de [Ca\(_{RS}\)] en absence et en présence de BAPTA
2.6 - Estimation de Δ[CaBAPTA]\(_{\text{MAX}}\)
2.7 - Estimation de la perméabilité à la libération, en présence de EGTA et BAPTA

2.8 - Libération de protons lors de la liaison du Ca au BAPTA

2.9 - Mesure des paramètres électriques

2.10 - Statistiques

3 - RÉSULTATS

Premier projet

3.1 - Introduction

3.2 - Protocole de stimulation et signal de Δ[CaEGTA]

3.3 - f_{Ca} vs. $[Ca_{RS}]$ à -60 mV en condition contrôlé

3.4 - f_{Ca} vs. $[CaEGTA]_{MAX}$ en présence de 8 mM BAPTA

3.5 - L'estimation de $[Ca_{RS}]$ dépend du pH

3.6 - L'estimation de $[Ca_{RS}]$ dépend du D_{BAPTA}

3.7 - Test de réversibilité

3.8 - Effets du BAPTA sur la relation entre le f_{Ca} et $[Ca_{RS}]$

3.9 - Résumé des effets du BAPTA sur le f_{Ca} et $[Ca_{RS}]$

3.10 - Les deux protocoles expérimentaux des expériences avec BAPTA

3.11 - Forme de la courbe en cloche obtenue avec le premier protocole

3.12 - Forme de la courbe en cloche obtenue avec le deuxième protocole

4 - DISCUSSION (Premier projet)

4.1 - Les deux mécanismes de LCIC

4.2 - Résultats d'études antérieures sur des RyRs isolés

4.3 - Le BAPTA n'a pas d'effet sur la phase plateau du f_{Ca} vs. $[Ca_{RS}]$
4.4 - Effet du BAPTA sur la phase descendante du f_{Ca} vs. [Ca$_{RS}$]
4.5 - Résultats obtenus à de grandes dépolarisations

5 - RÉSULTATS

Deuxième projet

5.1 - Introduction
5.2 - Protocole de stimulation
5.3 - Effet de 8mM BAPTA sur le $\Delta[CaEGTA]_{MAX}$ et sur le temps de décours de $\Delta[CaEGTA]$
5.4 - Effet du BAPTA sur le f_{Ca} à -45 et à -60 mV
5.5 - Effet du BAPTA sur les mouvements de charges intramembranaires, Q_{cm}
5.6 - Résumé des effets du BAPTA sur la libération du Ca$^{2+}$ et sur le Q_{cm}

6 - DISCUSSION (deuxième projet)

6.1 - Effets du BAPTA
6.2 - Composante d'activation additionnelle Ca-dépendante présente à de grandes dépolarisations
6.3 - Augmentation de la perméabilité à la libération peut-être due à la somme du Ca de deux RyRs couplés, et accélération de la cinétique de Q_f par le Ca
6.4 - Possibilité selon laquelle la composante additionnelle à -45 mV n'implique pas les RyRs non-couplés

RÉSUMÉ ET PERSPECTIVES

ANNEXE 1- Article de Fénelon et Pape, 2002
ANNEXE 2- Article de Pape et al., 2002b
<table>
<thead>
<tr>
<th>LISTE DES ILLUSTRATIONS</th>
<th>page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1 - Structure microscopique du tissu musculaire strié des mammifères</td>
<td>2</td>
</tr>
<tr>
<td>Figure 2 - Couplage excitation-contraction</td>
<td>3</td>
</tr>
<tr>
<td>Figure 3 - Canaux impliqués dans le couplage excitation-contraction</td>
<td>8</td>
</tr>
<tr>
<td>Figure 4 - Mécanismes rétroactifs du calcium</td>
<td>14-15</td>
</tr>
<tr>
<td>Figure 5 - Exemple d'un signal de perméabilité</td>
<td>20</td>
</tr>
<tr>
<td>Figure 6 - Disposition des récepteurs dans leurs membranes respectives</td>
<td>21</td>
</tr>
<tr>
<td>Figure 7 - Conséquence de la présence du fura-2 dans le myoplasme d'une fibre musculaire coupée de la grenouille sur l'amplitude et le temps de décours du signal de la perméabilité à la libération</td>
<td>22</td>
</tr>
<tr>
<td>Figure 8 - But de la première partie du projet de recherche</td>
<td>24</td>
</tr>
<tr>
<td>Figure 9 - But de la deuxième partie du projet de recherche</td>
<td>27</td>
</tr>
<tr>
<td>Figure 10 - Courbes de la perméabilité à la libération et de la charge Q_f en fonction du voltage</td>
<td>29</td>
</tr>
<tr>
<td>Figure 11 - Schéma de la chambre expérimentale à double cloison de Vaseline</td>
<td>31</td>
</tr>
<tr>
<td>Figure 12 - Schéma du montage optique pour l'acquisition de données</td>
<td>33</td>
</tr>
<tr>
<td>Figure 13 - Effet du BAPTA sur $\Delta [\text{CaEGTA}]$ et $\Delta [\text{CaEGTA}]_{\text{MAX}}$ en fonction du temps durant l'expérience</td>
<td>48</td>
</tr>
<tr>
<td>Figure 14 - Fin du signal de la libération du Ca à de petites $[\text{Ca}{\text{RS}}]$, et $f{\text{Ca}}$ en fonction de $[\text{Ca}_{\text{RS}}]$</td>
<td>51</td>
</tr>
<tr>
<td>Figure 15 - Graphiques de f_{Ca} en fonction de $[\text{Ca}_{\text{RS}}]$ d'une expérience en condition contrôle et d'une expérience avec BAPTA, et test de réversibilité</td>
<td>57</td>
</tr>
<tr>
<td>Figure 16 - Effet du BAPTA sur $\Delta [\text{CaEGTA}]$</td>
<td>77</td>
</tr>
</tbody>
</table>
Figure 17 - Temps de décours du $f_{Ca}(-45\ mV)$ et $f_{Ca}(-60\ mV)$ en présence du BAPTA et en condition contrôle

Figure 18 - Effet du BAPTA sur les mouvements de charges intramembranaires

Figure 19 - Perméabilité à la libération vs. [Ca$_{RS}$] à -45 mV et à -60 mV

Figure 20 - Effet de sommation et de 8 mM BAPTA sur le gradient de Δ[Ca$^{2+}$] de canaux de libération du Ca du RS ouverts

Table 1 - Effet de 8 mM BAPTA sur le f_{Ca} à -60 mV

Table 2 - Effets du BAPTA sur la libération du Ca et sur les mouvements de charges intramembranaires
LISTE DES SIGLES, ABRÉVIATIONS ET SYMBOLES

A = absorbance

A_{λ} = absorbance à une longeur d'onde donnée

$A_{\text{ind}}(\lambda)$ = absorbance relative à un indicateur et à une longueur d'onde donnée

β = pouvoir tampon du myoplasme

C = concentration d'indicateur dans le myoplasme

Ca = calcium

Ca^{2+} = Ca libre

[] = concentration

$[\text{Ca}^{2+}]_R$ = concentration de Ca libre au repos

$[\text{BAPTA}_T]$ = concentration totale de BAPTA dans le myoplasme

$[\text{EGTA}_T]$ = concentration totale d'EGTA dans le myoplasme

$[\text{CaBAPTA}] = \text{concentration de Ca lié au BAPTA au repos}$

$[\text{CaEGTA}] = \text{concentration de Ca lié à l'EGTA au repos}$

$[\text{Ca}_{RS}] = \text{contenu en Ca du RS durant une stimulation}$

$[\text{Ca}_{RS}]_R = \text{contenu en Ca du RS au repos}$

Δ = variation

$\Delta[\text{Ca}_T] = \text{concentration totale de Ca libéré dans le myoplasme suite à une dépolarisation}$

$\Delta[\text{CaBAPTA}] = \text{variation de la concentration de Ca lié au BAPTA durant une stimulation}$

$\Delta[\text{CaEGTA}] = \text{variation de la concentration de Ca lié à l'EGTA durant une stimulation}$

$\Delta[\text{CaBAPTA}]_{\text{MAX}} = \text{concentration maximale de Ca lié au BAPTA durant une stimulation}$

$\Delta[\text{CaEGTA}]_{\text{MAX}} = \text{concentration maximale de Ca lié à l'EGTA durant une stimulation}$
ΔpH = variation de pH myoplasmique

D_{BAPTA} = constante de diffusion du BAPTA dans le myoplasme

D_{Ca} = coefficient de diffusion du Ca dans le myoplasme

DHPR = senseur de voltage dans la membrane des tubules-t

ε = coefficient d'extinction (loi de Beer)

f_{Ca} = fraction de la concentration en Ca du RS libéré par un pulse dépolarisant

I_{cm} = courant dû au mouvement des charges intramembranaires des DHPRs

I_{i(1)} et I_{i(2)} = intensité de la lumière transmise (i) et incidence (i) à une longueur d'onde donnée

k_{1} = constante de vitesse de réaction

K_{Dappt,X} = constante de vitesse de la dissociation du Ca (X = BAPTA ou EGTA)

l = distance parcourue par la lumière du microscope (loi de Beer)

λ_{Ca} = distance parcourue par le Ca avant d'être tamponné

LCIC = libération du Ca induite par le Ca

P_{o} = probabilité d'ouverture

Q_{cm} = charge intramembranaire

RS = réticulum sarcoplasmique

RyR = canal de libération du Ca du RS
RÉSUMÉ

LE RECRUTEMENT DES CANAUX DE LIBÉRATION DU CALCIUM (Ca$^{2+}$), PAR LA LIBÉRATION DU Ca$^{2+}$ INDUITE PAR LE Ca$^{2+}$ (LCIC), ÉVALUÉ PAR L'INTRODUCTION DE 8 mM BAPTA DANS LE MYOPLASME DE LA FIBRE MUSCULAIRE COUPÉE DE LA GRENOUILLE

Dans les muscles squelettiques, les senseurs de voltage (DHPRs), situés dans la membrane des tubules transverses, subissent un changement de conformation suite à une dépolarisation. Ceci provoque l'ouverture des canaux de libération de Ca (RyRs) dans la membrane du réticulum sarcoplasmique (RS) via un couplage mécanique. Ces deux systèmes membranaires sont apposés, et les RyRs forment une rangée double où un RyR sur deux est couplé à un DHPR. À de faibles dépolarisations, peu de DHPRs sont activés et un site de libération de Ca est isolé de l'influence du Ca libéré par un site voisin. La première partie du projet de recherche consistait à évaluer si un site de libération de Ca est composé soit d'un RyR couplé à son DHPR, soit d'un RyR activé par le voltage avec des RyRs voisins recrutés par libération du Ca induite par le Ca (LCIC).

Des études antérieures avaient montré que la perméabilité à la libération des RyRs pour le Ca en fonction de la concentration en Ca du reticulum sarcoplasmique ([Ca$_{RS}$]) décrit une courbe en forme de cloche, avec un sommet lorsque la [Ca$_{RS}$] est entre 300 et 500 μM. L'augmentation de la perméabilité lorsque [Ca$_{RS}$] augmente de 100 à 300 μM a été attribuée à LCIC. Le but du premier projet était donc d'évaluer l'effet de 8 mM de BAPTA, introduit dans le myoplasme de fibres musculaires coupées de grenouilles, sur la relation entre la perméabilité et la [Ca$_{RS}$]. Les résultats ne montrant aucun effet du BAPTA mena à la suggestion que les canaux voisins ne sont pas recrutés par LCIC.
Ainsi, la conclusion de la première partie était qu'à de faibles dépolarisations, un site de libération du Ca est composé d'un seul RyR et son DHPR associé.

Suite à cette observation, la deuxième partie du projet était d'étudier ce qui se passe à de grandes dépolarisations, lorsqu'une grande densité de DHPR est activée. L'hypothèse était que comme 1 RyR sur 2 est couplé à un DHPR, les RyRs non-couplés pourraient être activés par LCIC seulement à de grandes dépolarisations, grâce à une composante additionnelle de la libération du Ca. Afin d'évaluer cette idée, BAPTA a encore une fois été introduit dans le myoplasme pour diminuer la concentration de calcium libre à l'embouchure d'un RyR ouvert ($\Delta[Ca^{2+}]$). Les résultats ont montré que le BAPTA a diminué le ratio de la perméabilité à -45 mV sur -60 mV d'environ 2 fois, lorsque $[Ca_{RS}]$ était >1000 µM (valeurs physiologiques). Comme le BAPTA a diminué la perméabilité à -45 mV (grande dépolarisation) et non à -60 mV (faible dépolarisation), ceci suggère la présence d'une composante Ca-dépendante additionnelle de la libération du Ca, présente à de grandes dépolarisations, et différente de l'activation de la libération seulement due au voltage. Cependant, pour que cette hypothèse soit complète, il faut tenir compte de l'effet d'accélération du Ca sur la cinétique des mouvements de charge des DHPRs. En effet, les DHPRs possèdent des particules chargées qui bougent suite à une variation de potentiel, et ce mouvement peut être accéléré par une grande libération de Ca. Ainsi, à de grandes dépolarisations, la probabilité que deux DHPRs voisins soient activés en même temps pourrait être augmentée par l'effet d'accélération du Ca sur les mouvements de charges. Ceci permettrait aux DHPRs voisins d'activer leurs RyRs apposés, et la somme du Ca libéré pourrait recruter des RyRs voisins non couplés, par LCIC.
La résultats de la deuxième partie de ce projet supportent cette hypothèse selon laquelle à de grandes dépolarisations seulement, une composante additionnelle de libération de Ca permet aux RyRs non couplés d’être recrutés par LCIC. Ceci est possible car la grande quantité de Ca libéré accélère les mouvements de charges intramembranaires, ce qui augmente la probabilité que deux DHPRs soient activés en même temps, de sorte que les Δ[Ca$^{2+}$] venant de leurs RyRs s'additionnent pour recruter des RyRs intermédiaires non couplés.

mots clés généraux: couplage excitation-contraction, libération de Ca, muscle squelettique, réticulum sarcoplasmique, senseurs de voltage
1 - INTRODUCTION

1.1 - COUPLAGE EXCITATION-CONTRACTION

C’est entre autre grâce aux os, aux articulations et aux muscles squelettiques que le corps humain produit des mouvements. Pour accomplir cette tâche, les muscles striés doivent se contracter et se relâcher par le mécanisme du couplage d’excitation-contraction. Ce mécanisme a intrigué pendant plusieurs décennies et intrigue encore aujourd’hui de nombreux physiologistes. Mais avant d’expliquer et de commenter les controverses relatives au mécanisme de couplage excitation-contraction, il serait utile de revoir l’anatomie du tissu musculaire strié des mammifères, où une cascade de réactions chimiques et mécaniques mènent à la contraction. La figure 1 illustre schématiquement deux cellules ou fibres musculaires très longues et cylindriques, regroupant de nombreuses myofibrilles formées de myofilaments. Chaque fibre musculaire est entourée d’une membrane plasmique nommée le sarcolemme, qui présente des invaginations périodiques en forme de tube, les tubules-t. Ces tubules-t pénètrent jusqu’à l’intérieur de la fibre le long de la jonction des bandes A-I des myofilaments (des muscles squelettiques des mammifères) ou des stries Z (du muscle cardiaque et des muscles squelettiques de la grenouille). A l’intérieur des fibres, les tubules-t deviennent étroitement associés aux citernes terminales du réticulum sarcoplasmique (RS), situées de part et d’autre de chaque tubule-t. Les citernes terminales du RS sont les réserves intracellulaires en calcium (Ca) de la fibre. Le sandwich que forment un tubule-t entre deux RS porte le nom de triade. Et c’est au niveau des triades que se déroule le mécanisme de couplage excitation-contraction.
Figure 1. Structure microscopique du tissu musculaire strié des mammifères. Les fibres musculaires (en vert) possèdent plus d’un noyau (non illustré) et sont disposées de façon parallèle. Elles peuvent mesurer jusqu’à 30 cm de longueur et leur diamètre varie entre 50 et 150 µm. Chez la grenouille (notre modèle expérimental) ces fibres peuvent avoir un diamètre de plus de 100µm. Chaque fibre musculaire est entourée d’une membrane plasmique, le sarcolemme (couche orange) qui se prolonge à l’intérieur de la fibre en invaginations périodiques, les tubules-t (tubes oranges). De part et d’autre des tubules-t et de façon perpendiculaire, est apposé un réseau membranaire, le réticulum sarcoplasmique (en blanc). C’est dans les cîternes terminales du RS que se trouvent les réserves calciques intracellulaires.

Un élément déclencheur est nécessaire à la contraction d’un muscle. Dans les muscles squelettiques, cet élément déclencheur est la dépolarisation des membranes de surface et des tubules-t. Ainsi, lorsqu’un influx nerveux arrive à la terminaison axonale d’un neurone moteur, il y a dépolarisation du sarcolemme et un potentiel d’action se propage le long de la fibre musculaire. Ce potentiel d’action pénètre à l’intérieur de la fibre par les tubules-t où se trouvent les senseurs de voltage ou récepteurs sensibles aux dihydropyridines (DHPRs, voir figure 2). Dans la membrane des tubules-t, la variation de potentiel induit le mouvement de charges intramembranaires des DHPRs qui est associé à un changement de conformation. Une réaction mécanique permet ensuite aux DHPRs (Hui et Chandler, 1990) d’activer les canaux de libération du Ca, aussi appelés récepteurs
sensibles à la ryanodine (RyRs, figure 2), situés dans la membrane du réticulum sarcoplasmique et apposés aux DHPRs. Il a été proposé que les RyRs et les DHPRs sont physiquement liés car leurs systèmes membranaires respectifs sont distancés d’environ 12 nm (Block et al., 1988; c.f. Melzer et al., 1995). Ainsi, les RyRs activés s’ouvrent et libèrent le calcium emmagasiné dans les cisternes terminales du RS (figure 2). Suite à sa libération, le Ca$^{2+}$ peut lier la troponine C des filaments fins d’actine, pour induire une contraction musculaire.

Figure 2. Couplage excitation-contraction. Le potentiel d'action qui se propage le long des tubules-t active les DHPRs. Les DHPRs activent ensuite les RyRs qui leur sont apposés, par un type de couplage mécanique (les étoiles jaunes sont les RyRs activés). Cette activation permet au Ca (cercles rouges) d’être libéré du RS afin de lier la troponine C pour engendrer une contraction musculaire.
1.2 - LES RÉCEPTEURS IMPLIQUÉS DANS LE COUPLAGE EXCITATION-CONTRACTION

Les récepteurs impliqués dans le processus du couplage excitation-contraction sont les senseurs de voltage (DHPRs) et les canaux de libération du Ca (RyRs), situés respectivement dans la membrane du tubule-t et dans la membrane du RS.

1.2.1 - Les senseurs de voltage

Les senseurs de voltage perçoivent les variations de potentiel de la membrane des tubules-t et activent les canaux de libération de Ca du RS (Rios et Brum, 1987; Imagawa et al., 1987; Lai et al., 1988). Ils sont aussi appelés récepteurs sensibles aux dihydropyridines (ou DHPRs, pour «dihydropyridine receptors»), car les dihydropyridines sont des antagonistes de ces récepteurs. Les DHPRs font partie de la catégorie des «voltage operated Ca channels» (VOCs) de type L, qui sont des canaux activés par de grandes dépolarisations. Les canaux calciques de type L ont initialement été décrits au niveau des fibres musculaires cardiaques et des neurones périphériques, mais ont par la suite été retrouvés dans plusieurs autres types cellulaires, tant excitable que non-excitable (c.f. Tsien et Tsien, 1990). Auparavant, cette catégorie de canaux englobait tous les canaux à la fois voltage-dépendants et sensibles aux dihydropyridines. Les DHPRs ont ensuite été inclus dans cette catégorie.

Comme les DHPRs sont très abondants dans les tubules-t des muscles squelettiques, ils ont été les premiers modèles biochimiques et moléculaires utilisés dans des études concernant les canaux calciques (Curtis et Catterall, 1984; Borsotto et al., 1985). Tout comme les autres canaux calciques, ils modulent l’entrée de Ca en réponse à une dépolarisation. Cependant, ils sont activés par de grandes dépolarisations et
s'inactivent lentement avec un courant de longue durée mais le plus important est que l'entrée de Ca extracellulaire par ces canaux calciques voltage-dépendants n'est pas nécessaire à la contraction. Ainsi, bien qu'il ait déjà été proposé qu'un faible pourcentage des DHPRs des muscles squelettiques soient des canaux calciques fonctionnels, le rôle primordial de ces canaux dans les muscles squelettiques est celui de senseur de voltage dans le mécanisme de couplage excitation-contraction (Schwartz et al., 1985).

Les DHPRs des muscles squelettiques possèdent 5 sous-unités (figure 3) : 1) α_{1S}, forme le pore du canal, formé de 4 répétitions (domaines I-IV) ayant chacune 6 segments transmembranaires, et où chaque segment S_4 (contenant des particules chargées positivement, appelées charges intramembranaires des DHPRs) serait responsable de la sensibilité aux variations de potentiel. De plus, selon un modèle (Jong et al., 1995b), il a été proposé que le potentiel doit être perçu par les 4 segments S_4 afin que le canal soit activé et qu'il y ait un changement de conformation. Ainsi, la voie menant à l'activation des DHPRs semble être un processus à plusieurs étapes, passant par l'activation (et le mouvement) de différentes particules; 2) α_2, glycoprotéine hydrophobe, contenant les sucrés et participant à l'expression fonctionnelle de α_{1S}; 3) β_1, protéine hydrophile intracellulaire ayant des sites de phosphorylation, contribuant au bon fonctionnement de la cinétique des canaux Ca dans les muscles squelettiques; 4) γ, feuillet transmembranaire au rôle obscur; 5) δ, protéine hydrophobe et glycosylée, fragment de α_2, rôle obscur (Catterall, 1995).

Bien que la structure des DHPRs semble maintenant bien établie par des études biochimiques, physiologiques et par microscopie électronique, peu d'expériences ont réussi à exprimer la sous-unité α_{1S} dans des lignées cellulaires de mammifères. Entre
autre, le groupe de Jingsong Zhou (1998) a cloné α₁S de la grenouille et même si leurs résultats biochimiques semblaient confirmer que cette molécule correspondait à une sous-unité des DHPRs, seulement 10% des cellules transfectées ont montré un large courant entrant de type L. La raison de l'insuccès de l'expression fonctionnelle de l'ADNc de cette sous-unité dans cette étude ainsi que dans des études antérieures (Perez-Reyes et al., 1989; Lacerda et al., 1991; Nakai et al., 1996; Johnson et al., 1997) reste nébuleuse mais les tentatives de transfection et d'expression se poursuivent.

1.2.2 - Les canaux de libération du Ca du RS

Les canaux de libération du Ca forment une famille de canaux qui jouent un rôle primordial dans la régulation de la concentration de Ca intracellulaire (Coronado et al., 1994). Les RyRs (pour « Récepteurs sensibles à la ryanodine ») sont appelés ainsi à cause de leur grande affinité pour la plante alcaloïde ryanodine, qui est un métabolite produit par un arbuste d’Afrique du Sud appelé Ryana speciosa (Jenden et Fairhurst, 1969). Ils ont initialement été purifiés et solubilisés à partir de tissus musculaires et neurones. Ils ont ensuite été isolés et purifiés dans le muscle cardiaque et dans les muscles lisses mais leur présence est maintenant confirmée dans une grande variété de types cellulaires (Franzini-Armstrong et Protasi, 1997). Par centrifugation selon un gradient de densité, un complexe protéique de 30S peut être obtenu, constitué de 4 polypeptides ayant approximativement 5000 résidus d'acides aminés chacun (Meissner, 1994).

Trois isoformes des RyRs sont aujourd'hui connues et sont générés par les gènes RyR₁ (muscles squelettiques), RyR₂ (muscle cardiaque) et RyR₃ (muscles squelettiques de façon minoritaire, cerveau, et cellules épithéliales entre autre). La structure primaire des trois isoformes a été déterminée par clonage et séquençage d'ADN complémentaire.
Les échantillons teints négativement et les études en microscopie électronique révèlent un assemblage tétramérique des sous-unités des RyRs, formant ainsi une structure en forme de trèfle à 4 feuilles (Saito et al., 1989). De plus, grâce à la technique de reconstruction angulaire entre autre, des images 3D du canal ont été obtenues à haute résolution (environ 3 nm) permettant d'obtenir des détails sur les domaines cytoplasmiques et segments transmembranaires (Wagenknecht et Radermacher, 1995). Ces études indiquent que les RyRs des muscles squelettiques ont une dimension cytoplasmique de 27x27x14 nm, avec un canal central et une partie transmembranaire de 7 nm de longueur (Wagenknecht et al., 1989). Ainsi, les RyRs sont constitués de 2 régions structurales majeures: 4 à 10 segments transmembranaires formant le pore du canal avec une petite terminaison-C cytoplasmique, ainsi qu'une grande terminaison-N cytoplasmique formant le "foot protein" (figure 3), qui interagirait physiquement avec la sous-unité α1S des DHPRs, dans le couplage excitation-contraction (le couplage entre les DHPRs et les RyRs sera discuté plus en détail à la section suivante). Il a déjà été mentionné que les RyRs sont sensibles à la ryanodine, d'où leur nom. Par exemple, à faible concentration (nM), la ryanodine garde le canal dans un état ouvert plus longtemps, mais à grande concentration, la ryanodine inactive ces canaux (Melzer et al., 1995). Suite à ces observations, des études effectuées en présence de faibles concentrations de ryanodine ont permis de visualiser les RyRs à l'état ouvert et fermé. Le canal ouvert présenterait une ouverture visible du côté de la lumière de l'assemblage transmembranaire (Orlova et al., 1996). La structure cytoplasmique des RyRs serait grandement hydratée et possèderait de nombreux canaux et passages entre les domaines protéiques faiblement liés. Il a également été proposé que les canaux orientés de façon radiale pourraient servir
à diriger le Ca$^{2+}$ du canal central vers la périphérie de la molécule. Finalement, les 4 coins de la molécule possèdent plusieurs crevasses pouvant interagir avec les RyRs voisins, et permettant aux RyRs de se regrouper en une rangée double et ordonnée dans la membrane du RS (voir figures 2 et 6; Franzini-Armstrong et Jorgensen, 1994).

Figure 3. Canaux impliqués dans le couplage excitation-contraction. Le sensor de voltage, aussi appelé récepteur sensible aux dihydropyridines (DHPR) est représenté en bleu sur le schéma de gauche. Les sous-unités α₁, α₂, β₁, γ, et δ du DHPR sont représentées à droite. En mauve est schématisé le récepteur sensible à la ryanodine (RyR), aussi appelé canal de libération du Ca du RS. Les 4 segments transmembranaires, la terminaison-C cytoplasmique et le "foot protein" ou terminaison-N du RyR sont représentés à droite. (Tiré de la fig. 2 de Catterall, 1995 ;et de la fig.32 de Melzer et al., 1995.)
1.3 - **COUPLAGE DES DHPRs ET DES RyRs**

Comme il était bien établi que dans les muscles squelettiques un changement de conformation des DHPRs permet l'activation des RyRs par couplage mécanique, plusieurs chercheurs ont voulu caractériser les régions impliquées dans le couplage allosterique entre les DHPRs et les RyRs. Des résultats obtenus à partir d'expériences effectuées sur des souris dysgéniques (c'est-à-dire, sans α_1S) ont révélé que la région s53 de la boucle entre les domaines II et III de α_1S est nécessaire au signal (bidirectionnel) entre les RyRs et les DHPRs (Nakai *et al.*, 1998; Grabner *et al.*, 1999). Les résultats d'autres expériences effectuées sur des myotubes dyspédiques (c'est-à-dire, sans RyR1) suggèrent que les régions R9 et R10 des RyR1S participent à l'interaction avec α_1S. Il a également été proposé que les RyR1S augmentent à leur tour la densité de courant produit par α_1S, par rétroaction positive (Nakai *et al.*, 1996). Malgré les résultats de ces études effectuées *in vitro*, peu d'évidences permettent de conclure que l'interaction entre les 2 protéines se fait par contact directe. Plus récemment, le groupe de Catherine Proenza (2002) a effectué des études de double-hybride sur la levure, afin d'identifier les domaines des RyRs et des DHPRs participant à la fois à la liaison et au couplage fonctionnel de ces 2 protéines. Leurs résultats ont permis de conclure que les résidus 1837 à 2168 de la région sR16 (faisant partie de R10) des RyRs interagit avec la région s53 des DHPRs. Ils n'ont cependant pas pu écarter la possibilité que d'autres sites de contact de faible affinité pourraient également médier le signal entre les 2 protéines. De plus, les méthodes utilisées comportent certains désavantages. Par exemple, la méthode de double hybride ne peut tester que des fragments d'ADN de moins de 300 résidus, ce qui est problématique vu la grande taille des RyRs. Aussi, les expériences effectuées *in
vitro ne reflètent pas nécessairement ce qui se passe in vivo. Néanmoins, les résultats de Proenza et son groupe montrent qu'il existe une interaction entre α₁S et RyR1.

Ainsi, ces évidences physiologiques et biochimiques indiquent que les RyRs sont contrôlés par le potentiel perçu par les DHPRs cependant, une variété de molécules endogènes participent également à la régulation des RyRs, discuté à la prochaine section.

1.4 - RÉGULATION DES RyRs

Le Ca²⁺, le Mg²⁺, les nucléotides d'adénine, la calmoduline, les métabolites lipidiques, les polyamines et la phosphorylation, pour n'en nommer que certaines, comptent parmi les autres molécules qui participent à la régulation des RyRs. La plupart des études concernant la régulation des RyRs ont été effectuées par les techniques d'efflux calcique de vésicules, d'enregistrement de canaux unitaires incorporés dans des bicouches lipidiques planes, et de liaison à la [³H]ryanodine.

1.4.1 - Régulation des RyRs par le Ca²⁺, Mg²⁺ et les nucléotides d'adénine

En absence d'ATP et de Mg²⁺, des résultats d'expériences sur des canaux unitaires incorporés dans des bicouches planes ont montré que des concentrations nanomolaires de Ca réduisaient la probabilité d'ouverture (P₀) des RyRs à environ 0. Mais l'addition de quelques micromolaires de Ca activait le canal, en induisant des ouvertures et des fermetures rapides, augmentant ainsi la P₀ à presque 1. Des [Ca] plus élevées (ex.: mM) inactivaient le canal (Ma et al., 1988; Smith et al., 1986). Sous ces conditions expérimentales, la courbe en forme de cloche du graphique de la libération de Ca²⁺ en fonction de la [Ca] dans le RS présente un sommet à des [Ca] micromolaires. Une telle
La courbe suggère que les RyRs possèdent des sites de liaison et d'activation à haute affinité pour le calcium, ainsi que des sites d'inhibition à faible affinité.

Outre le Ca$^{2+}$, le Sr$^{2+}$ peut également activer les RyRs, tandis que le Ba$^{2+}$ et le Mg$^{2+}$ peuvent jouer un rôle inhibiteur (Kirino et al., 1983; Meissner et al., 1992; Nagasaki et Kasai, 1984; Rousseau et al., 1992).

Un autre régulateur physiologique des RyRs est le Mg-ATP plutôt que l'ATP libre car le Mg$^{2+}$ lie presque tous les nucléotides présents dans les cellules. D'une part, les études portant sur la régulation des RyRs par l'ATP seulement sont difficiles d'exécution car non seulement le Mg-ATP est la forme prédominante présente dans les cellules, mais aussi car (comme mentionné plus haut) le Mg$^{2+}$ libre inhibe les canaux activés par le Ca et l'ATP. D'autre part, il a été montré que l'addition de Mg$^{2+}$ et d'adénine à des concentrations physiologiques stimulent l'activation des RyRs, à des [Ca] μM. Il semble donc exister un site de régulation qui rend les RyRs plus sensibles, une fois le Mg-ATP lié (Meissner et al., 1986). Un peu plus tard, G.D.Lamb (1993) a suggéré la présence de deux sites de régulation du Mg$^{2+}$: un site inhibiteur et à faible affinité pour le Ca, et un site d'activation à haute affinité pour le Ca, pour lequel le Mg$^{2+}$ compétitionne avec 50% moins d'affinité (Meissner et al., 1986; Nagasaki et al., 1983). Selon lui, après une dépolarisation, le senseur de voltage diminue l'affinité du site inhibiteur, provoquant la dissociation du Mg$^{2+}$ de ce site et l'ouverture partielle des RyRs. Le Ca$^{2+}$ déplace ensuite le Mg$^{2+}$ du site d'activation, augmentant la P_o des canaux (nécessitant 10 μM de Ca). Une fois la [Ca] cytoplasmatique élevée, la libération de Ca prend fin dû à la liaison du Ca au site inhibiteur, mais l'hypothèse selon laquelle l'arrêt de la libération serait due à un processus de phosphorylation initié par une phosphatase activée par le Ca, est aussi
possible (Lamb, 1993).

Les RyRs sont également affectés par le pH, la force ionique et la composition des anions. L'efflux de Ca du RS diminue lorsque le pH diminue de 7.5 à environ 6 (Meissner et al., 1984; Sumbilla et al., 1987), sans affecter l'affinité des sites de liaison. Une augmentation de [KCl] ou la substitution du Cl par ClO₄⁻ augmente la libération du Ca du RS, tandis que la substitution du Cl⁻ par le gluconate diminue la libération.

1.4.2 - Régulation des RyRs par les lipides et les métabolites polycationiques

Certaines études suggèrent que l'IP₃ favorise la libération du Ca du RS (Vergara et al., 1985; Volpe et al., 1985) et que l'IP₃ joue un rôle central dans le couplage excitation-contraction. Cette hypothèse est toutefois controversée. D'un côté, des observations ont montré que la dépolarisation des tubules-t augmente l'efficacité de l'IP₃ dans la libération du Ca de fibres sans sarcolemme. D'un autre côté, l'inhabilité de l'héparine à bloquer la libération de Ca contredit la supposition que l'IP₃ soit un ligand jouant un rôle primordial dans le couplage excitation-contraction.

Plusieurs lipides sont également impliqués dans la libération de Ca du RS. Par exemple, le palmitoyl carnitine et palmitoyl CoA stimulent la liaison de [³H]ryanodine et la libération de Ca (El-Hayek et al., 1993).

1.4.3 - Régulation des RyRs par la calmoduline

Dans des études effectuées sur des canaux unitaires, la calmoduline a inhibé les RyRs en réduisant le temps moyen d'ouverture sans avoir d'effet sur la conductance unitaire. Cette inhibition était Ca-dépendante, partielle et réversible. L'effet inhibiteur de
la calmoduline, en absence d'ATP, suggère qu'une liaison directe existe entre la calmoduline et le RyR (Meissner et al., 1986; Smith et al., 1989). Cependant, une régulation indirecte des RyRs médiée par la phosphorylation de la calmoduline par une kinase pourrait aussi être possible (cf. Melzer et al., 1995).

1.4.4 - Autres protéines qui régulent les RyRs

La triadine est une protéine membranaire intrinsèque, formant de nombreuses liaisons disulfides intramembranaires, et est impliquée dans le couplage fonctionnel entre les DHPRs et les RyRs (Brant et al., 1992; Knudson et al., 1993).

La calsequestrine est une protéine acide liée au Ca du RS et concentrée dans les citernes terminales du RS. Des observations suggèrent qu'en plus d'augmenter la capacité en Ca du RS la calsequestrine, liée à la protéine de liaison junctine, pourrait jouer un rôle dans la régulation de la libération du Ca du RS (Ikemoto et al., 1991).

L'annexine VI est une protéine de liaison du Ca dans la lumière du RS qui module la libération du Ca en augmentant la P_o et le temps moyen d'ouverture des RyRs (Diaz-Munoz et al., 1990).
1.5 - MÉCANISMES RÉTROACTIFS DU Ca

Une fois le calcium libéré du RS, des mécanismes rétroactifs (figure 4A) peuvent réguler la libération additionnelle de calcium du RS, tels que : 1) la libération du Ca induite par le Ca (LCIC); 2) l'inactivation de la libération du Ca par le Ca; 3) une augmentation de la cinétique de la composante $Q_γ$ des mouvements de charges intramembranaires des DHPRs; 4) une diminution de la cinétique de $Q_γ$.

A)

dépolarisation \rightarrow Mouvement de charges \rightarrow RyR du RS \rightarrow [Ca]

B)

-60 mV

14
Figure 4. Mécanismes rétroactifs du calcium. A) Une fois libéré des citerne terminales du RS, le Ca peut agir selon 4 mécanismes rétroactifs (2 positifs et 2 négatifs) afin de réguler la libération additionnelle de Ca: 1) par libération du Ca induit par le Ca (LCIC) représenté par la petite boucle positive "+"; 2) par l'inactivation de la libération du Ca par le Ca, comme le montre la petite boucle négative "-"; 3) par l'accélération de la cinétique de Q_T, représenté par la grande boucle positive "++"; 4) par un ralentissement de la cinétique de Q_T, illustré par la grande boucle négative "--". B) Graphique de la perméabilité à la libération en fonction de $[Ca_{r3}]$ à -60 mV. Les valeurs de la perméabilité ont été obtenues par la formule: \[100 \times \frac{d[A_{Ca}]/dt}{([Ca_{r3}]_0 - A[Ca_T])} \]. Les cercles blancs et noirs représentent respectivement des stimulations où le Ca est présent et absent de la solution interne. Un triangle "inversé" représente une stimulation effectuée environ une minute avant une autre stimulation, illustrée par un carré. Un triangle illustre une stimulation obtenue 5 minutes plus tard. Les stimulations identifiées avec les lettres a-e sont des stimulations à différentes $[Ca_{r3}]$, soit 2 043, 1 029, 267, 74, et 347 µM respectivement. (Pour plus de détails, voir fig.5A de Pape et Carrier, 1998). C) La première trace est un pulse dépolarisant de 200 ms à -40 mV dans une fibre partiellement dépourvue de Ca. La trace suivante est le courant ($I_{test} - I_{control}$) avec les
composantes I_θ et I_r des mouvements de charges intramembranaires. La dernière trace est celle de la variation de la concentration de Ca totale myoplasmique, $\Delta[\text{Ca}_T]$ (Tiré de la fig.1 de Jong et al., 1995). D) Le signal de voltage est une dépolarisation de 200 ms à -40 mV. Les traces de $I_{\text{mes}}-I_{\text{canal}}$ suivantes montrent une diminution de la composante I_r avec une diminution de $\Delta[\text{Ca}_T]$, par le mécanisme de rétroaction négative du Ca sur le Q, (Tiré de la fig.2 de Jong et al., 1995) E) La première trace est le début d'un pulse dépolarisant de 700 ms à -48 mV. Les traces suivantes sont les I_{canal} pour des $[\text{Ca}_{\text{BSL}}]$ de 949 µM (a), 662 µM (b), 194 µM (c), 64 µM (d), et 6 µM (e). Les dernières traces superposées sont les $\Delta[\text{Ca}_T]$ correspondantes.

Dans le muscle cardiaque, le couplage excitation-contraction nécessite l’entrée de Ca extracellulaire. En effet, des études effectuées par Fabiato (1983) sur des fibres musculaires cardiaques ont montré qu’une augmentation de la concentration de Ca myoplasmique cause la libération de Ca du RS additionnelle. Il a donc été établi que ce mécanisme, appelé LCIC, est physiologiquement important dans le cœur, et pourrait aussi être présent dans les muscles squelettiques. Cependant, contrairement au muscle cardiaque, le couplage excitation-contraction ne dépend pas de la présence de Ca extracellulaire dans les muscles squelettiques (Armstrong et al., 1972). Malgré ceci, Ford et Podolsky (1970) ont montré qu’une application de Ca sur des fibres musculaires dépourvues de sarcolemme provoque la libération additionnelle de Ca du RS. Même si ces premiers résultats suggéraient la présence de LCIC dans les muscles squelettiques, Endo (1977) conclut que LCIC dans le muscle squelettique n’était possible que sous des conditions artificielles, conclusion encore débattue de nos jours.

La LCIC est illustrée à la figure 4B montrant un graphique de la perméabilité du RS à libérer le Ca (expliqué plus bas) en fonction de la concentration du Ca dans le RS ($[\text{Ca}_{\text{RS}}]$). Le mécanisme de LCIC est à son maximum au sommet de cette courbe en forme de cloche.

L’inactivation de la libération du Ca par le Ca est un mécanisme de rétroaction négative étudié par plusieurs chercheurs dans les muscles squelettiques (Baylor et al.
1983; Schneider et Simon, 1988; Jong et al. 1995). Ce processus est très rapide, même en présence d'une grande concentration d'un tampon calcique comme l'EGTA. Selon ce mécanisme, une grande augmentation de la concentration de Ca myoplasmique induit l'inactivation des RyRs. La partie descendante à droite du sommet de la courbe en cloche de la figure 4B illustre les effets de ce mécanisme.

Suite à ces observations, il a été proposé que les mécanismes de LCIC ainsi que d'inactivation de la libération du Ca par le Ca sont tous deux omniprésents dans les muscles squelettiques.

En 1973, Schneider et Chandler ont identifié la présence d'un courant, le \(I_{cm} \) (voir figure 4C), dû au mouvement des molécules chargées dans la membrane des DHPRs (charges intramembranaires, dénotées "\(\mathcal{Q} \)"). Ces charges sont les acides aminés chargés positivement des segments S4 de la sous-unité \(\alpha_{15} \) des DHPRs. Cependant, ce courant ne doit pas être confondu avec le courant de "gates". En effet, dans le cas des du canal sodique par exemple, le mouvement des charges voltage-sensible initie un changement de conformation dans la structure du canal, permettant aux ions de passer par le pore central et les "gates" (petites barrières) de ce même canal. Ce mouvement de charges produit un petit courant mesurable qu'on appelle "courant de gates". Dans le cas des DHPRS cependant, suite à une dépolarisation, les senseurs de voltage subissent un changement de conformation (induisant le \(I_{cm} \)) mais contrairement à l'exemple précédent, le pore et les gates par lequel les ions passent ne se trouvent pas dans le même canal mais dans le canal opposé, le RyR. Il a toutefois été proposé que les DHPRs sont contrôlés par deux gates distinctes et voltage-dépendantes: une gate lente et une rapide qui doivent toutes deux bouger afin d'ouvrir le pore du canal. Plus précisément, le groupe de Nakai
(1994) a montré que le segment S3 ainsi que la boucle entre S3 et S4 du domaine I de α_{1S} sont les structures importantes dans la détermination du gating lent. Selon le modèle de Feldmeyer et al., (1992), le domaine I constitue la gate lente, et les domaines II-IV forment la gate rapide (Melzer, 1995). Une dépolarisation causerait la transition rapide de l'état 1 à l'état 2, mais l'ouverture du canal serait ralentie par la transition lente entre les états 2 et 3. L'état 4 serait l'état du canal repolarisé. Les gates rapides et lentes semblent déterminer l'ouverture du canal, mais la gate rapide seule contrôle la libération du calcium. Bien que de nombreuses études aient été menées et que plusieurs évidences supportent l'hypothèse que certaines charges intramembranaires causent la libération de Ca du RS (Pape et Carrier, 2002a), il reste encore à déterminer si la gate rapide des DHPRs des muscles squelettiques est corrélée avec la libération de Ca également. Ce faisant, le courant de gate pourrait être clairement identifié, et classé séparément du I_{cm}. Finalement, parmi les chercheurs qui ont tenté de confirmer l'existence d'un courant de gates pour les senseurs de voltage se trouve le groupe de Nakai (1996). Selon ce groupe, les RyRs augmentent le courant produit par la sous-unité α_{1S} des DHPRs, ce qui pourrait être expliqué par le courant de gates des canaux calciques de type L. Actuellement, il n'y a pas d'évidence qui le prouve et il a même été suggéré que ce signal pourrait être le courant de gates des RyRs. Des expériences électrophysiologiques et moléculaires supplémentaires sont nécessaires afin de pouvoir caractériser le courant de gates des DHPRs.

C'est en 1979 qu'Adrien et Perez ont identifié les deux composantes du I_{cm} : une composante initiale, le I_b dû au mouvement des charges Q_0, et une composante retardée dû aux charges Q_7, le I_7 ("hump component"). Des résultats suggèrent que c'est le I_7 qui
serait associé à la libération voltage-dépendante du Ca du RS. D'autres études ont montré qu'il existe des charges "Q" supplémentaires qui pourraient être dues à un courant de gates des DHPRs, mais ces charges n'ont pas pu être clairement dissociées de Q_b et Q_f moléculairement avec succès. Ainsi, bien que le Q_f n'ait pas été étudié de façon moléculaire, les résultats de Hui et Chandler (1990, 1991) montrent que le Q_f est extrêmement voltage-dépendant, tout comme les résultats de tension (Hodgkin et Horowicz, 1960) et de libération de Ca (Baylor et al., 1983; Klein et al., 1996). C'est pourquoi le I_f est parfois considéré comme étant le courant de gates associé au Q_f (car la cinétique de ce courant est sensible au voltage et au Ca).

En 1995, Jong et al. ont étudié la relation entre Q_f et la concentration de Ca dans le RS ([Ca$_{RS}$]). Ils ont observé qu'à de faibles [Ca$_{RS}$], si la variation de Ca total libéré dans le myoplasme (Δ[Ca$_T$]) augmente, l'amplitude de Q_f augmente également. Ainsi, à de petites [Ca$_{SR}$], le Ca libéré du RS peut augmenter la cinétique de Q_f, par rétroaction positive (figure 4D). Inversement, Pape et collaborateurs (1996) ont étudié la relation entre Q_f et [Ca$_{RS}$], à de grandes [Ca$_{RS}$]. Leurs observations leur ont permis de conclure que lorsque la [Ca$_{RS}$] est grande, si la Δ[Ca$_T$] augmente, alors la cinétique de Q_f diminue (figure 4E), freinant la libération de Ca additionnelle. Ce processus de rétroaction négative empêche une trop grande libération de Ca du RS.

Ces quatre mécanismes rétroactifs sont très importants car ils permettent de mieux comprendre et expliquer la régulation de la libération du Ca dans les muscles squelettiques.
1.6 - LIBÉRATION DU Ca DU RS

La libération du Ca du RS dépend de la perméabilité du RS à libérer du Ca. Ce qu'on appelle la perméabilité à la libération du Ca du RS correspond à la vitesse de libération du Ca du RS normalisée par la force motrice de la libération. Il a été suggéré que cette force motrice est proportionnelle à \([\text{Ca}_{RS}]\) et proportionnelle à \([\text{Ca}^{2+}]\) (concentration du calcium libre), mais n'est pas reliée au voltage. Suivant cette supposition, la perméabilité à la libération est une bonne estimation de la perméabilité du RS à libérer du Ca, et cela correspond au degré d'activation des RyRs (Pape et Carrier, 1998). Il est à noter que dans ce contexte, la perméabilité à la libération représente aussi la conductance unitaire moyenne des RyRs du RS et dépend de la densité des canaux présents dans la fibre musculaire ainsi que leur probabilité d'ouverture \((P_o)\). Une augmentation de la perméabilité est donc due soit à une augmentation du nombre de canaux ouverts, soit à une augmentation de leur conductance unitaire.

