INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6" x 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order.

UMI

Bell & Howell Information and Learning
300 North Zeeb Road, Ann Arbor, MI 48106-1346 USA
800-521-0600
MODULATION DE L'EXPRESSION DU RÉCEPTEUR DU FACTEUR ACTIVATEUR DES PLAQUETTES PAR LES ANALOGUES DE L'ADÉNOSINE DANS LES NEUTROPHILES HUMAINS.

par

ISABEL DESGAGNÉ BEAUPRÉ

Département de Pédiatrie
Service d'Immunologie

Mémoire présenté à la Faculté de Médecine
en vue de l'obtention du grade de
Maître ès Sciences (M.Sc.) en immunologie

Décembre 1997
The author has granted a non-exclusive licence allowing the National Library of Canada to reproduce, loan, distribute or sell copies of this thesis in microform, paper or electronic formats.

The author retains ownership of the copyright in this thesis. Neither the thesis nor substantial extracts from it may be printed or otherwise reproduced without the author's permission.

L’auteur a accordé une licence non exclusive permettant à la Bibliothèque nationale du Canada de reproduire, prêter, distribuer ou vendre des copies de cette thèse sous la forme de microfiche/film, de reproduction sur papier ou sur format électronique.

L’auteur conserve la propriété du droit d’auteur qui protège cette thèse. Ni la thèse ni des extraits substantiels de celle-ci ne doivent être imprimés ou autrement reproduits sans son autorisation.

0-612-40573-7
À Viateur et Édith, mes parents qui ont toujours cru
en mes capacités et accordé à l’éducation
une place importante dans leur vie.

À Serge, mon conjoint, pour sa compréhension,
sa présence, son soutien et son amour.
TABLE DES MATIÈRES

Table des matières ... i
Liste des figures ... iv
Liste des abréviations ... vii
Résumé .. viii

1. INTRODUCTION ... 1

1.1 L’ADÉNOSINE ... 1
 1.1.1 Découverte .. 1
 1.1.2 Origine et structure ... 2
 1.1.3 Métabolisme et catabolisme ... 3
 1.1.4 Effets biologiques de l’adénosine ... 7

1.2 LES RÉCEPTEURS DE L’ADÉNOSINE ... 11
 1.2.1 Caractéristiques et signalisation ... 11
 1.2.2 Clonage et expression ... 15
 1.2.3 Activités biologiques via ADO-R ... 16

1.3. LES NEUTROPHILES HUMAINS .. 18

1.4 LE FACTEUR ACTIVATEUR DES PLAQUETTES (PAF) 21
 1.4.1 Découverte .. 21
 1.4.2 Structure ... 22
1.4.3 Biosynthèse..23
1.4.4 Source...23
1.4.5 Effets biologiques...24

1.5 LE RÉCEPTEUR DU PAF...25
1.5.1 Clonage...25
1.5.2 Signalisation..25
1.5.3 Modulation..26

1.6 OBJECTIFS...27

2. MATÉRIELS ET MÉTHODES..29

2.1 Produits utilisés...29
2.2 Préparation et stimulation des neutrophiles.........................31
2.3 Buvardage Northern...32
2.4 Cytofluorométrie...33
2.5 Mesure des niveaux de calcium intracellulaire.......................34
2.6 Analyse RT-PCR...35
2.7 Analyse statistique...36
3. RÉSULTATS..37

3.1 ÉTUDE DES EFFETS DES ANALOGUES DE L'ADÉNOSINE SUR
L'EXPRESSION DU PAF-R...37

3.1.1 Au niveau de l'ARNm...37
3.1.2 Au niveau de la protéine...42
3.1.3 Au niveau de la réponse calcique stimulée par le PAF.........45

3.2 ÉTUDE DU MÉCANISME IMPLIQUÉ..47

3.2.1 Demi-vie de l'ARNm du hPAF-R..47
3.2.2 Effets des inhibiteurs de kinases..49

3.3 ÉTUDE DES EFFETS DES COMPOSANTS DU MÉTABOLISME DE
L'ADÉNOSINE SUR L'EXPRESSION DU PAF-R..........................51

3.4 ÉTUDE DE L'EXPRESSION DU RÉCEPTEUR D'ADÉNOSINE A3
DANS LES NEUTROPHILES HUMAINS.......................................57

4. DISCUSSION...61

5. CONCLUSION...68

6. REMERCIEMENTS..70

7. RÉFÉRENCES..71
LISTE DES FIGURES

Figure 1: Structure de l'adénosine...2

Figure 2: Métabolisme et catabolisme de l'adénosine.................................5

Figure 3: Voies de signalisation des récepteurs de l'adénosine......................13

Figure 4: Effet dépendant de la concentration de 2-CADO sur la diminution de l'ARNm du hPAF-R...38

Figure 5: Cinétique de la diminution de l'ARNm du hPAF-R induite par le 2-CADO 100 µM...40

Figure 6: Effet de divers agonistes des récepteurs d'adénosine sur l'ARNm du hPAF-R...41

Figure 7: Effets des antagonistes des récepteurs d'adénosine sur l'expression de l'ARNm du hPAF-R modulée par le 2-CADO.........................43

Figure 8: Analyse cytofluorométrique de l'expression du hPAF-R des neutrophiles traités au 2-CADO 100 µM...44
Figure 9: Effet du prétraitement au 2-CADO sur les variations de calcium induite par le PAF et le LTB₄ ...46

Figure 10: Évaluation de la demi-vie de l’ARNm du hPAF-R dans les neutrophiles témoins et traités au 2-CADO 100 µM..48

Figure 11: Effets des inhibiteurs de kinases sur la diminution de l’ARNm du hPAF-R induite par le 2-CADO 100 µM...50

Figure 12: Effet de l’adénosine déaminase (ADA) et de la pentoxifylline (PTX) sur l’ARNm du hPAF-R...52

Figure 13: Effet dépendant de la concentration du RO 20-1724 sur la diminution d’ARNm du hPAF-R et le rétablissement par l’ADA 2 U/ml...............53

Figure 14: Cinétique de la diminution de l’ARNm du hPAF-R induite par le RO 20-1724 100 µM..55

Figure 15: Cinétique de l’adénosine déaminase (2 U/ml) pour sa réversibilité de l’effet de baisse du RO 20-1724 100 µM...56
Figure 16: Évaluation de la demi-vie de l’ARNm du hPAF-R dans les neutrophiles témoins et traités au RO 20-1724 100 µM..58

Figure 17: RT-PCR dans les neutrophiles et les cellules HL-60 pour détecter le récepteur sous-type A3 des récepteurs d’adénosine..60