En réponse à une grande dépolarisation (ex.: >-57 mV), le signal de la perméabilité à la libération atteint un sommet, puis redescend au niveau de base, suivi d'un plateau (figure 5).

![Figure 5. Exemple d'un signal de perméabilité à la libération en réponse à une dépolarisation, en voltage imposé. Le signal montre un sommet, suivi d'une phase descendante et d'un plateau (Jong et al., 1995).](image-url)
Dans les citermes terminales du RS, les RyRs sont disposés de façon alternée formant ce qu'on appelle un "double array" (figure 6), où 1 RyR sur 2 est couplé à un senseur de voltage (Block et al., 1988).

Figure 6. Disposition des récepteurs dans leurs membranes respectives. Les DHPRs sont situés dans la membrane des tubules-t, et les RyRs sont situés dans la membrane du RS. Ces deux systèmes membranaires sont distancés d'environ 12 nm. Un RyR sur deux est couplé à un senseur de voltage, et forment une rangée double ("double array"), d'approximativement 60 nm d'épaisseur. La distance entre 2 RyRs est d'environ 30 nm (modifié de Block et al., 1988).

La découverte de la disposition des RyRs et des DHPRs mena plusieurs chercheurs à proposer que le sommet du signal de la perméabilité, où la LCIC est à son maximum, serait dû à l'ouverture des RyRs non-couplés à un DHPR mais activés par le Ca (Block et al., 1988; Rios et al., 1988). Le déclin du signal (après le sommet) serait causé par l'inactivation de la libération du Ca par le Ca. Et finalement la phase plateau du signal de la perméabilité refléterait l'activation des RyRs couplés à un DHPR, et ces RyRs couplés ne seraient sensibles qu'au voltage, c'est-à-dire, ni activés ni inactivés par le Ca. Afin de vérifier expérimentalement ces hypothèses, Schneider et collaborateurs
Jacquemond et al., 1991) ont introduit une grande concentration de deux tampons à haute affinité pour le Ca, soient le BAPTA ou le fura-2, dans le myoplasisme d'une fibre musculaire. Selon leurs résultats, 1-2 mM BAPTA ou 2.2-2.8 mM fura-2 a aboli le sommet du signal de la perméabilité, ce qui leur a permis de conclure que la chélation du Ca^{2+} par un tampon calcique peut éliminer le mécanisme de LCIC dans les muscles squelettiques (figure 7A).

Figure 7. Conséquence de la présence du fura-2 dans le myoplasisme d'une fibre musculaire coupée de la grenouille, sur l'amplitude et le temps de décours du signal de la perméabilité à la libération du Ca. A) Les résultats de Schneider et collaborateurs (1991) montrent que l'ajout de 2.2-2.8 mM de fura-2 réduit le sommet initial contrairement aux résultats de Jong et al. (1993), et Pape et al. (1993) qui ont observé une faible augmentation du sommet mais surtout, l'abolition de la phase plateau, avec 2-4 mM de fura-2, en B). (Modifié de la fig.2 de Sutko et Airey, 1996).
Contrairement à leurs résultats, les expériences menées par Jong *et al.* (1993) et Pape *et al.* (1993) ont montré que 2-4 mM fura-2 n’augmente pas (ou très peu) le sommet du signal de la perméabilité mais augmente la phase plateau au même niveau que le sommet (figure 7B). Ces deux résultats contradictoires montrent bien que la présence LCIC au sommet du signal de la perméabilité, ainsi qu'au sommet de la courbe en cloche (voir figure 4B) fait l’objet d’une controverse encore de nos jours.

Ainsi, les approches précédentes cherchant à étudier la LCIC consistaient à utiliser des tampons à haute affinité pour le Ca. Une autre approche consiste à diminuer [Ca$_{RS}$]. Pape et Carrier (1998) ont utilisé cette méthode afin d’évaluer si, à de faibles dépolarisations et en présence d’une grande concentration du tampon calcique EGTA (20 mM), la LCIC agit au niveau de sites de libération de Ca. Sous ces conditions expérimentales, très peu de RyRs sont activés par leurs DHPRs, et la distance entre 2 sites de libération de Ca est trop grande pour que le Ca venant d’un site de libération puisse activer des sites voisins. Il est à noter que dans ce contexte, un site de libération du Ca peut être :

- soit un seul RyR activé par son senseur de voltage
- soit un RyR activé par son DHPR et des RyRs voisins recrutés par LCIC.

Ils ont ensuite fait le graphique de la perméabilité de la libération du Ca du RS (correspondant au degré d’activation des RyRs) en fonction de [Ca$_{RS}$] (proportionnel à [Ca$^{2+}$] libre à l’embouchure d’un RyR ouvert). Ils ont obtenu une courbe en forme de cloche, avec un maximum lorsque [Ca$_{RS}$] est environ 300 μM (figure 4B). A partir de cette courbe en cloche, ils ont conclu que la LCIC augmente lorsque [Ca$_{RS}$] augmente de <100 à environ 300 μM, et que l’inactivation de la libération du Ca par le Ca explique la
 diminution de la perméabilité lorsque $[\text{Ca}_{\text{RS}}]$ augmente de >300 à environ 1000 µM. Pape et Carrier ont donc suggéré qu’à de faibles dépolarisations, ces 2 mécanismes rétroactifs agissent au niveau de RyRs de sites de libération isolés et activés par leurs senseurs de voltage (DHPRs) correspondants. Ils n’ont cependant pas pu écarter la possibilité que les RyRs non-couplés pourraient être activés par LCIC et ensuite, inactivés par le Ca.

1.7 - **BUT DU PROJET DE MAÎTRISE**

Suite aux observations de Pape et Carrier (1998), le but de la première partie de mon projet de recherche était d’évaluer si oui ou non, les RyRs non-couplés voisins peuvent être recrutés par LCIC, à de faibles dépolarisations (figure 8). En d’autres termes, si oui ou non, à de faibles dépolarisations, **un site de libération** est composé d’un RyR couplé à un DHPR et des RyRs voisins recrutés par LCIC.

1° projet : **un site de libération implique 1 ou plusieurs RyR à de faibles dépolarisations ?**

![Figure 8. But de la première partie du projet de recherche. Un site de libération du Ca peut être défini soit par un RyR isolé et activé par son senseur de voltage (gauche), soit par un RyR activé par le voltage avec des RyRs voisins recrutés par LCIC (droite). Le but de cette partie était de déterminer si à de faibles dépolarisations, le Ca relâché d’un RyR peut activer des canaux voisins (droite) ou si ce Ca peut activer le RyR dont il provient via un mécanisme d’autorégulation (gauche).](image)
Le but expérimental de ce projet de recherche était d’évaluer l’effet d’une grande concentration du tampon calcique à action rapide, le BAPTA (8 mM) introduit dans le myoplasme d’une fibre musculaire stimulée par de faibles dépolarisations, soit -60 mV, sur la perméabilité à la libération du Ca du RS à différentes [Ca_{RS}]. Grâce à son pouvoir tampon, le BAPTA peut diminuer Δ[Ca²⁺] libre à l’embouchure d’un canal ouvert. Ainsi, à -60 mV, si le Ca venant d’un RyR couplé à un DHPR peut recruter un RyR voisin non couplé (situé à 30 nm, voir figure 6) par LCIC, alors l’ajout de 8 mM BAPTA devrait diminuer le sommet de la courbe en cloche de la perméabilité en fonction de [Ca_{RS}] (voir figure 4B). Dans ce cas, un site de libération serait constitué d’un RyR activé par son DHPR et d’autres RyRs voisins recrutés par LCIC (figure 8, droite). Si cependant, la LCIC est un mécanisme d’autorégulation selon lequel le Ca libéré par un RyR activé peut lier un site de régulation sur ce même canal (à environ 5 nm de son ouverture, par exemple), et augmenter sa conductance et/ou son temps moyen d’ouverture, alors l’ajout du BAPTA ne devrait pas affecter significativement le sommet de la courbe en cloche. Dans ce cas, si on suppose que le Ca libéré lie un site très près de l’embouchure du RyR, le Ca ne serait pas bien tamponné par un tampon calcique comme le BAPTA, car la distance entre le site de libération et l’embouchure du canal serait trop petite. Ainsi, si le BAPTA n’a pas (ou peu) d’effet sur la perméabilité, cela indiquerait qu’un site de libération du Ca serait composé d’un seul RyR activé par son senseur de voltage, et auto-régulé par le Ca libéré par sa propre embouchure (figure 8, gauche). Le choix de 8 mM BAPTA a été fait à partir de l’équation de la distance que le Ca peut parcourir (λ_{Ca}) dans le myoplasme suite à sa libération, avant d’être capturé par un tampon calcique comme l’EGTA ou le BAPTA (tiré de l’équation B14 de Pape <i>et al.</i>, 1995) :
\[\lambda_{Ca} = \sqrt{D_{Ca}} / \sqrt{k_{1} * [EGTA]_R} \]

(i)

où \(D_{Ca} \) est le coefficient de diffusion, et \(k_{1} \) est une constante de vitesse. Selon cette équation (avec les valeurs appropriées pour les différents paramètres, discuté plus en détail dans la discussion du premier projet), en présence d'EGTA seulement, \(\lambda_{Ca} = 81 \) nm. Cependant, en présence d'une concentration moyenne de BAPTA dans le myoplasme, il est possible de réduire \(\lambda_{Ca} \) à 21.5 nm (après avoir introduit 8 mM BAPTA, la [BAPTA] myoplasmique moyenne était de 6.5 mM, voir résultats du premier projet). Ainsi, l'ajout de 8 mM BAPTA devrait nous permettre de discerner si oui ou non un site de libération comprend les RyRs non couplés voisins, selon que le BAPTA a un effet ou non, respectivement. Une plus grande concentration d'EGTA aurait aussi pu être utilisée. Cependant, afin d'avoir le même \(\lambda_{Ca} \) que 8 mM BAPTA (21.5 nm), il aurait fallu introduire 320 mM d'EGTA! (équation (i)). De plus, comme il sera expliqué dans les résultats, la liaison du Ca au BAPTA possède une constante de vitesse plus rapide que l'EGTA. Les résultats de ce premier projet font l'objet d'une publication dans le "Journal of Physiology" (voir ANNEXE 1).

La deuxième partie de mon projet complètent des résultats antérieurs obtenus dans le laboratoire, portant sur la LCIC à de grandes dépolarisations. Ces résultats sont également publiés dans le "Journal of Physiology" (voir ANNEXE 2). Suite aux études effectuées à de faibles dépolarisations, il semblait logique d'investiguer ce qui se passe à de grandes dépolarisations. L'hypothèse était qu'à de grandes dépolarisations, en plus d'activer une plus grande densité de sites de libérations du Ca via leurs DHPRs, de grandes dépolarisations devraient également augmenter l'activation des RyRs, en augmentant la LCIC dépendant du voltage. Afin de tester cette hypothèse, les signaux de
la perméabilité à la libération à -60 mV (faible dépolarisation) ont été comparés aux signaux obtenus à -45 mV (grande dépolarisation), en présence de 8 mM de BAPTA.

Le but expérimental de la deuxième partie de mon projet était de tester si, à de grandes dépolarisations seulement, une composante additionnelle Ca-dépendante est présente à des valeurs de [Ca\textsubscript{RS}] physiologiques et que les RyRs sont activés à leur maximum. Selon cette hypothèse, à de grandes dépolarisations, la composante Ca-dépendante additionnelle de la libération du Ca serait due à l’activation par LCIC des RyRs non couplés, en plus des RyRs activés par leurs senseurs de voltage (figure 9).

2e projet: étudier l’activation Ca2+-dépendante additionnelle présente à de grandes dépolarisations

\[-45 \text{mV} \]

Figure 9. But de la deuxième partie du projet de recherche. Un RyR sur deux est couplé à un DHPR. Le but de cette partie était d’évaluer si à de grandes dépolarisations, il existe une composante additionnelle Ca-dépendante, impliquée dans l’activation de la libération du Ca par le Ca. Cette composante additionnelle ne serait présente qu’à de grandes dépolarisations car la densité de canaux activés par le voltage est plus élevée. Comme le montre la figure, si cette hypothèse est exacte, un RyR non couplé à un DHPR pourrait être recruté par LCIC par le Ca venant de 2 RyRs voisins couplés.

Ainsi, si cette composante additionnelle implique la LCIC, l’ajout de 8 mM BAPTA
devrait diminuer les valeurs de la perméabilité à de grande dépolarisations (-45 mV) sans affecter la perméabilité à de faibles dépolarisations (-60 mV).

Les pulses à -60 mV et à -60 mV ont été choisis en se basant sur les résultats obtenus par Pape et Carrier (2002a). Leur étude visant à comparer la libération de Ca du RS avec la charge Q_r à l'état stable sur une échelle de voltages de -70 à 10 mV, le RS de leurs fibres musculaires avaient été dépouvrues en Ca ($< 250 \mu M$) afin de réduire considérablement les mécanismes rétroactifs du Ca sur sa libération ainsi que sur la cinétique de Q_r. Ainsi, leurs résultats représentent la dépendance au voltage de Q_r et la dépendance au voltage de la perméabilité à la libération du RS. Selon leur figure 5 (figure 10) où les valeurs ont été obtenues à des [Ca$_{RS}$] entre 65 et 55 \mu M, la perméabilité à la libération est très dépendante au voltage tout comme Q_r et les valeurs saturent à des valeurs au-dessus de -30 mV. On voit qu'à -60 mV il n'y a pas beaucoup de charges Q_r qui ont bougé et la perméabilité à la libération n'est pas très élevée mais suffisante pour observer la libération de Ca. À -45 mV cependant, le maximum des charges pouvant bouger est presque atteint et la perméabilité à la libération est aussi environ à son maximum. Afin de tester l'hypothèse du premier projet, il serait préférable d'avoir des conditions expérimentales où un site de libération serait isolé des influences du Ca venant d'un site voisin. Dans ce cas, le choix du pulse à -60 mV semble répondre à cette condition car la faible valeur de Q_r ainsi que la faible perméabilité à la libération indiquent que peu de DHPRs sont activés en même temps, et donc la probabilité que le Ca libéré par un site puisse affecter un site voisin est faible. Ceci devrait permettre d'évaluer l'implication du mécanisme de LCIC au niveau d'un site de libération de Ca. En ce qui concerne le deuxième projet, afin de tester s'il existe une composante additionnelle
Ca-dépendante présente à de grandes dépolarisations seulement, le pulse à -45 mV semble approprié. En effet, à -45 mV, si une grande densité de canaux sont activés, une grande concentration de Ca libéré pourrait induire une activation de libération supplémentaire en augmentant l'activation et la perméabilité des RyRs, en plus de la grande perméabilité à la libération due uniquement au voltage, observée dans l'expérience de Pape et Carrier (2002a). Si cela est le cas, le BAPTA devrait diminuer la perméabilité à la libération à -45 mV, sans avoir d'effet sur la perméabilité à -60 mV, à de grandes [CaRS].

![Graphique](image)

Figure 10. Courbes de la perméabilité à la libération et de la charge Q_7 en fonction du voltage. La courbe de gauche représente la fonction de Boltzmann pour les valeurs de Q_7 en fonction du voltage. La courbe de droite représente la fonction de Boltzmann pour les valeurs de perméabilité en fonction du voltage, à des valeurs de [CaRS] entre 55 et 65 μM. (Tiré de Pape et Carrier, 2002a)
2 - MATÉRIEL ET MÉTHODES

2.1 - CHAMBRE EXPÉRIMENTALE ET MONTAGE OPTIQUE

Les procédures expérimentales utilisées dans les deux parties de ce projet sont sensiblement pareilles, c'est-à-dire que la chambre expérimentale, le montage pour l'acquisition des mesures optiques, les solutions internes et externes ainsi que les techniques de mesure du pH et de la libération du Ca du RS sont les mêmes.

Les fibres musculaires utilisées pour les expériences provenaient de muscles à contraction rapide (soit le semi-tendineux, soit l'iléo-fibularis) de la grenouille de la famille *Rana Temporaria*. Les grenouilles étaient adaptées à environ 5 degrés Celsius et gardées à jeun. Les muscles étaient isolés à l'intérieur des 12 minutes suivant la décapitation et la dénervation de la grenouille à l'aide d'un pic introduit dans la colonne vertébrale (selon un protocole approuvé par le Comité d'éthique de l'expérimentation animale de l'Université de Sherbrooke). Ces muscles étaient ensuite gardés dans une solution de Ringers afin d'être utilisés jusqu'à 48 heures après le sacrifice. La dissection des fibres musculaires était effectuée dans un pètri d'agar contenant une solution de Relaxing, pour détendre le muscle. Une fois dans cette solution, les muscles pouvaient être utilisés pendant une période d'environ 3 heures. Un segment de fibre musculaire coupé et manipulé avec soin était ensuite placé dans une chambre expérimentale à double cloison de Vaseline, selon la technique de Hille et Campbell (1976). Ces cloisons de Vaseline servaient à isoler électriquement les compartiments latéraux du compartiment central qui contenaient respectivement les solutions interne et externe (figure 11). Les extrémités de la fibre situées dans les compartiments latéraux étaient perméabilisées par un traitement de 2 minutes avec une solution de 0.01% de saponine, un détergent introduit dans la solution interne (de Cesium-glutamate) permettant la diffusion
Figure 11. Schéma de la chambre expérimentale à double cloison de Vaseline. Selon la technique de Hille et Campbell (1976), une fibre musculaire est placée dans la chambre expérimentale où les cloisons de vaseline (V) isolent électriquement les compartiments latéraux (CL1 et CL2) du compartiment central (CC). Le voltage en V1 est maintenu au potentiel de commande par le petit courant passant par I2. Le courant est enregistré dans le compartiment central et est déterminé à partir de la chute de potentiel passant par la résistance "R". Les informations concernant la concentration de Ca intracellulaire sont obtenues par l'absorbance d'indicateurs intracellulaires. Cette absorbance est obtenue par trans-illumination de la fibre à l'aide d'un faisceau de lumière ("S" pour "spot"), au milieu de la fibre musculaire.

d'indicateur dans le myoplasme, jusqu'au milieu de la fibre. À la fin du traitement, les compartiments latéraux étaient rincés avec une solution interne sans saponine, et la solution de Relaxing du compartiment central était remplacée avec la solution externe de Tea-Gluconate contenant 1μM tetrodotoxine (TTX). L'espace entre chaque sarcomère était de 3.5 à 3.9 μm et la température de la chambre était maintenue entre 14-16 degrés Celsius, par une plaque de cuivre refroidie par un système hydraulique muni d'un condensateur et d'un thermostat. Une fois la fibre dans la chambre expérimentale, celle-ci était placée sur un montage en voltage imposé où des connections électriques avec les solutions des compartiments centraux et latéraux étaient assurées par des ponts d'agar et des électrodes en Ag/AgCl. Selon ce montage (figure 11), le courant en I2 était injecté
dans un des compartiments latéraux (C₂), et mesuré dans le compartiment central (CC) normalement maintenu au potentiel de la terre par le bain clampé. Ceci permettait d'imposer un voltage en V₁ maintenu au potentiel de repos (-90 mV), grâce à un petit courant de maintient injecté en I₂.

Les mesures optiques étaient obtenues de la façon suivante (figure 12): la chambre expérimentale était placée sur le support d’un microscope inversé (Axiovert-100TV Zeiss, Allemagne). Lorsqu’une mesure optique était commandée par informatique, l’obturateur (OBT) s’ouvrait et un faisceau de lumière blanche circulaire était dirigé vers la fibre. Cette lumière, venant de la lampe tungstène halogène (TH), était déviée par un miroir sphérique (MS), traversait une lentille (L₁) et un filtre de chaleur (FCH). Ensuite, deux miroirs plans servaient à diriger le faisceau vers la fibre musculaire (FM), en passant par le diaphragme (DGM) et par l’objectif à immersion à l’eau. Par la suite, un séparateur de faisceau (SF) et un miroir dichroïque 610 DRLP divisaient le faisceau de lumière en trois, traversant chacun un filtre spécifique (λ₁, λ₂, λ₃) pour finalement être focalisé par des lentilles (L₁, L₂, L₃) sur trois cellules photosensibles (ou PD pour photodiodes). Les filtres spécifiques étaient choisis selon leurs longueurs d’ondes pour les mesures optiques. Les cellules photosensibles étaient reliées à un amplificateur et un système de filtration (filtre Bessel) avec une fréquence de coupure de 1 kHz. A l’aide de ce système de filtration, les signaux provenant de chaque photodiode pouvaient être amplifiés avant (gain de 1, 10 ou 100) ou après (gain de (1, 2, 5, 10) le filtre. Les signaux électriques étaient ensuite convertis par une carte d’interface IT16-MAC d’un ordinateur McIntosh. L’analyse des signaux était faite par une programmation en IDL écrite dans notre laboratoire.
Figure 12. Schéma du montage optique pour l'acquisition des données. MS, miroir sphérique; TH, lampe tungstène halogène 100 W; L1, lentille convergente; FCH, filtre de chaleur; MP, miroir plan; OBT, obturateur contrôlé par ordinateur pour limiter l'exposition de la fibre à la lumière; CON, condensateur à immersion à l'eau 20X avec ouverture numérique de 0.4, servant à faire le focus de la lumière sur la fibre; FM, fibre musculaire dans la chambre expérimentale; OBJ, objectif 32X pour recueillir la lumière venant de la fibre, avec une ouverture numérique de 0.4; MP, miroir plan à l'intérieur du microscope, qui transmet 100% de la lumière de l'objectif vers la lentille 2 (L2); L2, lentille qui permet de transmettre un faisceau de lumière parallèle; SF, séparateur de faisceau de lumière ou miroir dichroïque; F1, F2 et F3, filtres avec 3 longueurs d'ondes sélectionnées pour les mesures optiques; L3, lentille pour le focus de la lumière sur une photodiode (PD); VF-4, bain clampé; FB, amplificateur ("feedback"); ITC16-MAC, ordinateur Macintosh. (Pour plus de détails concernant la provenance des appareils et accessoires, voir fig.1 de Pape et Carrier, 1998).
2.2 - COMPOSITION DES SOLUTIONS INTERNES ET EXTERNES

Solution interne sans Ca: 45mM Cs₂-glutamate, 20mM EGTA, 6.8mM MgSO₄, 5mM Cs₂-ATP, 20mM Cs₂-créatine phosphate, 5mM Cs₂-phospho(enol)pyruvate, et 5mM 3-[N-morpholino]-propanesulfonic acid (MOPS).

Solution interne avec Ca : idem, mais avec 1.76mM Ca ([Ca²⁺] libre estimée à 36 nM).

Solution interne sans Ca, avec BAPTA : 8mM 1,2-bis(2-aminophenoxy)-ethane-N,N,N',N’-tetraacetic acid (BAPTA), 33mM Cs₂-glutamate, 20mM EGTA, 6.8mM MgSO₄, 5mM Cs₂-ATP, 20mM Cs₂-créatine phosphate, 5mM Cs₂-phospho(enol)pyruvate, et 5mM 3-[N-morpholino]-propanesulfonic acid (MOPS).

Solution interne avec Ca, avec BAPTA : idem, avec 3.57mM Ca ([Ca²⁺] libre aussi estimée à 36nM).

Le pH des solutions internes était ajusté à pH = 7.0 à la température de la pièce avec du CsOH. La [Mg²⁺] libre était estimée à 1mM.

Solution externe : 110mM TEA-gluconate, 10mM MgSO₄, 10mM MOPS, et 1µM tetrodotoxine (TTX).

La solution externe était ajustée à pH = 7.1 et n’avait pas de Ca.

Ainsi, afin d’introduire 8 mM BAPTA dans le myoplasm d’une fibre musculaire par exemple, il suffisait de remplacer la solution interne initialement présente dans les compartiments latéraux, par une autre solution de même composition mais avec 8 mM BAPTA. Le même procédé s’applique pour enlever ou ajouter du Ca dans le myoplasm (par le biais de la solution interne).
2.3 - MÉTHODE DE L’EGTA ET DU ROUGE DE PHÉNOL

En 1995, W. Knox Chandler et collègues ont suggéré une nouvelle approche pour estimer la libération du Ca du RS nommée la “méthode de l’EGTA et du Rouge de Phénol”. Tout comme d’autres méthodes qui utilisent une grande concentration d’un tampon calcique, la méthode de l’EGTA et du Rouge de Phénol présente plusieurs avantages. Premièrement, le pouvoir tampon de l’EGTA diminue la [Ca²⁺], ce qui diminue l’activation mécanique responsable des “artifacts” optiques. Deuxièmement, puisque l’EGTA capture essentiellement tout le Ca qui est libéré, l’estimation de la libération du Ca est directe et indépendante des propriétés des autres tampons calciques myoplasmiques intrinsèques tels que la parvalbumine ou la troponine.

Dans toutes les expériences de ce projet de maîtrise, l’EGTA et le Rouge de Phénol avaient une concentration de 20 mM et 1 mM respectivement, dans les solutions internes.

L’EGTA non lié au Ca existe sous cinq états : EGTA⁴⁺, HEGTA³⁻, H₂EGTA²⁻, H₃EGTA⁻, H₄EGTA. Les fractions de EGTA présentes sous chaque forme [EGTA⁺⁴] / [EGTA], [HEGTA³⁻] / [EGTA], [H₂EGTA²⁻] / [EGTA], [H₃EGTA⁻] / [EGTA], [H₄EGTA] / [EGTA] ont été estimé selon l’échelle de valeurs de pH normalement obtenues au repos (± 6.7-7.1) et durant une stimulation (± 6.3) au cours des expériences, à l’aide des valeurs de pK de Martell et Smith (1974). D’après ces calculs, c’est H₂EGTA²⁻ qui était la forme prédominante de EGTA aux valeurs de pH myoplasmiques typiquement retrouvées dans nos fibres musculaires. L’EGTA lié au Ca existe aussi sous différents états: CaEGTA²⁻, CaHEGTA⁻ et CaH₂EGTA. Suivant les mêmes calculs que ceux pour trouver la forme prédominante de EGTA non-lié, c’est CaEGTA²⁻ qui était la
forme prédominante lorsque l'EGTA est lié, dans nos expériences. Ainsi, comme les 2 formes prédominantes sont divergentes, la réaction à l'équilibre entre le Ca et l'EGTA peut être écrite de la façon suivante :

\[
Ca^{2+} + H_2EGTA^{2-} \leftrightarrow CaH_2EGTA \leftrightarrow CaEGTA^{2-} + 2H^+ \tag{1}
\]

où le produit intermédiaire qui est formé est CaH₂EGTA, d'après les expériences de "stopped-flow" de Smith et al., 1984. Selon l'équation (1), deux protons se dissocient pour chaque ion Ca²⁺ libéré du RS après une stimulation, d'où une variation de pH myoplasmique. Cette variation de pH induit une variation de la couleur de l'indicateur Rouge de phénol et donc une variation de son absorbance. La vitesse de réaction entre l'EGTA et le Ca a aussi été étudiée (Harafuji et Ogawa, 1980; Smith et al. 1984) et les valeurs de \(k_1 \) (constantes de vitesse de réaction) obtenues montrent qu'elle est très rapide (1.0-3.0 \(\times \) 10⁻⁶ M⁻¹ s⁻¹). L'effet de la présence des tampons myoplasmiques (ex.: parvalbumine et troponine) sur la liaison du Ca à l'EGTA a aussi été évalué et les résultats démontrent qu'environ 96% du Ca relâché du RS lie l'EGTA.

Ainsi, avec la méthode de l'EGTA et du Rouge de phénol, si on connaît le pouvoir tampon du myoplasme (β) et la variation de pH myoplasmique (ΔpH), alors la concentration de Ca libéré dans le myoplasme (Δ[Ca¹⁺]) qui correspond à la variation de la concentration de Ca lié à l'EGTA (Δ[CaEGTA]) peut être calculée selon l'équation suivante :

\[
Δ[Ca¹⁺] = Δ[CaEGTA] = (-β/2) ΔpH \tag{2}
\]

(où \(β = 22\text{mM}/\text{unité de pH}, \) selon Pape et al. 1995)

Comme mentionné à l'équation (1), une variation de pH résulte de la liaison du Ca à l'EGTA. Donc, l'estimation du pH est très importante pour l'estimation de Δ[Ca¹⁺].
Cependant, d'autres facteurs peuvent être responsable d'une variation de pH myoplasmique, comme: la libération de protons liés aux tampons myoplasmiques, l'hydrolyse de l'ATP, la rephosphorylation de l'ADP par l'hydrolyse de la phosphocréatine, et les protons libérés par la pompe calcique du RS. Mais comme, selon Pape et al. (1990) ces réactions ne semblent pas affecter significativement les signaux de ΔpH, les deux facteurs qui doivent être considérés dans le calcul de ΔpH durant la libération de Ca du RS sont: les protons libérés par la liaison du Ca à l'EGTA, et le mouvement des protons du myoplasmme vers l'intérieur du RS pour balancer électriquement les charges des ions Ca libérés (stoechiométrie de 1 Ca\(^{2+}\) libéré: 0.2-0.3 H\(^+\) qui entrent à l'intérieur du RS).

2.4 - ESTIMATION DU pH MYOPLASMIQUE PAR ABSORBANCE DU ROUGE DE PHÉNOL

La valeur du pH myoplasmique est estimée par l'absorbance de l'indicateur Rouge de Phénol. L'absorbance à une longueur d'onde donnée (λ), est calculée selon la loi de Beer par:

\[A_{\lambda} = \varepsilon_{\lambda} C \lambda \]

où "\(\varepsilon\)" est le coefficient d'extinction; "C" est la concentration de l'indicateur; et "\(\lambda\)" est la distance parcourue par la lumière (ou le diamètre de la fibre).

Au début de chaque expérience (avant l'ajout du Rouge de Phénol dans la solution interne) le faisceau de lumière du microscope qui passe à travers le milieu de la fibre est divisé et focalisé vers les trois filtres de différentes longueur d'onde (voir λ₁, λ₂, λ₃ de la figure 11) où λ₁ = 480 (±5) nm, la longueur d'onde isosbesticque (insensible aux variations de pH du Rouge de Phénol); λ₂ = 570 (±15) nm, la longueur d'onde sensible aux variations de pH; et λ₃ = 690 (±15) nm, la longueur d'onde à laquelle le Rouge de Phénol n'absorbe pas et reflète donc les propriétés intrinsèques de la fibre. L'intensité de la lumière
incidente pour chaque \(\lambda \) \((\text{II}_{\lambda})\) est d'abord mesurée avec la fibre hors du champ, puis l'intensité de la lumière **transmise** \((\text{II}_{\lambda})\) est mesurée avec la fibre dans le champ. L'absorbance intrinsèque de la fibre est ensuite mesurée par la formule \(\log_{10} [\text{II}_{\lambda}/\text{II}_{\lambda}]\). L'indicateur est ajouté, et les mesures d'absorbances de la fibre au repos pour les trois longueurs d'ondes sont enregistrées. Ces mesures sont effectuées aux 3 minutes pendant environ une heure, correspondant au temps nécessaire à la diffusion de l'indicateur jusqu'au milieu de la fibre. Finalement, les valeur d'absorbance sont corrigées en tenant compte de l'absorbance intrinsèque de la fibre et des petites fluctuations dans l'intensité de la lumière de la lampe. L'absorbance ainsi obtenue correspond à l'absorbance reliée à l'indicateur, dénotée \(A_{\text{ind}(\lambda)}\).

Le Rouge de Phénol existe sous deux formes: protonée (dénotée "p") et non protonée (dénotée "np"), mais c'est la forme non protonée qui est prédominante au repos. Alors, une fois calculée, l'absorbance peut être utilisée pour calculer le pH **au repos** à l'aide de la relation suivante :

\[
\text{pH} = pK + \log (f/1-f)
\]
(3)

où \(pK = 7.7\) (Lisman et Strong, 1979) et où \(f\) est la fraction du Rouge de Phénol sous forme **non-protonée**, calculée comme suit :

\[
f = \frac{(r-r_{\text{min}})}{(r_{\text{max}}-r_{\text{min}})}
\]
(4)

où \(r = A_{\text{ind}(570)}/A_{\text{ind}(480)}\)

L'absorbance du Rouge de Phénol peut aussi être calculée **durant une stimulation**. Comme il a été mentionné plus haut, le Rouge de Phénol existe sous deux formes. La concentration totale de cet indicateur est donc égale à la somme de ces deux formes présentes dans le myoplasme (p+np). Ainsi, durant une stimulation, la variation
d'absorbance du Rouge de Phénol à deux temps donnés "t1" et "t2" (correspondant à la durée d'une stimulation), et à une longueur d'onde (\(\lambda \)) donnée, est calculée:

\[
\Delta A = A(t_2) - A(t_1) \quad \text{ou}
\]

\[
A(t_2) = e_{np(\lambda)} \cdot C_{np,t2} \cdot l + e_{p(\lambda)} \cdot C_{p,t2} \cdot l
\]

\[
A(t_1) = e_{np(\lambda)} \cdot C_{np,t1} \cdot l + e_{p(\lambda)} \cdot C_{p,t1} \cdot l
\]

et après soustraction, on obtient: \(\Delta A = \Delta e \cdot \Delta C \cdot l \) (loi de Beer).

Cette équation suppose que les variables \(C_{np} \) et \(C_p \) restent invariables étant donné le court lapse de temps entre t1 et t2, ne permettant pas une diffusion importante de l'indicateur. Donc la variation de pH durant une stimulation peut aussi être calculée selon la relation donnée par l'équation (3):

\[
\Delta pH = \log \left[(f_r + \Delta f) / f_r \right] - \log \left[(1 - f_r - \Delta f) / 1 - f_r \right]
\]

(5)

où \(f_r \) est obtenu au repos (voir plus haut), et où \(\Delta f = \Delta A(570)/A(480) \).

2.5 - ESTIMATION DE [Ca\(_{RS}\)] EN ABSENCE ET EN PRÉSENCE DE BAPTA

Si l'EGTA (20 mM) est le seul tampon calcique introduit dans une fibre musculaire, la concentration totale de Ca libérée du RS dans le myoplasme (\(\Delta [Ca_T] \)) peut être estimée selon l'équation (2) plus haut:

\[
\Delta [Ca_T] = \Delta [Ca\text{EGTA}] = (-\beta/2) \Delta pH
\]

Pour que cette relation soit correcte, il faut supposer que tout le Ca relâché lie l'EGTA. Cependant, dans ce projet de recherche, un autre tampon myoplasminque à haute affinité pour le Ca, le BAPTA, a également été utilisé dans certaines expériences. Ce tampon est un dérivé de l'EGTA où les liens méthylènes entre les atomes d'oxygènes et d'azotes sont remplacés par des hétérocycles benzènes (Tsien, 1980). Le BAPTA est
moins affecté par les variations de pH que l'EGTA. En effet, lors d'une stimulation, alors que 2 protons se dissocient de l'EGTA dû à la liaison du Ca, c'est 0.2 protons qui se dissocient du BAPTA. De plus, l'association et la dissociation du Ca au BAPTA possèdent une cinétique plus rapide celle avec l'EGTA. Alors, en présence du BAPTA, la relation:

$$\Delta[\text{CaEGTA}] = (-\beta/2) \Delta pH$$
est encore valide, sauf que dans ce cas, $$\Delta[\text{Ca}_T]$$ est approximativement égal à :

$$\Delta[\text{Ca}_T] = \Delta[\text{CaEGTA}] + \Delta[\text{CaBAPTA}]$$ \hspace{1cm} (6)
et le contenu en Ca du RS au repos, $$[\text{CaSR}]_R$$, est obtenu par :

$$[\text{CaSR}]_R = \Delta[\text{CaEGTA}]_{\text{MAX}} + \Delta[\text{CaBAPTA}]_{\text{MAX}}$$ \hspace{1cm} (7)
tandis que le contenu en Ca du RS durant une stimulation, $$[\text{CaSR}]$$, est obtenu par :

$$[\text{CaSR}] = [\text{CaSR}]_R - \Delta[\text{Ca}_T]$$ \hspace{1cm} (7a)

Ici, $$\Delta[\text{CaEGTA}]_{\text{MAX}}$$ correspond à la concentration maximale de Ca lié à l'EGTA en réponse à une stimulation capable de relâcher le maximum du contenu en Ca du RS. $$\Delta[\text{CaBAPTA}]_{\text{MAX}}$$ correspond à la concentration de Ca lié au BAPTA correspondante.

2.6 - ESTIMATION DE $$\Delta[\text{CaBAPTA}]_{\text{MAX}}$$

C'est à partir des équations à l'équilibre suivantes que $$\Delta[\text{CaBAPTA}]_{\text{MAX}}$$ a été estimé :

$$[\text{Ca}^{2+}] = K_{\text{Dapp-EGTA}} \frac{[\text{CaEGTA}]_{\text{MAX}}}{[\text{EGTA}_T]-[\text{CaEGTA}]} = K_{\text{Dapp-BAPTA}} \frac{[\text{CaBAPTA}]_{\text{MAX}}}{[\text{BAPTA}_T]-[\text{CaBAPTA}]}$$ \hspace{1cm} (8)
où $$K_{\text{Dapp}} = K_D (1 + 10^{pK_1 - pH} + 10^{pK_1 + pK_2 - 2pH})$$ \hspace{1cm} (9)

Mais afin d'obtenir $$\Delta[\text{CaBAPTA}]_{\text{MAX}}$$, il fallait d'abord la valeur de $$[\text{Ca}^{2+}]_R$$ ("R"
pour "repos"). Et en connaissant la valeur de $\Delta[\text{CaEGTA}]_{\text{MAX}}$, il est possible de calculer $[\text{CaSR}]_R$ à l’aide de l’équation (7) plus haut.

Pour les expériences de la première partie du projet de recherche (dans lesquelles le Ca a été enlevé de la solution interne au cours de l’expérience, pour faire varier $[\text{CaSR}]$), $\Delta[\text{CaBAPTA}]_{\text{MAX}}$ a été obtenu à partir de la procédure itérative suivante:

1) Dans l’équation (8), la valeur de $[\text{Ca}^{2+}]$ est égale à 0 pour la première itération (ou pour la valeur obtenue à l’étape 7) ci-dessous).

2) Comme les valeurs de $K_{\text{app} \text{EGTA}}$ et de $K_{\text{app} \text{BAPTA}}$ peuvent être calculées avec l’équation (9), et que $[\text{EGTA}_R]$ et $[\text{BAPTA}_R]$ étaient respectivement 20 mM et 8 mM, on peut obtenir $[\text{CaEGTA}]_R$ et $[\text{CaBAPTA}]_R$ en utilisant l’équation (8).

3) Après un pulse dépolarisant, la valeur maximale du signal de libération de calcium donne $\Delta[\text{CaEGTA}]_{\text{MAX}}$. Et $\Delta[\text{CaEGTA}]_{\text{MAX}} = [\text{CaEGTA}] - [\text{CaEGTA}]_R$.

4) Ainsi, on obtient : $[\text{CaEGTA}] = \Delta[\text{CaEGTA}]_{\text{MAX}} + [\text{CaEGTA}]_R$.

5) $[\text{CaBAPTA}]$ est aussi calculée à partir de cette valeur et de l’équation (8).

6) Et $\Delta[\text{CaBAPTA}]_{\text{MAX}} = [\text{CaBAPTA}] - [\text{CaBAPTA}]_R$.

7) Finalement on peut calculer $[\text{CaSR}]_R = \Delta[\text{CaEGTA}]_{\text{MAX}} + \Delta[\text{CaBAPTA}]_{\text{MAX}}$, et si une autre itération est nécessaire, la valeur de $[\text{Ca}^{2+}]$ devient égale à cette valeur de $[\text{CaSR}]_R$ dans l’équation (8), et les étapes 1-6 sont répétées.

En général, 2-3 itérations étaient requises pour l’obtention de $[\text{CaSR}]_R$.

Pour les expériences de la deuxième partie du projet de recherche, la procédure pour obtenir $\Delta[\text{CaBAPTA}]_{\text{MAX}}$ à partir de l’équation (8) était différente car le Ca n’a pas été enlevé de la solution interne durant ces expériences. Ainsi, la $[\text{Ca}^{2+}]_R$ dans ces expériences a été calculée avec l’équation (8), en supposant que la $[\text{CaEGTA}]_R$ au milieu...
de la fibre était égale à la concentration de la solution dans les compartiments latéraux.

2.7 - ESTIMATION DE LA PERMÉABILITÉ À LA LIBÉRATION, EN PRÉSENCE DE EGTA ET BAPTA.

Encore une fois, le but expérimental des 2 projets de recherche était d'évaluer l'effet du BAPTA sur la perméabilité à la libération de Ca du RS vs. [CaRS] à de faibles dépolarisations (-60 mV) et à de grandes dépolarisations (-45mV), respectivement. Selon Pape et Carrier 1998, la perméabilité à la libération du Ca du RS est égale à:

\[
100 \times \frac{d[Ca_T]/dt}{[Ca_{SR}] - \Delta[Ca_T]} \tag{10}
\]

où d[CaT]/dt est la vitesse de libération du Ca du RS, et [Ca_{SR}] - \Delta[Ca_T] est le contenu en Ca du RS durant une stimulation. En absence de BAPTA, il est possible de calculer le d[CaT]/dt et par conséquent, d'obtenir la valeur de la perméabilité. En effet, suite à une faible dépolarisation, une petite quantité de Ca est libérée, et la valeur de la perméabilité à la libération peut être obtenue en calculant l'intégrale (ou l'aire sous la courbe) du signal de la libération du Ca (Pape et Carrier, 1998). Le \(f_{Ca} \) est la fraction du contenu en Ca du RS libérée par un pulse dépolarisant. Comme mentionné plus haut, suite à une faible dépolarisation, le RS ne libère qu'une petite partie de son contenu. Dans ce cas, comme le [CaRS] ne varie pas (ou très peu), alors le \(f_{Ca} \) est environ égal à l'intégrale de la perméabilité. Le \(f_{Ca} \) est donc une bonne estimation de la perméabilité à la libération ou libération moyenne du RS suite à une dépolarisation, en présence ou en absence du BAPTA.

Cependant, en présence de BAPTA, il n'est pas possible d'obtenir d[CaT]/dt directement car le BAPTA ne libère pas une quantité suffisante de protons à la suite de la
liaison au Ca pour produire un signal (0.2 protons pour le BAPTA vs. 2 protons pour l’EGTA). Une alternative pour évaluer la perméabilité en présence du BAPTA est de calculer le f_{Ca} (la fraction de Ca libérée par un pulse dépolarisant) :

$$f_{Ca} = \frac{\Delta[Ca_{T}]^{\text{max}}}{[Ca_{RS}]}$$

Le $\Delta[Ca_{T}]$ est la quantité de Ca libéré par un pulse et $[Ca_{RS}]$ est le contenu en Ca du RS durant une stimulation.

En présence du BAPTA, l’équation (11) devient :

$$f_{Ca} = \frac{\Delta[Ca_{EGTA}] + \Delta[Ca_{BAPTA}] + \Delta[Ca^{2+}]}{\Delta[Ca_{EGTA}]^{\text{max}} + \Delta[Ca_{BAPTA}]^{\text{max}}}$$

En fait, $\Delta[Ca_{T}] = \Delta[Ca_{EGTA}] + \Delta[Ca_{BAPTA}] + \Delta[Ca^{2+}]$, mais le dernier terme est négligeable car $[Ca^{2+}]$ libre est inférieur aux K_{D} de BAPTA et de EGTA, alors l’équation devient :

$$f_{Ca} = \frac{\Delta[Ca_{T}]_{\text{après}} - \Delta[Ca_{T}]_{\text{avant}}}{[Ca_{RS}]_{R} - \Delta[Ca_{T}]_{\text{avant}}}$$

où les indices "avant" et "après" signifient avant et après le pulse dépolarisant, respectivement. Le numérateur correspond au Ca total libéré par le pulse et le dénominateur correspond à la concentration de Ca présente dans le RS. Le f_{Ca} est donc un paramètre relié au degré d’activation des RyR durant un pulse. Enfin, comme le terme $\Delta[Ca_{BAPTA}]$ n’est pas mesuré, en présence de BAPTA le f_{Ca} est estimé comme suit :

$$f_{Ca} \approx \frac{\Delta[Ca_{EGTA}]_{\text{après}} - \Delta[Ca_{EGTA}]_{\text{avant}}}{\Delta[Ca_{EGTA}]^{\text{max}} - \Delta[Ca_{EGTA}]_{\text{avant}}}$$

ce qui correspond à la même relation utilisée pour estimer le f_{Ca} en absence de BAPTA (voir équation (13)). Finalement, si on utilise la procédure pour estimer $\Delta[Ca_{BAPTA}]$ plus haut (voir équation (8)) afin d’obtenir $\Delta[Ca_{T}]$ (avec l’équation (6)), les valeurs de
f_{Ca} obtenues à partir des équations (13) et (14) sont sensiblement les mêmes. Ceci confirme donc que l'équation (14) représente une bonne estimation de f_{Ca} lorsque BAPTA est présent, et c'est donc cette équation qui a été utilisée pour exprimer f_{Ca} en fonction de [Ca$_{RS}$], en présence et en absence de BAPTA.

2.8 - LIBÉRATION DE PROTONS LORS DE LA LIAISON DU Ca AU BAPTA.

Comme mentionné plus haut, la liaison d'un ion Ca$^{2+}$ au BAPTA libère 0.2 protons. Ceci implique qu'une petite partie du signal de ΔpH est due à cette réaction. Afin d'évaluer l'erreur dans l'estimation du f_{Ca} reliée à cette réaction, la première étape était d'estimer [Ca$^{2+}$] avant et après le pulse et aussi, après que tout le Ca ait été libéré, en utilisant l'équation (8). Le terme $K_{D_{pp,EGTA}}$ de l'équation (8) est sensible aux variations de pH et a donc aussi été calculé avant et après le pulse ainsi qu'après que tout le Ca ait été relâché, et ce, à partir de toutes les valeurs de pH, c'est-à-dire à partir de pH + ΔpH. Les valeurs de [Ca$^{2+}$], Δ[CaEGTA] et Δ[CaEGTA]$_{MAX}$ étant obtenues, les valeurs de Δ[CaBAPTA] et Δ[CaBAPTA]$_{MAX}$ ont pu être calculées afin d'estimer le f_{Ca} à l'aide de l'équation (12). L'erreur dans l'estimation du f_{Ca} relié à cette réaction a ensuite été calculée en soustrayant cette valeur calculée de f_{Ca}, du f_{Ca} obtenu à partir du signal de Δ[CaEGTA] seulement (voir équation (14)). La deuxième étape pour l'évaluation de cette erreur était de soustraire le signal de ΔpH dû à la dissociation des protons du BAPTA (ΔpH$_{BAPTA} = -0.2 \ast \Delta$(CaBAPTA)/$\beta$) du signal de ΔpH mesuré (ΔpH$_{mesure}$). Le ΔpH résultant correspondait au ΔpH dû à libération des protons de EGTA seulement (ΔpH$_{EGTA}$). Ce ΔpH$_{EGTA}$ a ensuite été utilisé pour calculer le Δ[CaEGTA] selon l'équation (2), et une fois cette valeur de Δ[CaEGTA] corrigée en tenant compte du pH
dans l’équation (8), une autre valeur de [Ca$^{2+}$] était obtenue. Ainsi, plusieurs itérations pour l’obtention d’une valeur de Δ[CaBAPTA] avec des estimations de Δ[CaEGTA] corrigées ont été effectuées. Finalement, les valeurs de $K_{d_{EGTA}}$ basées sur les valeurs de ΔpH$_{mesuré}$ (et non sur le ΔpH$_{EGTA}$) ont été obtenues, car l’important était la valeur et non la source de ΔpH. Et les valeurs de Δ[CaBAPTA] et de Δ[CaEGTA] ont été utilisées pour calculer l’erreur en faisant la différence entre les valeurs de f_{Ca} obtenues avec les équations (12) et (14). Cette erreur (seulement présente dans les expériences avec BAPTA) a donné en moyenne une surestimation du f_{Ca} actuel d’environ 2.4%. Cette petite surestimation s’explique par le fait que le BAPTA est moins sensible aux variations de pH comparativement à l’EGTA, mais aussi parce que le numérateur et le dénominateur de l’équation (12) sont diminués par sensiblement le même facteur. Enfin, cette erreur, et d’autres erreurs concernant l’estimation du f_{Ca} en présence du BAPTA sont expliquées plus en détail dans l’article de Fénelon et Pape (2002; ANNEXE 1). Mais la conclusion générale est que malgré la présence de ces erreurs dans l’estimation du f_{Ca} des expériences avec le BAPTA, le f_{Ca} obtenu devrait être une bonne estimation du f_{Ca} actuel.

2.9 - MESURE DES PARAMÈTRES ÉLECTRIQUES

Afin d’annuler toute différence de potentiel possible entre les électrodes, un pont d’agar de 3 mM KCl était placé entre le V_1 (figure 11) et son électrode associée dans le compartiment central (Irving et al. 1987). Au début et à la fin de chaque expérience, la différence de potentiel était mesurée, et la différence entre ces deux mesures était, en général, inférieure à 2 mV.
La quantité de charges ayant bougé durant un pulse \(Q_{\text{cm}} \) a été mesurée en faisant l’intégrale du courant "OFF" du mouvement de charges intramembranaires. Ce signal ayant lui-même été obtenu en soustrayant les petites composantes ioniques des signaux \(I_{\text{test}} - I_{\text{contrôle}} \) (Hui et Chandler, 1990; Jong et al., 1995). Les paramètres tels que: le courant de maintien ("holding potentiel", hP), la capacitance apparente de la fibre (\(C_{\text{app}} \)), la capacitance de surface et du système-t par unité de longueur de la fibre (\(c_{\text{m}} \)), et la résistance interne longitudinale par unité de longueur de la fibre (\(r_{\text{l}} \)), ont aussi été monitorés durant les expériences (voir Chandler et Hui, 1990 pour plus de détails concernant ces paramètres). Ces paramètres sont en général restés constants tout au long des expériences.

2.10 - STATISTIQUES

Les résultats ont été considérés comme étant significativement différents si le paramètre “p” du Student’s two-tailed t-test était inférieur à 0.05.
3 - RÉSULTATS

Premier projet

3.1 - INTRODUCTION

À de faibles dépolarisations, la libération de Ca du RS devrait être la somme du Ca libéré par plusieurs sites de libération de Ca isolés. Chaque site devrait contenir au moins un RyR activé par son senseur de voltage. Le but du premier projet de mon travail de maîtrise était d'évaluer si un site pouvait aussi inclure des RyRs voisins activés par LCIC. Pour se faire, l'effet de 8 mM BAPTA sur la relation du f_{Ca} en fonction de [Ca$_{RS}$] a été étudié.

3.2 - PROTOCOLE DE STIMULATION ET SIGNAL DE $\Delta[CaEGTA]$

La première trace de la figure 13A illustre le protocole de stimulation utilisé dans toutes les expériences de cette étude. Il consistait en des pulses dépolarisants de -70, -65, -60, -45, -20 mV. Ces pulses avaient des durées de 400, 400, 400, 800, 400 ou 1200 ms respectivement, séparés par des pulses repolarisants de 600 ms à -90 mV. Les trois premiers pulses servaient à suivre la linéarité entre le voltage et la libération de Ca, à de faibles dépolarisations. Cette linéarité est restée constante durant et pour toutes les expériences de cette étude. Les deux derniers pulses à -45 et -20 mV servaient non seulement à suivre les mouvements de charges intramembraînaires, mais aussi à vider le RS de son contenu en Ca. La paire de traces suivantes montre les signaux de $\Delta[CaEGTA]$ correspondants. Le plus grand signal de $\Delta[CaEGTA]$ (correspondant au protocole avec le pulse à -20 mV le plus court) a été obtenu en absence de 8 mM BAPTA. Sans BAPTA, le maximum de cette trace est une bonne estimation du contenu en Ca du RS avant la stimulation, dénoté [Ca$_{RS}$]$_{R}$ ("R" pour "repos").
Figure 13. Effet du BAPTA sur $\Delta [\text{CaEGTA}]$ et $\Delta [\text{CaEGTA}]_{\text{MAX}}$ en fonction du temps durant l'expérience. A) La première trace montre le protocole de stimulation. En ordre, des pulses de -70, -65, -60, -45 et -20 mV ayant des durées de 400, 400, 400, 800 et 400 ou 1200 ms, respectivement. Le pulse de -90 mV après le pulse de -60 mV avait une durée de 600 ms. Les traces suivantes sont les traces de $\Delta [\text{CaEGTA}]$ correspondantes (le signal le plus haut correspondant au pulse avec le pulse de -20 mV le plus court). B) Graphique de $\Delta [\text{CaEGTA}]_{\text{MAX}}$ en fonction du temps durant l'expérience après le traitement à la saponine qui perméabilise les extrémités de la fibre dans les compartiments latéraux. Le Rouge de Phénol a été introduit dans le myoplasme 12 minutes après le traitement. Chaque symbole représente une stimulation durant l'expérience, effectuée à 5 minutes d'intervalle. Les carrés blancs représentent des stimulations effectuées en présence de la solution interne initiale contenant du Ca mais pas de BAPTA. La solution a ensuite été remplacée après 84 minutes par une solution avec Ca et 8 mM BAPTA, représenté par les carrés noirs. Finalement, après 145 minutes, le Ca a été enlevé de la solution interne, comme le montrent les cercles noirs (avec le BAPTA toujours présent). C) Le pulse à -60 mV et le signal de $\Delta [\text{CaEGTA}]$ du panneau A) représentés sur une plus grande échelle.

Le signal de $\Delta [\text{CaEGTA}]$ le plus petit correspond au signal obtenu 77 minutes après l'ajout de 8 mM BAPTA. En présence de BAPTA, le maximum de cette trace est $\Delta [\text{CaEGTA}]_{\text{MAX}}$, car cela représente la quantité maximale de Ca lié à l'EGTA. Le pulse qui nous intéresse est celui à -60 mV. Dans la moitié des expériences, le pulse à -60 mV était en tête, tandis que dans l'autre moitié des expériences, ce pulse était le troisième.
Cependant, l’ordre des pulses n’a pas influencé les résultats.

La figure 13B montre un graphique de $\Delta[\text{CaEGTA}]_{\text{MAX}}$ en fonction du temps de l’expérience. Les carrés blancs représentent les stimulations en condition contrôle, c’est-à-dire, en présence d’EGTA seulement dans la solution interne. Les carrés noirs représentent les stimulations en présence de 8 mM BAPTA et les cercles noirs représentent des stimulations avec BAPTA, mais en absence de Ca. Les petits segments verticaux au-dessus du carré blanc et du cercle noir marquent les stimulations à partir desquelles les traces du panneau précédent ont été obtenues. Les stimulations étaient effectuées toutes les 5 minutes. Le graphique montre une diminution progressive de $\Delta[\text{CaEGTA}]_{\text{MAX}}$ avant l’ajout de BAPTA. Cette diminution progressive était plus grande que celle typiquement observée dans des expériences similaires (Pape et Carrier, 1998) effectuées auparavant dans le laboratoire, effet attribué à une valeur de pH au repos plus élevée d’environ 0.1-0.2 unités de pH au site d’enregistrement optique. Une valeur de pH plus élevée réduit la $[\text{Ca}^{2+}]$ libre myoplasmique au repos établie par l’équilibre pH-sensible entre le Ca et l’EGTA (Pape et al. 1995). Par contre, cette diminution progressive de $\Delta[\text{CaEGTA}]_{\text{MAX}}$ était avantageuse car le but de ces expériences était de faire varier $[\text{Ca}]_{\text{RS}}$ et ce qui correspond à varier $[\text{Ca}^{2+}]$ libre à l’embouchure d’un canal ouvert. Le graphique montre aussi que l’ajout de BAPTA a augmenté la vitesse de la diminution progressive de $\Delta[\text{CaEGTA}]_{\text{MAX}}$, ce qui concorde bien avec le pouvoir tampon de ce chélateur qui lie rapidement le Ca libéré. Une fois le Ca enlevé de la solution interne, $\Delta[\text{CaEGTA}]_{\text{MAX}}$ tendait vers zéro.

La figure 13C, montre à plus grande échelle, les mêmes traces de $\Delta[\text{CaEGTA}]$ en fonction du temps pour le pulse à -60 mV. La plus grande trace est celle de $\Delta[\text{CaEGTA}]$
avant l’ajout de BAPTA. L’apparence en forme de rampe de ce signal était due à l’activation rapide des RyRs après le début du pulse, et la fin rapide de la libération de Ca à la fin du pulse. Le plus petit signal est celui obtenu en présence de BAPTA. La forme de ce signal ne correspondait plus à celle en forme de rampe, mais indiquait bien que le BAPTA avait diffusé dans la fibre. En effet, lorsque le Ca est libéré, le BAPTA tamponne presque tout le Ca très rapidement, due à la rapidité de la réaction entre le Ca et le BAPTA. À la fin du pulse, le signal de Δ[CaEGTA] a lentement continué à augmenter et de façon mono-exponentielle, avec une constante de temps (286 ms) correspondant à la redistribution du Ca allant du BAPTA à l’EGTA. La fin de cette redistribution correspondait au moment où un équilibre entre le BAPTA et l’EGTA avec le Ca dans le myoplasme était atteint. Comme mentionné plus haut, le but de cette partie de mon projet de recherche était d’estimer le f_{Ca}, c’est-à-dire, la fraction du contenu en Ca du RS libéré par le pulse à -60 mV. Le f_{Ca} a été estimé à l’aide des signaux de Δ[CaEGTA] et de l’équation (14). Pour cette estimation, les valeurs de Δ[CaEGTA] choisies (c’est-à-dire Δ[CaEGTA]avant, Δ[CaEGTA]après et Δ[CaEGTA]MAX) étaient celles à l’équilibre. Par exemple, le Δ[CaEGTA]après a été estimé durant l’intervalle des points entre 500 et 600 ms après la fin de la stimulation.

3.3 - f_{Ca} vs. $[Ca_{RS}]$ À -60 mV EN CONDITION CONTRÔLE

La figure 14A montre un pulse à -60 mV et deux signaux de Δ[CaEGTA] d’une expérience contrôle. Les expériences en condition contrôle ont été effectuées de la même façon que celles avec BAPTA, en faisant un rinçage avec la solution initiale au moment où le BAPTA aurait autrement été introduit.
Figure 14. Fin de la libération du Ca à de petites [Ca_{RS}], et f_{Ca} en fonction de [Ca_{RS}]. A) La première trace est le pulse dépolarisant à -60 mV d'une expérience en condition contrôle. Les traces identifiées "a" et "b" sont les signaux de Δ[CaEGTA] correspondants obtenus lorsque la [Ca_{RS}] était respectivement de 409 et 82 μM. B) Graphique de f_{Ca} à -60 mV en fonction de [Ca_{RS}], pour la même expérience qu'en A). Les courbes en cloche avec les symboles de "+" et de carrés/cercles blancs ont été obtenues à partir des valeurs de Δ[CaEGTA]_{appr} déterminées respectivement juste après la fin du pulse à -60 mV (petits segments inférieurs sous les traces du panneau A) et 900-1000 ms après le pulse (segments supérieurs). Les carrés représentent des stimulations en présence de Ca et les cercles blancs, en absence de Ca dans la solution interne. Les stimulations identifiées "a" et "b" correspondent aux traces en A. L'échelle des valeurs au-dessus des courbes délimite les valeurs de [Ca_{RS}] entre 300 et 500 μM. C) Graphique de f_{Ca} à -60 mV en fonction de [CaEGTA]_{MAX} pour l'expérience en présence de BAPTA de la figure 13. Les symboles noirs et blancs représentent respectivement des conditions expérimentales avec et sans BAPTA, et les carrés et cercles, avec et sans Ca respectivement dans la solution interne. Les deux traits verticaux marquent les stimulations illustrées dans les panneaux A et C de la figure 13. Les échelles de valeurs au-dessus des courbes délimitent les valeurs de [Ca_{RS}] entre 300 et 500 μM.
Dans cette expérience, un signal de Δ[CaEGTA] correspond au Ca libéré par un pulse dans le myoplasmé (Δ[CaT]), et le maximum de ce signal correspond au contenu en Ca du RS au repos ([CaRS]R). Afin de calculer le f_{Ca} avec l’équation (14), le Δ[CaEGTA] après a été déterminé à partir des 5 milliseconds après la fin du pulse à -60 mV, indiqué par le petit segment horizontal sous les traces de Δ[CaEGTA] de ce panneau. Cette approche a été utilisée afin de comparer ces résultats avec ceux de la perméabilité à la libération en fonction de [CaRS] de Pape et Carrier (1998), comme ces deux approches reflètent la libération du Ca durant le pulse. La courbe en forme de cloche représentée par les symboles "+ " de la figure 14B résulte de cette approche. Comme mentionné plus haut, dans cette expérience, le Δ[CaEGTA]_{MAX} correspond à [CaRS] avant le pulse à -60 mV, premièrement parce que le BAPTA n’a jamais été introduit, et deuxièmement, comme le premier pulse était celui à -60 mV, le Δ[CaEGTA]_{avant} était égal à zéro. Les principales caractéristiques de cette courbe sont :

1) une augmentation du f_{Ca} lorsque la [CaRS] augmente de <100 à environ 300 μM, 2) un sommet lorsque la [CaRS] est d’environ 300 μM, 3) une grande diminution du f_{Ca} lorsque la [CaRS] augmente jusqu’à environ 1 300 μM, et 4) une "région plateau" du f_{Ca} pour des valeurs de [CaRS] entre 1 300 et 2 500 μM. Ces caractéristiques et leurs proportions relatives sont similaires à celles du graphique de la perméabilité à la libération en fonction de [CaRS] de Pape et Carrier (1998). Selon eux, la montée initiale du sommet avec l’augmentation de [CaRS] est due à LCIC, et la descente subséquente est due à la l’inactivation de la libération du Ca par le Ca.

Afin de pouvoir comparer les expérience en condition contrôle avec celles en présence de BAPTA, la Δ[CaEGTA]_{après} a également été déterminée à partir des 100
dernières millisecondes de la période de repolarisation à -90 mV suivant le pulse à -60 mV. Les petits segments au-dessus de la fin des signaux de Δ[CaT] de la figure 14A indiquent les valeurs ainsi obtenues pour la même expérience (le segment est plus difficile à discerner pour la trace a). La courbe en cloche du \(f_{Ca} \) représentée avec les carrés et les cercles blancs de la figure en B montre les résultats obtenus selon cette deuxième approche pour toutes les stimulations. Cette \(2^e \) courbe en cloche est similaire à la précédente sauf que les valeurs de \(f_{Ca} \) pour les petites [CaRS] de cette courbe n'extrapolent pas à zéro. Ceci peut être expliqué en comparant les signaux de Δ[CaT] du panneau A pour le pulse à -60 mV. La trace a) correspond à une stimulation pour laquelle le \(f_{Ca} \) en fonction de[CaRS] est près du maximum de la courbe en cloche, comme l'indique le point "a" du panneau B). A la fin du pulse à -60 mV, une toute petite quantité de Ca a été libérée durant la repolarisation à -90 mV comme l'indique le tournant abrupte, suivi d'un plateau, typiquement observé dans les expériences en condition contrôle lorsque la [CaRS] est près du sommet de la relation du \(f_{Ca} \) vs. [CaRS]. Cependant, pour les stimulations à des [CaRS] <300 μM, une grande quantité de Ca a été relâchée même après la fin du pulse à -60 mV, comme le montre la trace b) du panneau A. En effet, le signal de Δ[CaEGTA] de la trace b) continue à augmenter durant la période de repolarisation à -90 mV. Mais comme le but de cette première partie du projet de recherche était d'évaluer les effets du BAPTA sur le \(f_{Ca} \) lorsque [CaRS] était entre 300 et 500 μM, c'est-à-dire au sommet de la courbe en cloche, cette contribution de la libération de Ca après le pulse (environ 10%) n'était pas considérable dans cette échelle de valeurs pour les expériences en condition contrôle ainsi que dans les expériences avec BAPTA. Ayant évalué le \(f_{Ca} \) en fonction de [CaRS] en condition contrôle, la section suivante portera sur le \(f_{Ca} \) en
présence du BAPTA.

3.4 - f_{Ca} vs. $\Delta[Ca\text{EGTA}]_{MAX}$ À -60 mV EN PRÉSENCE DE 8 mM BAPTA

La figure 14C représente un graphique de f_{Ca} en fonction de $\Delta[Ca\text{EGTA}]_{MAX}$ à -60 mV, pour toutes les stimulations de l'expérience avec BAPTA de la figure précédente. Il faut se rappeler que le but de ces expériences était d’évaluer les effets du BAPTA à -60 mV sur la courbe en cloche du f_{Ca} en fonction de $[Ca_{RS}]$. Cependant, en présence du BAPTA, les signaux calciques obtenus sont des signaux de $\Delta[Ca\text{EGTA}]_{MAX}$ et non $[Ca_{RS}]_R$. Les petites lignes verticales indiquent les stimulations à partir desquelles les signaux des panneaux A et C de la figure 13 ont été obtenus. La forme de la courbe en cloche de ce panneau est similaire à celle obtenue en B en condition contrôle selon les mêmes critères (courbe avec carrés et cercles blancs du panneau B), avec un sommet à de petites valeurs de $\Delta[Ca\text{EGTA}]_{MAX}$. Encore une fois, sous ces conditions expérimentales (avec BAPTA), les valeurs en abscisse représentent celles de $\Delta[Ca\text{EGTA}]_{MAX}$ et non celles de $[Ca_{RS}]_R$ comme en condition contrôle (panneau B). Ainsi, afin de comparer l’effet du BAPTA sur la relation entre le f_{Ca} et $[Ca_{RS}]$, il fallait estimer la $[Ca_{RS}]_R$ en présence du BAPTA d’abord, en utilisant la méthode énoncée aux pages 40 et 41 et ensuite, en tenant compte du pH myoplasmique et de la constante de diffusion du BAPTA (D_{BAPTA}). Les deux sections suivantes porteront sur ces deux dernières conditions, nécessaires à l’évaluation de $[Ca_{RS}]$.

3.5 - L’ESTIMATION DE $[Ca_{RS}]$ DÉPEND DU pH

Ce sont les relations à l’équilibre du Ca avec l’EGTA et le BAPTA qui ont été utilisées pour estimer $[Ca_{RS}]$. Ces deux relations sont pH-dépendantes à cause de la
sensibilité au pH de leurs K_Ds. Bien que le Rouge de Phénol monitore bien les variations de pH (ΔpH), les valeurs de pH absolues obtenues sont trop acides de 0.1-0.4 unités, dues à une variation du pK du Rouge de Phénol dans le myoplasme (Pape, 1990). Afin d'évaluer cette incertitude du pH, l'estimation de $\text{[Ca}_{\text{RS}}\text{]}$ a été effectuée avec les valeurs de pH enregistrées avec le Rouge de Phénol, ainsi qu'avec 0.2 unités de pH ajoutées à ces valeurs. L'estimation de $\text{[Ca}_{\text{RS}}\text{]}$ dépend du temps après l'addition du BAPTA dans la solution interne mais aussi de [BAPTAγ] au site optique d'enregistrement, estimée à l'aide de l'équation de diffusion (p.47 de Maylie et al., 1987), en supposant que le BAPTA n'est ni lié à des sites myoplasmiques, ni séquestré:

$$
\frac{C}{C_1} = 1 - \frac{4}{\pi} \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} \exp \left[-\frac{D(2n+1)^2 \pi^2 t}{4(R+1)L^2} \right]
$$

où C et C_1 sont les concentrations totales de l'indicateur au centre de la fibre au temps $t = 0$ et $t = \infty$, respectivement; D est la "vraie" constante de diffusion de l'indicateur; R est le ratio de la concentration d'indicateur lié sur la concentration d'indicateur libre; et L est la distance parcourue par l'indicateur, lors de sa diffusion.

3.6 - L'ESTIMATION DE $\text{[Ca}_{\text{RS}}\text{]}$ DÉPEND DU D_{BAPTA}

L'estimation de la [BAPTAγ] (et donc de $\text{[Ca}_{\text{RS}}\text{]}_R$, voir équation (7)) au site d'enregistrement dépend aussi de la constante de diffusion du BAPTA (D_{BAPTA}) qui a un poids moléculaire de 472. Les valeurs $0.6 \times 10^{-6} \text{ cm}^2 \text{ s}^{-1}$ et $1.2 \times 10^{-6} \text{ cm}^2 \text{ s}^{-1}$ ont été choisies comme étant les limites inférieures et supérieures des valeurs possibles pour D_{BAPTA}, respectivement. La plus grande valeur a été sélectionnée en se basant sur la constante de diffusion de l'indicateur purpureate-3,3' diacetic acid (PDAA, poids moléculaire = 380)
égalé à 1.31×10^{-6} cm2 s$^{-1}$ dans les fibres musculaires de Hirota (1989), et aussi sur la constante de diffusion de l'ATP (poids moléculaire = 507) égalé à 1.2×10^{-6} cm2 s$^{-1}$ (Kushnerick et Podolsky, 1969). Contrairement à de nombreux indicateurs, seulement une petite fraction de PDAA est lié ou séquestré dans le myoplasme.

La plus petite valeur de D_{BAPTA} a été estimée à partir de la constante de diffusion du fura-2 (poids moléculaire = 637) égalé à 0.54×10^{-6} cm2 s$^{-1}$ (Pape et al. 1993). Comme le fura-2 ne semble pas être ni lié ni séquestré de façon significative (environ 27% seulement) dans le myoplasme, et comme cette constante a été calculée en tenant compte de ces facteurs, la lenteur de D_{Fura-2} reste nébuleuse.

En résumé, sachant que l'extrapolation de la constante de diffusion entre 2 substances de poids moléculaire différent est proportionnelle au poids moléculaire, à la puissance $^{1/3}$, et qu'une grande partie de la structure moléculaire du Fura-2 est similaire à celle du BAPTA, les deux valeurs de D_{BAPTA} de 0.6×10^{-6} cm2 s$^{-1}$ et 1.2×10^{-6} cm2 s$^{-1}$ choisies semblaient raisonnables. Ainsi, l'estimation de $[Ca_{RS}]$ a été menée avec chacune de ces deux valeurs. Les résultats du f_{Ca} en fonction de $[Ca_{RS}]$ avec ces valeurs seront illustrés à la figure 15, et commentés plus en détail dans la discussion.

3.7 - TEST DE RÉVERSIBILITÉ

Pour s'assurer que les variations du f_{Ca} en fonction de $[Ca_{RS}]$ n'étaient pas dues à des effets à long terme ou inattendus du BAPTA, des tests de réversibilité ont été effectués. En général, le temps entre les stimulations était de 5 minutes, pour permettre au Ca libéré d'être repompé à l'intérieur du RS. Afin d'imiter la diminution de $[Ca_{RS}]$ à long terme par diffusion du Ca hors de la fibre, le temps entre deux stimulations a été diminué.
Figure 15. Graphiques de f_{Ca} en fonction de $[Ca_{RS}]$ d'une expérience en condition contrôle et d'une expérience avec BAPTA, et test de réversibilité. Les symboles noirs et blancs représentent des stimulations avec et sans BAPTA respectivement, et les carrés et cercles ont été obtenus avec et sans Ca respectivement dans les compartiments latéraux. Les triangles inversés, étoiles et triangles illustrent des tests de réversibilité, tous effectués sans Ca dans la solution interne (voir texte). A) Graphique de f_{Ca} en fonction de $[Ca_{RS}]$ dans une expérience en condition contrôle. B) Graphique de f_{Ca} en fonction de $[CaEGTA]_{MAX}$ dans une expérience avec BAPTA. Les échelles de valeurs indiquent des $[Ca_{RS}]$ entre 300 et 500 µM. C) Graphique pareil à celui en B, mais en fonction de $[Ca_{RS}]$ estimée. Les croix et les petits segments verticaux indiquent les valeurs de $[Ca_{RS}]_{1/2}$ sommet et de $[Ca_{RS}]_{sommets}$ respectivement. Dans tous les cas, la plus grande $[Ca_{RS}]$ a été obtenue sans correction de pH, et avec $D_{BAPTA} = 1.2 \times 10^{-9}$ cm2 s$^{-1}$. La plus petite valeur de $[Ca_{RS}]$ a été obtenue avec une correction de 0.2 unités de pH et avec $D_{BAPTA} = 0.6 \times 10^{-9}$ cm2 s$^{-1}$. D) Graphique pareil à celui en C, f_{Ca} en fonction de $[Ca_{RS}]$ estimée, dans une expérience avec BAPTA et où le Ca a été retiré des compartiments latéraux tôt, au début de l'expérience. Les symboles identifiés de la lettre "e" correspondent à $[Ca_{RS}]$ estimée en absence de BAPTA.
Dans les quatre panneaux de la figure 15, les triangles à l’envers, les étoiles, et les triangles représentent respectivement une stimulation précédant une stimulation rapprochée, la stimulation rapprochée, et une stimulation effectuée après 5 minutes. Le panneau A représente une expérience contrôle dans laquelle le symbole en forme d’étoile (identifié "27 s") est le premier test de réversibilité effectué lorsque [Ca\textsubscript{RS}] était de 1697 μM. Comme le montre le graphique, cette réversibilité a été effectuée environ 27 secondes après la stimulation précédente, ce qui a causé une augmentation très modeste du \(f_{Ca} \). Ce phénomène a aussi été observé dans les autres expériences contrôles durant lesquelles des tests de réversibilité à l’intérieur de 25-30 secondes ont été effectués. Un autre test de réversibilité effectué 58 secondes après la stimulation précédente et lorsque [Ca\textsubscript{RS}] était de 1306 μM est également illustré sur la figure. Cette diminution à court terme de [Ca\textsubscript{RS}] a augmenté la valeur de \(f_{Ca} \) à des valeurs similaires à celles observées après la diminution à long terme de [Ca\textsubscript{RS}], due à la diffusion progressive du Ca hors de la fibre. Le triangle suivant représente une stimulation effectuée 5 minutes après, et la valeur de \(f_{Ca} \) de cette stimulation suit le décours de la courbe. Cet effet réversible sur le \(f_{Ca} \) a été observé dans toutes les autres expériences où ce test a été effectué environ 1 minute après la stimulation précédente, incluant les expériences antérieures de Pape et Carrier (1998). Dans toutes ces expériences, la réversibilité a diminué la [Ca\textsubscript{RS}] de 970-1300 μM à 350-630 μM.

La figure 15B montre une expérience où le BAPTA était présent depuis 67 minutes et dans laquelle une stimulation a été effectuée 28 secondes après la précédente, diminuant temporairement [Ca\textsubscript{RS}]. Cette diminution à court terme de [Ca\textsubscript{RS}] a augmenté le \(f_{Ca} \) de la même façon que le test de réversibilité effectué après 58 secondes en
condition contrôle, illustré par l'étoile identifiée "58 s" en A.

Sur le panneau A), le test effectué après 27 secondes n'a pas augmenté le f_{Ca} de façon significative car le temps entre les deux stimulations n'était pas suffisant pour repomper le Ca libéré à l'intérieur du RS, et l'inactivation de la libération du Ca par le Ca a empêché l'augmentation du f_{Ca}. Cette inactivation peut être diminuée en diminuant [Ca$^{2+}$] libre myoplasmique de 2 façons: 1) en ajoutant le BAPTA pour "tamponner" Δ[Ca$^{2+}$] comme le montre le test de réversibilité en B, ou 2) en augmentant le temps à environ 1 minute pour ce test de réversibilité (ex.: 58 secondes en A), afin de permettre à une partie du Ca libéré d'être repompé à l'intérieur du RS. Tous les tests de réversibilité de 25-30 secondes effectués dans les autres expériences avec BAPTA montrent des résultats similaires.

En résumé, les deux premiers panneaux de la figure 15 indiquent que l'augmentation du f_{Ca} lorsque la [Ca$_{RS}$] diminue d'environ 1000 à 300 µM en condition contrôle n'est pas due à un changement à long terme causé par la longueur des expériences. Aussi, ces deux panneaux montrent que les tests de réversibilité en présence de BAPTA ne sont pas causés par des effets inattendus ou à long terme du BAPTA.

3.8 - EFFETS DU BAPTA SUR LA RELATION ENTRE LE f_{Ca} ET [Ca$_{RS}$]

La figure 15C représente le graphique du f_{Ca} en fonction de [Ca$_{RS}$] pour la même expérience que le panneau B. Sur ce panneau, la [Ca$_{RS}$] a été estimée avec les valeurs de pH$_R$ apparent à partir des variations d'absorbance du Rouge de Phénol, additionné de 0.2 unité de pH et avec un D$_{BAPTA}$ de 1.2*10$^{-6}$ cm2 s$^{-1}$ (ainsi, c'est la condition "c" de la légende qui est illustrée). Juste après l'ajout du BAPTA, les valeurs de [Ca$_{RS}$] ont
augmenté possiblement car la [Ca2+] de la solution interne contenant le BAPTA était plus grande que celle de la solution sans BAPTA au début de l'expérience, même si la [Ca2+] estimée dans la fibre était la même. Une autre explication serait que les valeurs de [BAPTA\textsubscript{T}] utilisées pour estimer [Ca\textsubscript{RS}] étaient trop élevées (le terme [BAPTA\textsubscript{T}] est utilisé pour estimer \Delta[CaBAPTA]\textsubscript{MAX}, qui est ensuite additionné à \Delta[CaEGTA]\textsubscript{MAX}, pour donner [Ca\textsubscript{RS}]\textsubscript{R}). Cette augmentation initiale de [Ca\textsubscript{RS}] après l'ajout de BAPTA n'était pas observée lorsque \text{D\textsubscript{BAPTA}} était de 0.6\texttimes10-6 cm2 s-1 (voir les conditions "b" et "d" de la légende) car ceci diminue l'estimation de [BAPTA\textsubscript{T}]. C'est pour ceci que cette valeur de \text{D\textsubscript{BAPTA}} (0.6\texttimes10-6 cm2 s-1) a plutôt été considérée dans l'analyse et la comparaison de tous les résultats. Le panneau C illustre aussi les caractéristiques de la courbe du \text{f\textsubscript{Ca}} en fonction de [Ca\textsubscript{RS}] évaluées dans cette partie du projet de recherche. Ces caractéristiques étaient le \text{f\textsubscript{Ca}} au sommet, et le \text{f\textsubscript{Ca}} à la moitié du sommet de cette courbe en cloche, dénotés respectivement \text{f\textsubscript{Ca,sommet}} et \text{f\textsubscript{Ca,1/2 sommet}} et indiqués par les symboles en forme de traits verticaux et de croix surmontés de la lettre "c". Les valeurs de \text{f\textsubscript{Ca,sommet}} et \text{f\textsubscript{Ca,1/2 sommet}} ont été obtenues respectivement par les fonctions quadratiques correspondant au sommet (courbe sur le graphique du panneau C) ainsi qu'à la phase descendante (non illustré) de la relation entre le \text{f\textsubscript{Ca}} et [Ca\textsubscript{RS}]. Comme l'indique la légende, les quatre segments et les croix donnent les valeurs de [Ca\textsubscript{RS}] du \text{f\textsubscript{Ca,sommet}} et du \text{f\textsubscript{Ca,1/2 sommet}} respectivement, des quatre conditions d'analyses. Diminuer \text{D\textsubscript{BAPTA}} n'a pas affecté l'estimation de [Ca\textsubscript{RS}] parce que le temps nécessaire pour que la [BAPTA\textsubscript{T}] au site optique d'enregistrement égale approximativement celle des compartiments latéraux était suffisant, quelles que soient les valeurs de D\textsubscript{BAPTA} utilisées. L'emplacement du sommet de la courbe était, cependant, sensible à une correction de 0.2 unités de pH. En effet, la

60
figure indique qu'avec la correction de 0.2 unité de pH, la vitesse de dissociation du Ca de l'EGTA diminue (la vitesse de dissociation dépend de la liaison de 2 protons à CaEGTA$^{2+}$) ce qui diminue le $K_{D,\text{apparent}}$ de la liaison du Ca à l'EGTA, diminuant aussi le signal de $\Delta[Ca^{2+}]$ estimé par le signal de $\Delta[CaEGTA]$. Par la même occasion, le $[Ca_{RS}]_{1/2}$ sommet diminue, mais la plus petite valeur de D_{BAPTA} diminue aussi $[Ca_{RS}]_{1/2}$ sommets contrairement à son manque d'effet sur le $[Ca_{RS}]_{\text{sommets}}$ (voir les conditions "b" vs. "a" et "d" vs. "c").

3.9 - RÉSUMÉ DES EFFETS DU BAPTA SUR LE f_{Ca} ET $[Ca_{RS}]$

La table 1 résume les résultats de toutes les expériences de cette première partie. Les deux sections de la table correspondent aux deux protocoles expérimentaux, c'est-à-dire sans (première section) et avec BAPTA (deuxième section). La section des expériences dans lesquelles 8 mM BAPTA a été ajouté est divisée en 4 sous-sections selon que les calculs de f_{Ca} ont été faits avec et sans la correction relative au pH, et avec les deux constantes de diffusion (D_{BAPTA}). La première colonne donne les numéros d'identification des expériences. La deuxième colonne correspond aux valeurs moyennes de f_{Ca} des stimulations pour lesquelles $[Ca_{RS}]$ était entre 1500-3000 μM, la région plateau. Comme toutes les valeurs de cette colonne ont été obtenues sous les mêmes conditions, c'est-à-dire sans BAPTA dans les deux types d'expériences (contrôle ou BAPTA), ces valeurs ne devraient pas être significativement différentes. Ainsi, quoique la moyenne des valeurs obtenues en conditions contrôles soit deux fois plus élevée que celle en présence de BAPTA, la différence n'était pas statistiquement significative. Des variations semblables ont aussi été observées dans des expériences effectuées plus tôt dans le laboratoire (Pape et Carrier, 1998). En résumé, les expériences de la première
section de la table 1 sont des contrôles adéquats pour les expériences dans lesquelles le
BAPTA a été ajouté.

<table>
<thead>
<tr>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fiber</td>
<td>f_{ca} at -60 mV</td>
<td>1500-3000 μM</td>
<td>300-500 μM</td>
<td>(3) + (2)</td>
<td>f_{ca,ext}</td>
<td>[Ca_{ext}]_{0} (μM)</td>
</tr>
<tr>
<td>O2901</td>
<td>0.0151</td>
<td>0.0471</td>
<td>3.12</td>
<td>0.0483</td>
<td>460</td>
<td>954</td>
</tr>
<tr>
<td>N0101</td>
<td>0.0149</td>
<td>0.0726</td>
<td>4.47</td>
<td>0.0806</td>
<td>318</td>
<td>840</td>
</tr>
<tr>
<td>N0201</td>
<td>0.0075</td>
<td>0.0573</td>
<td>7.64</td>
<td>0.0600</td>
<td>348</td>
<td>944</td>
</tr>
<tr>
<td>N0701</td>
<td>0.0284</td>
<td>0.1354</td>
<td>4.06</td>
<td>0.1032</td>
<td>443</td>
<td>864</td>
</tr>
<tr>
<td>D0401</td>
<td>0.0146</td>
<td>0.0535</td>
<td>3.66</td>
<td>0.0540</td>
<td>359</td>
<td>727</td>
</tr>
<tr>
<td>D0701</td>
<td>0.0639</td>
<td>0.3438</td>
<td>5.38</td>
<td>0.3441</td>
<td>368</td>
<td>969</td>
</tr>
<tr>
<td>MEAN</td>
<td>0.0241</td>
<td>0.1150</td>
<td>4.79</td>
<td>0.1150</td>
<td>383</td>
<td>883</td>
</tr>
<tr>
<td>S.E.M.</td>
<td>0.0084</td>
<td>0.0469</td>
<td>0.66</td>
<td>0.0466</td>
<td>23</td>
<td>38</td>
</tr>
</tbody>
</table>

Control Experiments with no BAPTA added

Experiments in which 8 mM BAPTA was added

no pH shift correction

O0501	0.0093	0.0285	3.06	0.0296	572	1400
O1001	0.0059	0.0406	6.94	0.0408	404	1094
O1201*	0.0056	0.0201	3.62	(0.0312)	(735)	(1808)
O1501*	0.0259	0.0800	3.08	(0.1113)	(364)	(1814)
O1601	0.0160	0.1351	8.61	0.1452	576	1414
MEAN	0.0125	0.0610	4.97	0.0712	517*	1303*
S.E.M.	0.0038	0.0220	1.17	0.0361	57	104

0.2 pH shift

O0501	0.0125	0.0664	5.31	0.0713	402	1113*
O1001	0.0038	0.0234	1.09	0.0362	45	180
MEAN	0.0125	0.0664	5.27	0.0712	491	1159*
S.E.M.	0.0038	0.0234	1.06	0.0361	48	73

no pH shift correction, D_{BAPTA} halfed

| O0501 | 0.0125 | 0.0654 | 5.26 | 0.0713 | 383 | 993 |
| O1001 | 0.0038 | 0.0225 | 1.06 | 0.0362 | 38 | 55 |

Table 1. Effet de 8 mM BAPTA sur le f_{ca} à -60 mV. La première section donne les résultats en condition contrôle, et la section suivante (avec ses sous-sections) donne les résultats en présence du BAPTA. La première colonne donne le numéro d'identification des fibres. La deuxième colonne donne les valeurs de f_{ca} pour les stimulations ayant une [Ca_{ext}] entre 1500 et 3000 μM (et pour ces mêmes valeurs avant l'ajout du BAPTA dans les expériences où le BAPTA a été introduit). La troisième colonne donne les valeurs moyennes de f_{ca} pour les stimulations ayant une [Ca_{ext}] entre 300 et 500 μM. La 4e colonne est le ratio des valeurs des colonnes 3 sur 2. Les colonnes 5, 6 et 7 donnent les valeurs de f_{ca,ext} [Ca_{ext}]_{0} somm, et [Ca_{ext}]_{2} somm. Le Ca a été enlevé tôt dans les expériences identifiées d'un "#". Le symbole "*" indique que cette valeur était statistiquement différente de la valeur en condition contrôle. Les quatre échelles de valeurs suivantes pour chaque paramètre sont respectivement pour les valeurs en condition contrôle quand [Ca_{ext}] est entre 1 500 et 2 000 μM et ensuite, entre 300 et 500 μM (première et deuxième échelles), et pour les valeurs correspondantes en présence du BAPTA (troisième et quatrième échelles). Ainsi: temps après la saponine: 56-101, 116-153, 55-87, 126-226 min; diamètre de la fibre: 97-119, 97-113, 111-143, 103-138 μm; pH_{R}: 6.88-7.11, 6.80-7.05, 6.94-7.10, 6.85-7.10; courant de maintien: -18 à -52, -19 à -64, -21 à -69, -23 à -68 nA; C_{app}: 0.00861-0.01700, 0.00847-0.01745, 0.01184-0.02089, 0.01288-0.01963 μF; r: 1.98-3.90, 2.05-3.62, 1.90-2.66, 1.62-2.84 MΩ/cm.
La troisième colonne donne \(f_{Ca} \) à des \([Ca_{RS}]\) entre 300 et 500 \(\mu M \), région du sommet de la courbe en cloche. Les valeurs moyennes de \(f_{Ca} \) des expériences avec BAPTA sont très similaires et ne varient pas significativement selon les différents paramètres utilisés pour estimer la \([Ca_{RS}]\) (c'est-à-dire, avec et sans l'addition de 0.2 unités de pH, et avec les deux valeurs de \(D_{BAPTA} \)). Ceci indique que les incertitudes concernant \([Ca_{RS}]\) en présence du BAPTA n'ont pas influencé les effets du BAPTA sur le \(f_{Ca} \) dans la région du sommet (voir figure 13C).

La colonne 4 donne le ratio des valeurs de la colonne 3 sur les valeurs de la colonne 2. Ce ratio correspond au facteur d'augmentation du \(f_{Ca} \) lorsque la \([Ca_{RS}]\) diminue de 1500-3000 \(\mu M \) (2\(^e \) colonne) à 300-500 \(\mu M \) (3\(^e \) colonne). Les ratios des expériences avec BAPTA variant de 4.97-5.31, dépendamment des critères utilisés pour l'estimation de \([Ca_{RS}]\), n'étaient pas significativement différents du ratio de 4.79 des expériences en condition contrôle. Ces résultats démontrent que le BAPTA n'a pas diminué la perméabilité à la libération au sommet de la relation entre le \(f_{Ca} \) et la \([Ca_{RS}]\).

Les valeurs de \(f_{Ca, sommet} \), \([Ca_{RS}]_{sommet} \) et \([Ca_{RS}]_{1/2 sommet} \) sont tabulées aux colonnes 5-7. En condition contrôle, les valeurs de \([Ca_{RS}]_{sommet} \) et \([Ca_{RS}]_{1/2 sommet} \) (383 et 883 \(\mu M \) respectivement) sont sensiblement les mêmes que celles obtenues auparavant par Pape et Carrier (1998), sous des conditions similaires. Aussi, les valeurs des colonnes 3 et 5 sont très semblables, car la \([Ca_{RS}]_{sommet} \) correspondent aux \([Ca_{RS}] \) entre 300 et 500 \(\mu M \), expliquant ainsi pourquoi le \(f_{Ca, sommet} \) et le \(f_{Ca} \) pour les \([Ca_{RS}] \) entre 300 et 500 \(\mu M \) sont presque similaires en condition contrôle.

Comme 2 protocoles expérimentaux ont été utilisés en ce qui concerne les expériences en présence de BAPTA, les valeurs des colonnes 5 à 7 de ces expériences
seront commentées dans les trois sections suivantes. Aussi, pour plus de clarté, les effets du BAPTA pour les deux protocoles seront traités séparément.

3.10 - LES DEUX PROTOCOLES EXPÉRIMENTAUX DES EXPÉRIENCES AVEC BAPTA

Deux protocoles ont été utilisés pour les expériences avec BAPTA. Le premier protocole consistait à enlever le Ca de la solution interne environ 57-61 minutes après l'ajout de BAPTA (figure 15C). En ce qui concerne le deuxième protocole, le Ca était enlevé de la solution interne très tôt, c'est-à-dire, environ 10 minutes avant la première stimulation. Et les premiers résultats étant obtenus, le BAPTA était introduit dans la solution interne. La figure 15D montre les résultats d'une expérience effectuée selon le 2e protocole. La forme de cette courbe en cloche diffère de celle en C par le fait que: 1) le sommet de la relation entre le f_{Ca} et $[Ca_{RS}]$ est plus large, ressemblant plus à un plateau qu'à un sommet, et 2) la valeur de $[Ca_{RS}]_{\text{sommet}}$ est plus grande. Toutefois, il est à noter ici que les effets différents observés pour les deux protocoles ne sont pas dus au fait que le Ca soit retiré au début versus plus tard durant l'expérience. En effet, les expériences en condition contrôlée effectuées selon le 1er protocole (Pape et Carrier 1998, où 2 des 7 expériences avaient été menées selon ce protocole) ou selon le 2e protocole (expériences contrôles de ce projet) ont donné les mêmes résultats concernant la perméabilité à la libération en fonction de $[Ca_{RS}]$.

3.11 - FORME DE LA COURBE EN CLOCHE OBTENUE AVEC LE PREMIER PROTOCOLE

Le 1er protocole a été utilisé dans 3 des 5 expériences de la table 1 (c'est-à-dire
La moyenne des valeurs de [Ca\textsubscript{RS}]\textsubscript{sommet} de ces expériences varie de 383 μM à 517 μM, mais ce n'est que la moyenne des valeurs de [Ca\textsubscript{RS}]\textsubscript{sommet} de la première sous-section qui est significativement différente de la moyenne des valeurs contrôles (517 ± 57 μM est significativement différent de 383 ± 23 μM). Tout comme en condition contrôle, les valeurs des colonnes 3 et 5 se ressemblent.

Les valeurs de [Ca\textsubscript{RS}]\textsubscript{1/2 sommet} ont varié de 993 à 1303 μM. A l'exception de la plus petite de ces valeurs (993 μM), toutes les [Ca\textsubscript{RS}]\textsubscript{1/2 sommet} étaient significativement plus grandes que celle en condition contrôle (883 μM).

En résumé, le pouvoir tampon du BAPTA ne semble pas avoir d'effet sur l'emplacement du sommet de la relation entre le \textit{f}\textsubscript{Ca} et la [Ca\textsubscript{RS}] mais semble avoir augmenté le \textit{f}\textsubscript{Ca} des valeurs de [Ca\textsubscript{RS}]\textsubscript{1/2 sommet} des expériences effectuées selon le protocole 1. Cet effet pourrait être dû à une diminution de l'inactivation de la libération du Ca par le Ca, causé par le BAPTA, à des valeurs de [Ca\textsubscript{RS}] intermédiaires.