Figure 18: Modèle d’atténuation de la réponse inflammatoire en présence de 2-CADO et du hPAF-R...65
<table>
<thead>
<tr>
<th>Acronyme</th>
<th>Signification</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC</td>
<td>adénylate cyclase</td>
</tr>
<tr>
<td>ADA</td>
<td>adénosine déaminase</td>
</tr>
<tr>
<td>ADN</td>
<td>acide déoxyribonucléique</td>
</tr>
<tr>
<td>ADNc</td>
<td>acide déoxyribonucléique complémentaire</td>
</tr>
<tr>
<td>Ado</td>
<td>adénosine</td>
</tr>
<tr>
<td>Ado-R</td>
<td>adénosine receptor ou récepteur d'adénosine</td>
</tr>
<tr>
<td>ADP</td>
<td>adénosine 5'-diphosphate</td>
</tr>
<tr>
<td>AK</td>
<td>adénosine kinase</td>
</tr>
<tr>
<td>AMP</td>
<td>adénosine 5'-monophosphate</td>
</tr>
<tr>
<td>AMPc</td>
<td>3',5'-adénosine monophosphate cyclique</td>
</tr>
<tr>
<td>ARN</td>
<td>acide ribonucléique</td>
</tr>
<tr>
<td>ARNm</td>
<td>acide ribonucléique messager</td>
</tr>
<tr>
<td>ATP</td>
<td>adénosine 5'-triphosphate</td>
</tr>
<tr>
<td>2-CADO</td>
<td>2-chloroadénosine</td>
</tr>
<tr>
<td>DMPX</td>
<td>1,3 diméthyl propargyl xanthine</td>
</tr>
<tr>
<td>E.C.</td>
<td>Enzyme commission</td>
</tr>
<tr>
<td>fMLP</td>
<td>formyl méthionyl leucyl phénylalanine</td>
</tr>
<tr>
<td>G-CSF</td>
<td>granulocyte-colony stimulating factor</td>
</tr>
<tr>
<td>GM-CSF</td>
<td>granulocyte/macrophage-colony stimulating factor</td>
</tr>
<tr>
<td>hPAF-R</td>
<td>human PAF-receptor ou récepteur du PAF humain</td>
</tr>
<tr>
<td>IFNγ</td>
<td>interféron gamma</td>
</tr>
<tr>
<td>IL-1,2,6</td>
<td>interleukine-1 ou 2 ou 6</td>
</tr>
<tr>
<td>LPS</td>
<td>Lipopolysaccharides</td>
</tr>
<tr>
<td>MAPK</td>
<td>mitogen activated protein kinase</td>
</tr>
<tr>
<td>5'-NT</td>
<td>5'-nucléotidase</td>
</tr>
<tr>
<td>PAF</td>
<td>platelet-activating factor ou facteur activateur de plaquettes</td>
</tr>
<tr>
<td>PAF-R</td>
<td>PAF receptor ou récepteur du PAF</td>
</tr>
<tr>
<td>PKA</td>
<td>protéine kinase A</td>
</tr>
<tr>
<td>PKC</td>
<td>protéine kinase C</td>
</tr>
<tr>
<td>PLA2</td>
<td>phospholipase A2</td>
</tr>
<tr>
<td>PLC</td>
<td>phospholipase C</td>
</tr>
<tr>
<td>PLD</td>
<td>phospholipase D</td>
</tr>
<tr>
<td>PMA</td>
<td>phorbol myristate acétate</td>
</tr>
<tr>
<td>SAH</td>
<td>S-adénylsélimocystéine</td>
</tr>
<tr>
<td>SCID</td>
<td>Severe Combined ImmunoDeficiency</td>
</tr>
<tr>
<td>TGF-β</td>
<td>transforming growth factor bêta</td>
</tr>
<tr>
<td>TNF-α</td>
<td>tumor necrosis factor alpha ou facteur de nécrose tumoral alpha</td>
</tr>
</tbody>
</table>
RÉSUMÉ

UNIVERSITÉ DE SHERBROOKE

MODULATION DE L'EXPRESSION DU RÉCEPTEUR DU PAF PAR LES ANALOGUES DE L'ADÉNOSINE DANS LES NEUTROPHILES HUMAINS

par

ISABEL DESGAGNÉ BEAUPRÈ

Département de pédiatrie, Service d'immunologie

Mémoire présenté à la Faculté de Médecine en vue de l'obtention
du grade de Maître es Sciences (M.Sc.) en immunologie
Décembre 1997

L'adénosine exerce une variété d'effets biologiques sur de nombreux types cellulaires, mais est fréquemment associée à ses effets immunosuppresseurs et anti-inflammatoires sur les leucocytes. Il existe quatre sous-types de récepteurs d'adénosine distincts, A1, A2a, A2b et A3 médiant les effets de ce nucléoside. Le facteur activateur de plaquettes (PAF) est un puissant médiateur lipidique des réactions allergiques et inflammatoires ainsi qu'un modulateur de la réponse immune. L'expression du récepteur du PAF humain (hPAF-R) peut être modulée par divers composés (IFN-γ, AMPc, TGFβ, PMA, TNFα, etc). Dans cet exposé, nous présenterons nos études sur la modulation de l'expression du hPAF-R dans les neutrophiles par l'interaction d'agonistes et antagonistes des récepteurs d'adénosine. Nous tenterons d'élucider les mécanismes d'action et de régulation du PAF-R via les récepteurs d'adénosine. Pour ce faire, nous avons isolé des neutrophiles du sang humain, nous avons utilisé des techniques de buvardage Northern pour évaluer l'expression de l'ARNm du PAF-R et de cytofluorométrie pour l'expression protéique du hPAF-R. Le 2-chloroadénosine (2-CADO), un analogue d'adénosine, à une concentration de 100 μM, a induit une baisse de 60% de l'expression de l'ARNm du PAF-R après 3 h de stimulation. Il n'a pas eu d'effet sur la demi-vie de l'ARNm du PAF-R suggérant un effet transcriptionnel. Les neutrophiles traités au 2-CADO pendant 24 hrs ont montré une diminution de 50% de leur expression du PAF-R par marquage avec l'anticorps monoclonal anti-PAF-R. Nos travaux suggèrent que les neutrophiles humains sont sensibles aux actions des agonistes des récepteurs d'adénosine, ce qui peut jouer un rôle dans la modulation de la réaction inflammatoire en affectant l'expression des récepteurs des médiateurs inflammatoires.
1. INTRODUCTION

1.1 L'ADÉNOSINE

1.1.1 DÉCOUVERTE:

En 1929, Drury et Szent-Gyorgyi ont extrait l'adénosine de différents tissus et ont observé les réponses aux injections de ce nucléoside. Ils ont rapporté que l'adénosine injectée dans les mammifères augmente le flux sanguin, réduit les taux de battements du coeur, diminue la pression sanguine, inhibe la motilité du tube digestif et induit le sommeil. En 1963, Berne propose que la génération d'adénosine myocardique est un mécanisme métabolique majeur dans la régulation du flux sanguin; il émet l'hypothèse que l'adénosine est le lien entre la demande énergétique et l'énergie disponible au coeur. De l'énergie est nécessaire pour les contractions continues du coeur et cette énergie est obtenue du catabolisme de l'adénosine 5' triphosphate (ATP). Parce que l'adénosine relâchée dans les vaisseaux sanguins est rapidement métabolisée, ces effets sont localisés et dissipés rapidement avant la formation de sous-unités nucléosides.
1.1.2 ORIGINE ET STRUCTURE:

L'adénosine est une purine composée de la base adényne et du sucre ribose (figure 1) qui pourrait avoir été formée au cours de l'évolution chimique prébiotique. La rythmicité de cette molécule, son métabolisme et même la présence de récepteurs spécifiques, suggèrent un rôle de régulation dans les cellules eucaryotes et dans les organismes multicellulaires (Chagoya de Sanchez, 1995). On peut considérer l'adénosine comme un messager chimique, dont l'action pourrait s'exercer au niveau de la même cellule (autocrine), du même tissu (paracrine) ou d'organes distincts (endocrine). Cependant, l'adénosine libre dans la circulation est rapidement inactivée par les érythrocytes. Pour cette raison, il est rare que l'adénosine serve de médiateur entre les organes. Elle permet le maintien de l'homéostasie énergétique des tissus.

![Structure de l'adénosine](image)

Figure 1 : Structure de l'adénosine.
L'adénosine est une composante des nucléotides adénines (ATP, ADP, AMP) et de l'ARN. L'adénosine est normalement présente dans le plasma présumément dérivée du catabolisme de l'ATP et de l'ARN suivant la mort cellulaire. La déoxyadénosine est une composante de l'ADN et est normalement présente à plus faible concentration que l'adénosine dans le plasma. Elle est surtout dérivée du bris de l'ADN.

1.1.3 MÉTABOLISME ET CATABOLISME:

L'adénosine extracellulaire peut être relâchée directement par les cellules ou par la dégradation de nucléotides relâchés, principalement l'ATP. L'adénosine existe dans l'espace intracellulaire majoritairement sous forme phosphorylée comme l'adénosine 5'-monophosphate (5'AMP), l'adénosine 5'-diphosphate (ADP) et l'adénosine 5'-triphosphate (ATP). L'ATP extracellulaire est dégradée rapidement en adénosine par les ectonucléotidases qui sont variées et présentes à la surface extracellulaire des cellules. Durant le métabolisme normal, les concentrations de l'adénosine intracellulaire et de l'AMP sont basses.

L'adénosine peut être considérée comme la station du pouvoir cellulaire dans laquelle l'énergie est entreposée et de laquelle l'énergie peut être obtenue par phosphorylation et déphosphorylation. La concentration intracellulaire d'adénosine est de 1 μM. Ceci inclut la forme déaminée ou phosphorylée et l'adénosine couplée en S-adénosylhomocystéine (Rongen et al., 1997). Les niveaux normaux d'adénosine dans le
tissu normal et le sang sont estimés approximativement à 300 nM. Dans le tissu inflammé, la concentration s'élève à plus de 1 μM (Walker et al., 1997).

L'adénosine est formée par deux voies métaboliques (figure 2). La voie majeure est la déphosphorylation de 5'-AMP par la 5'-nucléotidase (5'-NT) (EC 3.1.3.5). Cette voie est accélérée lors d'un déséquilibre entre l'énergie disponible et l'énergie en demande et représente la route majeure de formation durant l'ischémie. Il y a une route alternative de production d'adénosine par l'hydrolyse de la S-adénosylhomocystéine (SAH) par la SAH-hydrolase (EC 3.3.1.1), mais cette voie semble participer seulement de façon marginale dans le métabolisme de l'adénosine chez les polymorphonucléaires (Newby et Holmquist, 1981). Cette voie est insensible à l'oxygène donc d'importance mineure durant l'ischémie (Rongen et al., 1997).

L'adénosine diffuse à travers la membrane cellulaire entre l'espace extracellulaire et intracellulaire. Le processus bidirectionnel est dépendant du gradient et est facilité par un transporteur de nucléoside caractérisé comme une protéine de 60 kDa (Stiles, 1992) qui est localisé à la membrane plasmique de plusieurs cellules. Les inhibiteurs du transporteur amplifient la réponse cellulaire à l'adénosine, ce qui suggère que ses effets physiologiques sont terminés, en partie, par une recaptation de l'adénosine dans les cellules (Krauss et al., 1993).

Les voies majeures du catabolisme de l'adénosine sont la phosphorylation par l'adénosine kinase (AK) (voie de récupération) et la déamination par l'adénosine déaminase.
Figure 2: Métabolisme et catabolisme de l'adénosine
(ADA) (voie catabolique). L'activité combinée de la 5'-NT et AK peut mener à un cycle continu entre l'adénosine et l'AMP (Spychala et al., 1997). La déamination intracellulaire après le captage est probablement de plus grande importance chez l'humain (Rongen et al., 1997). La proportion de nucléosides déaminés ou phosphorylés dépend du Km des kinases (uM) et déaminases (10 X plus haut que l'AK) et de la proportion relative de ces deux enzymes (Centelles et al., 1992).

L'adénosine déaminase (ADA) (adénosine aminohydrolase, E.C. 3.5.4.4) est une enzyme impliquée dans le catabolisme des nucléosides purines; elle catalyse la déamination hydrolytique irréversible de l'adénosine et de la 2'-déoxyadénosine en inosine et 2'-déoxyinosine. De plus, cette enzyme, présente dans tous les tissus de mammifères, semble jouer un rôle majeur dans le développement et la fonction du tissu lymphoïde. L'enzyme existe de façon prédominante sous forme cytoplasmique monomérique de 40 kDa (Hirschhorn, 1995) mais elle peut être liée à la membrane. L'ecto-ADA dans les cellules T est liée au marqueur CD26, aussi connu comme la dipeptidylpeptidase IV, qui n'interfère pas avec l'activité catalytique de l'ADA (Saura et al., 1996) et peut aider la cellule à contrer les effets toxiques de hautes concentrations d'adénosine (Martin et al., 1995). L'ADA à la surface des cellules est impliquée dans un mécanisme immunorégulatoire important (réponse immune, inflammatoire et tumorale) (Dong et al., 1996).

Le syndrome de SCID (Severe Combined ImmunoDeficiency) comprend un groupe de désordres chacun dû à un défaut génétique différent. L'immunité humorale et cellulaire sont souvent affectées par une absence des lymphocytes T et une diminution
importante des lymphocytes B. Cinquante pourcent des cas de SCID sont dus à une
deficience genetique de l'ADA. L'activite enzymatique de l'ADA chez les patients SCID
n'est pas detectable (Hirschhorn, 1995). Ceci resulte en l'accumulation des substrats,
adenosine et 2'-deoxyadenosine qui sont toxiques pour le developpement des lymphocytes
(Resta et Thompson, 1997). La presence de zinc dans la poche catalytique de l'ADA et
d'autres enzymes de recuperation des purines peut potentiellement expliquer
l'immunodeficience associee a la deficience en zinc (Hirschhorn, 1995).