3.12 - FORME DE LA COURBE EN CLOCHE OBTENUE AVEC LE DEUXIÈME PROTOCOLE

Les valeurs de [Ca\textsubscript{RS}]\textsubscript{1/2 sommet} des 2 expériences effectuées selon le 2e protocole (identifiées par le symbole "#", table 1) n'ont pas été inclues dans la moyenne des valeurs des expériences effectuées selon le premier protocole car elles étaient significativement plus élevées que les valeurs en condition contrôle (1353-1811 μM > 883 μM). Ces valeurs étaient aussi significativement plus élevées que celles des expériences du 1e protocole (sauf pour la condition avec le plus petit D\textsubscript{BAPTA} où \textit{p} = 0.064). Ainsi, comme selon ce protocole le Ca avait été enlevé de la solution interne très tôt après le début des expériences, le mécanisme d'inactivation de la libération du Ca par le Ca a été diminué et
la phase descendante de la courbe en cloche du \(f_{Ca} \) vs. \([Ca_{RS}]\) a donc été significativement réduite. Ceci pourrait expliquer pourquoi, comme mentionné plus haut, le sommet de cette courbe en cloche ressemble plus à un plateau qu'à un sommet (figure 15D). Ainsi, afin de définir le \([Ca_{RS}]_{\text{sommet}}\), la plus petite \([Ca_{RS}]\) des stimulations formant ce sommet-plateau a été sélectionnée, c'est-à-dire, la stimulation la plus à gauche et indiquée par la lettre "c" du panneau D. De même que les valeurs de \([Ca_{RS}]_{1/2 \text{ sommet}}\), la valeur moyenne des \([Ca_{RS}]_{\text{sommet}}\) de ces deux expériences (entre 495 et 650 \(\mu\)M) était significativement plus élevée que la moyenne en condition contrôle (383 \(\mu\)M) et du 1er protocole (383-517 \(\mu\)M). En effet, ces plus grandes \([Ca_{RS}]_{\text{sommet}}\) sont associées à des valeurs de \(f_{Ca,\text{sommet}}\) environ 50\% plus élevées que \(f_{Ca}\) lorsque \([Ca_{RS}]\) était entre 300 - 500 \(\mu\)M (voir colonne 5 vs. 3 de la table 1 pour ces deux expériences). Une explication serait que le BAPTA aurait diminué le \(f_{Ca}\) lorsque \([Ca_{RS}]\) était entre 300-500 \(\mu\)M dans ces deux expériences, dans lesquelles le Ca a été enlevé relativement tôt des compartiments latéraux. Finalement, les valeurs élevées de \([Ca_{RS}]_{\text{sommet}}\) et de \([Ca_{RS}]_{1/2 \text{ sommet}}\) de ces 2 expériences peuvent aussi être expliquées par une diminution de l'inactivation Ca-dépendante de la libération du Ca.
4 - DISCUSSION

Premier projet

Cette première partie de mon projet de recherche consistait à évaluer si un site de libération de Ca comprend un RyR activé par son DHPR et d'autres RyR recrutés par LCIC. L'approche expérimentale pour tester cette hypothèse était d'évaluer si la perméabilité à la libération du Ca (estimée par le f_{Ca}, la fraction du contenu en Ca du RS relâchée par un pulse à -60 mV) serait altérée par l'introduction d'une grande concentration du tampon à haute affinité pour le Ca, le BAPTA (8 mM), dans la solution interne. Plus précisément, le but était d'évaluer si oui ou non, 8 mM BAPTA affecterait le sommet de la relation du f_{Ca} vs. $[Ca_{RS}]$.

4.1 - LES DEUX MÉCANISMES DE LCIC

Comme le montre la courbe avec les symboles en forme de "+" de la figure 14B, l'augmentation de $[Ca_{RS}]$ de 100 à 400 µM en absence de BAPTA fait augmenter la perméabilité de la libération à -60 mV par un facteur de 2. Cette augmentation pourrait être due à deux types de LCIC: 1) un mécanisme d'autorégulation selon lequel le Ca libéré d'un RyR activé par son DHPR peut se lier à un site d'activation sur ce même RyR et ainsi moduler sa conductance unitaire ou son temps moyen d'ouverture, ou 2) un mécanisme où un RyR couplé à son DHPR peut recruter des RyRs voisins. La deuxième hypothèse semble peu probable, comme le montrera l'analyse suivante, montrant que 8 mM de BAPTA produit la même diminution de $\Delta[Ca^{2+}]$ à l'embouchure d'un canal ouvert que diminuer $[Ca_{RS}]$ de 400 à 100 µM.

L'équation de la diffusion d'un tampon calcique comme le BAPTA ou l'EGTA
est estimée par la solution suivante :

\[
\Delta[Ca^{2+}] = \frac{\phi}{4 \pi D_{Ca} r} e^{-\lambda/\mu}
\]

(16)

où \(\phi\) est le flux de Ca à travers le canal, \(D_{Ca}\) est la constante de diffusion du Ca, r est la distance à partir de l’ouverture d’un RyR, et \(\lambda_{Ca}\) est la constante reliée à la distance qu’un ion de Ca\(^{2+}\) peut parcourir avant d’être lié par un tampon calcique (Stern, 1992). Si le terme "\(e^{-\lambda/\mu}\)" est égal à 1, alors l’équation (16) donne \(\Delta[Ca^{2+}]\) en absence d’un tampon calcique. (Il est à noter que comme 20 mM EGTA a un effet très négligeable sur le \(\lambda_{Ca}\) en présence de 8 mM BAPTA, l’EGTA n’a pas été considéré dans cette équation qui deviendrait plus compliquée autrement). Il a été mentionné précédemment que faire varier \([Ca_{RS}]\) correspond à varier \([Ca^{2+}]\) à l’embouchure d’un RyR ouvert du RS et, par le fait même, à changer la force motrice de la libération du Ca, \(\phi\), ainsi que \(\Delta[Ca^{2+}]\) à n’importe quelle distance de l’embouchure du canal. Avec le BAPTA, l’estimation de \(\lambda_{Ca}\) est égale à 21.5 nm (selon l’équation B14 de Pape et al., 1995 → \(\lambda_{Ca} = \sqrt{D_{Ca}} / \sqrt{k_{1}*[BAPTA]_{R}}\), avec \(D_{Ca} = 3*10^{-6}\) cm\(^2\) s\(^{-1}\); \(k_{1} = 1*10^{8}\) M\(^{-1}\) s\(^{-1}\); et \([BAPTA]_{R} = 6.5\) mM. Cette valeur de 6.5 mM est la moyenne des valeurs de \([BAPTA]_{R}\) - allant de 5.4 à 7.3 mM - pour les stimulations des expériences utilisées dans cette étude). Si le site de régulation du Ca est situé à 30 nm de son site de libération - 30 nm correspondant à la distance entre 2 RyRs voisins - le BAPTA devrait réduire \(\Delta[Ca^{2+}]\) à 0.25 fois sa valeur en absence de BAPTA (\(e^{30/21.5}\)). Ceci aurait le même effet qu’une réduction de \([Ca_{RS}]\) de 400 à 100 \(\mu\)M (100/400 = 0.25).

Ainsi, si l’augmentation de la perméabilité (ou \(f_{Ca}\)) de 2 fois lorsque \([Ca_{RS}]\) augmente de 100 à 400 \(\mu\)M est due à l’activation de canaux voisins par LCIC, alors
l'ajout de 8 mM BAPTA devrait réduire le f_{Ca} à 0.5 $1/2$ sa valeur en absence de BAPTA. Si, d'un autre côté, cette augmentation de la perméabilité est due à un mécanisme d'autorégulation du Ca sur son propre canal de libération, alors l'équation (16) indique que le BAPTA devrait avoir très peu, sinon pas, d'effet sur le sommet de la courbe en cloche. C'est-à-dire que le site de régulation du Ca pourrait aussi être situé sur le canal lui-même, vu sa grande taille - par exemple, à 5 nm de son embouchure - et donc BAPTA ne devrait pas réduire $\Delta [Ca^{2+}]$ plus que 0.79 ($e^{-5/21.5}$) fois sa valeur en absence de BAPTA.

En résumé, comme le BAPTA ne semble pas avoir d'effet sur le f_{Ca} lorsque $[Ca_{RS}]$ est entre 300-500 µM, ceci suggère que les RyRs voisins ne sont pas recrutés par LCIC à −60 mV. Les résultats indiquent que le Ca libéré par un canal activé par son senseur de voltage augmente le flux de Ca passant à travers ce canal calcique. Contrairement à une hypothèse basée sur des études de modélisation (Stern et al., 1997; Ríos et Stern, 1997), ce mécanisme d'autorégulation signifie qu'un RyR activé par le voltage peut aussi être modulé par le Ca.

4.2 - RÉSULTATS D'ÉTUDES ANTÉRIEURES SUR DES RyRs ISOLÉS

En 1996 Tripathy et Meissner ont effectué l’étude de la probabilité d’ouverture (P_o) en fonction du flux de Ca à travers des RyRs de muscles squelettiques de mammifères, reconstitués dans des bicouches lipidiques planes. Selon leurs résultats, le graphique de la P_o en fonction du flux de Ca atteint un maximum suivi d’une diminution. Cela leur a permis de conclure que les effets observés sur la P_o étaient dus à une modulation du temps moyen d’ouverture des canaux, contrairement à une modulation de
la fréquence d’ouverture ou de la conductance unitaire des canaux. Ces résultats ainsi que ceux obtenus à de faibles dépolarisations indiquent que les mêmes sites de liaison calcique sont à la fois impliqués dans la régulation de la libération de Ca de RyRs isolés activés par l’ATP, et dans la libération du Ca activée par une dépolarisation. Ceci suggère également que l’activation d’un RyR par son DHPR implique aussi la modulation de son temps d’ouverture.

4.3 - LE BAPTA N’A PAS D’EFFET SUR LA PHASE PLATEAU DU f_{Ca} vs. $[Ca_{RS}]$

Des résultats antérieurs indiquent que 8 mM BAPTA n’influencent pas le f_{Ca} lorsque $[Ca_{RS}]$ est dans la région plateau de la courbe en cloche, c’est-à-dire, lorsque $[Ca_{RS}] > 1500 \ \mu M$ (table 1, Pape et al., 2002b; ANNEXE 2). Cette conclusion a été tirée suite à la comparaison à -60 mV entre le ratio des valeurs de f_{Ca} 50 à 60 minutes après l’addition de BAPTA sur les valeurs de f_{Ca} juste avant l’ajout du BAPTA, avec le ratio des valeurs correspondantes en condition contrôle (discuté en détail dans le deuxième projet de ce mémoire). Dans cette étude, les expériences en condition contrôle avaient été effectuées de la même façon que celles avec BAPTA, y compris un rinçage des compartiments latéraux au moment où le BAPTA aurait normalement été introduit. En bref, les résultats ont montré que l'ajout de 8mM BAPTA dans la solution interne n'affecte pas significativement la perméabilité à la libération à -60 mV, quand $[Ca_{RS}]$ est dans la région plateau du f_{Ca} vs. $[Ca_{RS}]$.

4.4 - EFFET DU BAPTA SUR LA PHASE DESCENDANTE DU f_{Ca} vs. $[Ca_{RS}]$

L'évaluation de l'effet du BAPTA sur la phase descendante de la courbe en cloche du f_{Ca} vs. $[Ca_{RS}]$ (pour les valeurs de $[Ca_{RS}]$ de 500 à 1000 μM) indiquent que le
BAPTA augmente légèrement les valeurs de f_{Ca}. Ces résultats suggèrent que le BAPTA diminue l'inactivation de la libération du Ca à des valeurs de $[Ca_{RS}]$ intermédiaires.

Il a déjà été mentionné que deux protocoles expérimentaux ont été utilisés pour les expériences en présence du BAPTA: l'un selon lequel le Ca est resté présent jusqu'à environ 60 minutes après l'ajout du BAPTA (1er protocole) et l'autre selon lequel le Ca a été enlevé de la solution interne relativement tôt, au début de l'expérience (2e protocole). Les résultats obtenus avec le 2e protocole ont montré une réduction beaucoup plus prononcée de l'inactivation de la libération du Ca par le Ca, à des valeurs de $[Ca_{RS}]$ intermédiaires comparativement aux résultats du 1er protocole. La différence entre les deux protocoles est que la diminution de $[Ca_{RS}]$ entre les stimulations était plus rapide dans les expériences où le Ca a été enlevé au début de l'expérience (2e protocole). Ainsi, dans les expériences effectuées de cette façon, le BAPTA avait moins de temps pour diffuser jusqu'au milieu de la fibre, d'où une plus petite concentration. Ceci pourrait expliquer les effets différents sur l'inactivation de la libération du Ca obtenus selon les deux protocoles. L'analyse des résultats plus haut montre aussi que lorsque $[Ca_{RS}]$ est de 300-500 μM, la Δ$[Ca^{2+}]$ libre à l'embouchure d'un canal semble trop faible pour activer les canaux voisins. Cependant, des RyRs voisins pourraient être activés par LCIC à des valeurs de $[Ca_{RS}]$ intermédiaires (phase descendante) mais cette activation pourrait d'abord être inhibée par une inactivation initiale Ca-dépendante. Dans les expériences effectuées selon le 2e protocole, la [BAPTA] aux grandes $[Ca_{RS}]$ était faible mais suffisante et donc la réduction de l'inactivation observée pourrait être due à une diminution de cette inactivation initiale Ca-dépendante grâce au BAPTA, ce qui permettrait le recrutement de RyRs voisins par LCIC. D'un autre côté, la [BAPTA] plus
élevée dans les expériences du 1er protocole devrait aussi diminuer cette inactivation initiale aux valeurs de [Ca_{RS}] intermédiaires, cependant, le pouvoir tampon du BAPTA pourrait avoir aussi tout simplement inhibé LCIC. Et si c'était le cas, la figure 15B aurait montré augmentation du \(f_{Ca} \) suivie d'une diminution, correspondant respectivement à la diminution de l'inactivation initiale Ca-dépendante suivie de l'inhibition de LCIC. Cette dernière hypothèse ne semble pas possible car aucune augmentation dans le \(f_{Ca} \), suivie d'une diminution n'a été observée dans les expériences effectuées selon le 1er protocole.

Enfin, l'absence d'activation des RyRs voisins à des [Ca_{RS}] intermédiaires pourrait être expliquée par le fait que les RyRs activés par leurs DHPRs sont d'abord inactivés à de grandes [Ca_{RS}] avant qu'une quantité de Ca suffisante soit libérée pour activer les canaux voisins. Ainsi, la différence entre les deux protocoles pourrait être due aux différentes activations possibles des RyRs couplés à leurs DHPRs. Ceci pourrait expliquer les formes différentes des courbes en forme de cloche obtenues à partir des deux protocoles expérimentaux avec le BAPTA.

En résumé, les résultats de cette section indiquent que le BAPTA ne semble pas diminuer la perméabilité à la libération (ou \(f_{Ca} \)) à -60 mV pour toutes les valeurs de [Ca_{RS}] investiguées (300-3000 μM), et ne semble augmenter le \(f_{Ca} \) que sous certaines conditions (2e protocole). Ceci indique que les canaux voisins ne sont pas recrutés par LCIC en réponses à de faibles dépolarisations. Les résultats n'excluent pas, cependant, la possibilité que les canaux voisins pourraient être recrutés à des [Ca_{RS}] intermédiaires, mais que ce mécanisme serait inhibé par une inactivation initiale de la libération du Ca par le Ca.
4.5 - RÉSULTATS OBTENUS À DE GRANDES DÉPOLARISATIONS.

L'hypothèse de Rios et collègues (1988) selon laquelle le recrutement de canaux voisins par LCIC augmente la libération du Ca suite à de grandes dépolarisations, n'est pas observée à de faibles dépolarisations. Ceci semble être dû au fait qu'à de faibles dépolarisations, la $\Delta[Ca^{2+}]$ venant d'un seul RyR ouvert n'est pas suffisante pour initier une grande augmentation de la libération. Cependant, à de grandes dépolarisations, la somme de $\Delta[Ca^{2+}]$ venant de deux RyRs adjacents activés en même temps par leurs DHPRs respectifs augmente la libération du Ca. Ainsi, cette augmentation de la perméabilité serait seulement observée à de grandes dépolarisations car la densité des sites activés par le voltage est plus grande. Pour que cette explication soit complète, il faudrait aussi supposer qu'à de faibles dépolarisations, un RyR isolé activé par son sensor de voltage ne puisse pas recruter à lui seul des RyRs voisins par LCIC. Les résultats de cette partie du projet de recherche appuient cette condition.
5 - RÉSULTATS

Deuxième projet

5.1 - INTRODUCTION

Comme mentionné ci-haut, la perméabilité à la libération (ou f_{Ca}) est augmentée à de grandes dépolarisations, probablement dû au recrutement de canaux voisins par LCIC. En effet, les études de Pape et Carrier (1998) sur la perméabilité à la libération du Ca du RS leur ont permis de remarquer une libération de Ca additionnelle présente seulement à -45 mV, et non à de faibles dépolarisations (< -60 mV). Ainsi, le but de la deuxième partie de mon projet de recherche était d'évaluer si oui ou non il existe une composante additionnelle Ca-dépendante seulement présente à de grandes dépolarisations, lorsque la perméabilité à la libération du Ca est à son maximum. Pour ce faire, mon travail était de diminuer $\Delta[Ca^{2+}]$ à l'embouchure de RyRs ouverts en introduisant 8 mM BAPTA dans la solution interne. L'introduction de 8 mM BAPTA devrait diminuer $[Ca_{RS}]$, ce qui diminuerait le flux de Ca à travers un canal de libération de Ca, ce qui devrait aussi diminuer $\Delta[Ca^{2+}]$ à l'embouchure d'un RyR ouvert. Ensuite, il suffisait de comparer la perméabilité à la libération aux deux voltages suivants : -45 mV (grande dépolarisation) et -60 mV (faible dépolarisation). Si une composante additionnelle est effectivement présente à de grandes dépolarisations, diminuer la $\Delta[Ca^{2+}]$ à l'aide du BAPTA devrait diminuer la perméabilité à -45 mV, sans diminuer celle à -60 mV.

5.2 - PROTOCOLE DE STIMULATION

La première trace de la figure 16A illustre le protocole de stimulation typiquement utilisé dans les expériences de cette deuxième partie du projet de recherche. Des pulses
dépolarisants de -60, -45, -45 et -20 mV avec des durées de 400, 30, 1600 et 800 ms ont été utilisés, séparés par de longues périodes au potentiel de repos à -90 mV. Les paires de traces suivantes représentent les signaux de Δ[CaEGTA] avant et 57 minutes après l’ajout du BAPTA. Comme le but était de comprendre ce qui se passe à de grandes dépolarisations lorsque le degré d’activation des RyRs est à son maximum, un petit pulse de 30 ms à -45 mV a été utilisé. Trente ms correspond au temps requis pour que le signal de la perméabilité d’une stimulation atteigne son maximum. La perméabilité à -45 mV a donc été estimée à l’aide du pulse de 30 ms, et comparée avec la perméabilité du pulse à -60 mV (en présence et en absence du BAPTA). Les deux derniers pulses à -45 et -20 mV ont été utilisés afin de suivre la stabilité les mouvements de charges intramembranaires tout au long des expériences. Ces deux pulses ont également été utilisés pour relâcher tout le Ca possible d’être libéré du RS par une stimulation. En absence de BAPTA, le maximum de cette trace est la Δ[CaEGTA]_{MAX} qui représente une bonne estimation de la concentration de Ca présent dans le RS. Dans ces expériences, le Ca n’a jamais été enlevé de la solution interne, et le BAPTA a été ajouté pendant une période d’environ une heure, avant d’être enlevé.

En présence de BAPTA, le signal de Δ[CaEGTA] représente la concentration de Ca lié à l’EGTA à l’équilibre, après un pulse. Les traces de Δ[CaEGTA] du panneau A montrent qu’après l’ajout du BAPTA, le signal de Δ[CaEGTA]_{MAX} est plus petit qu’en condition contrôle, dû au pouvoir tampon du BAPTA qui capture très rapidement une grande fraction du Ca libéré par un pulse dépolarisant.
5.3 - EFFET DE 8 mM BAPTA SUR $\Delta[CaEGTA]_{MAX}$ ET SUR LE TEMPS DE DÉCOURS DE $\Delta[CaEGTA]$

Il a souvent été proposé que les indicateurs peuvent avoir un effet pharmacologique, toxique ou non prévisible (Stroffekova et Heiny, 1997). Les panneaux B et C de la figure 16 illustrent les stratégies utilisées pour tester cette possibilité.

Le panneau B illustre le déroulement d'une des expériences de cette étude, représenté sous la forme d'un graphique de la $\Delta[CaEGTA]_{MAX}$ en fonction du temps après le traitement à la saponine, pour toutes les stimulations de cette expérience. Les traits verticaux identifient les stimulations à partir desquelles les traces en A ont été obtenues. La pente initiale débutant même avant l'ajout du BAPTA est probablement due au fait que la $[Ca^{2+}]$ dans la solution interne était inférieure à la concentration physiologique de la fibre. Cependant, l'ajout du BAPTA augmente la vitesse de déclin de $\Delta[CaEGTA]_{MAX}$. Une fois le BAPTA enlevé de la solution interne, même si le déclin du signal semble atténué, les valeurs de $\Delta[CaEGTA]_{MAX}$ ne reviennent pas aux valeurs de base à cause de la diminution progressive de $\Delta[CaEGTA]_{MAX}$ non reliée au BAPTA.

Le panneau C illustre les deux premiers pulses ainsi que les signaux de $\Delta[CaEGTA]$ correspondants du panneau A, à plus grande échelle. La plus grande trace correspond à la stimulation en condition contrôlée, et la plus petite, en présence du BAPTA. Le délai de cette deuxième trace est dû au fait que le BAPTA lie rapidement le Ca libéré par un pulse, et ce délai confirme la présence de ce tampon de Ca dans le myoplasme.

La trace expérimentale du panneau D (trace non "lisse") est la trace avec BAPTA du panneau C. Afin de confirmer la présence du BAPTA dans le myoplasme, mais aussi afin de tester si le BAPTA ne cause pas d'effets inattendus dans la fibre, les signaux de
Δ[CaEGTA] ont été reproduits par un modèle mathématique (voir annexe B de Pape et al., 2002b; ANNEXE 2). Ce modèle mathématique décrit aussi le temps de décours du signal auquel on s'attend si le BAPTA diffuse normalement dans la fibre.

Figure 16. Effet du BAPTA sur Δ[CaEGTA]. A) La première trace est le protocole de stimulation utilisé pour les expériences de cette partie du projet. Des dépolarisations à -60, -45, -45 et -20 mV avec des durées respectives de 400, 30, 1600 et 800 ms ont été effectuées. Les périodes de repolarisations à -90 mV avaient des durées de 800 ms. Les traces suivantes sont les signaux de Δ[CaEGTA] avant ("no BAPTA") et 56 minutes après ("BAPTA") l'ajout de 8 mM BAPTA dans la solution interne. B) Graphique de Δ[CaEGTA] max en fonction du temps après le traitement à la saponine. Les stimulations, effectuées chaque 5 minutes, sont représentées par les cercles blancs et noirs. Les cercles noirs indiquent la période durant laquelle le BAPTA était présent dans la solution interne (trait horizontal). Les petits segments verticaux correspondent aux stimulations illustrées en A. C) Traces du panneau A à plus grande échelle pour les deux premiers pulses du protocole de stimulation. D) La trace non lisse est le signal de Δ[CaEGTA] expérimental en présence de BAPTA de la trace en C, pour le pulse à -60 mV. Les deux traces lisses sont les traces de Δ[CaEGTA] obtenues à partir du modèle mathématique.

Avec ce modèle mathématique, les constantes nécessaires à la génération des traces lisses du panneau D ont été obtenues, en supposant que le signal de Δ[CaT] agit comme force motrice, ayant une fonction en forme de rampe, comme la trace sans BAPTA du panneau C. La première courbe lisse (la plus à gauche) en D correspond au signal de Δ[CaEGTA] prédit selon le modèle mathématique. Les signaux de Δ[CaEGTA] mesurés
expérimentalement et calculés mathématiquement ont une forme similaire, les deux montrant un délai mais aussi ayant perdu la forme de rampe des signaux sans BAPTA. En présence du BAPTA, une grande fraction du signal de $\Delta[\text{CaEGTA}]$ continue après le pulse, ce qui correspond au temps pendant lequel le Ca est redistribué du BAPTA à l'EGTA. Selon le modèle, la redistribution est de type mono-exponentielle, avec une constante de temps de 262 ms. Les fonctions exponentielles calculées pour les pulses à -60 et -45 mV du signal avec BAPTA du panneau C avaient des constantes de temps de 339 et 315 ms respectivement, valeurs qui se rapprochent de la constante de temps prédite par le modèle mathématique de 262 ms.

Il a déjà été mentionné que bien que la méthode de l'EGTA et du Rouge de Phénol donne une mesure précise de ΔpH myoplasmique, ces valeurs de pH peuvent être estimées de 0.1-0.4 unités de pH trop acides (0.2 unités de pH en moyenne). Si le pH myoplasmique est plus alcalin que le pH calculé avec le Rouge de Phénol, alors la redistribution du Ca allant du BAPTA à l'EGTA devrait être plus lente. Et si on calcule mathématiquement le signal de $\Delta[\text{CaEGTA}]$ en tenant compte de ce facteur, le signal calculé devrait montrer un délai plus grand, et donc être superposé à la trace expérimentale. Cependant, contrairement aux attentes, malgré une correction relative au pH, les deux signaux ne se superposaient pas (résultats non illustrés). Ainsi, un autre facteur devait jouer un rôle pour permettre la superposition des deux signaux. Ce deuxième facteur était le mouvement à contre-sens des protons se déplaçant du myoplasmique vers l'intérieur du RS afin de contrebancer les charges du Ca libéré du RS lors d'une dépolarisation. Ce mouvement de protons rend le myoplasmique plus alcalin, comme le montre la petite dépression du signal de $\Delta[\text{CaEGTA}]$ du panneau C pour le
pulse à -20 mV indiquée par la flèche (car plus visible à de grandes dépolarisations). Ainsi la courbe lisse du panneau D superposée à la courbe de Δ[CaEGTA] expérimentale a été générée à partir du modèle mathématique en incluant la contribution des protons. Comme les traces expérimentales et calculées avec les paramètres appropriés se superposaient (et ce, pour toutes les stimulations de toutes les expériences) ceci a indiqué que le BAPTA agissait comme prévu, selon ses propriétés de tampon calcique.

5.4 - EFFET DU BAPTA SUR LE f_{Ca} À -45 ET À -60 mV

Encore une fois, afin d’estimer la perméabilité à la libération du Ca du RS, le f_{Ca}, la fraction du Ca libéré par un pulse, a été calculée. Comme mentionné plus haut, en présence du BAPTA, le temps de décours de la libération du Ca (dΔ[Ca_{T}] /dr) ne peut pas être directement estimé. C’est pourquoi le f_{Ca} a été utilisé car le f_{Ca} est une bonne estimation de l’intégrale de la perméabilité lorsqu’une petite fraction du contenu en Ca du RS est libérée par un pulse, ce qui était le cas pour les deux premiers pulses du protocole de stimulation. Il faut se rappeler que le but de cette 2e partie était de confirmer l’existence d’une composante additionnelle Ca-dépendante de la libération du Ca, présente seulement à de grandes dépolarisations et lorsque la perméabilité à la libération est maximale. Si on compare les signaux de Δ[CaEGTA] du panneau C de la figure 16, on voit que le f_{Ca} à -60 mV a augmenté suite à l’ajout du BAPTA. En effet, selon le panneau A, les signaux de Δ[CaEGTA] sont pareils pour les deux stimulations à -60 mV mais le signal de Δ[CaEGTA]_{MAX} est plus petit en présence de BAPTA. Bien que cette augmentation du f_{Ca} à -60 mV ait également été observée dans les expériences en condition contrôle (non illustré sur cette figure), la grande réduction du signal de
Δ[CaEGTA] à -45 mV est associée à la présence du BAPTA. Cette observation supporte donc de l'existence d'une composante additionnelle Ca-dépendante de la libération du Ca durant les 30 ms d'un pulse à -45 mV, absente à -60 mV. Les panneaux A, B, C et D de la figure 17 sont des graphiques du f_{Ca} en fonction du temps après le traitement à la saponine.

Figure 17. Temps de décours du f_{Ca} (-45 mV) et f_{Ca} (-60 mV) en présence du BAPTA et en condition contrôle. A) Graphique du f_{Ca} (-45 mV) en fonction du temps après le traitement à la saponine. Les cercles blancs représentent les stimulations en condition contrôle. Les cercles noirs sont les stimulations en présence de 8 mM BAPTA (trait horizontal). B) Graphique de f_{Ca} (-45 mV) vs. temps, pour une expérience contrôle. Comme en D, le début et la fin du trait horizontal représente le temps où la solution interne a été rincée (soit avec une solution contenant 8 mM de BAPTA ou avec la même solution contrôle du début des expériences). C) et D) sont des graphiques correspondant respectivement aux expériences des panneaux A et B à -60 mV.

Les segments horizontaux indiquent le temps pendant lequel les compartiments latéraux contenaient soit une solution avec 8 mM BAPTA (panneaux A et C), soit une solution contrôle (panneaux B et D). Les panneaux A et B montrent les valeurs obtenues pour
toutes les stimulations d’une expérience, à -45 mV. Le panneau A indique que l’addition de 8 mM BAPTA dans la solution interne diminue le \(f_{Ca} \) en fonction du temps, diminution non observée en condition contrôle (panneau B). Quoique vraisemblablement attribuable au BAPTA, la diminution du \(f_{Ca} \) aurait pu être due à des effets non reliés au pouvoir tampon du BAPTA, car le \(f_{Ca} \) ne remonte pas aux valeurs initiales après le retrait du BAPTA des compartiments latéraux. Ceci sera adressé plus en détail dans la discussion. Les panneaux C et D montrent aussi la relation entre le \(f_{Ca} \) et le temps de l’expérience pour le pulse à -60 mV. Comme mentionné plus haut, le BAPTA n’a pas diminué mais a augmenté le \(f_{Ca} \) dans toutes les expériences à -60 mV (contrôle et avec BAPTA). Quoique non explicable, cette augmentation du \(f_{Ca} \) obtenue avec et sans BAPTA n’était pas significativement différente dans les deux types d’expériences.

5.5 - EFFETS DE 8mM BAPTA SUR LES MOUVEMENTS DE CHARGES INTRAMEMBRANAIRE, \(Q_{cm} \)

La figure 18 illustre la quantité de charges intramembranaires ayant bougé (\(Q_{cm} \)) durant un pulse en fonction du temps pour toutes les stimulations et tous les pulses du protocole expérimental. Les cercles noirs, les cercles blancs, les étoiles et les losanges blancs représentent respectivement les pulses à -60, -45 (30 ms), -45 et -20 mV. Considérant la non-uniformité des valeurs obtenues à chacun des pulses, les symboles de cette figure indiquent que la quantité de charges ayant bougé est restée approximativement constante. Les symboles de \(Q_{cm} \) pour le pulse dépolarisant de 30 ms à -45 mV semblent plus stables que les autres car ces valeurs n’ont pas subi la correction relative au courant ionique non-linéaire. Les losanges représentant le pulse à -20 mV montrent une légère augmentation de 8% 50-60 min après l’addition de BAPTA. Cette
petite augmentation n’est cependant pas significativement différente de l’augmentation de 11% en condition contrôle.

![Diagram](image)

Figure 18. Effet du BAPTA sur les mouvements de charges intramembranaires. A) Graphique de Q_{cm} vs. temps après le traitement à la saponine. Les symboles en forme de cercles noirs, cercles blancs, étoiles, et losanges blancs représentent respectivement les Q_{cm} du pulse à -60, le petit pulse à -45, le long pulse à -45 et celui à -20 mV. Le trait horizontal indique la période pendant laquelle le BAPTA était présent dans la solution interne de cette expérience, qui est la même que celle des figures 16 et 17. À l’exception des valeurs obtenues pour le petit pulse de -45 mV, les valeurs des autres pulses ont été obtenues par l'intégrale de l'aire sous la courbe du signal de Q_{cm} correspondant à la fin du pulse. La ligne constante traversant les valeurs du petit pulse à -45 mV correspond à la moyenne des valeurs de Q_{cm} pour les stimulations en condition contrôle. Elle indique que les valeurs de Q_{cm} diminuent en présence du BAPTA et reviennent au niveau de base après le retrait du BAPTA de la solution interne. B) Les traces de Q_{cm} pour le pulse à -45 mV continues et pointillées représentent respectivement les périodes avant et 53 minutes après l’ajout du BAPTA. C) La trace continue est la même qu’en B), mais la trace pointillée a été obtenue 72 minutes après le retrait du BAPTA des compartiments latéraux. Les lettres "a", "b", et "c" correspondent aux mêmes stimulations qu’en A.

Contrairement aux deux derniers pulses (le long pulse à -45 mV et le pulse à -20 mV), les valeurs de Q_{cm} du petit pulse à -45 mV ont diminué de 12% durant la période en présence du BAPTA. Cette diminution de 12% est plus petite que l’augmentation de 3% en condition contrôle, quoique non statistiquement différente.

Le panneau en B montre les traces superposées de $I_{test} - I_{contrôle}$ associées au petit
pulse à −45 mV juste avant (trace continue) et environ 1 heure après l’ajout du BAPTA (trace pointillée). Le BAPTA diminue la composante Q_γ de $I_{\text{test}}-I_{\text{contrôle}}$, sans affecter la composante Q_β. Ceci peut être expliqué par le fait que le BAPTA inhibe le Q_γ sans affecter (ou seulement très peu) le Q_β. Comme le BAPTA ne semble pas affecter la quantité maximale de charges ou le nombre de charges totales durant le pulse à −45 mV, cela indique que le BAPTA diminue les effets du Ca sur la cinétique Q_γ (voir mécanismes rétroactifs du Ca de l’introduction). Cet effet du BAPTA sur le Q_γ est réversible, comme montré en C où la trace continue représente le $I_{\text{test}}-I_{\text{contrôle}}$ avant l’ajout du BAPTA et la trace pointillée représente le courant d’une stimulation effectuée 72 minutes après le retrait du BAPTA de la solution interne. Ces deux traces se superposent, indiquant que l’effet du BAPTA est réversible.

5.6 - RÉSUMÉ DES EFFETS DU BAPTA SUR LA LIBÉRATION DU Ca$^{2+}$ ET SUR LE Q_{cm}

La Table 2 résume les effets du BAPTA sur la libération du Ca du RS en termes de $\Delta[\text{CaEGTA}]_{\text{MAX}}$, de charges intramembranaires (Q_{cm}) et de f_{Ca}.

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>BAPTA</th>
<th>Control</th>
<th>BAPTA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$\Delta[\text{CaEGTA}]_{\text{MAX}}$ (μM)</td>
<td>2383 ± 117</td>
<td>2062 ± 187</td>
<td>0.73 ± 0.04</td>
</tr>
<tr>
<td>2</td>
<td>$Q_{\text{OFF}}(-45)$ (nC μF$^{-1}$)</td>
<td>4.70 ± 0.49</td>
<td>4.22 ± 0.96</td>
<td>1.03 ± 0.12</td>
</tr>
<tr>
<td>3</td>
<td>$Q_{\text{OFF}}(-20)$ (nC μF$^{-1}$)</td>
<td>22.3 ± 2.5</td>
<td>16.6 ± 2.2</td>
<td>1.11 ± 0.07</td>
</tr>
<tr>
<td>4</td>
<td>$f_{\text{Ca}}(-60)$</td>
<td>0.0212 ± 0.0027</td>
<td>0.0215 ± 0.0041</td>
<td>1.90 ± 0.25</td>
</tr>
<tr>
<td>5</td>
<td>$f_{\text{Ca}}(-45)$</td>
<td>0.0642 ± 0.0210</td>
<td>0.0485 ± 0.0170</td>
<td>0.847 ± 0.050</td>
</tr>
</tbody>
</table>

Values were obtained before and 50-60 min after exchanging the end-pool solution for one containing no BAPTA (control) or 8 mM BAPTA. Values are means ± s.e.m. For control, $n = 5$; for BAPTA, $n = 7$. These values were obtained 80 min on average after saponin treatment in both the BAPTA and control experiments. $\Delta[\text{CaEGTA}]_{\text{MAX}}$: maximum of $\Delta[\text{CaEGTA}]$ signal. $Q_{\text{OFF}}(-45)$: integral of the $I_{\text{on}}-I_{\text{off}}$ signal during the short ON pulse to −45 mV, $Q_{\text{OFF}}(-20)$: estimate of the amount of charge from the OFF current following the pulse to −20 mV, $f_{\text{Ca}}(-60)$ and $f_{\text{Ca}}(-45)$: f_{Ca} at −60 and −45 mV, respectively. Average values before and 50-60 min after the solution change in the BAPTA experiments were: holding current, −44.8 and −64.1 nA; phenol red concentration, 1.07–1.97 mM; resting pH, 7.18–7.07; C_{app}, 0.0149–0.0159 μF; r_c, 4.40–5.52 $\text{M} \Omega \text{cm}^{-1}$; c_{Ca}, 0.193–0.191 μF cm$^{-1}$. The corresponding values in the control experiment were −41.5 and −49.6 nA; 1.07–1.88 mM; 7.15–7.07; 0.0142–0.0142 μF; 4.85–5.30 MΩ cm$^{-1}$; and 0.182–0.175 μF cm$^{-1}$. With the exception of a small increase in C_{app} in the BAPTA experiments, none of these parameter values or changes in values with time were significantly different in the BAPTA vs. the control experiments.

Table 2.
Les expériences en condition contrôle et celles avec BAPTA avaient approximativement le même $\Delta [\text{CaEGTA}]_{\text{MAX}}$ avant le rinçage des compartiments latéraux. En effet, les valeurs de 2383 ± 117 et 2062 ± 187 μM respectivement n'étaient pas significativement différentes. En condition contrôle, le $\Delta [\text{CaEGTA}]_{\text{MAX}}$ a diminué à 0.73 fois sa valeur avant le rinçage des compartiments latéraux. En présence de BAPTA, 50-60 minutes après le rinçage, le $\Delta [\text{CaEGTA}]_{\text{MAX}}$ a diminué à 0.42 fois sa valeur (en moyenne) avant le rinçage.

En ce qui concerne le Q_{ONcm} ("ON" définissant la composante initiale sortante du courant dû au mouvement des charges intramembranaires, au début d'une dépolarisation) du petit pulse à −45 mV, le BAPTA a diminué les valeurs initiales de 12%, contrairement à l'augmentation après rinçage de 3% du Q_{ONcm} en condition contrôle. Quoique ces deux effets donnèrent des résultats non statistiquement différents, la diminution des valeurs de Q_{ONcm} due au BAPTA était typiquement observée. Le BAPTA a augmenté les valeurs de Q_{OFF} du pulse à −20 mV ("OFF" définissant la composante finale entrante de I_{cm}) de 8%, effet non significativement différent de l'augmentation de 11% en condition contrôle.

Les valeurs de f_{Ca} à −60 mV avant le rinçage étaient essentiellement pareilles pour les expériences contrôles et celles avec BAPTA. En effet, 0.0212 ± 0.0027 n'est pas significativement différent de 0.0215 ± 0.0041. La table 2 indique aussi que le BAPTA n'a pas affecté le f_{Ca} à −60 mV, comme le montrent les valeurs de 1.90 ± 0.25 (contrôle) et 1.54 ± 0.27 (avec BAPTA).

Finalement, en ce qui concerne les valeurs de f_{Ca} à −45 mV pour les deux types d'expériences, ces valeurs ne diffèrent pas avant le rinçage. Cependant, contrairement aux valeurs à −60 mV, le BAPTA a significativement diminué les valeurs de f_{Ca} à −45
mV. Cette diminution statistiquement significative du f_{Ca} était de 0.400 ± 0.046 fois sa valeur avant le rinçage avec le BAPTA comparativement à une petite diminution de 0.847 ± 0.050 en condition contrôle.
6 - DISCUSSION

Deuxième projet

Le but de cette 2e partie de mon projet de recherche était d’évaluer si oui ou non il existe un mécanisme Ca-dépendant responsable de l’augmentation de la libération de Ca du RS, seulement présent à de grandes dépolarisations. Pour se faire, la relation entre $\Delta[Ca^{2+}]$ myoplasmique et la perméabilité à la libération du Ca (ou f_{Ca}) à -45 mV comparativement à -60 mV a été étudiée. Une grande concentration de BAPTA (8 mM) a donc été introduite dans le myoplasme afin de moduler $\Delta[Ca^{2+}]$ à l’embouchure d’un canal de libération du Ca ouvert. Ces expériences complètent une série d’expériences effectuées plus tôt dans le laboratoire où la $\Delta[Ca^{2+}]$ myoplasmique était modulée par la variation de [Ca$_{RS}$], toujours dans le but d’étudier le f_{Ca} à -45 mV vs. -60 mV.

6.1 - EFFETS DU BAPTA

Les résultats des expériences de ce projet indiquent que 8 mM BAPTA réduit significativement la perméabilité à la libération, estimée par le f_{Ca}, à -45 mV sans diminuer significativement le f_{Ca} à -60 mV (Table 2). Ces résultats suggèrent l’existence d’un mécanisme Ca-dépendant présent à de grandes dépolarisations. D’après les figures 16B et 17A, les expériences en présence du BAPTA n’ont pas retrouvé leurs valeurs de f_{Ca} de base, suite au retrait du BAPTA des compartiments latéraux. Ceci aurait pu être causé par le BAPTA n’ayant pas diffusé complètement par les extrémités de la fibre. Mais ceci ne semble pas être le cas car la diminution des valeurs de $\Delta[CaEGTA]_{MAX}$ a cessé après que le BAPTA ait été retiré de la fibre (figure 16B). Il faut se rappeler que comme les valeurs de $\Delta[CaEGTA]_{MAX}$ diminuent initialement même en absence de
BAPTA, un retour complet de $\Delta[\text{CaEGTA}]_{\text{MAX}}$ aux valeurs initiales ne devraient pas être observé à la fin des expériences. Aussi, le délai observé dans les signaux de $\Delta[\text{CaEGTA}]$ dû au BAPTA ainsi que la composante exponentielle lente associée à la redistribution du Ca allant du BAPTA à l'EGTA après le pulse, étaient des paramètres réversibles dans toutes les expériences avec BAPTA. Il semble donc que le BAPTA soit responsable d'une diminution irréversible des valeurs de $\Delta[\text{CaEGTA}]_{\text{MAX}}$ à -45 mV, même après son retrait du le myoplasme. Un autre effet relié au BAPTA est que ce tampon semble réduire la composante Q_Y du I_{cm} à -45 mV (figure 18B). En effet, le pouvoir tampon du BAPTA semble ralentir la cinétique de Q_Y, ce qui expliquerait la diminution de la partie initiale du signal de I_{cm}. Ainsi, une diminution de l’activation voltage-dépendante à -45 mV pourrait causer, en totalité ou en partie, la réduction du f_{Ca} à -45 mV.

En résumé, il n’est pas possible de conclure si c’est le pouvoir tampon du BAPTA pour le Ca, un changement irréversible et/ou une diminution de l’activation voltage-dépendante qui est en grande partie responsable de la diminution de la perméabilité à la libération à -45 mV en présence du BAPTA. Il est à noter que le BAPTA modifie l’amplitude et le temps de décours du signal de $\Delta[\text{CaEGTA}]$ dû à ses propriétés de tampon calcique (Table 2 et figure 16B et D). Mais le BAPTA n’a pas diminué le f_{Ca} à -60 mV comparativement à la condition contrôle, ce qui serait le cas si le BAPTA avait un effet pharmacologique ou toxique imprévisible. Ainsi, malgré ces incertitudes, les résultats en présence du BAPTA supportent l’existence d’une augmentation Ca-dépendante de la perméabilité à la libération à de grandes dépolarisations.
Les résultats de cette partie complètent des résultats antérieurs obtenus dans le laboratoire. Ces expérience antérieures avaient été menées en diminuant le Δ[Ca$^{2+}$] à l'embouchure d'un canal de libération ouvert en enlevant le Ca de la solution interne. Des courbes de la perméabilité vs. [Ca$_{RS}$] avaient ensuite été obtenues à -60 et -45 mV (figure 19A). L’approche était de comparer le ratio de la perméabilité à -45 mV sur celle à -60 mV à des [Ca$_{RS}$] physiologiques (>1000 µM), au ratio de la perméabilité à ces deux voltages lorsque [Ca$_{RS}$] était ≈ 300µM (au sommet de la courbe en cloche, figure 19C).

A des valeurs de [Ca$_{RS}$] < 300µM, les mécanismes rétroactifs Ca-dépendants sont grandement réduits et presque toutes les charges interambranaires devraient avoir bougé à l'état stable (figure 19B). Alors à des petites [Ca$_{RS}$], le ratio du f_{Ca} (-45mV)/f_{Ca} (-60mV) devrait refléter l’activation voltage-dépendante uniquement. Les résultats ont montré que le ratio de $f_{Ca}(-45mV)/f_{Ca}(-60mV)$ était plus grand lorsque [Ca$_{RS}$] était >1000 µM vs. lorsque [Ca$_{RS}$] était < 300 µM. Le ratio plus élevé aux grandes valeurs de [Ca$_{RS}$] pourrait être expliqué par la composante additionnelle de la libération du Ca seulement présente à de grandes dépolarisations.

Il avait aussi été observé que le signal de perméabilité atteignait son maximum très rapidement après le début du pulse à -45 mV (environ après 30 ms), AVANT que nombre total de charges ayant bougé n'ait atteint son maximum. De plus, à de grandes [Ca$_{RS}$], au moment où la perméabilité était maximale, le I_{em} était associé à une composante Q_{r} plus grande que la composante Q_{r} aux petites [Ca$_{RS}$]. Ainsi, au maximum de la perméabilité et à de grandes [Ca$_{RS}$], la cinétique de Q_{r} était accélérée par le Ca, par
rétroaction positive. Mais cette augmentation de Q_t semblait insuffisante pour expliquer à elle seule le grand ratio de $f_{Ca}(-45 \text{ mV}) / f_{Ca}(-60 \text{ mV})$ lorsque $[Ca_{RS}]$ était $>1000 \ \mu\text{M}$ vs. lorsque $[Ca_{RS}]$ était $<300 \ \mu\text{M}$.

Figure 19. Perméabilité à la libération vs. $[Ca_{RS}]$ à -45 mV et à -60 mV. A) Les symboles noirs et blancs représentent des stimulations effectuées toutes les 5 minutes. Les symboles noirs représentent la perméabilité à -45 mV en fonction des valeurs de $[Ca_{RS}]$, ces deux valeurs étant obtenues au maximum du signal de $\Delta[Ca]/dt$. Les symboles blancs représentent aussi la valeur de la perméabilité à -60 mV en fonction $[Ca_{RS}]$, les deux valeurs étant obtenues dans ce cas-ci à partir des 100 dernières ms du pulse à -60 mV. Les axes de 0.1 et 1.0 sont pour les valeurs à -60 et à -45 mV respectivement. Les symboles en forme de triangles inversés sont des stimulations effectuées environ 1 minute avant la stimulation suivante, représentée par un carré. Les triangles suivant les carrés sont des stimulations effectuées 5 minutes après. Même si les pulses à -60 et -45 mV ont été effectués durant la même stimulation, les symboles ne sont pas alignés (c'est-à-dire que la $[Ca_{RS}]$ n'est pas la même pour les 2 pulses) car la concentration en Ca du RS est moindre pour un pulse à -45 vs. le pulse à -60 mV durant la même stimulation. Dans ces expériences, le Ca a été enlevé de la solution interne après les trois premières stimulations. B) Graphique de la fraction de Q_{Ca} qui a bougé au maximum du signal de $\Delta[Ca]/dt$ à -45 mV, à l'état stable. C) Les cercles blancs représentent le ratio de la perméabilité à la libération à -45 mV sur celle à -60 mV comme en A, à partir de la même stimulation. Les cercles noirs représentent le même ratio, normalisé par la fraction de Q_{Ca} qui a bougé, selon les valeurs obtenues au panneau B. La ligne horizontale représente ce ratio si seulement le voltage était impliqué dans le mécanisme de la libération (c'est-à-dire, si les processus Ca-dépendants sont éliminés) et a une valeur de 12.2.