1.1.4 EFFETS BIOLOGIQUES DE L'ADENOSINE:

Caracteristiques connues de l'adenosine:

1. L'adenosine participe a l'autorégulation du flux sanguin dans le coeur, le cerveau, le
 muscle squelettique, le tissu adipeux et le rein. L'adenosine est un vasoconstricteur
dans le rein mais un vasodilatateur dans les autres organes mentionnes (Newby,
 1984).

2. L'adenosine antagonise l'effet catabolique des hormones et favorise l'action de
 l'hormone anabolique insuline (Newby, 1984).

3. L'adenosine attenue la relache de neurotransmetteurs dans les systemes nerveux
 central et peripherique (Krauss et al., 1993).

4. L'adenosine module a la baisse la fonction des lymphocytes T par un mecanisme
 qui implique la regulation de la synthese proteique (Tinton et Buc-Calderon, 1995).
5. L'adénosine est cytotoxique dans une forme de maladie SCID (Resta et Thompson, 1997).

L'adénosine possède une importante activité immunosuppressive. La source et la relâche de l'adénosine dans le système immunitaire sont peu connues et peuvent probablement varier entre les types cellulaires. Il est très clair que l'adénosine joue un rôle important dans la régulation du système immunitaire. Depuis plus de 25 ans, de nombreuses études ont montré les propriétés immunosuppressives et anti-inflammatoires de l'adénosine. Par exemple, les neutrophiles humains, présents au site d'inflammation, médient immunologiquement des dommages au tissu. L'adénosine diminue la génération de métabolites oxygénés toxiques et ainsi empêche les dommages (Spychala et al., 1997).

L'adénosine est impliquée dans les actions pharmacologiques de plusieurs classes de médicaments. De nombreuses études suggèrent fortement que ce nucléoside peut réguler l'activité cellulaire dans plusieurs désordres pathologiques. Dans le même ordre d'idée, les dérivés de l'adénosine pourraient être des candidats prometteurs pour le développement de nouveaux composés thérapeutiques, comme des anticonvulsants, anciens et agents neuroprotecteurs. La distribution étendue des récepteurs d'adénosine dans le corps suggère la participation du nucléoside dans de nombreux processus physiologiques normaux. Premièrement, l'adénosine est un important modulateur dans la physiologie cardiovasculaire (vasodilataiteur). Les fonctions des cellules sanguines sont affectées par des concentrations physiologiques d'adénosine. À date, l'adénosine a été approuvée par le U.S. Food and Drug Administration sous le nom de
Adenocard pour l'usage humain (dans la catégorie 1A indiquant qu'elle est seulement pour un besoin médical majeur) pour contrôler l'hypertension par les propriétés vasodilatatrices et utilisée pour traiter la tachycardie supraventriculaire (Daval et al., 1991). L'administration de hautes doses d'adénosine peut provoquer une douleur comme l'angine et stimuler la respiration, mais ces effets sont temporaires (Hori et Kitakaze, 1991).

À date, les interventions pharmacologiques sont primaires. Les médicaments peuvent être dirigés contre les récepteurs d'adénosine, la phosphorylation, la déamination, la captation ou la formation de l'adénosine. L'adénosine peut induire la vasodilatation, réduire la relâche de noradrénaline des nerfs sympathiques par un mécanisme présynaptique et peut protéger le cœur contre les séquelles de l'ischémie. Plusieurs de ces effets ont été observés chez l'humain in vivo. L'exploitation des effets cardioprotecteurs de l'adénosine endogène est un défi majeur pour la pharmacologie cardiovasculaire (Rongen et al., 1997).

Les propriétés bronchodilatatrices des xanthines (molécules ayant un noyau purine comme l'adénosine) comme la cafécine ou la théophylline, sont utilisées dans le traitement de l'asthme. Les mécanismes ne sont pas encore bien expliqués mais des travaux suggèrent que l'adénosine est un médiateur de l'asthme bronchique. Vu que la plupart des xanthines ont une action antagoniste, des études impliquent les récepteurs d'adénosine (Daval et al., 1991). Contrairement aux individus normaux, les patients asthmatiques répondent à l'adénosine avec une obstruction marquée des voies respiratoires et une concentration élevée d'adénosine dans le liquide broncho-alvéolaire. Donc, les récepteurs d'adénosine
peuvent être des cibles potentielles en thérapeutique. Un oligodéoxynucléotide (ODN) antisens inhibe l'expression d'un gène fonctionnel par la dégénérescence de l'ARNm spécifique ciblé (Richardson, 1997). L'administration d'un ODN aérosol ciblant le récepteur d'adénosine sous-type A1, désensibilise les lapins à une stimulation subséquente avec l'adénosine ou un allergène. Les ODNs réduisent le nombre de récepteurs A1 et non A2, et diminuent la constringion des bronches engendrée par l'adénosine (Nyce et Metzger, 1997).

Le méthotrexate, un antifolate communément utilisé dans le traitement de patients souffrant de l'arthrite rhumatoïde, cause l'accumulation d'adénosine et l'inhibition de la migration des leucocytes vers les sites inflammés. Les effets anti-inflammatoires du méthotrexate sont médiés, au moins en partie, par l'augmentation de la concentration extracellulaire de l'adénosine au site inflammé. Il a été montré que la suppression de l'inflammation par le méthotrexate peut être renversée par l'adénosine déaminase (Cronstein et al., 1994). Ces résultats suggèrent que l'adénosine peut jouer un rôle immunomodulateur in vivo (Walker et al., 1997). Le développement d'autres agents qui permettent la relâche d'adénosine au site inflammé est une nouvelle stratégie pour le traitement de maladies inflammatoires comme l'arthrite rhumatoïde (Cronstein et al., 1995).
1.2. LES RÉCEPTEURS DE L'ADÉNOSINE:

1.2.1 CARACTÉRISTIQUES ET SIGNALISATION:

Tel que décrit par Burnstock (1978), les réponses aux purines sont médiées par des récepteurs liés à la membrane qui sont subdivisés en récepteurs purinergiques P1 (nucléosides) et P2 (nucléotides). Cette subdivision est basée sur l'ordre d'affinité de liaison des agonistes (adénosine > AMP > ADP > ATP pour le sous-type P1 et ATP > ADP > AMP > adénosine pour les P2). Les récepteurs P1 se distinguent des P2 par la sensibilité aux effets d'inhibition par les composés xanthines, comme la caféine ou la théophylline et par des différences dans la nature des messagers intracellulaires.

Tous les récepteurs de l'adénosine (P1) sont membres de la super-famille des récepteurs à sept domaines transmembranaires couplés aux protéines G. À l'origine, les récepteurs P1 ont été divisés en deux grands sous-types A1 et A2 basés sur leur habilité à inhiber ou stimuler l'activité enzymatique de l'adénylate cyclase (AC) (ATP pyrophosphate-lyase EC 4.6.1.1) (Londos et al., 1980). La classification courante est basée sur le potentiel de liaison d'analogues sélectifs de l'adénosine. Pour A1, l'ordre est N6-cyclopentyladénosine (CPA) > N6-cyclohexyladénosine (CHA) > N6-(R-phénylisopropyl)adénosine (R-PIA) > 2-chloroadénosine (2-CADO) > N-éthylcarboxamidoadénosine (NECA) > 2-(phénylamino)adénosine (CV1808) et pour A2, 2-[[2-[4-(2-carboxyéthyl)phényléthyl]amino]-N-éthylcarboxamidoadénosine (CGS21680)
= NECA > 2-CADO > CV1808 = R-PIA > CPA = CHA. Le clonage et l’analyse de séquences ont révélé un nombre de récepteurs différent de la classification originale. Donc, la classification A1 et A2 a été étendue et on distingue maintenant quatre récepteurs d’adénylosine, A1, A2a, A2b et A3 (Latini et al., 1996) et d’un site de liaison intracellulaire P localisé sur l’adénylate cyclase, de rôle inconnu (Olsson et Pearson, 1990) (figure 3). Finalement, tous les récepteurs mais pas le site P peuvent être antagonisés par des xanthines comme la caféine ou la théophylline (Daval et al., 1991).

Le récepteur A2 est associé à une protéine Gs et sa stimulation augmente l’activité de l’AC, donc augmente les niveaux d’AMPc. Les récepteurs A2 ont été subdivisés en A2a
Figure 3:

Voies de signalisation des récepteurs de l'adénosine.
et A2b (Daly et al., 1983) (Bruns et al., 1986) sur la base des différentes affinités de ces analogues. Au niveau cérébral, le récepteur A2a de haute affinité est localisé dans le striatum et le récepteur A2b de basse affinité existe dans la plupart des zones du cerveau (Bruns et al., 1986). Les récepteurs A2 réagissent à des concentrations micromolaires d’adénosine et médient des effets anti-inflammatoires.

Un récepteur appelé A4 a récemment été caractérisé dans le cerveau de rat en utilisant l'analogue CV1808 (Cornfield et al., 1992) mais il n'a pas été cloné.

L'adénosine peut diminuer le contenu cellulaire d'AMPc en liant un site intracellulaire nommé le site P localisé sur la sous-unité catalytique de l'AC et qui n'est pas antagonisé par les xanthines (Olsson et Pearson, 1990). Le site P a été décrit dans les leucocytes par Marone et al. (1990) et récemment par Williams et al. (1997). La fonction de ce site est inconnue mais il possède une faible affinité pour l'adénosine, suggérant que ce n'est pas son ligand naturel (Spielman et Arend, 1991). Les analogues comme le NECA et de nombreux autres ont l'avantage de réagir peu ou pas avec le site P.

1.2.2 Clonage et Expression:

À date, quatre sous-types de récepteurs de l'adénosine chez l'humain ont été clonés, désigné par A1, A2a, A2b et A3. Tous ces récepteurs sont couplés à l'AC via une protéine G. Le clonage des récepteurs de l'adénosine a été initié en 1989 par l'isolement des ADNc des récepteurs orphelins appelés RDC7 et RDC8 par Libert et al. (1989). RDC7 et RDC8 furent subséquemment identifiés comme codant pour A1 (Libert et al., 1989) et A2a (Maenhaut et al., 1990) respectivement. Le récepteur A2b a été cloné par Linden et al. (1993). Le sous-type A3 a été cloné dans le rat par Zhou et al. (1992), chez le mouton par Linden et al. (1993) et chez l'humain (Salvatore et al., 1993).
Il est fort possible que dans le futur d'autres sous-types de récepteurs d'adénosine soient identifiés avec des sondes oligonucléotidiques basées sur la séquence d'un récepteur déjà défini.

1.2.3 ACTIVITÉS BIOLOGIQUES VIA ADO-R:

L'adénosine possède des effets pro- et anti-inflammatoires. L'adénosine est un important modulateur de la fonction des leucocytes. À des concentrations micromolaires, elle medie des effets anti-inflammatoires. Les agonistes des récepteurs A2 inhibent la phagocytose, la production de réactifs oxygénés et l'adhésion par les neutrophiles. Au contraire, le récepteur A1 activé est associé avec l'augmentation de la chimiotaxie et de la phagocytose. La liaison de l'adénosine au récepteur A1 augmente l'adhérence des neutrophiles par différents mécanismes incluant l'augmentation d'expression de molécules d'adhésion à la surface des neutrophiles (Felsch et al., 1995).

L'adénosine via son occupation du récepteur A2 des neutrophiles inhibe l'adhérence aux cellules endothéliales, la chimiotaxie, la génération d'anions superoxydes et la phagocytose. De plus, l'adénosine inhibe la synthèse de cytokines pro-inflammatoires (TNF-α, IL-6, IL-8) dans les monocytes et macrophages prétraités au LPS (Bouma et al., 1994). L'adénosine inhibe la synthèse d'immunoglobulines et la cytolyse médiées par les lymphocytes. Des études récentes in vivo ont démontré le rôle protecteur de l'adénosine et de ses analogues structurels lors de l'inflammation. Par exemple, le leukotriène B4 (LTB4), un métabolite de l'acide arachidonique, stimule plusieurs fonctions des leucocytes, comme
la chimiotaxie, l'adhérence aux cellules endothéliales vasculaires, la génération d'anions superoxydes et la relâche d'enzymes lysosomaux. De plus, LTB4 module la production de cytokines par les monocytes (Rola-Pleszczyński et Lemaire, 1985) et la prolifération des lymphocytes. Vu que l'adénosine inhibe plusieurs fonctions de leucocytes et exerce des effets anti-inflammatoires in vivo, des études ont été entreprises afin d'approfondir les effets de l'adénosine sur la synthèse du médiateur lipidique pro-inflammatoire LTB4. Le 2-CADO, un analogue de l'adénosine, en agissant par le récepteur A2 exerce un effet puissant d'inhibition sur la synthèse de LTB4 par les neutrophiles et monocytes et ceci contribue aux propriétés anti-inflammatoires (Krump et al., 1996). Krump et al. (1997) ont montré que l'adénosine endogène diminue la biosynthèse de LTB4 par les neutrophiles activés. Leurs résultats démontrent le rôle des globules rouges dans l'augmentation de la synthèse de LTB4, par la dégradation de l'adénosine endogène et la conversion du LTB4 relâché par les neutrophiles activés (Krump et al., 1997).

De récents résultats indiquent que les récepteurs d'adénosine jouent un rôle dans la régulation du développement des cellules en induisant l'apoptose. L'apoptose est un suicide cellulaire causé par l'activation d'une cascade d'événements moléculaires programmés. Ce processus amène une dégradation de l'ADN et la mort par bris nucléaire et cytoplasmique en corps apoptotiques. Les cellules HL-60 (lignée myéloïde) sont utilisées comme modèle pour les fonctions des neutrophiles in vitro, suite à leur différentiation en neutrophile morphologiquement et fonctionnellement matures. De récentes études ont identifié le récepteur A3 comme étant responsable de l'apoptose des HL-60 par activation possible de la PLC et la mobilisation du Ca$^{2+}$ (Kohno et al., 1996).
1.3. LES NEUTROPHILES HUMAINS

Les leucocytes polymorphonucléaires neutrophiles, ou neutrophiles, font partie de la population des cellules phagocytaires polynucléées, provenant d'une même cellule souche, dont la fonction primaire est la phagocytose. La phagocytose est un phénomène d'engouffrement d'une particule (microbe, poussière, débris cellulaire, etc.) par les phagocytes. Ce processus est associé à la polymérisation des filaments d'actine des phagocytes et un changement dans la forme cellulaire (Jin et al., 1993).