Suite à ces observations, il avait tout de même été proposé que la diminution du f_{Ca} à -45 mV par le BAPTA (figure 17A) était due à la diminution du mécanisme Ca-
dépendant, responsable de l’augmentation du ratio des $f_{Ca}(\text{-}45\text{mV})/f_{Ca}(\text{-}60\text{mV})$ lorsque $[Ca_{RS}]$ était >1000 μM. Les expériences de cette deuxième partie de mon projet de recherche visaient donc à compléter ces résultats antérieurs selon lesquels une composante Ca-dépendante additionnelle était responsable de l’augmentation de la perméabilité à de grandes dépolarisations (-45 mV) et à de grandes $[Ca_{RS}]$, lorsque le degré d'activation des RyRs était à son maximum, et lorsqu'une petite fraction de charges intramembranaires avait bougé.

6.3 - AUGMENTATION DE LA PERMÉABILITÉ À LA LIBÉRATION PEUT-ÊTRE DUE À LA SOMME DU Ca DE 2 RyRs COUPLÉS, ET ACCÉLÉRATION DE LA CINÉTIQUE DE Q_{i} PAR LE Ca

La somme du Ca libéré par deux RyRs voisins activés en même temps par le voltage, et recrutant des canaux voisins par LCIC pourrait expliquer cette activation additionnelle de la libération à -45mV. La figure 20 modifiée de Shirokova et al. (1996), illustre comment ce mécanisme pourrait agir. Chaque panneau montre une rangée double de RyRs (cercles blancs), où un RyR sur deux est couplé à un senseur de voltage (illustré par un cercle identifié d’un "V"). Le panneau A illustre deux RyRs voisins activés par le voltage (entourés d’un carré blanc). Les courbes qui tendent vers la rangée double représentent les gradients de $\Delta[Ca^{2+}]$ de ces deux RyRs couplés et activés, en absence de BAPTA. La courbe médiane résulte de la somme des gradients de $\Delta[Ca^{2+}]$ si les deux RyRs sont ouverts en même temps. La ligne brisée horizontale représente un seuil d'activation hypothétique pour activer un RyR intermédiaire par LCIC (par le Ca venant des deux RyRs couplés). Au point médian entre les deux RyRs couplés, ce seuil hypothétique est au-dessus du gradient de $\Delta[Ca^{2+}]$ d'un seul RyR couplé, et juste en-
dessous de la somme des gradients des deux RyRs couplés. Ainsi, si les deux RyRs voltage-dépendants sont activés en même temps, un RyR voisin non couplé pourrait être activé par la somme de leurs gradients, par le mécanisme de LCIC. Ceci pourrait donc expliquer l’augmentation de la perméabilité à -45 mV et non observée à -60 mV, car à de grandes dépolarisations la probabilité que 2 RyRs couplés soient activés en même temps est plus élevée.

![Figure 20. Effets de sommation et de 8 mM BAPTA sur le gradient de Δ[Ca²⁺] de canaux de libération du Ca du RS ouverts. A) Les deux rangées de cercles illustrent la disposition des RyRs dans la membrane du RS. Les canaux identifiés d'un "V" sont associés à un DHPR situé dans la membrane du tubule-t. Les canaux ouverts (activés) sont entourés d'un carré. Chacune des courbes qui tend vers la rangée double de cercles représente le gradient de Δ[Ca²⁺] venant d'un RyR ouvert, en présence de 20 mM d'EGTA seulement. Les courbes ont été calculées selon les équations B14 et B21 de Pape et al., (1995) et avec les paramètres suivants: la constante de diffusion, D_{Ca} = 5*10^{-6} \text{ cm}^{2} \text{ s}^{-1}; la constante de vitesse de réaction, k_D = 0.025*10^{8} \text{ M}^{-1} \text{ s}^{-1}; la concentration de EGTA libre = 18.24 mM et le flux des ions Ca = 5*10^{5} \text{ ions s}^{-1}. Il est à noter que l'état stable du gradient à l'embouchure d'un canal est atteint presque instantanément, de l'ordre de milliseconde. La courbe la plus haute représente la somme des deux courbes de gradients, si les deux canaux sont ouverts simultanément. La distance entre deux canaux est de 30 nm. La ligne horizontale pointillée est un seuil hypothétique d'activation de RyR par LCIC. B) Même que A, sauf que la distance entre les canaux activés par le voltage est plus grande. La ligne brisée verticale indique un RyR non couplé à un DHPR. C) Même que A, sauf que les calculs ont été faits avec 8 mM BAPTA, sans EGTA.

En B, les gradients de Δ[Ca²⁺] entre 2 RyRs couplés et séparés par 120 nm - la distance entre 2 RyRs étant d'environ 30 nm - est une situation plus représentative de ce qui pourrait se passer à -60 mV, en présence d'EGTA seulement. Comme le montre la
figure, la somme des gradients de $\Delta[Ca^{2+}]$ de ces RyRs distancés est trop faible pour qu'un RyR voisin immédiat non couplé à un DHPR soit activé (la ligne pointillée verticale montre ce RyR non couplé). Ainsi, même si ces deux RyRs éloignés sont activés en même temps par leurs DHPRs respectifs (quoique la probabilité que cela se produise soit faible, à de faibles dépolarisations), la somme de leurs gradients de Ca est sous le seuil de $[Ca^{2+}]$ requis (ligne brisée horizontale) pour l'activation d'un RyR non couplé voisin, ce qui expliquerait le manque d'effet du BAPTA à -60 mV. En C, on voit qu'en présence de 8 mM de BAPTA, l'activation d'un RyR intermédiaire est impossible, même si ses voisins immédiats sont activés. En résumé, pour qu'un RyR non couplé soit activé par LCIC, une situation telle qu'illustrée en A est requise. Une fois ce RyR intermédiaire activé par LCIC, d'autres RyRs non-couplés voisins pourraient être recrutés par la somme de $\Delta[Ca^{2+}]$ libéré par ces 3 RyRs par un processus de propagation qui pourrait mener au recrutement de plusieurs RyRs. Des résultats de modélisation (Stern et al., 1997) ont proposé qu'une réponse de "tout ou rien" est évitée par l'inactivation de la libération du Ca par le Ca et/ou des "trous" périodiques observés dans la rangée double de RyRs dans la membrane du RS (Franzini-Armstrong et al., 1999). Mais selon les hypothèses mentionnées ci-haut, il faut se rappeler que les RyRs couplés voisins doivent être stimulés et activés en même temps pour que ce mécanisme de propagation d'activation ait lieu.

Cependant, il existe un problème relié aux hypothèses énoncées plus haut: dans les expériences, le maximum du signal de la perméabilité coïncidait avec le moment où seulement une petite fraction des charges intramembranaires avait bougé, ce qui implique qu'une petite densité de RyRs étaient activés par le voltage. De plus, si les sites
d'activation de la libération du Ca voltage-dépendants sont distribués au hasard, la probabilité que 2 RyRs soient activés par le voltage en même temps devrait être très faible, même à de grandes dépolarisations. Mais selon Jong et collaborateurs (1995), une augmentation de Δ[Ca\(^{2+}\)] libéré par des RyRs ouverts voisins à de grandes [Ca\(_{RS}\)] peut augmenter la cinétique de \(Q_r\). Ainsi, le Ca venant d'un RyR activé pourrait accélérer la cinétique de \(Q_r\) d'un DHPR voisin qui activerait son RyR couplé, menant à l'activation de 2 RyRs couplés voisins.

En résumé, une composante de la libération de Ca additionnelle Ca-dépendante était seulement présente à de grandes dépolarisations car la densité de RyRs couplés et activés était plus grande, mais aussi parce que le Ca pouvait accélérer la cinétique de \(Q_r\). A de grandes dépolarisations, le degré d'activation maximal des RyRs était atteint au moment où seulement une petite quantité de charges intramembranaires avaient bougé. Suivant cette observation, il semblait donc peu probable que même à de grandes dépolarisations, 2 RyRs couplés voisins soient activés en même temps. Il avait toutefois déjà été démontré que le Ca pouvait accélérer la cinétique de \(Q_r\) à de grandes [Ca\(_{RS}\)]. Ainsi, comme une grande quantité de Ca avait été libérée à de grandes dépolarisations, ce Ca avait dû accélérer la cinétique de \(Q_r\), et augmenter de la perméabilité à -45 mV, même si seulement une petite partie des charges avaient bougé.

6.4 - POSSIBILITÉ SELON LAQUELLE LA COMPOSANTE ADDITIONNELLE À -45 mV N’IMPLIQUE PAS LES RyRs NON-COUPLÉS

L’hypothèse selon laquelle les RyRs couplés pourraient être partiellement activables par le Ca a déjà été suggérée. En effet, la sous-unité \(\alpha_1S\) des DHPRs est formée de 4 répétitions à 6 domaines transmembranaires (figure 3) et donc 4 segments \(S_4\) qui,
selon Jong et collaborateurs (1995) devraient tous passer à un état actif avant que le DHPR ne puisse ouvrir un RyR. Selon une étude récente de Pape et Carrier (2002), certaines charges Q, bougent durant les périodes de transition entre l'état inactif et activé des DHPRs, confirmant l'hypothèse de Jong et collaborateurs. Alors, il serait possible que durant ces transitions, le Ca se lie à l'un des sites d'activation du DHPR, ce qui remplacerait l'activation par le potentiel. Le résultat de cette combinaison d'activation par le voltage et par LCIC pourrait être augmentée par la libération du Ca venant d'autres RyRs couplés, eux-mêmes activés sans qu'une grande quantité de charges intramembranaires n'ait bougé.

Ainsi, les canaux non couplés ne seraient pas nécessaires à ce processus d'activation Ca-dépendant n'impliquant que les RyRs couplés, quoiqu'un contrôle minimal par le voltage serait nécessaire au recrutement de canaux couplés additionnels.

Pour terminer, quel que soit le mécanisme impliqué, l'augmentation Ca-dépendante de la libération du Ca à des potentiels plus positifs semble importante pour qu'une fibre musculaire atteigne un niveau d'activation maximal durant un potentiel d'action.
RÉSUMÉ ET PERSPECTIVES

En résumé, les résultats des expériences concernant le premier projet de recherche suggèrent qu’à de faibles dépolarisations, et sous des conditions expérimentales permettant l’isolation des sites de libération de Ca, un site de libération de Ca est constitué d’un RyR activé par son DHPR associé. Ceci implique que le mécanisme régissant la LCIC au niveau d’un tel site est un mécanisme d’autorégulation, selon lequel le Ca libéré par un RyR peut se lier sur ce même RyR pour activer la libération de Ca additionnel. Ces études ayant été conduites en voltage imposé sur des muscles de grenouilles pourraient être reproduites sur des fibres de mammifères, se rapprochant plus de l’anatomie des fibres musculaires humaines. De plus, des expériences en courant imposé pourraient nous informer sur l’importance de ce mécanisme, sous des conditions plus physiologiques.

Les expériences du deuxième projet proposent que la composante de libération de Ca additionnelle, observée seulement à de grandes dépolarisations et à de grandes concentration de Ca dans le RS, est due au recrutement de canaux voisins par LCIC. Ceci est possible car à de grandes dépolarisations, une plus grande densité de DHPRs est activée. De plus, il semble qu’un mécanisme d’accélération du mouvement de charges intramembranaires par le Ca soit impliqué pour permettre cette activation additionnelle. Comme ces études ont été effectuées seulement à deux potentiels (-60 et -45 mV), il serait utile de refaire ces expériences sur une échelle de potentiels (par exemple, -80 à +40 mV) afin de savoir à partir de quelle valeur cette composante est observée. Il serait ainsi peut-être possible d’expliquer pourquoi LCIC n’est pas un mécanisme de "tout ou rien".
REMERCIEMENTS

J'aimerais d'abord remercier du fond du cœur mon professeur et mentor, le Dr. Paul C. Pape d'abord pour m'avoir accueillie pendant deux ans et demi dans son laboratoire. Ensuite pour m'avoir donné la chance de travailler avec lui pour me donner le bagage nécessaire à la poursuite d'études supérieures scientifiques. Et enfin, pour m'avoir encouragée et soutenue tout au long de mon cheminement. Mille fois merci!

J'aimerais ensuite remercier ma famille, mon pilier sans quoi les obstacles de la vie m'auraient paru insurmontables. Merci à Many, Papy et Poupette!

Il ne faudrait pas oublier ma formidable technicienne de laboratoire, Nicole Carrier, qui m'a appris les techniques de base, et avec qui j'ai développé une profonde amitié...

Enfin, je tiens à remercier tous les professeurs qui ont participé à ma formation d'étudiante-chercheure, ainsi que mes collègues qui ont su mettre du piquant dans ma vie universitaire!!!

dihydroxyridine receptor from Rana catesbeiana. *Journal of Biological Chemistry* **273** (39), 25503-25509.
Recruitment of Ca$^{2+}$ release channels by calcium-induced Ca$^{2+}$ release does not appear to occur in isolated Ca$^{2+}$ release sites in frog skeletal muscle

Karine Fénelon and Paul C. Pape

Département de physiologie et biophysique, Université de Sherbrooke Faculté de medicine, 3001, 12e Avenue Nord, Sherbrooke (Québec), Canada J1H 5N4

Ca$^{2+}$ release from the sarcoplasmic reticulum (SR) in skeletal muscle in response to small depolarisations (e.g. to -60 mV) should be the sum of release from many isolated Ca$^{2+}$ release sites. Each site has one SR Ca$^{2+}$ release channel activated by its associated T-tubular voltage sensor. The aim of this study was to evaluate whether it also includes neighbouring Ca$^{2+}$ release channels activated by Ca-induced Ca$^{2+}$ release (CICR). Ca$^{2+}$ release in frog cut muscle fibres was estimated with the EGTA/phenol red method. The fraction of SR Ca content ([Ca$_{SR}$]) released by a 400 ms pulse to -60 mV (denoted f_{C2}) provided a measure of the average Ca$^{2+}$ permeability of the SR associated with the pulse. In control experiments, f_{C2} was approximately constant when [Ca$_{SR}$] was 1500–3000 μM (plateau region) and then increased as [Ca$_{SR}$] decreased, reaching a peak when [Ca$_{SR}$] was 300–500 μM that was 4.8 times larger on average than the plateau value. With 8 mM of the fast Ca$^{2+}$ buffer BAPTA in the internal solution, f_{C2} was 5.0–5.3 times larger on average than the plateau value obtained before adding BAPTA when [Ca$_{SR}$] was 300–500 μM. In support of earlier results, 8 mM BAPTA did not affect Ca$^{2+}$ release in the plateau region. At intermediate values of [Ca$_{SR}$], BAPTA resulted in a small, if any, increase in f_{C2}, presumably by decreasing Ca inactivation of Ca$^{2+}$ release. Since BAPTA never decreased f_{C2}, the results indicate that neighbouring channels are not activated by CICR with small depolarisations when [Ca$_{SR}$] is 300–3000 μM.

(Resubmitted 13 June 2002; accepted after revision 21 August 2002; first published online 20 September 2002)

Corresponding author: P. C. Pape. Département de physiologie et biophysique, Université de Sherbrooke Faculté de medicine, 3001, 12e Avenue Nord, Sherbrooke (Québec), Canada J1H 5N4. Email: paul.pape@usherbrooke.ca

It is now generally believed that an obligatory step of excitation–contraction coupling in fast-twitch skeletal muscle involves activation of dihydropyridine receptors (DHPRs) by T-tubular depolarisation (Rios & Brum, 1987; Tanabe et al. 1988). Activation of a DHPR – also termed voltage sensor – opens its associated Ca$^{2+}$ release channel (ryanodine receptor or RyR) in the apposed sarcoplasmic reticulum (SR) membrane, presumably through some type of mechanical coupling, as first proposed by Schneider & Chandler (1973). In the terminal cisternae of the SR, Ca$^{2+}$ release channels are disposed in a double array in which every other channel is coupled to a voltage sensor (Block et al. 1988), suggesting that uncoupled channels might be activated by Ca (Block et al. 1988; Rios & Pizarro, 1988). The aim of the experiments described in this article was to evaluate whether or not such a mechanism occurs in the vicinity of a Ca$^{2+}$ release channel activated by its associated voltage-sensor protein.

With small depolarisations, the rate of Ca$^{2+}$ release is much less than the maximum rate indicating that only a small fraction of Ca$^{2+}$ release channels are activated (estimated to be less than 1 in 10 000 channels at -75 mV in Pape et al. 1995). It follows that the average distance between Ca$^{2+}$ release sites should be relatively large so that it is very unlikely that a site could be influenced by Ca released from neighbouring sites. This isolation is further enhanced by the presence of 20 mM of the high-affinity Ca$^{2+}$ buffer EGTA in the internal solutions in this study. A Ca$^{2+}$ release site in this context is considered to be a single Ca$^{2+}$ release channel activated by its associated voltage-sensor protein or by a single such voltage-activated channel, and channels in the immediate vicinity activated by Ca-induced Ca$^{2+}$ release (CICR). A Ca$^{2+}$ release site corresponds to the discrete, localised Ca$^{2+}$ release events observed with confocal microscopy and termed Ca$^{2+}$ sparks. Pape & Carrier (1998) and Schneider (1999) raised doubts about an earlier study indicating that a large fraction of Ca$^{2+}$ sparks recorded at -70 mV include Ca$^{2+}$ release from two to three channels (Klein et al. 1996). In his perspective, Schneider (1999) reviewed this and other studies and indicated that it had not yet been conclusively established whether or not Ca$^{2+}$ sparks include neighbouring channels activated by CICR. More recently, González et al. (2000) concluded...
from drug-induced/modified Ca\(^{2+}\) sparks that six or more channels do in fact open during a Ca\(^{2+}\) spark. As this study was done with permeabilised fibres, however, it is unclear whether their results apply to Ca\(^{2+}\) sparks in polarised muscle under more physiological conditions.

In order to evaluate if CICR occurs within Ca\(^{2+}\) release sites, Pape & Carrier (1998) studied the effect of varying the Ca content of the SR (denoted [Ca\(_{SR}\)]) on the permeability of the SR for Ca\(^{2+}\) release (denoted release permeability) in response to small depolarisations (to between -70 and -60 mV). The idea of varying [Ca\(_{SR}\)] is that it should produce approximately proportional changes in the concentration of free Ca\(^{2+}\) in the SR, the Ca\(^{2+}\) flux through an open channel, and \(\Delta[Ca^{2+}]\) at a Ca binding site on or near the myoplasmic opening of the channel. They found a bell-shaped relationship between release permeability and [Ca\(_{SR}\)] when [Ca\(_{SR}\)] increased from <100 to ~1000 \(\mu M\) (units referred to myoplasmic volume) with a maximum at ~300 \(\mu M\). This bell-shaped relationship indicates the presence of both CICR and Ca inactivation of Ca\(^{2+}\) release acting within single, isolated Ca\(^{2+}\) release sites.

The main experimental aim of this study was to evaluate the effect of a large concentration of the fast-acting Ca\(^{2+}\) buffer BAPTA on the release permeability at the peak of the release permeability vs. [Ca\(_{SR}\)] relationship. As indicated in the Discussion, this concentration should significantly reduce the release permeability at the peak if released Ca\(^{2+}\) activates neighbouring channels. There should be little if any detectable reduction in release permeability if the CICR mechanism involves an autoregulatory mechanism in which Ca\(^{2+}\) released from a channel binds to a site on the same channel thereby increasing its mean open time and/or unitary conductance.

METHODS

The experimental procedures are similar to those described in Pape & Carrier (1998) and Pape et al. (2002). Briefly, cold-adapted frogs (Rana temporaria) were decapitated and double pithed by protocols approved by the Comité d'éthique de l'expérimentation animale at the Université de Sherbrooke. A cut fibre (Hille & Campbell, 1976) from semi-tendinosus or ilio fibularis muscle stretched to a sarcomere spacing of 3.5-3.9 \(\mu m\) was mounted in a chamber maintained at 14-16°C. The voltage in one end pool, \(V_i\), was controlled with a voltage-clamp set-up. A holding current, \(I_h\), maintained the resting potential at ~90 mV.

Composition of the internal and external solutions

The BAPTA-free end-pool solutions contained 45 mm Cs-glutamate, 20 mm EGTA, 6.8 mm MgSO\(_4\), 5 mm Cs\(_2\)-ATP, 20 mm Cs\(_2\)-creatine phosphate, 5 mm Cs\(_2\)-phospho(enol)pyruvate and 5 mm 3-[N-morpholino]-propanesulfonic acid (MOPS). One of the BAPTA-free internal solutions contained no Ca and the other contained 1.76 mm Ca (estimated [Ca\(^{2+}\)] was 36 nm). One of the internal solutions with 8 mm BAPTA contained no Ca and the other contained 3.57 mm Ca (estimated [Ca\(^{2+}\)] was also 36 nm). These solutions contained 33 mm glutamate; the concentrations of EGTA, MgSO\(_4\), Cs\(_2\)-ATP, Cs\(_2\)-creatine phosphate, Cs\(_2\)-phospho(enol)pyruvate and MOPS were the same as those in the BAPTA-free solution. The pH of the internal solutions was adjusted to pH 7 at room temperature with CaOH. The estimated [Mg\(^{2+}\)] was 0.1 mM. The central pool solution contained 110 mm TEA-glucuronate, 10 mm MgSO\(_4\), 1 \(\mu M\) tetrodotoxin (TTX) and 10 mM MOPS adjusted to pH 7.1. It was nominally Ca free.

EGTA/pheno red method and estimation of [Ca\(_{SR}\)] in presence of BAPTA

As described in detail elsewhere (Pape et al. 1995), the total amount of Ca released from the SR into the myoplasm (denoted \(\Delta[Ca]\); the subscript T refers to total) of a fibre containing a large concentration of EGTA can be estimated from the pH change produced when Ca\(^{2+}\) binds to \(H_2\)EGTA\(^{2-}\) resulting in CaEGTA\(^{2+}\) and two protons. With no other added Ca\(^{2+}\) buffer (e.g. BAPTA in this article), this total amount is given by:

\[\Delta[Ca] = -\frac{\beta}{2} \Delta pH , \]

where \(\beta\) is the buffering power of myoplasm, estimated to be 22 mmol/pH unit in cut fibres. This relationship assumes that EGTA captures all of the Ca that is released. If BAPTA is present, we can still use the relationship that:

\[\Delta[Ca_{EGTA}] = -\frac{\beta}{2} \Delta pH , \]

and obtain \(\Delta[Ca]\) from:

\[\Delta[Ca] = \Delta[Ca_{EGTA}] + \Delta[Ca_{BAPTA}] . \]

The SR Ca content (denoted [Ca\(_{SR}\)]) was estimated from:

\[[Ca_{SR}] = [Ca_{EGTA}]_{\text{max}} + [Ca_{BAPTA}]_{\text{max}} \]

and the SR Ca content during the stimulation is given by:

\[[Ca_{SR}] = [Ca_{SR}]_{\text{in}} - \Delta[Ca] , \]

\(\Delta[Ca_{EGTA}]_{\text{max}}\) is the amount of Ca bound to EGTA in response to a depolarisation that releases essentially all of the Ca from the SR and \(\Delta[Ca_{BAPTA}]_{\text{max}}\) is the corresponding amount of Ca bound to BAPTA estimated as described in Appendix A.

Additional details concerning the specifics of measuring pH and \(\Delta pH\) are given in Pape & Carrier (1998).

Approach used to assess release permeability

This section briefly summarises the experimental estimate of \(f_{Ca}\) (the fraction of SR Ca content released by a pulse), which was introduced in Pape et al. (2002), for the case when BAPTA and EGTA are both present. The term \(f_{Ca}\) can be represented by the equation:

\[f_{Ca} = \frac{\Delta[Ca]}{[Ca_{SR}]_{\text{in}}} , \]

where \(\Delta[Ca]\) is the total amount of Ca released by the pulse and the denominator is the Ca content of the SR before the pulse. Since only a small fraction of the SR Ca content was released by pulses to ~60 mV (the only voltage in which \(f_{Ca}\) was evaluated in this study), \(f_{Ca}\) is essentially the integral of the release permeability during the pulse. The term \(f_{Ca}\) therefore provides an indication of the average extent of activation of SR Ca\(^{2+}\) release channels during the pulse. In the presence of BAPTA, eqn (6) is given by

\[f_{Ca} = \frac{\Delta[Ca_{EGTA}] + \Delta[Ca_{BAPTA}]}{\Delta[Ca_{EGTA}]_{\text{max}} + \Delta[Ca_{BAPTA}]_{\text{max}}} . \]

(\(\Delta[Ca]\)) is negligible compared with \(\Delta[Ca_{EGTA}]\) and
Δ(CaBAPTA). Since Δ([CaBAPTA]) was not measured, \(f_{Ca} \) was estimated from the relationship:

\[
f_{Ca} = \frac{\Delta [\text{CaEGTA}]_{\text{after}} - \Delta [\text{CaEGTA}]_{\text{before}}}{\Delta [\text{CaEGTA}]_{\text{max}} - \Delta [\text{CaBAPTA}]_{\text{before}}} (8)
\]

where \(\Delta [\text{CaEGTA}]_{\text{before}}, \Delta [\text{CaEGTA}]_{\text{after}} \) and \(\Delta [\text{CaEGTA}]_{\text{max}} \) are the values, respectively, before and after the pulse and after all of the Ca is released from the SR. In the absence of BAPTA, the numerator is essentially Δ([Ca]) associated with the pulse, and the denominator is \([\text{CaEGTA}]_{\text{before}}\) pulse, thereby giving a direct estimate of \(f_{Ca} \). (For simplicity, the subtraction of values before the pulse is not shown in eqn (7), though this was done during its application.)

Appendix B evaluates errors associated with the estimation of \(f_{Ca} \) from the Δ([CaEGTA]) signal. The general approach was to compare \(f_{Ca} \) values estimated with eqn (8) with the true value given by eqn (7). In the latter case, Δ([CaBAPTA]) was estimated as described in Appendix A. The analyses – summarised in more detail in the Results – indicate that eqn (8) gives a very good estimate of the actual value of \(f_{Ca} \) when BAPTA is present.

Electrical measurements

As described in Irving et al. (1987), an agar bridge with 3 mM KCl was placed between \(V_i \) and its associated central pool electrode at the beginning of an experiment and any potential difference was nulled. At the end of the experiment, the voltage difference was re-measured; the electrode drift was less than 1.5 mV in all experiments included in this article.

The amount of intramembranous charge moved during a pulse \((Q_{on}) \) was obtained from the integral of the OFF charge movement currents obtained by subtracting off small ionic components from the \(I_{on} - I_{control} \) signals, as described in Hui & Chandler (1990) and Jong et al. (1995b). Parameter values tabulated in the legends include holding current \((I_0) \), apparent fibre capacitance \((C_{app}) \), capacitance of surface/T-system membranes per unit length of fibre \((C_m) \), and internal longitudinal resistance per unit length of fibre \((r_l) \). Details concerning these parameters and other aspects of the electrical measurements are described in Chandler & Hui (1990).

Statistical tests of significance

Two sets of results are considered to be significantly different if Student’s two-tailed \(t \) test parameter was < 0.05.

RESULTS

Δ([CaEGTA]) signals before and after addition of BAPTA

The top traces in Fig. 1A show two superimposed voltage signals obtained with stimulation protocols typical of those used in this study. The bottom pair of traces shows the corresponding Δ([CaEGTA]) signals. The larger signal was obtained before adding 8 mM BAPTA to the internal solution (it corresponds to the voltage protocol with the shorter pulse to -20 mV). In the absence of BAPTA, the maximum of the Δ([CaEGTA]) signal provides a direct estimate of \([\text{CaEGTA}]_s\). The smaller Δ([CaEGTA]) signal was obtained 77 min after the addition of BAPTA. The pulse protocol is essentially the same as that used in Pape & Carrier (1998). Briefly, the first three pulses were used to monitor the voltage steepness of Ca\(^{2+}\) release at small voltages. One of the purposes of the pulses to -45 and -20 mV was to monitor intramembranous charge movement \((Q_{on}) \) when about 0.5-0.8 and close to all, respectively, of the charge had moved. As in the case of Pape & Carrier (1998), the voltage steepness of Ca\(^{2+}\) release and \(Q_{on} \) at -45 and -20 mV were stable during all of the experiments included in this article (three experiments were discarded due to significant changes in \(Q_{on} \) at -45 and/or -20 mV). Of main interest in this article are the results for the pulse to -60 mV, which always had a 400 ms duration. In about half of the experiments, the pulse to -60 mV was the first of the series; the order of the first three pulses had essentially no effect on the Δ([CaEGTA]) signal associated with the pulse to -60 mV.

Figure 1B plots the maximum of the Δ([CaEGTA]) signal (denoted Δ([CaEGTA]max)) vs. time of the experiment for the two traces in Fig. 1A (indicated by vertical bars) and other stimulations from the same experiment. There was a pronounced progressive decrease in Δ([CaEGTA]max) before adding BAPTA. This initial rate of decrease is greater than typically observed with nominally the same internal solution (Pape & Carrier, 1998; Pape et al. 2002), an effect attributable to a higher pH at the optical recording site in the middle of the fibre (0.1–0.2 pH units in this and all of the other experiments in this study; see legends of Fig. 1 and Table 1). This unexplained higher pH is expected to reduce the resting myoplasmic [Ca\(^{2+}\)] set by the pH-sensitive equilibrium between Ca\(^{2+}\) and EGTA (Pape et al. 1995). Since the aim of this experiment was to alter \([\text{CaEGTA}]_s\), the progressive decrease is actually somewhat advantageous. Following the addition of BAPTA to the internal solution, the rate of decrease of Δ([CaEGTA]max) increased consistent with the expectation that BAPTA captures a large fraction of the released Ca. Following removal of Ca from the internal solution, Δ([CaEGTA]max) approached zero.

Figure 1C shows on an expanded scale the same Δ([CaEGTA]) signals as in Fig. 1A associated with the pulse to -60 mV. The larger trace was obtained before adding BAPTA. It has a ramp-like appearance during the pulse and an approximately constant value after the pulse. This form is consistent with rapidly reaching a steady level of activation of SR Ca\(^{2+}\) release after the start of the pulse and rapidly turning off release after the pulse. As discussed previously (Pape et al. 2002), the waveform of the smaller Δ([CaEGTA]) is consistent with the expected rapid buffering properties of 8 mM BAPTA. Briefly, most of the Ca\(^{2+}\) released during the pulse is captured by BAPTA due to its much faster ON rate for Ca binding compared with EGTA. After release is over, Δ([CaEGTA]) has a slow, approximately monoeXponential increase whose time constant (286 ms) is reasonably consistent with that predicted for redistribution of Ca from BAPTA to EGTA. The redistribution ends when equilibrium conditions of BAPTA and EGTA with Ca\(^{2+}\) are reached in the myoplasm.
As noted in the Methods, the aim of these experiments was to estimate \(f_{Ca} \), the fraction of SR Ca content released by a pulse, which is very close to the integral of release permeability during the pulse. The value of \(f_{Ca} \) was estimated from the \(\Delta [Ca^{2+}]_{EGTA} \) signal with eqn (8). Each of the \(\Delta [Ca^{2+}]_{EGTA} \) values (\(\Delta [Ca^{2+}]_{after}, \Delta [Ca^{2+}]_{after} \), and \(\Delta [Ca^{2+}]_{max} \)) should be equilibrium values. For example, \(\Delta [Ca^{2+}]_{after} \) should be estimated at the end of the re-distribution of Ca from BAPTA to EGTA after the pulse, as indicated by the fitted single-exponential function and its final constant in Fig. 1C. Because of noise, there was some variability in the exponential time constants from similar fits in other runs, which produced significant uncertainty in the estimate of \(\Delta [Ca^{2+}]_{after} \). As a result, \(\Delta [Ca^{2+}]_{after} \) was obtained from the average of \(\Delta [Ca^{2+}] \) during the last 100 ms of the repolarisation to \(-90\) mV. This produces an underestimation in \(f_{Ca} \) which is evaluated along with other errors in \(f_{Ca} \) in Appendix B and summarised later in the Results.

\(f_{Ca} \) vs. \([Ca^{2+}]_{EGTA} \) in control experiments

The top traces in Fig. 2A show two superimposed voltage pulses to \(-60\) mV and the bottom traces show the corresponding \(\Delta [Ca^{2+}] \) signals in a control experiment. Control experiments were carried out in essentially the same way as the BAPTA experiments except that BAPTA

Figure 1. Effect of BAPTA on \(\Delta [Ca^{2+}] \) and \([Ca^{2+}]_{max} \) vs. time of experiment

A. The top traces show superimposed voltage signals before and 77 min after the addition of BAPTA. Given in order of application, pulses to \(-70\), \(-65\), \(-60\), \(-45\) and \(-20\) mV had durations of 400, 400, 400, 800 and 400 (or 1200) ms, respectively. The duration of the period at \(-90\) mV after the pulse to \(-60\) mV was 600 ms. The bottom traces show the corresponding \(\Delta [Ca^{2+}] \) signals. B. Plots of \(\Delta [Ca^{2+}]_{max} \) vs. time after saponin treatment to permeabilise the fibre segments in the end pools. At 12 min, 0.8 mm phenol red was introduced into the end pools. The initial end-pool solution contained Ca and no BAPTA (●). At 84 min, the end-pool solution was exchanged for the one containing Ca and 8 mm BAPTA (●). At 145 min, the end-pool solution was exchanged for the one containing no Ca and 8 mm BAPTA (●). The period of time between points was usually 5 min. C shows the same signals as in A for the pulse to \(-60\) mV on an expanded scale. The interval of time between points was 1.25 ms. Fibre reference 005011. The following parameter values are for the stimulations before and after adding BAPTA, respectively, in A and C: fibre diameter, 112 and 106 \(\mu m \); concentration of phenol red at the optical site, 1.34 and 2.56 mm; pH, 6.599 and 7.064; \(I_{f} \), -24 and -32 nA; \(G_{pre} \), 0.01184 and 0.01274 \(\mu \)F; \(c_{o} \), 0.164 and 0.173 \(\mu \)F cm\(^{-2}\); \(r_{t} \), 2.57 and 2.85 M\(\Omega \) cm\(^{-1}\).
was never present. One way in which \(\Delta [\text{CaEGTA}]_{\text{fter}} \) was determined for the evaluation of \(f_{\text{Ca}} \) was from the average during the 5 ms period just after the end of the pulse to \(-60 \text{ mV}\); the values with this approach are indicated by the line segments under the final levels of the \(\Delta [\text{CaEGTA}] \) signals in Fig. 2A. This approach is used for the comparison with earlier release permeability vs. \([\text{Ca}_{\text{Sr}}]\) data (Pape & Carrier, 1998), since it also reflects \(\text{Ca}^{2+} \) release only during the pulse. (The approach described in the next paragraph includes contributions of \(\text{Ca}^{2+} \) release after the fibre is repolarised to \(-90 \text{ mV}\) and is used for the comparison with the BAPTA experiments.) The cross symbols in Fig. 2B plot \(f_{\text{Ca}} \) vs. \(\Delta [\text{CaEGTA}]_{\text{max}} \) determined with this approach. (\(\Delta [\text{CaEGTA}]_{\text{max}} \) corresponds to the value of \([\text{Ca}_{\text{Sr}}]\) before the pulse to \(-60 \text{ mV}\) since BAPTA was not present and the pulse to \(-60 \text{ mV}\) was the first pulse of the stimulation protocol so that \(\Delta [\text{CaEGTA}]_{\text{before}} \) was zero.) The main features to note are: (1) an increase in \(f_{\text{Ca}} \) as \([\text{Ca}_{\text{Sr}}]\) increases from \(<100 \text{ to } 300 \mu M\); (2) a maximum between 300 and 500 \(\mu M \); (3) a large decrease as \([\text{Ca}_{\text{Sr}}]\) increases to about 1300 \(\mu M \); and (4) an approximately constant value between 1300 and 2500 \(\mu M \) (termed the plateau region). These features and their relative proportions are essentially the same as those of release permeability vs. \([\text{Ca}_{\text{Sr}}]\) shown in an earlier study (Figs 5 and 6 in Pape & Carrier, 1998). The initial increase was attributed to CICR and the subsequent decrease to Ca inactivation of \(\text{Ca}^{2+} \) release.

For the comparison with the BAPTA experiments below, \(\Delta [\text{CaEGTA}]_{\text{fter}} \) was determined from the average during the last 100 ms of the OFF pulse to \(-90 \text{ mV}\). The higher line segments at the end of the \(\Delta [\text{Ca}] \) traces in Fig. 2A show these values (the line is difficult to distinguish from the data in trace a). The open circles in Fig. 2B plot \(f_{\text{Ca}} \) vs. \([\text{Ca}_{\text{Sr}}]\) determined in this way. These values of \(f_{\text{Ca}} \) show the same features as the release permeability and \(f_{\text{Ca}} \) vs. \([\text{Ca}_{\text{Sr}}]\) relationships above except that the \(f_{\text{Ca}} \) does not extrapolate to approximately zero as \([\text{Ca}_{\text{Sr}}]\) approaches zero. The reason for this can be seen by comparing the \(\Delta [\text{Ca}] \) signals in Fig. 2A after the end of the pulse to \(-60 \text{ mV}\). In the case of trace a, obtained near the peak of the \(f_{\text{Ca}} \) vs. \([\text{Ca}_{\text{Sr}}]\) relationship (point a in Fig. 2B), a relatively small amount
of Ca²⁺ release occurred after the repolarisation to −90 mV. This indicates a sharp turn-off of Ca²⁺ release, which was typical for all of the control experiments when [Ca₉B₈]ᵣ was >300 μM, i.e. near the peak of the f₉C vs. [Ca₉B₈] relationship and above. In contrast, a relatively large fraction of Ca is released after the pulse in trace h, an effect that becomes more pronounced as [Ca₉B₈] decreases below 300 μM. As seen below, this article only considers effects of BAPTA when [Ca₉B₈] is > 300 μM. In particular, one aim was to evaluate the effect of BAPTA on f₉C when [Ca₉B₈] was 300–500 μM, a range that spans the peak of the f₉C vs. [Ca₉B₈] relationship (see range indicated above the peak in Fig. 2B). The relative contribution of Ca²⁺ released after the pulse to −60 mV to f₉C in this range of [Ca₉B₈] values is relatively small in the control experiments (∼10 %) and, as discussed in Appendix B, the contribution is also likely to be small in the BAPTA experiments.

f₉C vs. Δ[CaEGTA]ₘₐₓ and estimation of [Ca₉B₈] in BAPTA experiments

Figure 2C plots f₉C at −60 mV vs. Δ[CaEGTA]ₘₐₓ from the experiment shown in Fig. 1 in which BAPTA was added. The points labelled with vertical line segments are from the stimulations shown in Fig. 1A and C. The functional form of f₉C vs. Δ[CaEGTA]ₘₐₓ is similar to that determined in the same way in the control experiment in Fig. 2B (open symbols), including a peak at low values of Δ[CaEGTA]ₘₐₓ. It is important to note, however, that the Δ[CaEGTA]ₘₐₓ values on the abscissa do not correspond to [Ca₉B₈] values when BAPTA was present in the internal solution (filled symbols).

In order to compare the effects of adding BAPTA on the f₉C vs. [Ca₉B₈] relationship it was necessary to estimate [Ca₉B₈] in the presence of BAPTA. The procedure for this – described in Appendix A – involved estimating Δ[CaBAPTA]ₘₐₓ from initial and final values of [CaEGTA] and adding this to the measured Δ[CaEGTA]ₘₐₓ value to obtain [Ca₉B₈]ᵣ. This procedure used the equilibrium binding relationships of BAPTA and EGTA with Ca, both of which depend on pH due to the pH sensitivity of the Kᵣ values (the OFF rate of Ca from EGTA is pH sensitive since two protons bind to CaEGTA²⁻ before Ca comes off; Kᵣ of BAPTA has a much weaker pH dependence). Although previous results indicated that phenol red accurately records changes in myoplasmic pH (ΔpH), the absolute value of the pH appeared to be too acidic by 0.1–0.4 pH units (0.2 on average), consistent with a corresponding shift in its Kᵣ value in myoplasm (Pape, 1990). Unless indicated, estimates of [Ca₉B₈] when BAPTA was present used pHᵣ values that were 0.2 pH units more positive than the apparent pHᵣ reported by phenol red. The estimation of [Ca₉B₈] also depends on [BAPTA]ᵣ at the optical recording site, which was estimated with the diffusion equation and the time after adding 8 mM BAPTA to the end pools. This estimation depends on the diffusion constant of BAPTA (DₑBAPTA), which is also uncertain. Based on the diffusion constants of other molecules, DₑBAPTA is likely to be in the range from 1.2 × 10⁻⁶ cm² s⁻¹ to half this value: 0.6 × 10⁻⁶ cm² s⁻¹ (see Appendix A). Again, unless indicated, estimates of [Ca₉B₈] were done with one value of DₑBAPTA – 0.9 × 10⁻⁶ cm² s⁻¹ – which is in the middle of the likely range of DₑBAPTA values.

An important aim of this study was to evaluate whether BAPTA affected f₉C at the peak of the f₉C vs. [Ca₉B₈] relationship. One way this was done was with the average of f₉C values when [Ca₉B₈] was 300–500 μM, the range in which the peak occurs when BAPTA is not present. The ranges above the peaks in Fig. 2B and C indicate the points in which [Ca₉B₈] was 300–500 μM in a control and BAPTA experiment, respectively. It is important to note that the range in the BAPTA experiment also spanned the peak values of f₉C.

Summary of effect of BAPTA on f₉C when [Ca₉B₈] was 300–500 μM

Table 1 summarises results from all of the experiments in this study. The values at the end of the legend, including pHᵣ and electrical properties of the fibres, indicate that fibre properties were reasonably stable during the experiments and were not significantly different between the control and BAPTA experiments. Column 2 gives average values of f₉C from stimulations when [Ca₉B₈] was 1500–3000 μM, the range corresponding to the plateau region of the f₉C vs. [Ca₉B₈]ᵣ relationship. Since these values were obtained under the same conditions, i.e. without BAPTA, they should not be significantly different. Although the average value for the control experiments is almost twice that for the experiments in which BAPTA was later added (0.0241 vs. 0.0125), the difference is not statistically significant. It is also noted that the discrepancy is almost entirely due to the large f₉C for one of the control experiments (Fibre D07011). The large range in f₉C values (∼10-fold increase from smallest to largest) is similar to the range in release permeability values at −60 mV observed previously (column 2 of Table 1 in Pape & Carrier, 1998), a result probably due to fibre-to-fibre variation in voltage activation (cf. range in properties of Qᵣ in Table 1 of Pape & Carrier, 2002). In summary, the set of experiments in the first section of Table 1 should represent reasonable controls for those in which BAPTA was later added despite the difference in average values in column 2, particularly since the main focus below is on relative changes in f₉C.

Column 3 of Table 1 gives f₉C when the estimated [Ca₉B₈] was 300–500 μM. Column 4 gives the ratio of values in column 3 to those in column 2. This is the factor by which f₉C increased when [Ca₉B₈] decreased from 1500–3000 μM (column 2) to 300–500 μM (column 3). The average factor for the BAPTA experiments of 5.26 was slightly greater though not significantly different from the control value of 4.79. This indicates that BAPTA did not decrease release permeability at the peak of the f₉C vs. [Ca₉B₈] relationship, as
Table 1. Effect of BAPTA on f_{ca} vs. $[Ca_{Ca}]$ relationship at -60 mV

<table>
<thead>
<tr>
<th>Fibre</th>
<th>1500–3000 μM</th>
<th>300–500 μM</th>
<th>f_{caspik}</th>
<th>$[Ca_{Ca}]_{peak}$</th>
<th>$[Ca_{Ca}]_{4}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control experiments with no BAPTA added</td>
<td>O29011</td>
<td>0.0151</td>
<td>0.0471</td>
<td>3.12</td>
<td>0.0483</td>
</tr>
<tr>
<td></td>
<td>N01011</td>
<td>0.0149</td>
<td>0.0726</td>
<td>4.87</td>
<td>0.0806</td>
</tr>
<tr>
<td></td>
<td>N02011</td>
<td>0.0075</td>
<td>0.0573</td>
<td>7.64</td>
<td>0.0600</td>
</tr>
<tr>
<td></td>
<td>N07011</td>
<td>0.0284</td>
<td>0.1154</td>
<td>4.06</td>
<td>0.1032</td>
</tr>
<tr>
<td></td>
<td>D04011</td>
<td>0.0146</td>
<td>0.0535</td>
<td>3.66</td>
<td>0.0540</td>
</tr>
<tr>
<td></td>
<td>D07011</td>
<td>0.0639</td>
<td>0.3438</td>
<td>5.38</td>
<td>0.3441</td>
</tr>
<tr>
<td>Mean</td>
<td>0.0241</td>
<td>0.1150</td>
<td>4.79</td>
<td>0.1150</td>
<td>383</td>
</tr>
<tr>
<td>S.E.M.</td>
<td>0.0084</td>
<td>0.0469</td>
<td>0.66</td>
<td>0.0466</td>
<td>23</td>
</tr>
</tbody>
</table>

Experiments in which 8 mS BAPTA was added

<table>
<thead>
<tr>
<th>Fibre</th>
<th>1500–3000 μM</th>
<th>300–500 μM</th>
<th>f_{caspik}</th>
<th>$[Ca_{Ca}]_{peak}$</th>
<th>$[Ca_{Ca}]_{4}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>O05011</td>
<td>0.0093</td>
<td>0.0293</td>
<td>3.15</td>
<td>0.0297</td>
<td>462</td>
</tr>
<tr>
<td>O10011</td>
<td>0.0059</td>
<td>0.0378</td>
<td>6.41</td>
<td>0.0408</td>
<td>300</td>
</tr>
<tr>
<td>O12011</td>
<td>0.0065</td>
<td>0.0225</td>
<td>4.02</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>O15011</td>
<td>0.0259</td>
<td>0.0975</td>
<td>3.76</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>O16011</td>
<td>0.0160</td>
<td>0.1435</td>
<td>8.97</td>
<td>0.1433</td>
<td>406</td>
</tr>
<tr>
<td>Mean</td>
<td>0.0125</td>
<td>0.0661</td>
<td>5.26</td>
<td>0.0713</td>
<td>389</td>
</tr>
<tr>
<td>S.E.M.</td>
<td>0.0038</td>
<td>0.0220</td>
<td>1.08</td>
<td>0.0362</td>
<td>48</td>
</tr>
</tbody>
</table>

Effect of BAPTA on f_{ca} at -60 mV. The first and second sections give results from control and BAPTA experiments, respectively. Column 1 gives the fibre reference. Column 2 gives the average values of f_{ca} for all of the stimulations whose $[Ca_{Ca}]$ values before the pulse were in the range 1500–3000 μM. Only values before adding BAPTA are included. Column 3 gives the average values of f_{ca} when $[Ca_{Ca}]$ was 300–500 μM. Column 4 gives the ratio of the value in column 3 to that in column 2. Columns 5, 6 and 7 give values of f_{caspik}, $[Ca_{Ca}]_{peak}$ and $[Ca_{Ca}]_{4}$. None of the means in the BAPTA experiments is significantly different from the control value. See text for details. Four ranges are given for the following experimental parameters. The first and second ranges were from the control experiments when $[Ca_{Ca}]$ was 1500–3000 μM and 300–500 μM, respectively (from stimulations used in columns 2 and 3, respectively). The third and fourth ranges correspond to the first and second ranges, respectively, for the experiments in which BAPTA was added. Time after saponin treatment: 56–101, 116–153, 55–87, 126–226 min; fibre diameter: 97–119, 97–113, 111–143, 103–138 μM; pH: 6.88–7.11, 6.80–7.05, 6.94–7.10, 6.85–7.10; I: 18 to −52, −19 to −64, −21 to −69, −23 to −68 nA; C_m: 0.00861–0.01700, 0.00847–0.001745, 0.01184–0.02089, 0.01288–0.01963 μF; r: 1.98–3.90, 2.05–3.62, 1.90–2.66, 1.62–2.84 MΩ cm⁻².