Les neutrophiles représentent 50 à 60% des leucocytes circulants et constituent la première ligne de défense contre les agents infectieux ou les substances étrangères qui entrent dans le corps. Les neutrophiles sont les premières cellules recrutées au site inflammé.

L'habilité du neutrophile à remplir ses fonctions dépend de la synthèse particulière de substances chimiques durant sa maturation. Après les stimulations appropriées, ces cellules peuvent quitter le sang vers les tissus et en quelques secondes, relâcher le contenu de leurs granules cytotoxiques. Chez un adulte normal, le neutrophile occupe trois environnements: la moëlle osseuse, le sang et les tissus. La moëlle osseuse est le site important du processus de prolifération et de maturation finale des neutrophiles (myéloblaste->neutrophile). La prolifération se divise en approximativement cinq stades, prenant place dans les trois premiers états de la maturation des neutrophiles (myéloblaste, promyélocyte et myélocyte). Après l'état myélocyte, les cellules cheminent vers leur
différenciation terminale (cellules incapable de mitose). Les neutrophiles sont produits dans la moelle osseuse à raison de 10^{11} cellules par jour sous le contrôle du G-CSF et du GM-CSF. Cette vitesse augmente de 10 fois durant le stress ou l'infection. La survie des neutrophiles dans la circulation est de moins d'un jour et de 1 à 2 jours après qu'ils aient quitté le sang et migré dans les tissus (Ford-Bainton, 1993). Les neutrophiles peuvent exister sous trois états: passifs "quiescents", apprêts "primed" ou activés (Hallet et Lloyds, 1995).

Les neutrophiles jouent un rôle majeur dans la défense de l'organisme contre différents agents pathogènes. Cependant stimulés de façon excessive ou inappropriée, ils deviennent la source d'une importante quantité de formes réactives de l'oxygène libéré dans le milieu environnant et susceptible d'entraîner des lésions tissulaires sévères au site de la réaction inflammatoire. Une régulation fine et précise de l'activité oxydative est donc nécessaire. Dans ce contexte, les cytokines et en particulier les cytokines proinflammatoires jouent un rôle important, bien que les rôles précis de certaines d'entre elles soient controversés. Ces molécules produites par différents types cellulaires présents au niveau du foyer inflammatoire (monocytes, macrophages, cellules endothéliales, fibroblastes, neutrophiles...) interagissent au sein d'un réseau complexe et jouent un rôle fondamental dans la régulation des neutrophiles. Certains auteurs ont récemment montré que les neutrophiles n'étaient pas seulement des cellules effectrices tueuses mais aussi des cellules régulant les réactions immunitaires et inflammatoires par leur capacité à produire des cytokines et notamment des cytokines proinflammatoires telles que le TNFα, l'IL-1β et
l'IL-8 (Cassatella, 1995). La production de ces cytokines permettrait d'amplifier les processus de recrutement et l'activité tueuse des neutrophiles et participerait à la régulation des cellules présentes au site de la réaction immunitaire et inflammatoire. La richesse en neutrophiles au foyer inflammatoire permet d'émettre l'hypothèse du rôle majeur de ces cellules en tant que générateur de cytokines à ce niveau. La production de cytokines à activité anti-inflammatoire telles le TGFβ1 et d'IL-1ra a été démontrée chez le neutrophile (Gougerot-Podicalo et al., 1996).

Le mécanisme microcidal consiste en une combinaison de processus oxidatifs et enzymatiques activés par la phagocytose (Smith, 1994). Cet arsenal comprend la formation de réactifs oxygénés (OH, O₂⁻, H₂O₂), d'enzymes hydrolytiques et de polypeptides antimicrobiens qui peuvent être plus ou moins influencés par les médiateurs comme les cytokines, neurohormones et lipides bioactifs.

L'apoptose des neutrophiles est une composante normale de l'homéostasie et de la réponse inflammatoire. Normallement, les neutrophiles ont une durée de vie limitée dans la circulation. Dans un microenvironnement inflammé, le taux d'apoptose est retardé chez les neutrophiles qui ont migré dans les tissus. C'est probablement dû à l'exposition aux cytokines proinflammatoires comme le GM-CSF, l'IL-1, l'IL-2 et l'IFN-γ, tandis que le TNF-α, l'IL-6 et la génération de réactifs oxygénés intermédiaires activent le processus d'apoptose. Donc, l'activation des neutrophiles est une arme à deux tranchants (Watson et al., 1997). Le rôle inflammatoire des neutrophiles se termine par l'apoptose, qui est associé-
à l'atténuation de la réponse cytotoxique et à une augmentation de la reconnaissance et de
la phagocytose par les macrophages. Ceci limite les dommages au tissu et permet la
résorption ordonnée des neutrophiles (Walker ct al., 1997).

L'adénosine peut être produite par les neutrophiles (Cronstein et al., 1983) et elle
possède des effets anti-inflammatoires comme l'inhibition de la chimiotaxie, de l'adhésion,
de la phagocytose, de la production de réactifs oxygénés, etc.

1.4. LE FACTEUR ACTIVATEUR DES PLAQUETTES (PAF)

1.4.1 DÉCOUVERTE:

En 1972, Benveniste, Henson et Cochrane, rapportent que les leucocytes de lapins
sensibilisés aux IgE et traités avec un antigène spécifique, provoquent la relâche
d'histamine et de sérotonine des plaquettes. Ils concluent que suivant la stimulation, les
basophiles dégranulent et relâchent un facteur soluble qui cause l'agrégation. Ils appellent
ce facteur soluble, le facteur activateur de plaquettes ou platelet-activating factor (PAF) et
suggèrent un rôle possible du PAF dans les réactions allergiques. En 1979, trois
laboratoires indépendants, (Desmopoulos et al., 1979; Blank et al., 1979; Benveniste et
al., 1979) décrivent la structure chimique d'une nouvelle sous-classe de phospholipides qui
possèdent des activités biologiques identiques au PAF. Ces auteurs observent que le
glycérophospholipide synthétique, 1-O-alkyl-2-acétyl-sn-glycéro-3-phosphocholine (AAGPC) possède les mêmes propriétés physicochimiques et biologiques que le PAF. L'AAGPC élicite la sécrétion de la sérotonine des plaquettes de lapins. Ils montrent aussi que le PAF et l'AAGPC sont convertis en forme inactive par hydrolyse et restauré en forme fonctionnelle par une réacétylation. L'année suivante, Hanahan et al. (1980) purifient le PAF natif de basophiles activés et le caractérisent. Les auteurs concluent que le PAF est le AAGPC.

Le facteur activateur de plaquette (PAF) est le nom commun donné au 1-O-alkyl-2-acétyl-sn-glycéro-3-phosphocholine, un phospholipide biologiquement actif. Il transmet les signaux entre les cellules et ses fonctions sont similaires aux hormones, cytokines, interleukines, et d'autres molécules de signalisation. Les médiateurs lipidiques comme le PAF et les métabolites de l'acide arachidonique LTB4 et PGE2 sont connus pour leurs effets sur les mécanismes impliqués dans la régulation des réponses immunes et inflammatoires (Rola-Pleszczynski et al., 1993).

1.4.2 STRUCTURE:

Le PAF est relâché durant les réactions inflammatoires et résulte en l'activation des plaquettes et des neutrophiles. Basé sur des études d'activités biologiques, le PAF est reconnu comme un groupe complexe d'une structure phospholipide caractérisé par un lien éther à la position sn-1, un groupe acétyl en sn-2 et une choline en sn-3 (Gerard et Gerard, 1994).
1.4.3 BIOSYNTHÈSE:

Il existe deux voies différentes de biosynthèse du PAF qui ont été identifiées dans les cellules de mammifères: la voie de la cholinephosphotransférase et la voie de l’acétyltransférase. Cette voie implique deux enzymes où une phospholipase A2 clive l’acide gras du 1-alkyl-2-acyl-glycéro-3-phosphocholine pour former le 1-alkyl-glycéro-3-phosphocholine qui est ensuite acétylé pour donner le PAF par l’acétyltransférase; celle-ci est localisée dans le réticulum endoplasmique des neutrophiles suggérant que le PAF est synthétisé à l’intérieur de la cellule (Zhou et al., 1992).

1.4.4 SOURCE:

Le PAF est un puissant médiateur phospholipidique de l’inflammation et de l’immunorégulation. Il est produit par plusieurs populations cellulaires en réponse à divers stimuli spécifiques. Plusieurs organes, incluant les poumons et les reins (Nojima, 1991), et même les spermatozoïdes (Imaizumi et al., 1995) produisent le PAF.

Le PAF est généré par plusieurs types de cellules inflammatoires comme les monocytes, macrophages, neutrophiles, lymphocytes, plaquettes et cellules endothéliales sous des conditions appropriées de stimulation. La plupart des cellules qui produisent le PAF sont des cibles de son action. L’existence d’un récepteur spécifique au PAF sur la surface des cellules a été confirmée sur les cellules répondantes.
Les neutrophiles synthétisent et produisent le PAF (Mueller et al., 1984). La formation du PAF dans les neutrophiles humains stimulés par le fMLP est apparentement régulée par la protéine kinase C qui est impliquée dans l'activation de la phospholipase A2. Les neutrophiles activés au fMLP sécrètent seulement une partie du PAF synthétisé dont la majeure partie est retenue dans la cellule. Leurs résultats supportent le rôle endogène du PAF comme second messager dans l'activation des neutrophiles (Stevlov et Nigam, 1993).

1.4.5 EFFETS BIOLOGIQUES:

Le PAF entraîne la vasodilatation, la contraction du muscle lisse et l'activation des neutrophiles, macrophages, éosinophiles et plaquettes. Le PAF joue un rôle important dans plusieurs désordres allergiques, inflammatoires, choc endotoxique et autres maladies. Il possède aussi des effets physiologiques sur la reproduction, le système cardiovasculaire, la respiration et le système nerveux central (Izumi et Shimizu, 1995). Il est fort probable que le PAF agisse de concert avec les cytokines, prostaglandines, hormones et autres médiateurs (Imaizumi et al., 1995).

Puisque le PAF est souvent détecté durant les processus inflammatoires et qu'il possède la capacité de reproduire les signes et symptômes de l'inflammation, il est généralement accepté que ce phospholipide joue un rôle central dans une variété de maladies inflammatoires (Triggiani et al., 1991).
1.5. LE RÉCEPTEUR DU PAF:

1.5.1 CLONAGE:

1.5.2 SIGNALISATION:

Suite à l'activation du récepteur du PAF, diverses réponses intracellulaires sont observées comme l'activation de la PLC, la PLA2 et la PLD, l'augmentation du calcium cytosolique, l'activation de la PKC, la phosphorylation des résidus tyrosine de plusieurs protéines (Chau et al., 1994) et l'expression de divers gènes. Le PAF active aussi plusieurs kinases comme la PKC, MAPK, et protéines tyrosine-kinases (Izumi et Shimizu, 1995).
Chez les neutrophiles, l'activation du PAF-R déclenche une variété d'événements précoce de signalisation incluant l'activation des phospholipases C et A2 aussi bien que l'activation de la phosphatidylinositol (PI) 3-kinase, menant à une variété d'effets biologiques tels que la chimiotaxie, la phagocytose, la respiration oxidative (O2’, H2O2), la relâche d'enzymes lysosomales et la production de médiateurs inflammatoires.

1.5.3 MODULATION:

Puisque la modulation du récepteur du PAF peut représenter une caractéristique importante dans le processus de l'inflammation, nous avons initié un série d'études sur les mécanismes qui peuvent affecter l'expression du gène du PAF-R. Une régulation à la hausse de l'expression génique et protéique du hPAF-R a été démontrée avec l'IFN-γ (Ouellet et al., 1994), et le TNF-α (Dagenais et al., 1997). Les cytokines comme l'IL-4 (Ouellet et Rola-Pleszczynski, 1994), l'IL-5 (Kishimoto et al., 1996) et le TGF-β (Parent et Stankova, 1993) stimulent aussi l'expression du gène du hPAF-R. Récemment, la régulation à la baisse du hPAF-R chez les monocytes a été mise en évidence quand les niveaux intracellulaires d'AMPc sont augmentés et ce au niveau transcriptionnel et protéique (Thivierge et al., 1993; Chao et al., 1990). Le phorbol ester PMA, un puissant activateur des protéines kinases C (PKC), régule à la baisse l'expression du hPAF-R chez les monocytes humains par une voie dépendante de la PKC en impliquant une désensibilisation post-transcriptionnelle de l'ARNm du hPAF-R (Thivierge et al., 1996).
1.6. OBJECTIFS:

L'adénosine est souvent reconnue pour ses effets immunosuppresseurs et anti-inflammatoires. L'adénosine peut influencer une variété de fonctions des neutrophiles. Les analogues de l'adénosine permettent de cibler sélectivement un des sous-types de récepteurs d'adénosine (A1, A2a, A2b ou A3); ils ont l'avantage d'être peu ou pas captés par les transporteurs et sont de pauvres substrats pour les enzymes qui déaminent et phosphorylent l'adénosine. Donc, la résistance de ces analogues à la dégradation enzymatique par l'ADA indique la façon dont l'adénosine peut agir.