Effect of BAPTA on f_{ca} would be expected if neighbouring channels are recruited by CICR.

Appendix B evaluates several possible errors associated with the approach used to estimate f_{ca} for the values in column 3 of Table 1, when $[Ca_{Ca}]$ was 300–500 μM. The analyses indicate that the errors in f_{ca} should be relatively minor with an overall error ≤10%. Earlier analyses indicate similar small errors at higher values of $[Ca_{Ca}]$ (>1500 μM; Pape et al. 2002). Results not shown indicate similar small errors in f_{ca} over intermediate values of $[Ca_{Ca}]$, which is important for data presented below. Results below also indicate that uncertainty in the estimate of $[Ca_{Ca}]$ has almost no effect on the values in column 4 of Table 1, which strengthens the conclusion that BAPTA does not affect f_{ca} when $[Ca_{Ca}]$ is 300–500 μM.

Test of reversibility of the effect of decreasing SR Ca content on f_{ca}

One way to decrease SR Ca content before a stimulation is to decrease the interval between stimulations from the usual 5 min resting period, which provides enough time for essentially all of the recoverable Ca to be pumped back into the SR (Pape et al. 1995). In Fig. 3, the inverted triangles, stars, and triangles, respectively, plot the results from the stimulation just before decreasing the inter-stimulus period, just after the short period, and 5 min later. In the control experiment in Fig. 3A, the lower star symbol was the first test of reversibility done just after the point when $[Ca_{Ca}]$ was 1697 μM. As indicated, the inter-stimulus period was 27 s and only a modest increase in f_{ca} was observed. A similar result was observed in all of the other three control experiments in which a 25–30 s inter-stimulus period was used. The second test of reversibility in Fig. 3A was done with a 58 s inter-stimulus interval after the point when $[Ca_{Ca}]$ was 1306 μM. In this case, the increase in f_{ca} was similar to that observed by the long-term decrease in $[Ca_{Ca}]$ caused by diffusion of Ca from the fibre. (For conciseness below, a correspondence between the increase in f_{ca} with short- and long-term decreases in $[Ca_{Ca}]$ is termed short-term reversibility.) Similar short-term reversibility was observed in all of the five experiments in which an ~1 min inter-stimulus interval
produced a similar decrease in $[\text{Ca}_{\text{ss}}]$ (from 970–1300 μM to 350–630 μM). (The five experiments include two described with Fig. 6 of Pape & Carrier, 1998, which are not included in this article.) In summary of the control experiments, short-term reversibility was always observed when the inter-stimulus interval was \sim1 min and never when the inter-stimulus interval was 25–30 s.

Figure 3B indicates short-term reversibility with a 28 s inter-stimulus interval when BAPTA had been present for 67 min. Similar short-term reversibility was observed in all of the BAPTA experiments in this study, all of which used 25–30 s inter-stimulus intervals to decrease $[\text{Ca}_{\text{ss}}]$. A likely explanation for the lack of short-term reversibility in the control experiments with 25–30 s inter-stimulus intervals is that a maintained Ca inactivation caused by an elevated myoplasmic $[\text{Ca}^{2+}]$ prevents the increase in f_{Ca}. Adding BAPTA or increasing the inter-stimulus interval to \sim1 min decreased inactivation by decreasing myoplasmic $[\text{Ca}^{2+}]$ either by buffering $\Delta[\text{Ca}^{2+}]$ with BAPTA or by increasing the time for pumping Ca back into the SR. This explanation might appear at odds with the conclusions of Jong et al. (1995a) and Schneider & Simon (1988) that Ca inactivation recovers with a time constant of \sim50 ms and \leq90 ms, respectively, following repolarisation to -90 mV under voltage-clamp conditions. However, in the experiments of Jong et al. (1995a), which also had 20 mM EGTA in the internal solution, the recovery of Ca inactivation was studied following pre-pulses that released only \sim250 μM Ca as opposed to a released minus recovered amount of Ca of \sim1000 μM when the inter-stimulus interval was \sim30 s (cf. difference between $[\text{Ca}_{\text{ss}}]$ values for point labelled 28 s and the inverted triangle at $[\text{Ca}_{\text{ss}}] = 1.697$ μM in Fig. 3A). As a result, the increase in resting $[\text{Ca}^{2+}]$ associated with the non-recovered Ca for the point labelled 28 s (estimated to be -60 nM) was approximately four times greater than that caused by pre-pulses in Jong et al. (1995a). The continued presence of Ca inactivation even after \sim30 s in this study is consistent with the assessment of Schneider & Simon (1988) that the

Figure 3. Plots of f_{Ca} vs. $[\text{Ca}_{\text{ss}}]$ in control and BAPTA experiments and tests of reversibility

As in Figs 1 and 2, filled and open symbols were obtained with and without BAPTA, respectively, and squares and circles were obtained with and without Ca, respectively, in the end pools. \triangledown, \star, and Δ show points when short-term reversibility was tested, which was all done without Ca in the end pools. See text for meaning of symbols. A shows a plot of f_{Ca} vs. $[\text{Ca}_{\text{ss}}]$ in a control experiment. Fibre reference O29011. B shows a plot of f_{Ca} vs. $\Delta[\text{CaEGTA}]_{\text{max}}$ in an experiment in which BAPTA was added. As in Fig. 2C, the range indicates points when the estimated $[\text{Ca}_{\text{ss}}]$ was 300–500 μM. Fibre reference O10011. C shows the same f_{Ca} data as in B except that now it is plotted vs. $[\text{Ca}_{\text{ss}}]$, estimated as described in Appendix A. The cross symbols and vertical line segments show estimates of $[\text{Ca}_{\text{ss}}]_9$ and $[\text{Ca}_{\text{ss}}]_{\text{pool}}$, respectively. In each case, the highest $[\text{Ca}_{\text{ss}}]$ value was obtained with no pH correction and with the higher value of $D_{\text{BAPTA}} (1.2 \times 10^{-5}$ cm2 s$^{-1}$) and the lowest $[\text{Ca}_{\text{ss}}]$ value with 0.2 pH units added to the apparent pH recorded by phenol red and with the lowest value of $D_{\text{BAPTA}} (0.6 \times 10^{-5}$ cm2 s$^{-1}$). D shows f_{Ca} vs. $[\text{Ca}_{\text{ss}}]$ in the same format as in C from an experiment in which Ca was removed relatively early from the end pools. Fibre reference O12011. See text for details.
apparent dissociation constant for calcium-dependent inactivation is only slightly above resting \([Ca^{2+}]\) and that recovery from Ca inactivation does not occur as long as \([Ca^{2+}]\) remains elevated.

In summary, results in this section support the earlier conclusion that the increase in release permeability when \([Ca_{SR}]\) decreases from \(-1000\) to \(-300 \mu M\) in the absence of BAPTA is not due to some type of long-term change associated with the length of the experiment (Pape & Carrier, 1998). The short-term reversibility in the BAPTA experiments indicates that the increase in \(f_{Ca}\) with decreasing SR Ca content is not due to a long-term change associated with exposure to BAPTA.

Effect of BAPTA on the functional form of \(f_{Ca}\) vs. \([Ca_{SR}]\) relationship

Figure 3C plots \(f_{Ca}\) vs. \([Ca_{SR}]\) for the experiment in Fig. 3B. This figure illustrates additional features of the \(f_{Ca}\) vs. \([Ca_{SR}]\) relationship evaluated in this study, including values of \(f_{Ca}\) and \([Ca_{SR}]\) at the peak of the \(f_{Ca}\) vs. \([Ca_{SR}]\) relationship (denoted by \(f_{Ca,\text{peak}}\) and \([Ca_{SR,\text{peak}}]\), respectively) and the value of \([Ca_{SR}]\) when \(f_{Ca}\) was halfway between the plateau and peak levels (denoted \([Ca_{SR,\text{m}}]\)). The values of \(f_{Ca,\text{peak}}\) and \([Ca_{SR,\text{peak}}]\) were obtained from a quadratic function fitted to points spanning the peak of the \(f_{Ca}\) vs. \([Ca_{SR}]\) relationship, as indicated by the curves in Fig. 3A and C. \([Ca_{SR,\text{m}}]\) was obtained from the fit of a quadratic function or line to points spanning the mid-range of the falling phase of the \(f_{Ca}\) vs. \([Ca_{SR}]\) relationship (not shown).

Form of \(f_{Ca}\) vs. \([Ca_{SR}]\) relationship in control experiments

Columns 5–7 of Table 1 give the values of \(f_{Ca,\text{peak}}\) and \([Ca_{SR,\text{peak}}]\), \([Ca_{SR,\text{m}}]\), respectively, obtained as described in the previous section. As mentioned above, the first section of the table gives results for control experiments in which BAPTA was never added. The average values of \([Ca_{SR,\text{peak}}]\) and \([Ca_{SR,\text{m}}]\) in these control experiments of 383 and 883 \(\mu M\), respectively, are both significantly greater than analogous average values of 300 and 536 \(\mu M\), respectively, obtained from release permeability vs. \([Ca_{SR}]\) data from earlier experiments carried out in essentially the same way (columns 5 and 6 of Table 1 of Pape & Carrier, 1998). This difference is unexplained since fibre properties including pH were similar. The difference is not due to the use of release permeability as opposed to \(f_{Ca}\) data, since the values of \([Ca_{SR,\text{peak}}]\) and \([Ca_{SR,\text{m}}]\) are essentially the same for both types of data (not shown). The basic shape of the \(f_{Ca}\) vs. \([Ca_{SR}]\) relationship, however, was not changed, including an approximately 5-fold decrease from the peak to the plateau level. It is also important to note that the control experiments in this study should provide a good reference to the experiments in which BAPTA was added since they were carried out on the same set of frogs and with internal solutions prepared with the same stock solutions. In particular, the same stock solution of caesium salts of ATP, creatine phosphate and phosphoehol pyruvate was used for all of the experiments in this study (prepared as described in Pape & Carrier, 1998).

Summary of effect of BAPTA on \(f_{Ca,\text{peak}}\), \([Ca_{SR,\text{peak}}]\) and \([Ca_{SR,\text{m}}]\)

The two experiments not included in columns 5–6 of Table 1 (O12011 and O15011) had somewhat different protocols and results and are discussed below. The value of \([Ca_{SR,\text{peak}}]\) of 389 \(\mu M\) in the BAPTA experiment was very similar to the control value of 383 indicating that BAPTA did not affect the location of the peak of the \(f_{Ca}\) vs. \([Ca_{SR}]\) relationship. This is also evident by the fact that the value of \(f_{Ca,\text{peak}}\) in each experiment (column 5) is almost the same as the corresponding value of \(f_{Ca}\) when \([Ca_{SR}]\) was 300–500 \(\mu M\) (column 3) in both the control and BAPTA experiments. The mean value of \([Ca_{SR,\text{m}}]\) in the BAPTA experiment of 1049 \(\mu M\) is somewhat greater than the control value of 883 \(\mu M\), though the difference is not significantly different. A higher value of \([Ca_{SR,\text{m}}]\) would indicate that BAPTA somehow reduced Ca inactivation at intermediate values of \([Ca_{SR}]\), i.e. during the falling phase of the \(f_{Ca}\) vs. \([Ca_{SR}]\) relationship.

Does the set of parameters used to estimate \([Ca_{SR}]\) significantly affect the results?

As noted above, the estimation of \([Ca_{SR}]\) in the presence of BAPTA depends on pH and \(D_{BAPTA}\), both of which are somewhat uncertain. In order to evaluate if this significantly affects the interpretation of the data above, estimates of \([Ca_{SR}]\) were carried out with and without a 0.2 pH unit correction applied to the apparent pH indicated by phenol red and with \(D_{BAPTA}\) values of 0.6 and 1.2 \(\times 10^{-6} \text{ cm}^2 \text{ s}^{-1}\) (see above). Values of the factor by which \(f_{Ca}\) increased when \([Ca_{SR}]\) decreased from 1500–3000 \(\mu M\) to 300–500 \(\mu M\) (cf. values in column 3 of Table 1) ranged from 4.97 to 5.31. The values were all similar to the value of 5.26 obtained with the default set of parameters above (0.2 pH shift correction and \(D_{BAPTA}\) value of 0.9 \(\times 10^{-6} \text{ cm}^2 \text{ s}^{-1}\) and all slightly greater than, though not significantly different from, the control value of 4.79. These results indicate that uncertainty about \([Ca_{SR}]\) does not influence the conclusion that a large concentration of BAPTA has little if any influence on release permeability when \([Ca_{SR}]\) is 300–500 \(\mu M\).

The reason \(D_{BAPTA}\) was not particularly important is that sufficient time had elapsed by the time \([Ca_{SR}]\) reached 300–500 \(\mu M\) for \([BAPTA]\) at the optical site to approach equilibrium with the end-pool concentration of 8 \(\mu M\), even with the lower value of \(D_{BAPTA}\). The minimum estimate of \([BAPTA]\) was 5.7 \(\mu M\) (Fibre ID O12011; 50 min exposure to BAPTA), which is only 13% less than that obtained with the higher value of \(D_{BAPTA}\) of 1.2 \(\times 10^{-6} \text{ cm}^2 \text{ s}^{-1}\). The estimated resting concentration of Ca-free BAPTA — the form available to complex Ca — ranged from 5.4 to 7.3 \(\mu M\). The average value was 6.5 \(\mu M\).
The mean values of \(f_{\text{Ca,peak}} \) were essentially identical (0.0712–0.0713) with all sets of parameters used to estimate \([\text{Ca}_{\text{SR}}]\) in the BAPTA experiments. The vertical line segments in Fig. 3C indicate the range of \([\text{Ca}_{\text{SR}}]_{\text{peak}}\) values obtained in the experiment displayed. This range and similar ranges below are indicative of the uncertainty in the value of interest, \([\text{Ca}_{\text{SR}}]_{\text{peak}}\). Although the range is not wide, it does suggest that \([\text{Ca}_{\text{SR}}]_{\text{peak}}\) is somewhat sensitive to how \([\text{Ca}_{\text{SR}}]\) is estimated. The mean value of \([\text{Ca}_{\text{SR}}]_{\text{peak}}\) in the BAPTA experiments ranged from 383 to 517 \(\mu\text{M}\). Only the highest value of 517 \(\mu\text{M}\) (S.E.M. = 57; obtained with no pH correction and with \(D_{\text{BAPTA}} = 1.2 \times 10^{-6} \text{ cm}^2 \text{ s}^{-1}\)) was significantly different from the control value of 383 \(\mu\text{M}\) in column 6 of Table 1. This indicates that BAPTA may have produced a slight increase in the location of the peak of the \(f_{\text{Ca}}\) vs. \([\text{Ca}_{\text{SR}}]\) relationship, though any effect would not have been very pronounced.

The cross symbols in Fig. 3C indicate the range of \([\text{Ca}_{\text{SR}}]\) vs. \([\text{Ca}_{\text{SR}}]_{\text{peak}}\) values obtained in the displayed. The mean values of \([\text{Ca}_{\text{SR}}]\) ranged from 993 \(\mu\text{M}\) (S.E.M. = 55; obtained with the 0.2 pH shift in BAPTA with \(D_{\text{BAPTA}} = 0.6 \times 10^{-6} \text{ cm}^2 \text{ s}^{-1}\)) to 1303 \(\mu\text{M}\) (S.E.M. = 104; obtained with no pH correction and with \(D_{\text{BAPTA}} = 1.2 \times 10^{-6} \text{ cm}^2 \text{ s}^{-1}\)). With the exception of the lowest value and the value of 1049 \(\mu\text{M}\) obtained with the default parameters, all of the mean values were significantly greater than the control value of 883 \(\mu\text{M}\) in column 7 of Table 1. In summary, BAPTA produced either no effect or only a modest increase in \([\text{Ca}_{\text{SR}}]\) vs. \([\text{Ca}_{\text{SR}}]_{\text{peak}}\), indicative of a possible modest increase in \(f_{\text{Ca}}\) over intermediate values of \([\text{Ca}_{\text{SR}}]\).

Two BAPTA experiments in which Ca was removed relatively early

In the three BAPTA experiments included in columns 5–7 of Table 1, Ca was not removed from the end pools until 57–61 min after BAPTA was first added (cf. Fig. 1B) Figure 3D shows analogous results to those in Fig. 3C from an experiment in which Ca was removed from the end pools early in the experiment. (The Ca-free, BAPTA-free internal solution replaced that containing Ca 10 min before the first stimulation. After the initial measurements in this solution, the Ca-free internal solution containing BAPTA was introduced.) The functional form of the \(f_{\text{Ca}}\) vs. \([\text{Ca}_{\text{SR}}]\) in Fig. 3D differs from that in Fig. 3C in two ways. One is that \([\text{Ca}_{\text{SR}}]\) is greater and the other is that the peak is broader, resembling more of a plateau than a distinct peak. Similar results to those in Fig. 3D were obtained in the other experiment in which Ca was removed relatively early in the experiment. It is important to note that the apparently different results are not attributable to a difference in the experimental protocols since control experiments had essentially the same \(f_{\text{Ca}}\) vs. \([\text{Ca}_{\text{SR}}]\) relationship whether Ca was removed early or relatively late. This conclusion is based on the experiments described in Pape & Carrier (1998), which were carried out in the same way as the control experiments in this study except that Ca was removed early in five of the seven experiments. In all of the control experiments in this study, the end pools contained Ca until after the initial 4–5 stimulations, at which time the end-pool solution was replaced with the Ca-free and BAPTA-free internal solution.)

As in Fig. 3C, the range defined by the cross symbols in Fig. 3D indicates the uncertainty in \([\text{Ca}_{\text{SR}}]\). The uncertainty is significantly greater in this case due to the fact that the halfway point was reached early in the experiment when BAPTA had been present for only about 15–20 min. As a result, the value of \([\text{BAPTA}]_t\) used to estimate \([\text{Ca}_{\text{SR}}]\) was much more sensitive to whether the lower or higher value of \(D_{\text{BAPTA}}\) was assumed. This suggests one possible explanation for the difference in the shape of the \(f_{\text{Ca}}\) vs. \([\text{Ca}_{\text{SR}}]\) relationship in Fig. 3D compared with 3C, namely that \([\text{BAPTA}]_t\) and, thereby, \([\text{Ca}_{\text{SR}}]\) were overestimated early in the experiment. Another possibility is that the protocols produced real differences in the \(f_{\text{Ca}}\) vs. \([\text{Ca}_{\text{SR}}]\) relationship perhaps related to the fact that the transition from \([\text{Ca}_{\text{SR}}]\) values near 1500 to 500 \(\mu\text{M}\) would have occurred at lower BAPTA concentrations. Because of the relatively large uncertainty in \([\text{Ca}_{\text{SR}}]\) and \([\text{Ca}_{\text{SR}}]_{\text{peak}}\) and also \([\text{BAPTA}]_t\) during the transition over intermediate values of \([\text{Ca}_{\text{SR}}]\), the two experiments in which \(f_{\text{Ca}}\) was removed early were not included in columns 5–7 of Table 1 and their results over intermediate values of \([\text{Ca}_{\text{SR}}]\) are not discussed further. As noted above, however, BAPTA had been present for at least 50 min by the time \([\text{Ca}_{\text{SR}}]\) had reached 300–500 \(\mu\text{M}\) so that \([\text{BAPTA}]_t\) should have approached its equilibrium value. As a result, inclusion of these experiments in columns 3 and 4 of Table 1 seems justified.

DISCUSSION

As mentioned in the Introduction, \(\text{Ca}^{2+}\) release sites with small depolarisations should have a single \(\text{Ca}^{2+}\) release channel activated by its associated voltage sensor. The aim of this article was to assess whether or not they also include neighbouring channels recruited by CICR. The experimental approach was to evaluate whether release permeability (as assessed by \(f_{\text{Ca}}\), the fraction of SR Ca content released by a pulse) is decreased by the introduction of a large concentration of the fast \(\text{Ca}^{2+}\) buffer BAPTA into the internal solution. One main result of this article is that the value of \(f_{\text{Ca}}\) at the peak of the \(f_{\text{Ca}}\) vs. \([\text{Ca}_{\text{SR}}]\) relationship – which occurs when \([\text{Ca}_{\text{SR}}]\) is 300–500 \(\mu\text{M}\) – is not influenced by the introduction of a large concentration of BAPTA in the myoplasm (cf. Fig. 3A and C; columns 3–6 of Table 1). The next section discusses the implications of this lack of an effect of BAPTA.
Distinguishing between two mechanisms of CICR when \([\text{Ca}_{\text{SR}}]\) is 300–500 \(\mu\text{M}\)

As illustrated in Fig. 2B (+ symbols) and supported by other data in this study (not shown), increasing \([\text{Ca}_{\text{SR}}]\) from 100 to 400 \(\mu\text{M}\) in the absence of BAPTA increases release permeability at \(-60\text{ mV}\) by 2-fold (see also Table 1 of Pape & Carrier, 1998). This increase could have been due to one of the following two types of CICR: (1) an auto-regulatory mechanism in which \(\text{Ca}^{2+}\) released from a channel activated by its voltage sensor binds to a site on the same channel thereby increasing its unitary conductance or mean open time or (2) recruitment of neighbouring SR \(\text{Ca}^{2+}\) release channels. The following analysis argues against the second possibility by showing that a large concentration of BAPTA should produce essentially the same decrease in \(\Delta[\text{Ca}^{2+}]\) at neighbouring channels as reducing \([\text{Ca}_{\text{SR}}]\) from 400 to 100 \(\mu\text{M}\).

The solution of the diffusion equation in the presence of a diffusible \(\text{Ca}^{2+}\) buffer like BAPTA is very closely approximated by:

\[\Delta[\text{Ca}^{2+}] = \frac{\phi}{4\pi D_{\text{Ca}} r} e^{-\lambda_{\text{Ca}} r},\]

where \(\phi\) is the flux of \(\text{Ca}^{2+}\) through the channel, \(D_{\text{Ca}}\) is the diffusion constant of \(\text{Ca}^{2+}\), \(r\) is the distance from the open channel and \(\lambda_{\text{Ca}}\) is a space constant related to the average distance a \(\text{Ca}^{2+}\) ion diffuses before it is captured by the buffer (eqn (B21) in Pape et al. 1995; also Neher, 1986; Stern, 1992). The exponential factor gives the effect of BAPTA whereas the first factor gives \(\Delta[\text{Ca}^{2+}]\) in the absence of diffusible \(\text{Ca}^{2+}\) buffers. (The effect of 20 \(\mu\text{M}\) EGTA is ignored since it should be much less than that of 8 \(\mu\text{M}\) BAPTA and it would unnecessarily complicate the solution.) One thing to note is that changing \([\text{Ca}_{\text{SR}}]\) should produce an approximately proportional change in \(\Delta[\text{Ca}^{2+}]\) in the SR and thereby the driving force for \(\text{Ca}^{2+}\) release, \(\phi\), and \(\Delta[\text{Ca}^{2+}]\) at any distance from the channel. With a resting, \(\text{Ca}\)-free BAPTA concentration of 6.5 \(\mu\text{M}\) (the average value given in the Results), the estimated value of \(\lambda_{\text{Ca}}\) is 21.5 \(\text{nm}\) (eqn (B14) in Pape et al. 1995), assuming \(D_{\text{Ca}} = 3 \times 10^{-6} \text{ cm}^2 \text{s}^{-1}\) and a rate constant of \(\text{Ca}\) binding to BAPTA of \(1 \times 10^{4} \text{ M}^{-1} \text{s}^{-1}\); from Kits et al. 1999). If the \(\text{Ca}\) regulatory site is 30 \(\text{nm}\) away -- the distance between neighbouring SR \(\text{Ca}^{2+}\) release channels -- BAPTA should reduce \(\Delta[\text{Ca}^{2+}]\) to 0.25 \((e^{-0.215})\) of its value in the absence of BAPTA, which should produce the equivalent effect of reducing \([\text{Ca}_{\text{SR}}]\) from 400 to 100 \(\mu\text{M}\) (100/400 = 0.25). Therefore, if the >2-fold increase in release permeability (or \(f_{\text{Ca}}\)) when \([\text{Ca}_{\text{SR}}]\) increases from 100 \(\mu\text{M}\) to 400 \(\mu\text{M}\) is due to the activation of neighbouring channels by CICR, the addition of 8 \(\mu\text{M}\) BAPTA should have decreased \(f_{\text{Ca}}\) to <0.5 of its value in the absence of BAPTA when \([\text{Ca}_{\text{SR}}]\) was 400 \(\mu\text{M}\). If the increase in release permeability when \([\text{Ca}_{\text{SR}}]\) increases from 100 \(\mu\text{M}\) to 400 \(\mu\text{M}\) is due to an auto-regulatory mechanism caused by released \(\text{Ca}^{2+}\) binding to a modulatory site on the same channel, eqn (9) indicates that 8 \(\mu\text{M}\) BAPTA should have little if any effect. For example, if the site is within 5 \(\text{nm}\) of the pore -- which could be on the same \(\text{Ca}^{2+}\) release channel given its large size -- BAPTA would reduce \(\Delta[\text{Ca}^{2+}]\) to no more than 0.77 \((e^{-0.215})\) of its value in the absence of BAPTA.

In summary, the finding that there was essentially no effect of BAPTA on \(f_{\text{Ca}}\) indicates that neighbouring channels are not activated by CICR within a \(\text{Ca}^{2+}\) release site when \([\text{Ca}_{\text{SR}}]\) is 300–500 \(\mu\text{M}\). This finding also indicates that \(\text{Ca}^{2+}\) released from a \(\text{Ca}^{2+}\) release channel activated by its associated voltage sensor somehow augments the total \(\text{Ca}^{2+}\) flux through the channel. In contrast to an assumption made in some modelling studies (Stern et al. 1997; Rios & Stern, 1997), such an auto-regulatory mechanism means that a \(\text{Ca}^{2+}\) release channel activated by its associated voltage sensor can also be modulated by \(\text{Ca}^{2+}\).

Comparison with results from isolated SR \(\text{Ca}^{2+}\) release channels

Tripathy & Meissner (1996) studied the effect of \(\text{Ca}^{2+}\) flux on the open probability \(P_o\) of SR \(\text{Ca}^{2+}\) release channels from mammalian muscle reconstituted in planar lipid bilayers. They found a significant increase in \(P_o\) as the \(\text{Ca}^{2+}\) flux increased from very small values. The \(P_o\) vs. \(\text{Ca}^{2+}\) flux relationship reached a maximum followed by a decrease as the \(\text{Ca}^{2+}\) flux increased further. The effects on \(P_o\) were mainly due to a modulation of the mean open time of the channels, as opposed to the frequency of openings or the unitary conductance of the channel. The similarity of this bimodal dependence on \(\text{Ca}^{2+}\) flux to that obtained with small depolarisations (Pape & Carrier, 1998; Figs 2B and 3A in this article) suggests that the same \(\text{Ca}\) binding sites are involved in regulating \(\text{Ca}^{2+}\) release in isolated SR \(\text{Ca}^{2+}\) release channels activated by ATP and in SR \(\text{Ca}^{2+}\) release activated by surface/T-system depolarisation. This similarity, therefore, suggests that the auto-regulation of a \(\text{Ca}^{2+}\) release channel activated by its associated voltage sensor by the \(\text{Ca}^{2+}\) flux through the channel probably involves modulation of the open time of the channel.

Lack of effect of BAPTA on plateau phase of \(f_{\text{Ca}}\) vs. \([\text{Ca}_{\text{SR}}]\) relationship

Previous results indicate that 8 \(\mu\text{M}\) BAPTA does not influence \(f_{\text{Ca}}\) when \([\text{Ca}_{\text{SR}}]\) is in the plateau region of the \(f_{\text{Ca}}\) vs. \([\text{Ca}_{\text{SR}}]\) relationship \(([\text{Ca}_{\text{SR}}] > 1000 \mu\text{M})\). This was done by comparing the ratio of \(f_{\text{Ca}}\) at \(-60\text{ mV}\) determined 50–60 min after adding BAPTA, to the value just before adding BAPTA, with the corresponding ratio in control experiments (row 4 of Table 1 of Pape et al. 2002). The internal solutions all had the same nominal \([\text{Ca}^{2+}]\) in order to maintain an approximately constant \([\text{Ca}_{\text{SR}}]\). The increase of \(f_{\text{Ca}}\) in the BAPTA experiments of 1.54 (s.e.m. = 0.27; \(N = 7\)) was not significantly different from that in the control experiment of 1.90 (s.e.m. = 0.25; \(N = 5\)).
corresponding increase in f_{Ca} in the three experiments in this article in which Ca was not removed until 57-61 min after adding BAPTA was 2.34 (s.e.m. = 0.15; cf. Fig. 3C). This increase was not significantly different from that of the earlier BAPTA experiments, or of the earlier control experiments. Since the conditions of the BAPTA experiments in the two studies were essentially identical, the data from the two sets of experiments can be combined giving an average increase in f_{Ca} of 1.78 (s.e.m. = 0.23; N = 10), which is very similar to the control value of 1.90 above. In summary, additional results from this study support the earlier conclusion that a 50-60 min exposure to 8 mM BAPTA in the internal solution does not significantly affect release permeability at -60 mV when $[Ca_{SR}]$ is in the plateau region of the f_{Ca} vs. $[Ca_{SR}]$ relationship.

Effect of BAPTA on the falling phase of the f_{Ca} vs. $[Ca_{SR}]$ relationship

Evaluation of the effects of BAPTA on the falling phase of the f_{Ca} vs. $[Ca_{SR}]$ relationship (as $[Ca_{SR}]$ increased from 500 to >1000 μM) indicates that BAPTA produced either no effect or a modest increase in f_{Ca}, as indicated by a possible increase in $[Ca_{SR}]$ (column 7 of Table 1, and second to last section of Results). The possible increase in $[Ca_{SR}]$ would be consistent with a decrease in Ca inactivation over intermediate values of $[Ca_{SR}]$. It is important to note that BAPTA never produced a decrease in f_{Ca} at -60 mV over the full range of $[Ca_{SR}]$ values investigated (300-3000 μM). This indicates that neighbouring channels are not recruited by CICR in response to small depolarisations. The results do not, however, entirely rule out the possibility that neighbouring channels could be recruited at intermediate and larger values of $[Ca_{SR}]$, but that this is prevented by their becoming inactivated before they have a chance to be activated by CICR. A modest increase in $[Ca_{SR}]$ could be due to a decrease in this pre-inactivation.

Comparison with results at higher voltages

Recent results (Pape et al. 2002) support the hypothesis of Rios and colleagues (Rios & Pizarro, 1988, and subsequent work reviewed by Stern et al. 1997) that Ca$^{2+}$ release at higher voltages is enhanced due to the recruitment of neighbouring channels by CICR. An explanation for why this enhancement is not seen with smaller depolarisations is that it requires a threshold above the $\Delta[Ca^{2+}]$ produced by just one open channel but below that produced by the summation from two immediately adjacent Ca$^{2+}$ release channels activated by their associated voltage sensors. Therefore, it is only seen at higher voltages when the density of voltage-activated sites is greater. This explanation requires that an isolated Ca$^{2+}$ release channel activated by its associated voltage sensor does not recruit neighbouring channels by CICR. Results in this article provide support for this condition.

APPENDIX A

Estimation of [Ca$_{SR}$]$_{R}$ and [Ca$_{SR}$]$_{I}$ in the presence of BAPTA

This appendix describes the estimation of $\Delta[CaBAPTA]_{max}$ which is used to estimate $[Ca_{SR}]_I$ with eqn (4). The approach is, for the most part, the same as that described in Appendix A of Pape et al. (2002). In both cases, $[CaBAPTA]$ was estimated from the equilibrium binding functions:

$$[Ca^{2+}] = \frac{[Ca_{EGTA}]_{I}}{[EGTA_T] - [Ca_{EGTA}]} = K_{D_{CaBAPTA}} \frac{[CaBAPTA]}{[BAPTA_T] - [CaBAPTA]} \quad (A1)$$

Briefly, $[Ca_{EGTA}]_I$ and $[CaBAPTA]_I$ (the subscript R refers to resting) were evaluated from an estimate of $[Ca^{2+}]_I$, $[CaBAPTA]$ after a fully depleting stimulation was obtained from eqn (A1) and the corresponding value of $[Ca_{EGTA}]$ given by $[Ca_{EGTA}]_I + \Delta[Ca_{EGTA}]_{max}$. $\Delta[Ca_{BAPTA}]_{max}$ was then given by the difference between the final and resting values of $[CaBAPTA]$. The pH-sensitive values of $K_{D_{CaBAPTA}}$ and $K_{D_{CaBAPTA}}$ in eqn (A1) were estimated, respectively, from eqn (A9) in Pape et al. (1995) and eqn (A5) in Pape et al. (2002) using pH$_R$ and pH$_I$ + ΔpH for resting and final conditions, respectively. $[EGTA_T]$ was assumed to be 20 mM, its concentration in the end-pool solutions. $[BAPTA_T]$ was estimated from the time after addition of 8 mM BAPTA to the end pools and the solution of the diffusion equation (e.g. eqn (6) on p. 47 of Maylie et al. 1987), assuming that BAPTA is not sequestered or bound to myoplasmic sites.

D_{BAPTA}, the free diffusion constant of BAPTA ($MW = 472$), is expected to range from 1.2×10^{-6} cm2s$^{-1}$ to half this value, 0.6×10^{-6} cm2s$^{-1}$. The higher value was extrapolated from the free diffusion constant of the Ca indicator dye purpurate-3,3'-diacetic acid ($MW = 380$) measured in cut fibres of 1.31×10^{-6} cm2s$^{-1}$ (Hirota et al. 1989) and that of ATP ($MW = 507$) measured in skinned fibres of 1.2×10^{-6} cm2s$^{-1}$ (Kushmerick & Podolsky, 1969). Unlike most indicators, only a small fraction of purpurate-3,3'-diacetic acid is sequestered or bound to myoplasmic constituents. (The extrapolation between substances of different molecular weight assumed that the diffusion constant is proportional to MW^{-n}, as predicted by the Stokes–Einstein equation.) The smaller value for D_{BAPTA} was based on the value for D_{fura-2}, the free diffusion constant of fura-2 ($MW = 637$), of 0.54×10^{-6} cm2s$^{-1}$ estimated in cut fibres (Pape et al. 1993). Since only a relatively small fraction of fura-2 appears to be sequestered or bound to myoplasmic constituents (27% on average; Pape et al. 1993) and since the value of D_{fura-2} above took this binding into account, it is not clear why D_{fura-2} was so low. Whatever the explanation for the low value of D_{fura-2}, it
may also apply to D_{BAPTA} since a large part of the structure of fura-2 is the same as BAPTA. In summary, the two assumed values of $D_{\text{BAPTA}} \sim 1.2$ and 0.6×10^{-6} cm2 s$^{-1}$ cover the range in which the actual value of D_{BAPTA} is likely to fall.

In order to assess the effect of the uncertainty in D_{BAPTA}, one section of the Results evaluated [Ca$^{2+}$]$_R$ with both the high and low estimates of D_{BAPTA}. Unless indicated, however, D_{BAPTA} was set to the mean value of 0.9×10^{-6} cm2 s$^{-1}$. Calculations were not done to take into account possible binding of BAPTA to myoplasmic sites. As noted above, BAPTA's structure is the same as a large part of the structure of fura-2, and fura-2 appears to have a relatively small bound component. In addition, the measured time course of Δ[CaEGTA] about one hour after adding BAPTA was similar to that expected if the concentrations of BAPTA and EGTA were about the same as their end-pool values: 8 and 20 mM, respectively (Fig. 1D of Pape et al. 2002). Unless both BAPTA and EGTA bind to the same extent, and if the bound forms are both able to complex Ca, this latter result also suggests that binding of BAPTA to myoplasmic sites is relatively minor.

Previously, [Ca$^{2+}$]$_R$ was estimated with eqn (A1) assuming that [CaEGTA]$_R$ at the optical site was the same as that in the end pools (Pape et al. 1995, 2002). The approach was different in this study since Ca was removed from the end pools midway through the experiments. The assumption about [CaEGTA]$_R$ would not be appropriate in this case since the amount of Ca at the optical recording site in the middle of the fibre should decrease relatively slowly following removal of Ca from the end pools due to diffusional delays and the action of SR Ca$^{2+}$ pumps. The approach adopted in this study was influenced by the approximately linear relationship between the experimentally estimated [Ca$^{2+}$]$_R$ and [Ca$^{2+}$]$_R$ values shown in Fig. 9 of Pape et al. (1995). Based on their results indicating that [Ca$^{2+}$]$_R$ was about 3000 μM when [Ca$^{2+}$]$_R$ was 0.1 μM, it is assumed that

$$[\text{Ca$^{2+}$}]_R = \text{[Ca$^{2+}$]}_R/30,000. \quad (A2)$$

Since [Ca$^{2+}$]$_R$ is not initially known, the following iterative procedure was employed in which estimates of [Ca$^{2+}$]$_R$ are fed back into eqn (A2):

1. [Ca$^{2+}$]$_R$ was assumed to be zero for the 1st iteration or the value obtained in step 6 below.

2. [CaEGTA]$_R$ and [CaBAPTA]$_R$ were determined from this value of [Ca$^{2+}$]$_R$ with eqn (A1),

3. [CaEGTA] after all of the Ca was released was given by [CaEGTA]$_R$, plus the measured value of Δ[CaEGTA]$_{\text{max}}$.

4. [CaBAPTA] was obtained from this value and eqn (A1) and Δ[CaBAPTA]$_{\text{max}}$ was then obtained by subtracting [CaBAPTA]$_R$.

5. [Ca$^{2+}$]$_R$ was given by Δ[CaEGTA]$_{\text{max}} + \Delta$[CaBAPTA]$_{\text{max}}$ (i.e. eqn (4)),

6. If another iteration was done, [Ca$^{2+}$]$_R$ was obtained from this value of [Ca$^{2+}$]$_R$ and eqn (A2) and steps 1-5 were repeated.

This procedure generally required only two or three iterations to reach a stable value of [Ca$^{2+}$]$_R$, and five iterations were generally used. It is noted that the main effect of [Ca$^{2+}$]$_R$ on Δ[CaBAPTA]$_{\text{max}}$ is to change the resting concentration of Ca-free BAPTA, the form that is available to complex Ca during the stimulation. The final results were fairly insensitive to how [Ca$^{2+}$]$_R$ was estimated, as evidenced by very little change in the f_{Ca} vs. [Ca$^{2+}$]$_R$ relationship when the scaling factor in eqn (A2) was increased or decreased by a factor of 2 (not shown).

Values of [Ca$^{2+}$]$_R$ in this article generally refer to the SR Ca content before the pulse to -60 mV, which is close to but not the same as [Ca$^{2+}$]$_R$ if the pulse to -60 mV was preceded by pulses to -70 and -65 mV, as was the case in about half of the experiments. In this case, Δ[CaBAPTA] after the first two pulses was estimated with the same procedure except that Δ[CaEGTA] instead of Δ[CaEGTA]$_{\text{max}}$ was used. [Ca$^{2+}$]$_R$ was then obtained from eqns (3) and (5). This procedure was also used in Appendix B to estimate Δ[CaBAPTA] for use in eqn (7), which was used to assess errors in f_{Ca}.

APPENDIX B

Possible errors in estimating f_{Ca}

This appendix assesses four methodological errors in the estimate of f_{Ca} associated with pulses to -60 mV when BAPTA is present. The errors are assessed for the same stimulations used for column 3 of Table 1. One error is that f_{Ca} estimated with eqn (8) (in which only the Δ[CaEGTA] is used) overestimates the actual value of f_{Ca} given by eqn (7), which includes the contributions of Δ[CaBAPTA] to Δ[Ca$^{2+}$]. This error — applicable to the BAPTA experiments only — results in an overestimate of the actual f_{Ca} on average of only 2.5%. (A similar value for this error was obtained in Appendix A of Pape et al. 2002 for f_{Ca} values in the plateau range of [Ca$^{2+}$] values: 1500–3000 μM.)

The reason this error is small is that both Δ[CaBAPTA] and Δ[CaEGTA] are approximately proportional to Δ[Ca$^{2+}$] so that Δ[CaEGTA] is approximately proportional to Δ[Ca$^{2+}$], even in the presence of BAPTA.

A second error is that Ca$^{2+}$ binding to BAPTA also releases protons, though much less compared with EGTA (0.2 protons per Ca bound on average vs. two for EGTA). This means that a portion of the ΔpH signal was due to Ca binding to BAPTA as opposed to EGTA. The approach for evaluating this error assumed that the measured ΔH signal (denoted ΔH$_{\text{measured}}$) is given by the sum of pH changes associated with Ca binding to EGTA and BAPTA:
\(\Delta p_{H_{EGTA}} \) and \(\Delta p_{H_{BAPTA}} \) respectively. The first step in evaluating this error was to estimate \(\Delta [Ca^{2+}] \) as described in Appendix A assuming that \(\Delta p_{H_{EGTA}} \) was
\(\Delta p_{H_{measured}} \). The first estimate of \(\Delta p_{H_{BAPTA}} \) (obtained from
\(\Delta [Ca^{2+}] / \Delta p_{H_{BAPTA}}/0.2 \), which is analogous to
eqn (2) was then subtracted from \(\Delta p_{H_{measured}} \) to give
a new estimate of \(\Delta p_{H_{EGTA}} \) and, thereby, \(\Delta [Ca^{2+}] \) with
eqn (2). Several iterations of the calculation of \(\Delta [Ca^{2+}] \)
with new corrected estimates of \(\Delta [Ca^{2+}] \) were done.
The values of \(\Delta [Ca^{2+}] \) and \(\Delta [Ca^{2+}] \) converged to
close to their final values within two iterations. (The pH
values used to calculate \(K_{D_{app-EGTA}} \) and \(K_{D_{app-BAPTA}} \)
eqn (A1) were based on \(\Delta p_{H_{measured}} \) as opposed to \(\Delta p_{H_{EGTA}} \),
since only the value and not the source of \(\Delta pH \) was important.) The values of \(\Delta [Ca^{2+}] \) and \(\Delta [Ca^{2+}] \)
were then used to assess the error in \(f_{Ca} \) in eqn (8) vs.
eqn (7) as before. The error reduced the overestimation of
\(f_{Ca} \) in the previous paragraph from 2.5 to 2.4 % (i.e. only a
0.1% change). The error associated with proton release
from BAPTA is small because of the small effect on the
\(\Delta p_{H} \) signal and because it reduced the numerator and
denominator of eqn (7) by about the same factor.

A third error is that \(\Delta [Ca^{2+}]_{after} \) and thereby \(f_{Ca} \) was
underestimated since the duration of the OFF pulses to
\(-90 \text{ mV} \) (600–1000 ms) was not sufficient to allow for
complete redistribution of \(Ca^{2+} \) from BAPTA to EGTA
(cf. exponential fit and final level in Fig. 1C). The
estimated average error was 12.3 % (S.E.M. = 3.4 %; \(N = 5 \)).
As this is an underestimate of \(f_{Ca} \) in the BAPTA
experiments only, it strengthens the conclusion that
BAPTA did not produce a decrease in \(f_{Ca} \).

A fourth error in the estimation of \(f_{Ca} \) concerns the
possibility that a significant amount of \(Ca^{2+} \) is released after
the pulse to \(-60 \text{ mV} \). As seen in the control experiment in
Fig. 2A and B, the turn-off of release becomes slower as
[\(Ca^{2+} \)] decreases below \(300 \mu M \) resulting in a significant
amount of \(Ca^{2+} \) release after the fibre is repolarised to
\(-90 \text{ mV} \). A likely explanation for this slower turn-off is
that voltage activation of \(Ca^{2+} \) release turns off more slowly. As indicated in Figs 8 and 9 of Pape et al. (1998),
decreasing \([Ca^{2+}] \) slows the turn-off of \(Ca^{2+} \) release and
intramembranous charge movement following a short
pulse to \(-20 \text{ mV} \). Moreover, there was a correspondence
between the time course of the turn-off of \(Ca^{2+} \) release and
that of intramembranous charge movement. In the control
experiments, extra release during the repolarisation phase
produced only about a 10% increase in \(f_{Ca} \) compared with
\(f_{Ca} \) evaluated from \(\Delta [Ca^{2+}] \) just after the end of the
pulse when \([Ca^{2+}] \) was 300–500 \mu M \) (cf. middle trace in
Fig. 2A and open circles vs. cross symbols in Fig. 2B). It
seems reasonable to expect that the same 10% effect would
be present in the BAPTA experiments. This is because
BAPTA should have little effect on \(\Delta [Ca^{2+}] \) at a site on the
voltage sensor associated with an open SR \(Ca^{2+} \) release
channel, an assessment based on solutions of the diffusion
equation (cf. Discussion of this article). If the error were
the same in both the control and BAPTA experiments, the
effects would have been the same on the relative increase in
\(f_{Ca} \) as \([Ca^{2+}] \) decreased from 1500–3000 \mu M \) to 300–500 \mu M
(column 4 of Table 1). If BAPTA did slow the turn-off of
\(Ca^{2+} \) release, it would enhance the amount of \(Ca^{2+} \) released
after the pulse, thereby increasing \(f_{Ca} \) and masking a
possible decrease of release permeability during the pulse.
It is noted that such a decrease in release permeability would be
in the opposite direction of the relatively large
error above (the third error), estimated to produce a
12.3% underestimation in \(f_{Ca} \). Therefore, it seems very
unlikely that this fourth error could have changed the
assessment that BAPTA had little if any effect on the
release permeability when \([Ca^{2+}] \) was 300–500 \mu M \).

In summary, errors in the estimate of \(f_{Ca} \) with BAPTA
present should be relatively small.

REFERENCES

molecular components of the transverse tubule/sarcoplasmic
reticulum junction in skeletal muscle. Journal of Cell Biology 107,
2587–2600.

frog cut twitch fibers mounted in a double Vaseline-gap chamber.
Journal of Physiology 409, 225–256.

GONZALEZ, A., KIRSCH, W. G., SHIROKOVA, N., PIZARRO, G., BRIM, G.,
Involvement of multiple intracellular release channels in
calcium sparks of skeletal muscle. Proceedings of the National Academy of
Sciences of the USA 97, 4380–4385.

voltage clamp for skeletal muscle fibers. Journal of General
Physiology 62, 265–293.

HIROTA, A., CHANDLER, W. K., SOUTHWICK, P. L. & WAGGONER, A. S.
(1989). Calcium signals recorded from two new purpurate
indicators inside frog cut twitch fibers. Journal of General

movement in frog cut twitch fibers mounted in a double

Intrinsic optical and passive electrical properties of cut frog

inactivation of calcium release in frog cut muscle fibers that
contain millimolar EGTA or fura-2. Journal of General Physiology
106, 337–388.

sarcoplasmic reticulum calcium depletion on intramembranous
charge movement in frog cut muscle fibers. Journal of General
Physiology 106, 659–704.

KITS, K. S., DE VLEUGER, T. A., KOOS, B. W. & MANVELDER, H. D.
(1999). Diffusion barriers limit the effect of mobile calcium buffers
on excytosis of large dense core vesicles. Biophysical Journal 76,
1693–1705.

Acknowledgements

This work was supported by the Canadian Institutes of Health Research grant MT-15034 and a grant from Fonds de la recherche en santé du Québec.
Extra activation component of calcium release in frog muscle fibres

Paul C. Pape, Karine Fénélon and Nicole Carrier
Département de physiologie et biophysique, Université de Sherbrooke Faculté de médecine, 3001, 12e Avenue Nord, Sherbrooke (Québec), Canada J1H SN4

In addition to activating more Ca2+ release sites via voltage sensors in the t-tubular membranes, it has been proposed that more depolarised voltages enhance activation of Ca2+ release channels via a voltage-dependent increase in Ca-induced Ca2+ release (CICR). To test this, release permeability signals in response to voltage-clamp pulses to two voltages, −60 and −45 mV, were compared when \(\Delta [Ca2+] \) was decreased in two kinds of experiments. (1) Addition of 8 mM of the fast Ca2+ buffer BAPTA to the internal solution decreased release permeability at −45 mV by >2-fold and did not significantly affect Ca2+ release at −60 mV. Although some of this decrease may have been due to a decrease in voltage activation at −45 mV — as assessed from measurements of intramembranous charge movement — the results do tend to support a Ca-dependent enhancement with greater depolarisations. (2) Decreasing SR (sarcoplasmic reticulum) Ca content ([Ca\textsubscript{SR}]) should decrease the Ca2+ flux through an open channel and thereby \(\Delta [Ca2+] \). Decreasing [Ca\textsubscript{SR}] from >1000 \(\mu \text{M} \) (the physiological range) to <200 \(\mu \text{M} \) decreased release permeability at −45 mV relative to that at −60 mV by >6-fold, an effect shown to be reversible and not attributable to a decrease in voltage activation at −45 mV. These results indicate a Ca-dependent triggering of Ca2+ release at more depolarised voltages in addition to that expected by voltage control alone. The enhanced release probably involves CICR and appears to involve another positive feedback mechanism in which Ca2+ release speeds up the activation of voltage sensors.

(Received 15 January 2002; accepted after revision 6 May 2002)

Corresponding author P. C. Pape: Département de physiologie et biophysique, Université de Sherbrooke Faculté de médecine, 3001, 12e Avenue Nord, Sherbrooke, Québec, Canada J1H SN4. Email: papepc@courrier.usherbro.ca

In 1973, Schneider & Chandler described a non-linear capacitance termed intramembranous charge movement in skeletal muscle. Later, Adrian & Peres (1977; 1979) identified two components of charge movement, an early component with an exponential time course termed \(Q_{E} \) and a delayed 'hump' component termed \(Q_{D} \). Several lines of evidence support the idea that \(Q_{E} \) charge is caused by movement of voltage sensors (dyhydrophyridine receptors or DHPRs) in the t-tubular membrane that activate Ca2+ release channels (ryanodine receptors or RyRs) in the closely opposed sarcoplasmic reticulum (SR) membrane, presumably via mechanical coupling (Huang, 1982; Hui, 1983; Vergara & Caputo, 1983; Hui & Chandler, 1990, 1991; Pape & Carrier, 2002).

In response to a voltage-clamp step to more depolarised potentials (≥−57 mV), the permeability of the SR for Ca2+ release (denoted release permeability) reaches an early peak followed by a rapid decline to a steady level. This decline is due to Ca inactivation of Ca2+ release, a negative feedback mechanism of Ca2+ on the Ca2+ release channels (Baylor et al. 1983; Simon et al. 1985, 1991; Schneider & Simon, 1988; Jong et al. 1995a). Following the observation of Block et al. (1988) that every other RyR in the junctional region is not coupled to DHPRs, Ríos & Pizarro (1988) proposed that the peak of release permeability arises from non-coupled RyRs activated by Ca-induced Ca2+ release (denoted CICR) and closed by Ca inactivation. According to their idea, the steady level is due to voltage-activated, coupled RyRs that are neither activated nor inactivated by calcium. A seemingly direct experimental approach to evaluate this idea has been to add a high concentration of a high affinity Ca2+ buffer, either BAPTA or fura-2. Experiments in Schneider's laboratory indicated that 1–2 mM BAPTA or fura-2 eliminated the peak component, consistent with the removal of CICR (Jacquemond et al. 1991). In contrast, experiments of Baylor et al. (1983) indicated that 2–4 mM fura-2 did not significantly change the magnitude of the peak and may have actually increased it somewhat. In addition, 2–4 mM fura-2 significantly increased the steady component of release so that it was about the same magnitude as the early peak, an effect attributed to a decrease in Ca inactivation (Hollingworth et al. 1992; Jong et al. 1993; Pape et al. 1993). Despite efforts to use similar conditions, the discrepancy with the results from Schneider's laboratory was never resolved and it was suggested that a difference in fibre conditions may have been responsible. It should be noted that the results of
Baylor and colleagues do not rule out CICR at the peak of release permeability, rather they raise doubts about possible evidence in favour of this idea. Pape et al. (1993) and Jong et al. (1993) did observe a large decrease in Ca\(^{2+}\) release when the concentration of fura-2 was increased to 6–8 mM, but it was not possible to rule out a pharmacological effect due to the high concentration of fura-2. With regard to this latter possibility, it should be noted that Strofekova & Heiny (1997a) observed that 10 mM BAPTA produced a large decrease in total intramembranous charge and the loss of a kinetically distinct Q\(_{\text{y}}\) 'hump' component.

One result that contradicts the initial hypothesis of Rios & Pizarro (1988) is that the time course of release permeability at less depolarised potentials does not have a distinct peak component (e.g. < 57 mV in our fibres). In order to account for this, Rios and colleagues proposed that the calcium trigger for CICR requires a high density of voltage-activated Ca\(^{2+}\) release channels only present with more depolarised potentials (Shirakova et al. 1996; Rios & Stern, 1997; this model is discussed in detail in the Discussion of this article). One difficulty with the initial hypothesis and this amendment is that the release permeability waveform and its voltage dependence can also be explained by a uniform population of RyRs that can all be inactivated (see e.g. Jong et al. 1995a). In this case, the steady level at more depolarised potentials arises because an equilibrium is reached between the rates of inactivation of Ca\(^{2+}\) release channels and recovery from inactivation. The brief review above indicates that there is no clear evidence supporting the interpretation that the peak and steady components reflect triggering by calcium and voltage, respectively. Without this support, it is questionable whether evidence based on manoeuvres influencing the ratio of the peak to steady components of release indicate that CICR is involved in the peak component as proposed by Rios and colleagues (reviewed by Rios & Stern, 1997).

The aim of this article was to more directly evaluate whether or not the peak of release permeability does in fact involve some type of extra Ca-dependent activation that is only present at more depolarised potentials. The experimental aim was to decrease \(\Delta[\text{Ca}^{2+}]\) in the vicinity of open SR Ca\(^{2+}\) release channels. If the proposal is correct, this should tend to decrease release permeability at more depolarised potentials compared to less depolarised potentials. Two kinds of experiments were used to reduce \(\Delta[\text{Ca}^{2+}]\); one was to add a high concentration of BAPTA and the other was to decrease the SR Ca content (denoted \([\text{Ca}\text{SR}]\)). Decreasing \([\text{Ca}\text{SR}]\) should decrease the flux of Ca\(^{2+}\) through a Ca\(^{2+}\) release channel, which in turn should decrease \(\Delta[\text{Ca}^{2+}]\) in the vicinity of the channel (Nehér, 1986; Stern, 1992; Pape et al. 1995; Pape & Carrier, 2002). In each case, effects of changing \(\Delta[\text{Ca}^{2+}]\) were evaluated on the release permeability at ~45 mV compared to ~60 mV. In addition, intramembranous charge movement was measured in order to monitor possible changes in voltage activation.

METHODS

The apparatus and experimental protocols are detailed in Pape et al. (1995) and Pape & Carrier (1998). Briefly, frogs (Rana temporaria) were cold adapted for at least 4 days at 3–5 °C. They were decapitated and double pithed using protocols approved by the Comité d’éthique de l’expérimentation animale at the Université de Sherbrooke. Leg muscles were removed and used within 36 h. Fast-twitch fibres from the semi-tendinosus or ileo-fibularis muscle were mounted in a double-Vaseline gap chamber, stretched to a sarcomere length of 3.5–4.3 μm, and maintained at 13–16 °C. A voltage-clamp set-up controlled voltage in one of the end pools (denoted V1). The resting potential was maintained at ~90 mV with a holding current.

Composition of the internal and external solutions

The end-pool solutions without BAPTA contained (mM): 45 Cs-glutamate, 20 EGTA, 6.8 MgSO\(_4\), 5 Cs\(_{2}\)-ATP, 20 Cs\(_{2}\)-creatinine phosphate, 5 Cs\(_{2}\)-phospho(enol)pyruvate and 53-(N-morpholino)-propanesulfonic acid (MOPS). One of these internal solutions contained no Ca and the other contained 1.76 mM Ca (estimated free [Ca\(^{2+}\)] was 36 mM). The end-pool solution with 8 mM BAPTA contained 33 mM Ca-glutamate and 3.32 mM Ca (estimated free [Ca\(^{2+}\)] was also 36 mM). The concentrations of EGTA, MgSO\(_4\), Cs\(_{2}\)-ATP, Cs\(_{2}\)-creatinine phosphate, Cs\(_{2}\)-phospho(enol)pyruvate and MOPS were the same as those in the BAPTA-free solutions. In each case, the pH was adjusted to 7.0 with CsOH and the estimated [Mg\(^{2+}\)] was 1 mM.

The central pool solution contained 110 mM TEA-glucuronate, 10 mM MgSO\(_4\), 1 μM tetrodotoxin (TTX) and 10 mM MOPS adjusted to pH 7.1. It was nominally Ca-free.

Estimation of release permeability with the EGTA/phenol red method in the presence of BAPTA

As described in detail elsewhere (Pape et al. 1995), the total amount of Ca released from the SR into the myoplasm of a fibre containing a large concentration of EGTA can be estimated with the EGTA/phenol red method. Briefly, essentially all of the released Ca\(^{2+}\) rapidly binds to H\(_2\)EGTA\(^2-\), the predominant form of Ca-free EGTA in the range of myoplasmic pH values present in fibres, releasing two protons for each Ca bound. \(\Delta[\text{CaEGTA}]\) (units referred to myoplasmic volume) is estimated from the pH change with the equation:

\[
\Delta[\text{CaEGTA}] = \frac{-\beta}{2} \Delta \text{pH}.
\]

\(\beta\) is the buffering power of myoplasm, taken to be 22 mM (pH unit\(^{-1}\)), and \(\Delta \text{pH}\) is measured with the pH indicator dye phenol red. In the absence of another added Ca\(^{2+}\) buffer such as BAPTA, \(\Delta[\text{CaEGTA}]\) is taken to be the total amount of Ca\(^{2+}\) released into the myoplasm (denoted \(\Delta[\text{Ca}]\)). The amount of Ca in the SR at the start of a stimulation, denoted \([\text{Ca}\text{SR}]\), is estimated from the maximum of the \(\Delta[\text{Ca}]\) signal after all of the Ca is released. The amount of Ca in the SR at any time (denoted \([\text{Ca}\text{SR}]\)) is given by \([\text{Ca}\text{SR}] - \Delta[\text{Ca}]\). The rate of Ca\(^{2+}\) release is given by \(\Delta[\text{Ca}] / dt\). The permeability of the SR for Ca\(^{2+}\) release or release permeability is expected to be proportional to \(d\Delta[\text{Ca}] / dt\) divided by \([\text{Ca}\text{SR}]\) to
normalise for the driving force for Ca2+ release. The fraction of SR Ca content released by a pulse is given by:

\[f_{Ca} = \frac{\Delta [Ca^{2+}]_{\text{rel}}}{[Ca_{\text{rel}}]} \]

(2)

where \(\Delta [Ca^{2+}] \) is the amount of Ca released by the pulse and \([Ca_{\text{rel}}] \) is the SR content before the pulse. When a small fraction of SR Ca content is released, \(f_{Ca} \) is essentially the same as the integral of the release permeability thereby providing an indication of the extent of activation of Ca2+ release channels during the pulse. In the absence of BAPTA, eqn (2) can also be written:

\[f_{Ca} = \frac{\Delta [Ca^{2+}]_{\text{rel after}} - \Delta [Ca^{2+}]_{\text{rel before}}}{\Delta [Ca^{2+}]_{\text{rel after}} - \Delta [Ca^{2+}]_{\text{rel before}}} \]

(3)

It turns out that eqn (3), provides a very good estimate of the actual \(f_{Ca} \) even in the presence of BAPTA (see Appendix A) if each of the \(\Delta [Ca^{2+}] \)s refers to equilibrium conditions. For example, \(\Delta [Ca^{2+}]_{\text{rel after}} \) refers to the value of \(\Delta [Ca^{2+}] \) after sufficient time has passed after the pulse so that redistribution of Ca from BAPTA to EGTA is complete. The reason eqn (3) provides a good estimate is that \(\Delta [Ca^{2+}] \) is essentially the sum of \(\Delta [Ca^{2+}] \) and \([Ca^{2+}]_{\text{BAPTA}} \), both of which are approximately proportional to \([Ca^{2+}] \) and, therefore, each other. Values of \(f_{Ca} \) in this article were determined with eqn (3).

Intramembranous charge movement

Electrical parameters monitored included holding current, apparent fibre capacitance (\(C_{\text{app}} \)), internal resistance per unit length of fibre (\(r_{i} \)), and capacitance per unit length of fibre (\(c_{m} \)). The charge movement current (\(I_{m} \)) was obtained by correcting the \(I_{\text{mem}} \) signal for the small non-linear ionic current. Unless indicated, \(I_{m} \) was obtained from the integral of \(I_{m} \) during the OFF pulse. Details of the electrical measurements and this latter correction are described in Chandler & Hui (1990) and Hui & Chandler (1990).

Filtration of signals

All signals were filtered with a 1 kHz 4-pole Bessel filter. All optical traces were also filtered with a 50 Hz digital Gaussian filter (Colquhoun & Sigworth, 1983). This digital filter was also applied to the \(I_{m} \) signals in Figs 3 and 4 in which relationships between the time courses of \(I_{m} \) and release permeability are evaluated.

Statistical test of significance

Results were considered to be significantly different if the Student's \(t \) test parameter \(P \) was < 0.05.

RESULTS

Stimulation protocol and effect of 8 mM BAPTA on \(\Delta [Ca^{2+}]_{\text{MAX}} \)

As mentioned in the Introduction, the aim of the BAPTA experiments was to compare the effects of buffering \(\Delta [Ca^{2+}] \) in the vicinity of open Ca2+ release channels on the release permeability elicited by membrane potential changes to -45 and -60 mV. The top trace in Figure 1A illustrates the voltage protocol, which included pulses to -60, -45, -45 and -20 mV having durations of 400, 30, 1600 and 800 ms, respectively, interspersed by long periods at the resting potential of -90 mV. The bottom pair of traces shows \(\Delta [Ca^{2+}] \) signals before and 57 min after adding 8 mM BAPTA to the end pools. As mentioned in the Introduction, we were specifically interested in the effect of BAPTA on the peak of the release permeability at -45 mV. The reason a 30-ms duration was chosen for the first pulse to -45 mV is that it is slightly greater than the time to peak of the rate of Ca2+ release signal in the absence of BAPTA. The actual information extracted for this pulse is essentially the average release permeability during this 30-ms period (\(f_{Ca} \); see Methods), which should be related to the release permeability at the peak. One purpose of the last two pulses to -45 and -20 mV was to assess whether BAPTA shifts the voltage dependence or alters the maximum amount of intramembranous charge movement. Another purpose was to release all of the Ca from the SR. In the absence of BAPTA, the maximum of the \(\Delta [Ca^{2+}] \) signal (denoted \(\Delta [Ca^{2+}]_{\text{MAX}} \)) provides an estimate of \([Ca_{SR}] \) (see Methods). As seen in Fig. 1A, \(\Delta [Ca^{2+}]_{\text{MAX}} \) was smaller after adding BAPTA as expected if BAPTA captures a large fraction of the released Ca. The remainder of this section assesses whether the extent of reduction in \(\Delta [Ca^{2+}]_{\text{MAX}} \) is consistent with the Ca2+-buffering properties of BAPTA.

Figure 1B plots \(\Delta [Ca^{2+}]_{\text{MAX}} \) vs. time of the experiment. \(\Delta [Ca^{2+}]_{\text{MAX}} \) decreased with time even after adding BAPTA to the internal solution. Some or all of this progressive decrease was probably due to the likelihood that [Ca2+] in the end-pool solutions (nominally 36 \(\mu \)M) was significantly less than the physiological value. In this and all of the other experiments, introduction of BAPTA significantly increased the rate of decline of \(\Delta [Ca^{2+}]_{\text{MAX}} \). When BAPTA was removed from the internal solution, \(\Delta [Ca^{2+}]_{\text{MAX}} \) partially recovered. Full recovery would not be expected due to the progressive decrease in \(\Delta [Ca^{2+}]_{\text{MAX}} \) not related to BAPTA.

Table 1 summarises the effect on several parameters of a 50–60 min exposure of 8 mM BAPTA in the end-pool solution. The following calculation gives an estimate of the percentage of total Ca released bound to BAPTA 50–60 min after adding BAPTA (given by \(100 \times \Delta [Ca^{2+}]_{\text{MAX}} / [Ca_{SR}] \)). Results in row 1 indicate that BAPTA reduced \(\Delta [Ca^{2+}]_{\text{MAX}} \) to 0.42 on average of its value before the solution change vs. 0.73 in the control experiments. Assuming the fractional decrease in \([Ca_{SR}] \) after the solution change in the BAPTA experiments was the same as in the control experiments, the average value of \([Ca_{SR}] \) 50–60 min after adding BAPTA was 0.73 \(\times [Ca_{SR}] \) before. Since \(\Delta [Ca^{2+}]_{\text{MAX}} \) should essentially be given by \([Ca_{SR}] - \Delta [Ca^{2+}]_{\text{MAX}} \), it follows that the average value of \(\Delta [Ca^{2+}]_{\text{MAX}} \) 50–60 min after adding BAPTA would have been (0.73 - 0.42) or 0.31 \(\times [Ca_{SR}] \) before. These results suggest that about 42% (100 \(\times 0.31/0.73 \)) on average of the total Ca released was bound to BAPTA. Assuming a value of 1.1 \(\times 10^{-6} \) cm2 s-1 for the diffusion constant of BAPTA and that BAPTA does not bind to sites
inside muscle, the solution of the diffusion equation (e.g. eqn (6) on p. 47 of Maylie et al. 1987) indicates that [BAPTA], at the optical recording site would have reached 7.4 mM 55 min after its introduction to the end pools. Assuming that [EGTA] was 20 mM, it is estimated that BAPTA should have captured 53% of the released calcium (obtained from the measured \(\Delta [\text{CaEGTA}] \) signal and \(\Delta [\text{CaBAPTA}] \), estimated as described in Appendix A). Given the various assumptions, we conclude that this expected decrease is reasonably consistent with the experimentally estimated decrease above of 42%. This agreement is one indication that BAPTA produced effects consistent with its Ca\(^{2+}\)-buffering properties.

Effection of BAPTA on time course of \(\Delta [\text{CaEGTA}] \)

Figure 1C shows the first part of the \(\Delta [\text{CaEGTA}] \) traces in Fig. 1A with expanded time and concentration scales. The apparent delay of the \(\Delta [\text{CaEGTA}] \) signal by BAPTA is attributed to the fact that BAPTA should rapidly capture most of the Ca that is initially released owing to its faster binding kinetics with Ca\(^{2+}\). This is essentially the same behaviour that occurs when large concentrations of fura-2 and EGTA are present (Pape et al. 1995).

The noisy trace in Fig. 1D shows the same \(\Delta [\text{CaEGTA}] \) signal associated with the pulse to −60 mV measured in the presence of BAPTA on expanded vertical and horizontal

Figure 1. Effect of BAPTA on \(\Delta [\text{CaEGTA}] \)

A, top trace, the voltage protocol used to evaluate the effect of BAPTA. Given in order of application, pulses to −60, −45, −45 and −20 mV had durations, respectively, of 400, 30, 1600 and 800 ms. The duration of the periods at −90 mV at the start and between the pulses were all 800 ms. The larger and smaller traces below show, respectively, the associated \(\Delta [\text{CaEGTA}] \) signals before and 56 min after exchanging the end-pool solution with the one containing 8 mM BAPTA. B, plot of \(\Delta [\text{CaEGTA}]_{\text{MAX}} \) vs. time after saponin treatment. The filled circles and horizontal line indicate the period when 8 mM BAPTA was present in the end-pool solution. Vertical line segments mark the points from the traces shown in A. C, the start of the same \(\Delta [\text{CaEGTA}] \) signals shown in A on expanded time and vertical scales. D, the noisy trace is the same \(\Delta [\text{CaEGTA}] \) signal in the presence of BAPTA shown in C on an expanded vertical scale and plotted only during the pulse to −60 mV. The associated two smooth traces are modelled \(\Delta [\text{CaEGTA}] \) signals. See text for details. Parameter values associated with larger and smaller \(\Delta [\text{CaEGTA}] \) signals, respectively, in A and C: holding current, −19 and −25 nA; pH, 7.12 and 6.83. Values for first and last points, respectively, in B: fibre diameter, 66 and 56 \(\mu \)m; holding current, −18 and −25 nA; concentration of phenol red at optical site, 0.8 and 2.5 mM; estimated pH, 7.15 and 6.90; \(C_{\text{app}} \) 0.00710 and 0.00758 \(\mu \)F.
Table 1. Effect of BAPTA on Ca\(^{2+}\) release and charge movement

<table>
<thead>
<tr>
<th></th>
<th>Before</th>
<th>After/before</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Control</td>
<td>BAPTA</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>(\Delta [\text{CaEGTA}]_{\text{MAX}}) ((\mu\text{M}))</td>
<td>2383 ± 117</td>
<td>2062 ± 187</td>
</tr>
<tr>
<td>2</td>
<td>(Q_{\text{off}}(-45)) (nC (\mu\text{F}^{-1}))</td>
<td>4.70 ± 0.49</td>
<td>4.22 ± 0.96</td>
</tr>
<tr>
<td>3</td>
<td>(Q_{\text{on}}(-20)) (nC (\mu\text{F}^{-1}))</td>
<td>22.3 ± 2.5</td>
<td>16.6 ± 2.2</td>
</tr>
<tr>
<td>4</td>
<td>(f_{\text{Ca}}(-60))</td>
<td>0.0212 ± 0.0027</td>
<td>0.0215 ± 0.0041</td>
</tr>
<tr>
<td>5</td>
<td>(f_{\text{Ca}}(-45))</td>
<td>0.0642 ± 0.0210</td>
<td>0.0485 ± 0.0170</td>
</tr>
</tbody>
</table>

Values were obtained before and 50–60 min after exchanging the end-pool solution for one containing no BAPTA (control) or 8 mM BAPTA. Values are means ± S.E.M. For control, \(n = 5\) for BAPTA, \(n = 7\). These values were obtained 80 min on average after saponin treatment in both the BAPTA and control experiments. \(\Delta [\text{CaEGTA}]_{\text{MAX}}\) : maximum of \(\Delta [\text{CaEGTA}]\) signal. \(Q_{\text{off}}(-45)\) : integral of the \(f_{\text{Ca}} - f_{\text{Ca}}\) signal during the short ON pulse to −45 mV. \(Q_{\text{on}}(-20)\) : estimate of the amount of charge from the OFF current following the pulse to −20 mV. \(f_{\text{Ca}}(-60)\) and \(f_{\text{Ca}}(-45)\) : \(f_{\text{Ca}}\) at −60 and −45 mV, respectively. Average values before and 50–60 min after the solution change in the BAPTA experiments were: holding current, −44.8 and −64.1 nA; phenol red concentration, 1.07–1.97 ms; resting pH, 7.18–7.07; \(C_{\text{app}}\) 0.0149–0.0159 \(\mu\text{F}\); \(\tau_{\text{off}}\) 4.40–5.52 \(\text{msec}\); \(c_{\text{on}}\) 0.193–0.195 \(\text{mM}\). The corresponding values in the control experiment were −41.5 and −49.6 nA; 1.07–1.88 ms; 7.15–7.07; 0.0142–0.0142 \(\mu\text{F}\); 4.85–5.30 \(\text{mS}\); and 0.182–0.175 \(\text{mM}\). With the exception of a small increase in \(C_{\text{app}}\) in the BAPTA experiments, none of these parameter values or changes in values with time were significantly different in the BAPTA vs. the control experiments.

scales. In order to make a further assessment of whether or not BAPTA produced effects consistent with its Ca\(^{2+}\)-buffering properties, model calculations were done to estimate the expected time course of \(\Delta [\text{CaEGTA}]\) in the presence of BAPTA as described in Appendix B. The \(\Delta [\text{Ca}]\) signal driving the model was assumed to be a ramp function, as observed in the absence of BAPTA (cf. the trace labelled ‘no BAPTA’ in Fig. 1C). The earlier smooth trace in Fig. 1D shows the predicted \(\Delta [\text{CaEGTA}]\) signal calculated with parameters given in the second to last section in Appendix B. The calculated and measured \(\Delta [\text{CaEGTA}]\) signals have similar properties including an apparent delay with a large fraction of the change in \(\Delta [\text{CaEGTA}]\) occurring after the pulse as Ca\(^{2+}\) redistributed from BAPTA to EGTA. As indicated in Appendix B, the predicted redistribution is essentially mono-exponential with a time constant of 262 ms. Fits of single exponential functions to the recovery periods after the pulses to −60 and −45 mV were very good (fits shown in Fig. 1C but difficult to distinguish from the data). The exponential time constants for the fits were 339 and 315 ms, respectively, values that are reasonably close to the predicted time constant of 262 ms.

The predicted exponential time constant for redistribution of Ca from BAPTA to EGTA is sensitive to the off rate of Ca from EGTA which, in turn, is sensitive to pH. It was previously shown that phenol red provides an accurate measure of ΔpH in muscle, but that the absolute value of pH is too acidic by 0.1–0.4 units with an average shift of about 0.2 pH units, observations consistent with a simple shift in its pK (Page 1990; discussed also in Page et al. 1995). If the actual pH had been more alkaline, the predicted redistribution of Ca from BAPTA to EGTA would have been slower and there would have been more of an apparent delay in the predicted \(\Delta [\text{CaEGTA}]\) signal thereby giving a better match to the measured \(\Delta [\text{CaEGTA}]\) signal. The additional delay was small, however, and did not account for the difference between the measured and the early, predicted \(\Delta [\text{CaEGTA}]\) signal in Fig. 1D. A factor that appears to account for this discrepancy is that counter-ion movements of protons into the SR should produce an alkalinisation superimposed on the ΔpH signal associated with Ca binding to EGTA. There was in fact a slight early undershoot in the \(\Delta [\text{CaEGTA}]\), probably due to such counter-ion movements, that was more evident with the more depolarised potentials (indicated by arrow in Fig. 1C). The more delayed smooth trace in Fig. 1D shows the predicted \(\Delta [\text{CaEGTA}]\) signal taking into account counter-ion movements of protons as described in the last section of Appendix B. In this case, there is a close correspondence between the predicted and measured \(\Delta [\text{CaEGTA}]\) signals during the full trace. Similar agreement was observed in all of the experiments, thereby providing another indication that BAPTA produced effects consistent with its Ca\(^{2+}\)-buffering properties.

Effect of BAPTA on \(f_{\text{Ca}}\)

Since it was not possible to reliably estimate the time course of Ca\(^{2+}\) release with BAPTA present, the approach taken was to estimate \(f_{\text{Ca}}\) \((V)\), the fraction of SR Ca\(^{2+}\) released by a pulse to voltage \(V\) (in mV). When only a small fraction of SR Ca is released, as occurs with the first two pulses of the stimulation protocol, \(f_{\text{Ca}}\) is very close to the integral of the release permeability during the pulse. As evaluated in Appendix A, \(f_{\text{Ca}}\) estimated with the EGTA/phenol red method (eqn (3)) should be very close to the actual \(f_{\text{Ca}}\) even in the presence of 8 mM BAPTA.
Figure 1C indicates that \(f_{\text{Ca}}(-60) \) increased following the addition of BAPTA since the magnitude of \(\Delta \text{[CaEGTA]} \) following the pulse to -60 mV did not change much whereas \(\Delta \text{[CaEGTA]} \) \(_{\text{MAX}} \) decreased (Fig. 1A). As discussed below, this unexpected increase also occurred during control experiments. The large reduction of \(\Delta \text{[CaEGTA]} \) at -45 mV in Fig. 1C, however, was associated with the addition of BAPTA. These results are consistent with a Ca-dependent extra activation component of Ca\(^{2+}\) release during the first 30 ms of a pulse to -45 mV that was not present at -60 mV.

Figures 2A and B indicate that there was a clear time-dependent decrease in \(f_{\text{Ca}}(-45) \) following the addition of BAPTA that was not observed in the control experiment. Values in Table 1 indicate that BAPTA produced a large and statistically significant decrease in \(f_{\text{Ca}}(-45) \); \(f_{\text{Ca}}(-45) \) was reduced to 0.400 of its value before the solution change vs. 0.847 in the control experiments. Although consistent with a Ca-dependent extra activation component, it is important to note that \(f_{\text{Ca}}(-45) \) in Fig. 2A did not recover following the removal of BAPTA from the internal solution. This raises the concern, addressed more fully in the Discussion, that some of the decrease in \(f_{\text{Ca}}(-45) \) was not related to the Ca\(^{2+}\)-buffering action of BAPTA.

Figure 2C and D shows the time courses of \(f_{\text{Ca}}(-60) \) for the experiments shown Fig. 2A and B, respectively. As mentioned with Fig. 1, there was a gradual increase in \(f_{\text{Ca}}(-60) \), whether or not BAPTA was added. The average increases of 1.54 and 1.90 for the BAPTA and control experiments, respectively, were not significantly different (row 4 of Table 1). The reason for the increase and the fact that it was not observed or was not as pronounced in earlier experiments (cf. approximately constant values of release permeability values at -60 mV in Fig. 5A when [Ca\(_{\text{in}}\)] was >1000 \(\mu \text{M} \)) is not known.

Effect of BAPTA on intramembranous charge movement

Figure 3A plots \(Q_{\text{cm}} \) vs. time after saponin treatment for the four voltage pulses illustrated in Fig. 1A. Taking into account random scatter in the data, the amount of charge appeared to be approximately constant. The reason the data points for the short pulse to -45 mV (open circles) show less scatter is that each point represents the amount of charge moved during the ON pulse without a correction for non-linear ionic current (this correction is the main reason for the scatter in the data at the other voltages). There was a small average increase of 8% in the \(Q_{\text{cm}} \) at -20 mV after 50–60 min in BAPTA (row 3 of Table 1). This increase was not, however, significantly different from the increase of 11% in the control experiments. In contrast to the charge at -20 mV and the long pulse to -45 mV, there appeared to be a small decrease in the \(Q_{\text{cm}} \) values for the short pulse to -45 mV during the period in BAPTA (cf. horizontal line and open circles in Fig. 3A). The average change, -12%, was lower than that in the control experiments of +3% (row 2 of Table 1), though the difference was not statistically significant. The decrease in \(Q_{\text{cm}} \) in BAPTA, however, was consistently observed.

Figure 3B shows superimposed \(I_{\text{test}} \) - \(I_{\text{control}} \) currents associated with the short pulse to -45 mV measured just before and 1 h after the addition of BAPTA. BAPTA produced a decrease in the \(I_{\text{test}} \) - \(I_{\text{control}} \) trace after the peak without significantly affecting the early peak. Figure 3C indicates that the decrease was reversed after BAPTA was

Figure 2. Time course of \(f_{\text{Ca}}(-45) \) and \(f_{\text{Ca}}(-60) \) in BAPTA and control experiments

A, plot of \(f_{\text{Ca}}(-45) \) vs. time after saponin treatment. The filled circles and horizontal line indicate the period when 8 mM BAPTA was present in the end-pool solution. B, plot of \(f_{\text{Ca}}(-45) \) in a control experiment. The start and end of the horizontal line segment are the times when the end-pool solution was exchanged with the same solution that was already present, i.e. with no BAPTA. C and D correspond to A and B, respectively, except that \(f_{\text{Ca}}(-60) \) is plotted instead of \(f_{\text{Ca}}(-45) \). A and C are results from the same fibre shown in Fig. 1. Values for first and last points, respectively, for fibre in B and D: fibre diameter, 84 and 78 \(\mu \text{m} \); holding current, -43 and -73 nA; concentration of phenol red at optical site, 0.3 and 2.8 mM; estimated pH\(_{\text{ext}}\), 7.31 and 7.07; \(C_{\text{app}} \), 0.01303 and 0.01526 \(\mu \text{F} \).
removed. The decrease can be explained by an inhibitory effect of BAPTA on the Q_{y} component of charge with little or no effect on the early Q_{y} component. Since BAPTA did not significantly affect the maximum amount of charge or the charge during the long pulse to -45 mV, it seems reasonable to suppose that BAPTA decreased the speeding effect of Ca^{2+} release on Q_{y} charge. This conclusion is similar to that reached by Strofkeová & Heiny (1997a,b) that $10-20 \text{ mM} \text{ BAPTA}$ inhibits the movement of Q_{y} charge, presumably at voltage sensors near an open SR Ca^{2+} release channel. In contrast to the results of Strofkeová & Heiny (1997a), however, $8 \text{ mM} \text{ BAPTA}$ did not significantly reduce the maximum amount of charge whereas they found a large reduction. The reason for the discrepancy is not known though it is noted that different frog species were used.

Effect of [Ca$_{\text{SR}}$] on the time course of intramembranous charge movement and Ca$^{2+}$ release at -45 mV

The remainder of the results are from the same experiments described in Pape & Carrier (1998) which evaluated the effect of [Ca$_{\text{SR}}$] on release permeability in response to less depolarised potentials (-70 to -60 mV). Briefly, the usual stimulation protocol consisted of a series of pulses to -70, -65, -60, -45 and -20 mV interspersed by 400 ms periods at -90 mV. One of the reasons for the first three pulses was to monitor the voltage steepness of release when only a small fraction of channels were activated. This voltage steepness and the total amounts of intramembranous charge at -45 and -20 mV were generally stable indicating that steady-state voltage activation was relatively constant during these long experiments. This article is mainly concerned with the

Figure 3. Effect of BAPTA on intramembranous charge movement

A, Q_{m} plotted vs. time after saponin treatment for the pulses to -60 mV (filled circles), the short pulse to -45 mV (open circles), the long pulse to -45 mV (asterisks), and the pulse to -20 mV (open diamonds). With the exception of the short pulse to -45 mV (see text), Q_{m} values are from the OFF pulse (see Methods). The horizontal line segment at the top indicates the period when 8 mM BAPTA was present in the end pools. The constant line through the results at -45 mV is the average of the values before adding BAPTA. This line helps with the observation that Q_{m} for the short pulse to -45 mV decreased in BAPTA and recovered to the level before BAPTA following its removal. B, the continuous and dotted traces at the top are short voltage pulses to -45 mV, respectively, before and 53 min after adding BAPTA. The traces at the bottom are the corresponding I_{m} - I_{control} signals. C, continuous traces are the same as those shown in B before adding BAPTA. The dotted traces were obtained 72 min after removing BAPTA. The labels a, b and c for the traces correspond to the points with the same labels in A. Results are for the same fibre shown in Figs 1, 2A and 2C.
release permeability at \(-45\) mV. Because only a small amount of Ca is released during the first three pulses and they were followed by a relatively long resting period, the first three pulses should have had little if any influence on the Ca\(^{2+}\) release at \(-45\) mV.

The top trace in Fig. 4A shows the start of a voltage pulse to \(-45\) mV early in an experiment when [Ca\(_{SR}\)]\(_R\) was 1640 \(\mu\)M. The next traces from top to bottom show the corresponding intramembranous charge movement current \(I_{cm}\), \(\Delta[Ca]\), rate of Ca release \((d\Delta[Ca]/dt)\), and release permeability signals. Prior to the stimulation shown in Fig. 4A, Ca was removed from the end pools. The fibre was then stimulated usually every 5 min thereby producing a slow removal of Ca from the fibre. The traces in Fig. 4B and C were obtained when [Ca\(_{SR}\)]\(_R\) had declined to 422 and 74 \(\mu\)M, respectively. Shortly after the stimulation shown in Fig. 4C, Ca was added back to the end pools. The traces in Fig. 4D were obtained when [Ca\(_{SR}\)]\(_R\) had recovered to 347 \(\mu\)M.

The time courses of the \(I_{cm}\) traces differed due to effects of Ca\(^{2+}\) release on the kinetics of the Q\(_R\) component, effects that do not alter the amount of steady-state charge (Jong et al. 1995b; Pape et al. 1996). These effects are discussed below. The release permeability signal in Fig. 4A had a somewhat complex time course. The rapid decrease from the peak to the local minimum is due to Ca inactivation of Ca\(^{2+}\) release and the subsequent increase to increasing voltage activation as intramembranous charge continues to move. The time courses of the release permeability signals in Fig. 4B–D were simpler with a relatively slow monotonic decline after the peak. A comparison of the release permeability signals in Fig. 4B–D indicates that the decrease in release permeability when [Ca\(_{SR}\)] decreased from 422 to 74 \(\mu\)M was not reversed when Ca was added to the end-pool solution and [Ca\(_{SR}\)] had recovered to 347 \(\mu\)M. This lack of long-term reversibility was typical of most of the experiments, though the peak values were partially reversed in some experiments and almost fully reversed in one experiment. The overall lack of this type of

Figure 4. Charge movement and Ca\(^{2+}\) release signals at different times during an experiment

In each panel, the top trace \((V_t)\) shows a voltage step to \(-45\) mV. The next traces, from top to bottom, show the corresponding \(I_{cm}\), \(\Delta[Ca]\), \(d\Delta[Ca]/dt\) and release permeability signals. The vertical lines mark the time-to-peak of the \(d\Delta[Ca]/dt\) signal determined by the fit of a quadratic function to points spanning the peak of the signal. The calibration bars on the left of the \(V_t\), \(I_{cm}\) and release permeability signals apply to all four panels. The calibration bars for the \(d\Delta[Ca]/dt\) traces give the peaks of the \(d\Delta[Ca]/dt\) signals. The value of [Ca\(_{SR}\)]\(_R\) is shown at the top of each panel. Times of saponin treatment for panels A–D, respectively, were 91, 141, 197 and 245 min.
reversibility contrasts with the consistent reversibility observed for the pulses to −70 to −60 mV from these same experiments (Pape & Carrier, 1998). These results indicate some type of long-term change can occur which reduces the release permeability at −45 mV but not at more negative voltages. Although this raises some concerns, results described later indicate that effects of changing [Ca_{st}] were reversible earlier in the experiments when the main results of interest were obtained.

The next section evaluates the magnitude of the release permeability signal at −45 mV at the time of the peak of the dA/CA_d/dt signal (marked by vertical bars in Fig. 4). One reason for selecting this time is that Ca inactivation was very evident after this point with larger values of [Ca_{st}] (Fig. 4A). Another reason is that the time-to-peak of the release permeability signal was well defined with smaller values of [Ca_{st}] whereas that of the dA/CA_d/dt signal was easier to estimate. [Ca_{st}] at the time of the peak of the dA/CA_d/dt signal is denoted below as [Ca_{st}]_{peak}.

Comparison of release permeability vs. [Ca_{st}] at −45 and −60 mV

Figure 5A plots release permeability vs. [Ca_{st}] for pulses to −45 and −60 mV. Both sets of data show similar features including (1) an increase in release permeability to its maximum value when [Ca_{st}] increased from < 100 μM to 200–400 μM, (2) a decrease in release permeability when [Ca_{st}] increased from 200–400 μM to >1000 μM, and (3) approximately constant values when [Ca_{st}] was >1000 μM (denoted the plateau region). The major difference is that the release permeability at −45 mV relative to that at −60 mV was greater in the plateau regions.

One procedure to test for reversibility was to decrease [Ca_{st}] by decreasing the time between stimulations from the usual 5 min to about 1 min (see explanation of inverted triangle, square and triangle symbols in legend of Fig. 5). Results at −45 mV in Fig. 5A indicate that most of the long-term decrease of release permeability with decreasing [Ca_{st}] was reversible over the short term with this procedure. Similar results were obtained in the five other experiments in which [Ca_{st}] was similarly reduced from 200–300 μM to <100 μM. The conclusion from these results is that the reversible part of decrease of release permeability at −45 mV when [Ca_{st}] decreases in this range of [Ca_{st}] values is similar to that observed with pulses to less depolarised potentials (−70 to −60 mV).

Pape & Carrier (1998) concluded that CICR is probably responsible for the dependence on [Ca_{st}] of release permeability at less depolarised potentials in this range of [Ca_{st}] values. These results suggest that the same conclusion applies to the release permeability at −45 mV.

Results in Fig. 4 indicate that only a fraction of the steady-state intramembranous charge had moved by the time the release permeability values at −45 mV were determined. Values of this fraction plotted in Fig. 5B started at less than 0.4 when [Ca_{st}] was >1200 μM and progressively increased as [Ca_{st}] decreased.

Figure 5C plots the ratio of the release permeability at −45 mV to that at −60 mV in Fig. 5A, obtained during the same stimulation protocol (open circles). A filled circle is this ratio divided by the corresponding fraction of steady-state intramembranous charge moved from Fig. 5B. This normalisation roughly accounts for the fact that only a fraction of the maximum voltage activation had been reached at the time of the determination of the release permeability at −45 mV (this normalisation is discussed below). The constant line is an estimate of the ratio of voltage activation of Ca^{2+} release at −45 mV to that at −60 mV in the absence of Ca^{2+} feedback mechanisms and after essentially all of the charge in the Q_e ‘hump’ component had moved. Its value, 12.2, was calculated from average parameters of a Boltzmann function fitted to release permeability vs. voltage data when [Ca_{st}] was reduced to <60 μM (columns 4 and 5 of Table 1 in Pape & Carrier, 2002). It is clear that the ratio values approached this constant line at low values of [Ca_{st}]. An important point to note is that the normalised ratio of the release permeability in the plateau region was about 8-fold larger than the ratio obtained at the smallest values of [Ca_{st}]. These results are consistent with a Ca-dependent, extra activation component of Ca^{2+} release present at −45 mV but not at −60 mV.

Summary of release permeability at −45 mV compared to −60 mV

Table 2 gives mean values of all of the experiments (n = 7) for results like those in Fig. 5. The third and fourth columns give average values when [Ca_{st}]_{peak} was 100–200 μM and 1000–1800 μM, respectively. Row 6 gives the normalised ratio of release permeabilities, which correspond to the filled circles in Fig. 5C. Row 7 gives this normalised ratio at the higher values of [Ca_{st}] divided by that at the low values (values in columns 4 divided by those in column 3 of row 6). This value – termed the enhancement factor – is the factor by which the normalised ratios of release permeabilities increased when [Ca_{st}] increased from 100–200 to 1000–1800 μM. Its value of 7.3 supports the presence of a large, Ca-dependent extra activation component of Ca^{2+} release at −45 mV.

As seen in Fig. 5A, release permeability was approximately proportional to [Ca_{st}] at both −60 and −45 mV when [Ca_{st}] increased from <100 μM to >300 μM, an effect attributed to CICR (see above). The relatively small ratios at the lower [Ca_{st}] level in Fig. 5C may be due in part to the fact that [Ca_{st}] at the time of the evaluation of the release permeability at −45 mV was smaller than that at −60 mV ([Ca_{st}] values in rows 2 and 3, respectively, in the third column of Table 2). Scaling the enhancement factors in
row 7 by the ratio of these \([Ca_{SR}]\) values should provide a reasonable correction for this effect (see Appendix of Pape & Carrier, 2002). This correction reduces the average enhancement factor from 7.3 (row 7) to 5.9 (row 8), which still indicates a substantial Ca-dependent enhancement of \(Ca^{2+}\) release at \(-45\) mV.

In the normalisation of the ratio data above, the ratio was divided by the fraction of steady-state intramembranous charge moved. This fraction is meant to provide a rough estimate of the fraction of coupled SR \(Ca^{2+}\) release channels activated by their associated voltage sensors. The estimated fraction is likely to be too high for two reasons.

![Graph](image.png)

Figure 5. Release permeability vs. \([Ca_{SR}]\) at \(-45\) and \(-60\) mV

A, the filled symbols plot release permeability at \(-45\) mV at the time of the peak of the \(d\Delta [Ca_{SR}] / dt\) signal vs. \([Ca_{SR}]_{peak}\). The open symbols plot release permeability vs. \([Ca_{SR}]\) at \(-60\) mV, both average values during the last 100 ms of the pulse to \(-60\) mV. The y axis scales of 1.0 and 0.1 apply to points for \(-45\) and \(-60\) mV, respectively. The interval of time between points was usually 5 min. This interval was reduced to \(-1\) min between the inverted triangle and the following square symbol and then increased back to 5 min before the following triangle. \([Ca_{SR}]\) in each case is the value at the time of the determination of the release permeability value. The points are not aligned because the \([Ca_{SR}]\) for a point at \(-45\) mV was less than that at \(-60\) mV for the same stimulation since more Ca had been released by the time of the determination of the release permeability at \(-45\) mV. Points at the largest and smallest values of \([Ca_{SR}]\) were obtained, respectively, 65 and 199 min after saponin treatment. With the exception of the squares, \([Ca_{SR}]\) decreased monotonically with time of the experiment. After the first three points, \(Ca^{2+}\) was removed from the internal solution. Points are not shown after \(Ca^{2+}\) was added back to the internal solution and \([Ca_{SR}]\) partially recovered (e.g. that obtained from the release permeability trace in Fig. 4D). B, plot of the fraction of steady-state \(Q_{on}\) moved by the time-to-peak of the \(d\Delta [Ca_{SR}] / dt\) signal at \(-45\) mV. C, an open circle plots the ratio of release permeability at \(-45\) mV to that at \(-60\) mV in A obtained with the same stimulation. A filled symbol plots this ratio divided by the fraction of \(Q_{on}\) moved by the time-to-peak of the \(d\Delta [Ca_{SR}] / dt\) signal at \(-45\) mV given in B. The constant line has a value of 12.2 (see text for details). Results are for the same fibre shown in Fig. 4. The points labelled a–c correspond to the traces shown in panels A–C, respectively, of Fig. 4. Range of values from first to last point: fibre diameter, 106–111 \(\mu m\); holding current, \(-37\) to \(-78\) nA; concentration of phenol red at optical site, 1.4–3.0 m\(\mu\)M; estimated pH, 6.80–6.71; \(C_{eqp}\) 0.0167–0.0152 \(\mu F\).
Table 2. Effect of SR Ca content on the ratio of release permeabilities at two voltages with [Ca_{SR}]_{p} at 100–200 μM or 1000–1800 μM

<table>
<thead>
<tr>
<th>100–200 μM</th>
<th>1000–1800 μM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 ([\text{Ca}^{2+}]_{s}(\mu\text{M}))</td>
<td>273 ± 58</td>
</tr>
<tr>
<td>2 ([\text{Ca}^{2+}]_{s}) at -60 mV (μM)</td>
<td>174 ± 4</td>
</tr>
<tr>
<td>3 ([\text{Ca}^{2+}]_{SR}) peak at -45 mV (μM)</td>
<td>135 ± 3</td>
</tr>
<tr>
<td>4 Release permeability at -45 mV (% ms⁻¹)</td>
<td>0.95 ± 0.14</td>
</tr>
<tr>
<td>5 Fraction of charge at peak</td>
<td>0.69 ± 0.02</td>
</tr>
<tr>
<td>6 Normalized ratio of release permeabilities</td>
<td>31.3 ± 7.5</td>
</tr>
<tr>
<td>7 Enhancement factor</td>
<td>—</td>
</tr>
<tr>
<td>8 Corrected enhancement factor</td>
<td>—</td>
</tr>
</tbody>
</table>

Values are means ± S.E.M.; \(n = 7\) experiments. Comparison of release permeability values at -45 mV and -60 mV with normal and reduced values of [Ca_{SR}]_{s}. A value in each experiment was the average from several stimulations in which [Ca_{SR}]_{s} was within a certain range. Rows 1–3, respectively, give [Ca_{SR}]_{s} and the values of [Ca_{SR}] when the release permeabilities were -60 mV and -45 mV were determined. Rows 4 and 5 give release permeability and fraction of steady-state charge moved, respectively, at the time of the peak of dΔ[Ca_{SR}]/dt signal (corresponding to filled symbols in Fig. 5A and B, respectively). Row 6 gives the ratio of release permeability at -45 mV to that at -60 mV normalised by the fraction of steady-state charge moved (corresponding to the filled symbols in Fig. 5C). Row 7 gives the ratio of values in row 6 for [Ca_{SR}]_{SR} between 1000 and 1800 μM to those for [Ca_{SR}]_{peak} between 100 and 200 μM. Row 8 gives row 7 divided by values in row 2 and multiplied by values in row 3, both for [Ca_{SR}]_{peak} between 100 and 200 μM (see text).

One is that Q_{P} charge – which is not directly associated with Ca^{2+} release – moves early during the ON pulse. Another reason is that the time course of voltage activation of Ca^{2+} release is expected to lag behind that of Q_{P} (Pape & Carrier, 2002). Since the overestimation of the fraction would be more pronounced at larger values of [Ca_{SR}]_{s} when less charge had moved, the corrected enhancement factor in row 8 of Table 2 should be adjusted upwards to 6 or greater.

Ca-dependent, early enhancement of release permeability
The top traces in Fig. 6 show superimposed I_{cm} signals at -45 mV when [Ca_{SR}]_{s} was 1640, 422 and 74 μM (traces labelled a–c, respectively). The middle traces in Fig. 6 show dΔ[Ca_{SR}]/dt at 1640 and 422 μM only, and the bottom traces in Fig. 6 show the corresponding release permeability signals. The changes in the time course of the I_{cm} traces with [Ca_{SR}]_{s} were similar to those observed previously and attributed to two feedback mechanisms of Ca^{2+} release on the kinetics of Q_{P} charge movement. The early enhancement of I_{cm} at the larger [Ca_{SR}] values (traces a and b) relative to that at the reduced [Ca_{SR}] (trace c) was caused by the speeding-up effect of Ca^{2+} release on Q_{P} (Jong et al. 1995b). The rapid decrease of I_{cm} after its peak at the highest value of [Ca_{SR}] (trace a) was due to a slowing of the kinetics of Q_{P} that occurs at larger rates of Ca^{2+} release (Pape et al. 1996). The observation of most interest in Fig. 6 is that the initial increase of the release permeability signal was much larger with the larger [Ca_{SR}]. It is possible that this early enhancement was due to a faster voltage activation as suggested by the somewhat greater, early enhancement of the I_{cm} trace labelled a (indicated with arrow). However, since the kinetics of Q_{P} were sped up in both a and b and only slightly more in a, it

![Figure 6. Superimposed I_{cm} and Ca^{2+} release signals at -45 mV at different values of [Ca_{SR}]](image)

The top, middle and bottom sets of traces show I_{cm}, dΔ[Ca_{SR}]/dt and release permeability signals, respectively. The start of the time calibration bar marks the start of the step to -45 mV (not shown). The traces labelled a–c were obtained when [Ca_{SR}]_{s} was 1640, 422, 74 μM, respectively, i.e. from panels A–C in Fig. 4 and points labelled a–c in Fig. 5. All of the traces in this figure were digitally filtered with a 0.05 kHz cut-off frequency.
does not appear that the enhanced voltage activation can account for the large early enhancement of the release permeability. Therefore, the results suggest that the early enhancement of release permeability involves a Ca-dependent process in addition to the speeding up effect of Ca\(^{2+}\) release on Q. It seems reasonable to suppose that this early enhancement is caused by the same mechanism responsible for the Ca-dependent enhancement of Ca\(^{2+}\) release at \(-45\) mV indicated above.

Evaluation of reversibility when [Ca\(_{SR}\)] decreases from \(-1000\) to \(-400\) \(\mu\)M

As mentioned with Fig. 4D, a long-term, irreversible decrease in release permeability at \(-45\) mV occurred in most experiments as evidenced by a lack of recovery after Ca was added back to the end pools late in the experiments. If the irreversible decrease occurred early in experiments, it could explain the decrease in the ratio of release permeability at \(-45\) mV to that at \(-60\) mV when [Ca\(_{SR}\)] decreased from \(-1000\) to \(-300\) \(\mu\)M. It was previously shown that the increase in release permeability at \(-60\) mV was reversible in this range of [Ca\(_{SR}\)] values (Fig. 6 in Pape & Carrier, 1998). The experiment illustrated in Fig. 7 tested whether or not this is the case at \(-45\) mV by reducing the time between stimulations to \(-1\) min from the usual 5 min in order to produce a short-term decrease in [Ca\(_{SR}\)]. Fig. 7A shows \(I_{on}\), \(\Delta [Ca]/\Delta t\), and release permeability traces in the same format as Fig. 6 when [Ca\(_{SR}\)]\(_R\) was reduced in this manner from 1083 (continuous traces) to 445 \(\mu\)M (dotted traces). As is the case in Fig. 6, the early parts of the \(I_{on}\) and release permeability signals were enhanced with the larger [Ca\(_{SR}\)].

The continuous traces in Fig. 7B are the same as those in Fig. 7A before reducing [Ca\(_{SR}\)]\(_R\) and the dotted traces are from the bracketing stimulation made after a 5 min recovery period following the short-term reduction of [Ca\(_{SR}\)]. The effects of reducing [Ca\(_{SR}\)] were mostly reversed. The difference in the later part of the release permeability signals can be attributed to the fact that [Ca\(_{SR}\)] only partially recovered to a value on the descending limb of the release permeability vs. [Ca\(_{SR}\)]

Figure 7. Effect of short-term and long-term changes of [Ca\(_{SR}\)] on \(I_{on}\) and release permeability at \(-45\) mV

Each panel from top to bottom shows superimposed voltage, \(I_{on}\), \(\Delta [Ca]/\Delta t\) and release permeability signals. The continuous traces in A were obtained 9 min after saponin treatment when [Ca\(_{SR}\)] was 1083 \(\mu\)M. The dotted traces were obtained 1 min later instead of the usual 5 min and [Ca\(_{SR}\)] had recovered to only 445 \(\mu\)M. The values of [Ca\(_{SR}\)] are shown at the top. B, the continuous traces are the same as those shown in A. The dotted traces were obtained 5 min after the dotted traces in A, and therefore give bracketing measurements for the short-term reduction in [Ca\(_{SR}\)]. C, the continuous traces are the same as the dotted traces shown in A. The dotted traces were obtained 20 min later in the experiment at which time [Ca\(_{SR}\)] \(\Delta \mu\)C declined to 410 \(\mu\)M. Range of values: holding current, \(-47\) to \(-51\) nA; fibre capacitance, 0.0127\(\mu\)F to 0.1299 \(\mu\)F; concentration of phenol red at optical site, 1.96-2.46 mm; estimated \(\mu\)H\(_I\), 6.705-6.699.
relationship (cf. Fig. 5A). The continuous traces in Fig. 7C are the traces in Fig. 7A associated with the short-term decrease in $[\text{Ca}_{38}]$. The dotted traces were obtained 26 min later in the experiment when $[\text{Ca}_{38}]$ had decreased to about the same level due to the slow removal of Ca from the fibre. The I_{Ca} signals were very similar. The magnitude of the release permeability signal was only slightly reduced indicating that it was reasonably stable during the early part of the experiments. Similar results were obtained in the one other experiment in which $[\text{Ca}_{38}]$ was reversibly decreased from $-1000 \mu\text{M}$ to $-400 \mu\text{M}$. In summary, the major part of the decrease in the normalised ratio of release permeabilities when $[\text{Ca}_{38}]$ decreases below $1000 \mu\text{M}$ (Fig. 5C and Table 2) is reversible and therefore not due to a long-term change.

The results in Fig. 7 are less clear concerning reversibility of the early enhancement of release permeability at larger $[\text{Ca}_{38}]$ values. Figure 7A shows that the early release permeability was reduced at the lower $[\text{Ca}_{38}]$ value (indicated with an arrow) and Fig. 7B indicates that this reduction was reversed. Traces in Fig. 7C, however, indicate that the early signal was more reduced later in the experiment even though $[\text{Ca}_{38}]$ had declined to about the same level as that produced by shortening the interval between stimulations. Therefore, some, but not all, of the early enhancement of release permeability at the higher $[\text{Ca}_{38}]$ level in Fig. 6 may be due to the fact that the enhanced signal was obtained earlier in the experiment before any long-term change had occurred.

DISCUSSION

The experimental aim of this study was to evaluate whether or not there is a Ca-dependent enhancement of Ca$^{2+}$ release present only at more depolarised potentials. This was done by evaluating effects of modulating myoplasmic $\Delta[\text{Ca}^{2+}]$ in the vicinity of open Ca$^{2+}$ release channels on the release permeability at -45 mV relative to that at -60 mV. One approach for varying $\Delta[\text{Ca}^{2+}]$ was to add a large concentration of the fast Ca$^{2+}$ buffer BAPTA. The other was to vary $[\text{Ca}_{38}]$ (see Introduction).

Effects of BAPTA

Results in this article indicate that 8 mM BAPTA produces a clear reduction in release permeability (monitored by f_{Ca}) at -45 mV with no significant effect at -60 mV (Figs 1C and 2, and Table 1). This result is consistent with a Ca-dependent enhancement of Ca$^{2+}$ release that depends on voltage. One problem with the BAPTA experiments, however, is that $f_{\text{Ca}}(-45)$ did not recover when BAPTA was removed from the end-pool solutions even after an hour (Fig. 2A). This apparently was not due to BAPTA remaining in the fibre, since $\Delta[\text{CaEGTA}]_{\text{MAX}}$ recovered somewhat after removing BAPTA (Fig. 1B). (Full recovery of $\Delta[\text{CaEGTA}]_{\text{MAX}}$ would not be expected since $\Delta[\text{CaEGTA}]_{\text{MAX}}$ tended to decline during the experiments even in the absence of BAPTA.) In addition, the delay in the $\Delta[\text{CaEGTA}]$ signal produced by BAPTA and the slow exponential component associated with redistribution of Ca from BAPTA to EGTA after the pulse (Fig. 1C) were both nearly fully reversible (not shown). It appears, therefore, that BAPTA produces some type of irreversible decrease of the Ca$^{2+}$ release process at -45 mV not related to its maintained presence in the myoplasm. Another problem is that BAPTA decreased the early I_{Ca} signal at -45 mV consistent with a reduction of the speeding up effect of Ca$^{2+}$ release on Q_{Ca}. Therefore, a decrease in voltage activation at -45 mV could have caused some or all of the reduction in $f_{\text{Ca}}(-45)$.

In summary, it is not possible to conclude whether fast Ca$^{2+}$ buffering, an irreversible change, and/or a decrease in voltage activation is responsible for the major part of the decrease in release permeability at -45 mV produced by BAPTA. It should be noted, however, that BAPTA did produce changes in the magnitude and time course of $\Delta[\text{CaEGTA}]$ consistent with the expected Ca$^{2+}$-buffering properties of BAPTA (Table 1 and Fig. 18 and D). In addition, BAPTA did not significantly decrease $f_{\text{Ca}}(-60)$ compared to control values as might be expected if BAPTA produced some toxic effect. Therefore, although not conclusive, the BAPTA results do support the presence of a Ca-dependent enhancement of release permeability at more depolarised potentials.

Ca-dependent extra activation component at more depolarised potentials

The other approach was to compare the ratio of release permeabilities at -45 mV and -60 mV when $[\text{Ca}_{38}]$ was near physiological values ($>1000 \mu\text{M}$) to when it was $<300 \mu\text{M}$. In the latter condition, Ca$^{2+}$ feedback mechanisms were greatly reduced or eliminated and most of the steady-state charge had moved so that the ratio should approach that due to steady-state voltage activation alone. The main finding is that the ratio of release permeabilities is much larger than expected from voltage activation alone (at least 6-fold) when $[\text{Ca}_{38}]$ is in the physiological range (row 8 of Table 2). This result was shown to be reversible with short-term decreases in $[\text{Ca}_{38}]$ (Fig. 7).

Possible explanations for the enhanced ratio include the presence of some type of extra activation component at -45 mV due to CICR or some other Ca-dependent process or that Ca inactivation is somehow more pronounced at -60 mV compared to -45 mV (either the numerator of the ratio is greater or the denominator is smaller at larger values of $[\text{Ca}_{38}]$). The latter explanation seems less likely since the rate of Ca$^{2+}$ release is less at -60 mV so that Ca inactivation should also be less. In addition, Ca$^{2+}$ spark results with most of the voltage sensors immobilised indicate no voltage dependence of the duration or
amplitude of Ca\(^{2+}\) sparks with presumably physiological SR Ca contents (Klein et al. 1997). Since Ca\(^{2+}\) sparks were probably terminated by Ca inactivation, the results of Klein et al. (1997) indicate that there is no intrinsic voltage dependence of Ca inactivation that would make it more pronounced at \(-60\) mV compared to \(-45\) mV. We conclude with near certainty that there is some type of Ca-dependent extra activation component at \(-45\) mV that is not present at \(-60\) mV.

Ca-dependent enhancement of early release permeability signal at \(-45\) mV

In almost all of the experiments, the early release permeability signal at \(-45\) mV was enhanced at the start of experiments when [Ca\(_{SR}\)] was greater (Fig. 6). At least some of this enhancement is reversible as revealed by short-term decreases in [Ca\(_{SR}\)] (Fig. 7A and B). The early enhancement of release permeability was always accompanied by a small enhancement of the \(I_{cm}\) trace consistent with a slightly greater speeding up effect of Ca\(^{2+}\) release on \(Q_y\). As a result, it is not yet possible to rule out the possibility that the early enhancement is due to increased voltage activation alone. The additional \(Q_y\) charge, however, appears to be too small to account for the enhanced release permeability. It seems likely that the early enhancement of the release permeability signal at \(-45\) mV is caused by the same mechanism that produced the Ca-dependent enhancement in the ratio of permeabilities at \(-45\) and \(-60\) mV. This is important because it suggests that the latter enhancement starts early in the pulse when only a small amount of charge has moved (see below).

Possibility that enhanced release is triggered by summation of Ca\(^{2+}\) from two voltage-activated Ca\(^{2+}\) release channels appears to require link with speeding up effect of Ca\(^{2+}\) release on \(Q_y\)

One possible explanation for the extra activation at \(-45\) mV is that additional channels are recruited by CICR resulting from the summation of Ca\(^{2+}\) from closely spaced voltage-activated Ca\(^{2+}\) release sites. This feature is useful for evaluating how this might happen. This figure is adapted from Shirokova et al. (1996), who used essentially the same scheme to account for the voltage dependence of the peak to steady ratio of Ca\(^{2+}\) release (see Introduction). Each panel shows a double array of ryanodine receptors in the SR junctional region illustrated by circles. As indicated by the label \(V\) (for voltage sensor), alternate RyRs are associated with DHPRs. Panel A depicts two neighbouring

Figure 8. Effect of summation and 8 mM BAPTA on \(\Delta\text{[Ca}^{2+}]\) gradients in the vicinity of open SR Ca\(^{2+}\) release channels

A, the double array of circles show the distribution of Ca\(^{2+}\) release channels in the junctional SR. Ca\(^{2+}\) release channels labelled V are associated with DHPRs (voltage sensors) in the t-tubular membrane. Channels enclosed in a box are open. Each of the two lower curves above depict the \(\Delta\text{[Ca}^{2+}]\) gradient from one side of an open Ca\(^{2+}\) release channel in the presence of 20 mM EGTA. The curves were calculated with the steady-state solution given by eqns (B14) and (B21) in Pape et al. (1995). Assumed parameter values were, diffusion constant of Ca \(D_{Ca} = 3.0 \times 10^{-6} \text{cm}^2\text{s}^{-1}\), forward rate constant for Ca\(^{2+}\) binding to EGTA \(k_{1} = 0.025 \times 10^6 \text{M}^{-1}\text{s}^{-1}\), concentration of Ca\(^{2+}\)-free EGTA \(= 18.24 \text{mM}\) (same as end-pool solution), and flux of Ca\(^{2+}\) ions \(= 5 \times 10^9 \text{ions s}^{-1}\) (same values used in Fig. 15 of Pape et al. 1995). NB that the steady-state gradient in the vicinity of a channel should become established essentially instantaneously on a millisecond time scale (Fig. 16 in Pape et al. 1995). The higher curve shows the summation of these two gradients, which is the predicted gradient when both channels are open simultaneously. The distance scale for the gradients is the same as that for the RyRs depicted below, namely 30 nm between RyRs or 60 nm between the two calibration bars. The horizontal dot-dashed line shows a hypothetical threshold of 8 mM for activation of a Ca\(^{2+}\) release channel by CICR (see text). B is the same as A except that the distance between the two open channels is greater. The vertical dashed line marks the position of a nearest channel to one of the open channels. C is the same as A except that the calculations were made with 8 mM BAPTA and no EGTA. The gradients should be almost the same with a more complete (and more involved) solution including the presence of 20 mM EGTA. Assumed parameter values were: forward rate constant for Ca\(^{2+}\) binding to BAPTA \(= 1 \times 10^8 \text{M}^{-1}\text{s}^{-1}\) from Kits et al. (1999); concentration of Ca-free BAPTA \(= 6.28 \text{mM}\) (same as end-pool solution); values of \(D_{Ca}\) and Ca\(^{2+}\) flux were the same as those given above. With the assumed parameters, the characteristic space constant for the distance \(r\) Ca\(^{2+}\) ion diffuses before binding to buffer (given by eqn (B14) in Pape et al. 1995) is 22 nm for BAPTA as opposed to 81 nm for EGTA.
voltage-activated RyRs indicated by the squares. The lower curves are the predicted steady-state \(\Delta [Ca^{2+}] \) gradients due to \(Ca^{2+} \) release from each of the two channels in the presence of 20 mM EGTA. The curve in the middle – the sum of the two lower curves – is the predicted \(\Delta [Ca^{2+}] \) with both RyRs open. As expected, summation results in a doubling of \(\Delta [Ca^{2+}] \) at the RyR midway between the two voltage-activated sites. The dotted-dashed line – indicating a hypothetical threshold for activating an intermediate channel by CICR – is above the midpoint \(\Delta [Ca^{2+}] \) with just one channel and below that with two channels. This hypothetical threshold would account for the enhanced release at \(-45\) mV and explain why it is not observed at \(-60\) mV or in the \(Ca^{2+} \) spark experiments of Klein et al. (1997) in which most of the voltage sensors were immobilised (see above).

Figure 8B shows the predicted gradients with a separation of 120 nm between neighbouring voltage-activated sites. This result indicates that there would be only a modest increase in \(\Delta [Ca^{2+}] \) resulting from summation at one of the nearest RyRs, indicated by the dashed line. Therefore, a significant summation effect could only come from two nearest-neighbour, voltage-activatable RyRs (either laterally or diagonally apposed) that are simultaneously activated. Once one intermediate channel is activated by CICR, other channels would become activated due to the summation of \(\Delta [Ca^{2+}] \)s from now three closely spaced channels, a self-propagating process which could result in the recruitment of many channels. Modelling results of Stern et al. (1997) indicate that an all-or-none response could be prevented by \(Ca \) inactivation and/or periodic gaps in the double-array disposition of channels (Franzini-Armstrong et al. 1999).

One potential difficulty with the explanation above is its apparent requirement for the simultaneous activation by voltage of closely spaced RyRs to get the process started. As discussed in the preceding section, it appears that the enhancement starts when only a small amount of intramembranous charge has moved so that the average density of voltage-activated channels must be relatively small. If the voltage-activated \(Ca^{2+} \) release sites are randomly distributed, the likelihood of the requirement being met is small. As shown in Jong et al. (1995b) and discussed above with Fig. 6, however, an increase in \([Ca_{\text{SR}}] \) results in faster kinetics of the \(Q_{\gamma} \) component of intramembranous charge movement, an effect that is probably due to \(\Delta [Ca^{2+}] \) from neighbouring open RyRs. Therefore, \(Ca^{2+} \) from one voltage-activated RyR should enhance the probability of activation by voltage of a nearby site resulting in two closely spaced voltage-activated RyRs. The explanation of an enhanced rate of \(Ca^{2+} \) release due to summation of \(\Delta [Ca^{2+}] \) appears to require a link with the effect of \(Ca^{2+} \) release to speed up the kinetics of \(Q_{\gamma} \).

Alternative explanations for extra activation component at \(-45\) mV not involving recruitment of non-coupled \(Ca^{2+} \) release channels by CICR

There are several possible explanations for a \(Ca \)-dependent extra activation component of \(Ca^{2+} \) release at \(-45\) mV that do not involve recruitment of uncoupled RyRs. Analogous to the relationship of release permeability vs. \([Ca_{\text{SR}}] \) (Fig. 5A), Tripathy & Meissner (1996) evaluated the relationship of the open probability of reconstituted SR \(Ca^{2+} \) release channels in bilayers (\(P_{\gamma} \)) vs. \(Ca^{2+} \) flux through the channels. \(P_{\gamma} \) was near zero when the \(Ca^{2+} \) flux was near zero and it increased as the \(Ca^{2+} \) flux increased, reaching a peak at intermediate \(Ca^{2+} \) fluxes. The increase in \(P_{\gamma} \) was due to an increase in mean open time and was attributed to myoplasmic as opposed to luminal \(Ca \) regulatory sites (Tripathy & Meissner, 1996). Because of the similarity of the rising phase of \(P_{\gamma} \) vs. \(Ca^{2+} \) flux and the increase in release permeability when \([Ca_{\text{SR}}] \) increases from \(<100\) \(\mu \)M to \(-300\) \(\mu \)M at both \(-60\) and \(-45\) mV, it seems likely that the same regulatory mechanism is involved in the more intact preparation (an assessment also made by Pape & Carrier, 1998). One possible explanation for the results in this study is that the voltage sensor somewhat regulates \(Ca \) binding to or the efficacy of the \(Ca \) regulatory site so that the increased mean open time is more pronounced at \(-45\) mV compared to \(-60\) mV. The voltage independence of \(Ca^{2+} \) spark properties indicated by Klein et al. (1997; see above) appears to rule out this explanation, as well as several other possibilities.

One possibility not ruled out is that voltage-activatable (coupled) RyRs can also be at least partially activated by \(Ca \). In the model of Jong et al. (1995b), the voltage sensor is composed of four particles – corresponding to the four subunits of the DHPR – and all four particles must undergo transitions to an activating state before the associated SR \(Ca^{2+} \) release can be opened. A recent study of \(Q_{\gamma} \) and \(Ca^{2+} \) release (Pape & Carrier, 2002) supports the idea that some \(Q_{\gamma} \) charge moves during non-opening transitions in partial support of this and similar models proposed by other researchers. It is possible that \(Ca \) binding to a subunit of the DHPR could replace a requirement for its activation by voltage. The result of this combined voltage/CICR activation would be an enhanced \(Ca^{2+} \) release from coupled RyRs with little or no additional charge movement. This effect would tend to progress to neighbouring, coupled RyRs though some voltage control would be maintained since recruitment of an additional channel would generally require at least partial activation by voltage. In addition to its dependence on \(Ca \), this explanation would account for the lack of enhanced release at \(-60\) mV or when a large fraction of charge is immobilised as in the \(Ca^{2+} \) spark results of Klein et al. (1997). To also account for a possible enhancement early in the release permeability signal, this mechanism would also have to act in concert with the speeding up effect of \(Ca^{2+} \) release on \(Q_{\gamma} \).
Regardless of the mechanism involved, the Ca-dependent enhancement of Ca2+ release at more depolarised potentials is likely to be important for a muscle fibre’s ability to reach near maximal activation during a single action potential.

APPENDIX A

Method to assess release permeability in the presence of BAPTA and EGTA

The determination of release permeability requires information about Δ[Ca2+] / Δt which is not directly available when BAPTA is present. The alternative approach used in this study is to evaluate f_{Ca}, the fraction of SR Ca2+ content released by a pulse, given by the equation:

$$f_{Ca} = \frac{\Delta[Ca_{after}] - \Delta[Ca_{before}]}{[Ca_{SR}]-\Delta[Ca_{before}]}.$$ \hspace{1cm} (A1)

The numerator is the total Ca2+ released by the pulse and the denominator is equivalent to [Ca\textsubscript{SR}] before the pulse ($\Delta[Ca_{before}]$ is zero for the first pulse of a series and non-zero for later pulses, e.g. for the pulse to -45 mV in Fig. 1C). It should be noted that f_{Ca} is in fact very close to the integral of the release permeability when a small fraction of SR Ca2+ is released.

The following assessment indicates that f_{Ca} estimated with the EGTA/phenol red method still provides a good estimate of the actual f_{Ca} when 8 mM BAPTA is present. With BAPTA present:

$$\Delta[Ca_{after}] = \Delta[Ca_{EGTA}] + \Delta[Ca_{BAPTA}] + \Delta[Ca_{other}].$$ \hspace{1cm} (A2)

For the conditions of our experiments, both $\Delta[Ca_{EGTA}]$ and $\Delta[Ca_{BAPTA}]$ are approximately proportional to the free $\Delta[Ca_{other}]$ [Ca2+] remained below the apparent K_{d} of both compounds. This means that $\Delta[Ca_{EGTA}]$ is approximately proportional to $\Delta[Ca_{after}]$ so that substitution into eqn (A1) gives:

$$f_{Ca} = \frac{\Delta[Ca_{EGTA}]_{after} - \Delta[Ca_{EGTA}]_{before}}{\Delta[Ca_{EGTA}]_{MAX} - \Delta[Ca_{EGTA}]_{before}},$$ \hspace{1cm} (A3)

which is the same relationship used to estimate f_{Ca} in the absence of BAPTA. In order to assess errors in this estimate, [Ca\textsubscript{BAPTA}] was estimated from [Ca\textsubscript{EGTA}] and [EGTA] by equating the equilibrium binding functions as shown here:

$$[Ca_{other}] = K_{DPP,EGTA} \frac{[Ca_{EGTA}]}{[EGTA]_{a} - [Ca_{EGTA}]}$$

$$= K_{DPP,BAPTA} \frac{[Ca_{BAPTA}]}{[BAPTA]_{a} - [Ca_{BAPTA}]}.$$ \hspace{1cm} (A4)

In analogy to the case of EGTA (Appendix A of Pape et al. 1995), the apparent K_{d} of BAPTA was estimated from the relationship:

$$K_{DPP,BAPTA} = K_{D,B}(1 + 10^{pK_{a} - pK_{d}} + 10^{pK_{a} + pK_{d} - 2pH})$$

where $K_{D,B}$ is the dissociation constant of the reaction of Ca2+ with BAPTA. The values of $K_{D,B}$, pK_{a}, and pK_{d} assumed here, 0.107 M, 6.36 and 5.47, respectively, were determined from in vitro measurements at 22°C by Tsien (1980). The concentrations of total EGTA and BAPTA ([EGTA\textsubscript{a}] and [BAPTA\textsubscript{a}]) are assumed to be those present in the end pools, 20 and 8 mM, respectively. As in Pape et al. (1995), [Ca\textsubscript{EGTA} at rest was also assumed to be the same as that present in the end pools, and [Ca\textsubscript{EGTA] at later times was given by this resting value plus the measured $\Delta[Ca_{EGTA}]$. Equation (A4) was then used to calculate [Ca\textsubscript{BAPTA}] at rest and at later times, thereby providing an estimate of $\Delta[Ca_{BAPTA}]$. The actual f_{Ca} from eqns (A1) and (A2) was then compared with the value from eqn (A3).

With this approach, eqn (A3) produces an overestimation of $f_{Ca}(-45)$ of between 3 and 15% with an average of 8.6% (S.E.M. = 1.6%) for the values used for the last value in row 5 of Table 1. Essentially the same error applied to the $f_{Ca}(-60)$ values used for the last value in row 4 of Table 1 with an average error of 8.9% (S.E.M. = 1.6%). Most of the error is due to the fact that $\Delta[Ca_{BAPTA}]$ is not exactly proportional to $\Delta[Ca_{after}]$. This assessment also took into account the fact that some protons are released when Ca2+ binds to BAPTA (0.2 protons on average vs. 2 for EGTA). Neglecting this component produces only a 0.5% error in f_{Ca}.

In summary, f_{Ca} estimated with eqn (A3) is expected to provide a good estimate of the actual value. Because of all of the assumptions used to calculate [Ca\textsubscript{BAPTA}], and thereby the actual f_{Ca}, the f_{Ca} values reported in this article were determined with eqn (A3).

APPENDIX B

This appendix gives a solution for the expected time course of $\Delta[Ca_{EGTA}]$ when BAPTA is present. This solution was used to evaluate whether BAPTA affects the time course of the measured $\Delta[Ca_{EGTA}]$ signal in response to a 400-ms pulse to -60 mV in a manner consistent with its Ca2+-buffering properties.

The principle binding equations of Ca2+ with BAPTA and EGTA are:

$$Ca^{2+} + BAPTA^{4-} \rightleftharpoons BAPTA^{2-},$$ \hspace{1cm} (B1)

and $$Ca^{2+} + H_{2}EGTA^{2-} \rightleftharpoons CaEGTA^{2-} + 2H^{+}.$$ \hspace{1cm} (B2)

The equations describing these reactions are given by:

$$\frac{d[Ca_{BAPTA}]}{dt} = k_{cb}[Ca^{2+}][BAPTA] - k_{ca}[Ca_{BAPTA}],$$ \hspace{1cm} (B3)

and

$$\frac{d[Ca_{EGTA}]}{dt} = k_{cb}[Ca^{2+}][EGTA] - k_{ca}[Ca_{EGTA}],$$ \hspace{1cm} (B4)
where \(k_{f,b}\) and \(k_{r,b}\) are the forward and backward rate constants, respectively, of the reaction between \(Ca^{2+}\) and \(BAPTA\) and \(k_{f,b}\) and \(k_{r,b}\) are the corresponding rate constants for the reaction with \(EGTA\). All four rate constants are assumed to be unchanged during the release process. The backward rate constant of \(EGTA\) (and presumably that of \(BAPTA\) as well) is sensitive to pH and would therefore be expected to change during a stimulation. The effect of assuming that rate constants do not vary was tested with the final solution with values of \(k_{f,b}\) and \(k_{r,b}\) determined from the pH values before and after the simulated pulse to \(-60\) mV. The solutions are almost identical indicating that the assumption is valid.

Since the concentrations of total \(EGTA\) and total \(BAPTA\) should be essentially constant during a relatively short period of release (order of seconds), \([BAPTA]^r\) and \([EGTA]^r\) are assumed to be constant during the stimulation. \([BAPTA]\) and \([EGTA]\) are given by \([BAPTA]^r - [CaBAPTA]\) and \([EGTA]^r - [CaEGTA]\), respectively. Each of the concentrations can be written as its resting value (indicated by a subscript \(R\)) and the change with respect to this resting value (indicated with the prefix \(\Delta\)); e.g., \([Ca^{2+}] = [Ca^{2+}]_R + \Delta[Ca^{2+}]\). Substituting all of these relationships into eqns (B3) and (B4), subtracting the corresponding steady-state equations before the initiation of \(Ca^{2+}\) release, and rearranging yields:

\[
\frac{d\Delta[CaBAPTA]}{dt} + (k_{f,b}[Ca^{2+}]_R + k_{r,b})\Delta[CaBAPTA] = k_{f,b}[BAPTA]_R \Delta[Ca^{2+}] - k_{f,b}\Delta[Ca^{2+}]\Delta[CaBAPTA], \tag{B5}
\]

and

\[
\frac{d\Delta[CaEGTA]}{dt} + (k_{f,b}[Ca^{2+}]_R + k_{r,b})\Delta[CaEGTA] = k_{f,b}[EGTA]_R \Delta[Ca^{2+}] - k_{f,b}\Delta[Ca^{2+}]\Delta[CaEGTA]. \tag{B6}
\]

As confirmed with the solutions of these equations, the 2nd terms on the right-hand sides of each of these equations are very small and can be neglected. This follows since \(k_{f,b}\Delta[Ca^{2+}] \ll k_{r,b}\) and \(k_{f,b}\Delta[Ca^{2+}] \ll k_{r,b}\) (the maximum of \(k_{f,b}\Delta[Ca^{2+}]\) was less than 3% of \(k_{r,b}\) for the simulated 400-ms pulse to \(-60\) mV). Neglecting the 2nd terms on the right yields the following linear equations:

\[
\frac{d\Delta[CaBAPTA]}{dt} + (k_{f,b}[Ca^{2+}]_R + k_{r,b})\Delta[CaBAPTA] = k_{f,b}[BAPTA]_R \Delta[Ca^{2+}], \tag{B7}
\]

and

\[
\frac{d\Delta[CaEGTA]}{dt} + (k_{f,b}[Ca^{2+}]_R + k_{r,b})\Delta[CaEGTA] = k_{f,b}[EGTA]_R \Delta[Ca^{2+}]. \tag{B8}
\]

Since essentially all of the \(Ca^{2+}\) that is released should be captured by either \(BAPTA\) or \(EGTA\) or appear in the \(Ca^{2+}\)-free form (see Pape et al. 1995), it follows that the change in total myoplasmatic \(Ca^{2+}\) is given by:

\[
\Delta[Ca^{2+}] = \Delta[Ca^{2+}]^* + \Delta[CaBAPTA] + \Delta[CaEGTA]. \tag{B9}
\]

After using eqn (B9) to eliminate \(\Delta[Ca^{2+}]^*\) in eqns (B7) and (B8), rearranging the modified eqn (B8) to give \(\Delta[CaBAPTA]\) in terms of \(\Delta[CaEGTA]\) and substituting this into the modified eqn (B7), and rearranging, one obtains the following 2nd order differential equation for \(\Delta[CaEGTA]\):

\[
\frac{d^2\Delta[CaEGTA]}{dt^2} + a\frac{d\Delta[CaEGTA]}{dt} + b\Delta[CaEGTA] = c\frac{d\Delta[Ca^{2+}]}{dt} + d\Delta[Ca^{2+}]_R. \tag{B10}
\]

Where \(a, b, c\) and \(d\) are constants given by the following relationships,

\[
a = a_b + a_e,
\]

\[
b = a_b b_e - b_b a_e,
\]

\[
c = b_e,
\]

and

\[
d = b_b(a_b - b_b),
\]

where \(a_b \equiv k_{f,b}[Ca^{2+}]_R + [BAPTA]_R + k_{r,b},\)

\[
b_b \equiv k_{f,b}[BAPTA]_R,\]

\[
a_e \equiv k_{f,b}[Ca^{2+}]_R + [EGTA]_R + k_{r,b},\]

and \(b_e \equiv k_{f,b}[EGTA]_R.\) (B11)

With the substitution \(y = \Delta[CaEGTA]\), eqn (B10) can be written in the more concise form:

\[
\frac{d^2y}{dt^2} + ay + by = c\frac{d\Delta[Ca^{2+}]}{dt} + d\Delta[Ca^{2+}]_R. \tag{B12}
\]

The solution of this equation is given by the sum of the homogeneous solution in which the right-hand side is set to zero and a particular solution, i.e.

\[
y = y_H + y_P. \tag{B13}
\]

The homogeneous solution is given by:

\[
y_H = c_1 \exp(-t/\tau_1) + c_2 \exp(-t/\tau_2). \tag{B14}
\]

The exponential time constants are given by:

\[
\tau_1 = \frac{a + \sqrt{(a^2 - 4b)}}{2b}, \tag{B15}
\]

and

\[
\tau_2 = \frac{a - \sqrt{(a^2 - 4b)}}{2b}. \tag{B16}
\]
Solution for $\Delta[\text{CaEGTA}]$ when $\Delta[\text{Ca}_T]$ is a ramp function

The solution of eqn (B12) requires information about $\Delta[\text{Ca}_T]$. We consider the case in which $\Delta[\text{Ca}_T]$ is a ramp function, i.e., it increases linearly with time after the start of a pulse. Following the end of the pulse, $\Delta[\text{Ca}_T]$ remains constant. This is the approximate time course of $\Delta[\text{Ca}_T]$ in response to a 400-ms pulse to -60 mV in the absence of BAPTA (cf. Fig. 1C). The measured $\Delta[\text{Ca}_T]$ signal is actually well described by a ramp function starting ~20 ms after the start of the pulse and ending ~20 ms after the end of the pulse. For simplicity, these delays are not incorporated in the solution below, but they were included in the simulations plotted in Fig. 1D.) It is assumed that $\Delta[\text{Ca}_T]$ is still given by a ramp function in the presence of BAPTA though its magnitude can change. The solution is divided into two parts. During the pulse:

$$\Delta[\text{Ca}_T] = mt,$$ \hspace{1cm} (B17)

where the rate of Ca$^{2+}$ release, m, is given by $\Delta[\text{Ca}_T]$ at the end of the pulse divided by the duration of the pulse, denoted T_{pulse}. After the pulse, detailed in the next section:

$$\Delta[\text{Ca}_T] = \Delta[\text{Ca}_T](T_{\text{pulse}}) = \text{constant}. \hspace{1cm} (B18)$$

During the pulse, the particular solution is given by:

$$y_r = \frac{m}{b}(bdt + bc - ad). \hspace{1cm} (B19)$$

The constants c_1 and c_2 in eqn (B14) are determined from the initial conditions:

$$y = 0 \quad \text{and} \quad \frac{dy}{dt} = 0 \quad \text{at} \quad t = 0. \hspace{1cm} (B20)$$

The values are:

$$c_1 = \frac{m\tau_1}{b^2(\tau_2 - \tau_1)}(bc - ad + b\alpha \tau_1), \hspace{1cm} (B21)$$

and

$$c_2 = \frac{-m\tau_2}{b^2(\tau_2 - \tau_1)}(bc - ad + b\alpha \tau_1). \hspace{1cm} (B22)$$

This completes the solution for $\Delta[\text{CaEGTA}]$ (or y) during the pulse, i.e., eqns (B13), (B14) and (B19) with constants determined from eqns (B11), (B15), (B16), (B18), (B21) and (B22).

Solution for $\Delta[\text{CaEGTA}]$ after the pulse when $\Delta[\text{Ca}_T]$ is constant

After the pulse ($t > T_{\text{pulse}}$), $\Delta[\text{Ca}_T]$ remains constant at $\Delta[\text{Ca}_T](T_{\text{pulse}})$ as given by eqn (B18). The differential equation then becomes:

$$\frac{dy}{dr^2} + a \frac{dy}{dr} + by = d\Delta[\text{Ca}_T], \hspace{1cm} (B23)$$

and the homogeneous solution becomes:

$$y_h = c_1 e^{-(r - T_{\text{pulse}})\tau_1} + c_2 e^{-(r - T_{\text{pulse}})\tau_1}, \hspace{1cm} (B24)$$

The particular solutions in this case is a constant given by the value of $\Delta[\text{CaEGTA}]$ at infinite time. This value is:

$$y_p = \frac{d}{b} \Delta[\text{Ca}_T](T_{\text{pulse}}) = \Delta[\text{CaEGTA}]_\infty. \hspace{1cm} (B25)$$

The constants c_1 and c_2 in eqn (B14) are determined from the conditions that y and dy/dt are continuous with the solution before the pulse, i.e., the initial values are $\Delta[\text{CaEGTA}](T_{\text{pulse}})$ and $d\Delta[\text{CaEGTA}]/dt(T_{\text{pulse}})$, respectively, from the solution in the preceding section. With this condition:

$$c_1 = \frac{\tau_1}{\tau_2 - \tau_1} \left(\Delta[\text{CaEGTA}]_\infty - \Delta[\text{CaEGTA}](T_{\text{pulse}}) \right) - \frac{d\Delta[\text{CaEGTA}]}{dt}(T_{\text{pulse}}), \hspace{1cm} (B26)$$

and

$$c_2 = -\left(\Delta[\text{CaEGTA}]_\infty - \Delta[\text{CaEGTA}](T_{\text{pulse}}) + c_1 \right). \hspace{1cm} (B27)$$

This completes the solution for $\Delta[\text{CaEGTA}]$ (or y) after the pulse, i.e., eqns (B13), (B24) and (B25) with constants determined from eqns (B11), (B15), (B16), (B18), (B26) and (B27).

Calculation of earlier $\Delta[\text{CaEGTA}]$ signal in Fig. 1D

This section discusses an example of the above solution of $\Delta[\text{CaEGTA}]$ based on the experimental conditions when the $\Delta[\text{CaEGTA}]$ signal with BAPTA present in Fig. 1D was measured. The forward rate constants for BAPTA and EGTA (k_{eg} and k_{eb}) were assumed, respectively, to be $1.0 \times 10^4 \text{ M}^{-1} \text{ s}^{-1}$ (from Kits et al. 1999) and $2.5 \times 10^6 \text{ M}^{-1} \text{ s}^{-1}$ (p. 313 of Pape et al. 1995). The apparent dissociation constant for BAPTA was calculated from eqn (A5) with the value of pH given by the measured pH value of 6.833. The corresponding apparent dissociation constant for EGTA was calculated with eqn (A9) in Pape et al. (1995). The reverse rate constants for BAPTA and EGTA (k_{ba} and k_{eb}), were obtained from these dissociation constants multiplied by the corresponding forward rate constant above; the resulting values were 14.5 and 2.0 s$^{-1}$, respectively. The value of $[\text{Ca}^{2+}]_a$ was estimated with the EGTA/phenol red method as described in Pape et al. (1995; pp. 312–314). This value of $[\text{Ca}^{2+}]_a$ was then used to estimate $[\text{BAPTA}]_a$ and $[\text{EGTA}]_a$ with the corresponding apparent dissociation constants and values of $[\text{BAPTA}]_a$ and $[\text{EGTA}]_a$, respectively. $[\text{EGTA}]_a$ was assumed to be 20 mM, the same as in the end pools. $[\text{BAPTA}]_a$ was assumed to be 7.5 mM, determined from the diffusion equation (eqn 6 on p. 47 of Maylie et al. 1987) assuming a diffusion constant of $1.1 \times 10^{-6} \text{ cm}^2 \text{ s}^{-1}$ and the fact that 8 mM BAPTA was added to the end pools 56 min before the stimulation. The values of a, b, c and d in eqn (B11) were then calculated. The resulting values of τ_1 and τ_2 from eqns (B15) and (B16) were 262 and 0.0018 ms, respectively.
For the solution after the pulse, the values of c_1 and c_2 from eqns (B26) and (B27) were -34.0 and $0.00024 \, \mu M$, respectively. Therefore, the second exponential component is negligible and the solution is closely approximated by:

$$\Delta[Ca^{2+}] = \Delta[Ca^{2+}]_\infty - \left(\Delta[Ca^{2+}]_\infty - \Delta[Ca^{2+}](T_{puls})\right)e^{-\tau_2 t}.$$

(B28)

This indicates a simple mono-exponential redistribution of Ca^{2+} from BAPTA to EGTA after the pulse with a time constant of 262 ms.

For the calculation of the early $\Delta[Ca^{2+}]$ signal in Fig. 1D, the total amount of Ca^{2+} released during the pulse was assumed to be 2 times the amount captured by EGTA after steady-state conditions were reached (used to calculate m in eqn (B17)).

Solution taking into account counter-ion movements of protons

Pape et al. (1990) reported an alkalinisation of myoplasm during Ca^{2+} release and suggested that it was due to counter-ion movements of protons into the SR partially balancing the charge deficit caused by Ca^{2+} leaving the SR. The magnitude of the alkalinisation suggested that proton movements accounted for 12% on average of the charge deficit caused by Ca^{2+} release. In the absence of BAPTA, this error means that $\Delta[Ca^{2+}]$ should actually be given by the $\Delta[Ca^{2+}]$ signal multiplied by a linear scaling factor, (1–0.12)$^{-1}$ or 1.14 (Pape et al. 1995). Since the EGTA/phenol red method has generally been used to evaluate relative changes, this scaling factor has not been taken into account. In the case of the BAPTA experiments in this study, however, counter-ion movements of protons would influence the time course of $\Delta[Ca^{2+}]$ (though, importantly, not f_{Ca}). In order to take this into account for the predicted $\Delta[Ca^{2+}]$ signal, 0.12 times the assumed $\Delta[Ca^{2+}]$ driving function was subtracted from $\Delta[Ca^{2+}]$ estimated as described in the preceding section. As seen in Fig. 1D, this produces a relatively larger decrease in $\Delta[Ca^{2+}]$ during the pulse compared to that after the pulse and a better match to the measured $\Delta[Ca^{2+}]$ signal.

For the calculation of the later $\Delta[Ca^{2+}]$ signal in Fig. 1D, the total amount of Ca^{2+} released during the pulse was assumed to be 2.7 times the amount captured by EGTA after steady-state conditions were reached (used to calculate m in eqn (B17)).

REFERENCES