Le PAF est un important médiateur lipidique des réactions allergiques et inflammatoires aussi bien qu'un modulateur de la réponse immune. Le PAF agit via son récepteur spécifique le PAF-R. L'expression du PAF-R peut être régulée par des facteurs associés à la différenciation cellulaire, des cytokines aussi bien que par le ligand lui-même.

Les neutrophiles sont un des types cellulaires qui répondent au PAF. Ils expriment le PAF-R de façon constitutive et répondent au PAF par une augmentation de la production de radicaux oxygénés, de la chimiotaxie, de la phagocytose, etc. Les neutrophiles constituent la première ligne de défense de l'organisme lors de l'inflammation. Donc, ce type cellulaire constitue un bon modèle pour cette étude.
Nous avons étudié la régulation de l'expression du hPAF-R par les analogues de l'adénosine dans les neutrophiles humains. Cette étude s'adresse autant au niveau transcriptionnel, protéique qu'à la réponse biologique au PAF. De plus, nous avons étudié les effets de l'adénosine endogène sur la modulation du hPAF-R. Ces études peuvent donner des informations importantes sur la relation entre l'adénosine et le PAF lors de certaines pathologies.
2. MATÉRIELS ET MÉTHODES

2.1 PRODUITS UTILISÉS:

2-CADO: 2-chloroadénosine, soluble dans l'eau, analogue de l'adénosine agoniste des récepteurs d'adénosine, Sigma Chemical Co., St-Louis, MO.

CGS-21680: 2-p-(2-carboxyéthyl)phénéthylamino-5'-N-éthylcarboxamidoadénosine, soluble dans l'eau, agoniste sélectif pour le A2a, (Research Biochemicals International (RBI) Natick, MA)

CPA: N6-cyclopentyladénosine, agoniste sélectif pour A1, soluble dans l'éthanol, ICN, Biomedical Inc., Aurora, Ohio.

NECA: 5-N-éthylcarboxamidoadénosine, agoniste sélectif pour A2b, soluble dans l'eau, ICN, Biomedical Inc., Aurora, Ohio.

ADO: Adénosine, ligand naturel soluble dans l'eau, Sigma Chemical Co., St-Louis, MO.

DMPX: 3,7-diméthyl-1-propargylnanthine, soluble dans l'éthanol 4mg/ml et dans eau 1.1 mg/ml, antagoniste sélectif A2 des récepteurs d'adénosine, Research Biochemicals International (RBI), Natick, MA.

8-PT: 8-phényltéophylline, antagoniste des récepteurs d'adénosine, soluble dans l'éthanol, Sigma Chemical Co., St-Louis, MO.
Actinomycine D: inhibiteur de la synthèse d'ARN, Merck Sharp and Dohme International (MSD) Rahway, NJ

PTX: pentoxifylline, xanthine inhibiteur de phosphodiésterase, soluble dans l'eau, Sigma Chemical Co., St-Louis, MO.

RO 20-1725: inhibiteur de phosphodiésterase AMPc type IV de classe non-xanthine (Sullivan et al., 1995) soluble dans DMSO, Biomol Research Labs Inc., Plymouth Meeting, PA.

ADA: adénosine déaminase, dégrade l'adénosine en inosine, Sigma Chemical Co., St-Louis, MO

Calphostine C: inhibiteur de la PKC, soluble dans DMSO, Biomol Research Labs Inc., Plymouth Meeting, PA.

génistéine: inhibiteur des tyrosine kinases, soluble dans DMSO, Biomol Research Labs Inc., Plymouth Meeting, PA.

H7: inhibiteur de la PKC, soluble dans DMSO, Sigma Chemical Co., St-Louis, MO

H89: inhibiteur de la PKA, soluble dans 1:1 éthanol:eau, Biomol, Plymouth Meeting, PA

RP-cAMPS: inhibiteur de la PKA, soluble dans l'eau, Research Biochemicals International (RBI), Natick, MA.
2.2 PRÉPARATION ET STIMULATION DES NEUTROPHILES:

Le sang veineux de donneurs sains (hommes ou femmes adultes) est recueilli dans un sac contenant du citrate (l’isolement se fait à la température de la pièce). Le sang est distribué dans des tubes Falcon de 50 ml (Falcon, Becton-Dickinson Labware, Lincoln Park, NJ), puis centrifugé 15 min. à 1 100 RPM. Le plasma riche en plaquettes est enlevé et remplacé par un volume équivalent de tampon phosphate salin (PBS). Suite à la sédimentation des globules rouges (GR) au Dextran T-500 (Pharmacia Fine Chemicals, Uppsala, Suède), on centrifuge à 1400 RPM pendant 20 minutes. La couche de cellules mononucléées (PBML) est à l’interface. Les polymorphonucléaires (PMN) du culot sont resuspendus dans le PBS pour un lavage et centrifugé pendant 10 min. à 1100 RPM. Le culot est gardé et on lyse les GR qui pourraient contaminer les PMNs par addition de 15 ml d’H₂O pendant 20 s. et 15 ml de saline 1.8% pour rééquilibrer le milieu. On centrifuge pendant 10 minutes à 1100 RPM et on obtient les PMNs en majorité des neutrophiles que l’on resuspend dans du milieu RPMI 1640 (Gibco) contenant de la gentamicine (40 µg/mL) et 10% de sérum de veau foetal inactif (FBS). La viabilité cellulaire est de >95%, selon l’exclusion du bleu Trypan. Les neutrophiles sont resuspendus dans le RPMI 1640/10% FBS à une concentration de 20 X 10⁶ cellules/ml et déposés dans des tubes de polypropylène de 15 ml (Falcon), à raison de 4 ml/tube. Les cellules sont stimulées et incubées à 37°C sous un atmosphère de 95%O₂, 5%CO₂ (Thivierge et al., 1993).
2.3 BUJVADAGE NORTHERN:

Suite au traitement approprié, les cellules sont centrifugées et l'ARN total est isolé, sur glace, par extraction à l'acide guanidium-thiocyanate-phénol-chloroforme, selon la méthode de Chomczynski et Sacchi (1987). L'ARN est quantifié par spectrophotométrie à 260 nm puis 20 µg sont séparés par électrophorèse dans un gel d'agarose de 1% et transférés sur une membrane de nylon Hybond-N+ (Amersham, Arlington Heights, IL), pour l'analyse Northern. Un fragment EcoRI d'une longueur de 0.7 Kb est utilisé comme sonde d'ADNc du hPAF-R (Müeller et al., 1993). Également, un fragment PstI de 1.0 Kb (ATCC) est utilisé comme sonde d'ADNc du gène témoin glycéraldéhyde-3-phosphate déshydrogénase (GAPDH). Les sondes sont marquées par la technique d'extension d'amorces (système de marquage multiprime d'Amersham), avec l'[α-32P]-dCTP (activité spécifique >3000 Ci/mmol; Amersham).

Les membranes sont préhybridées pendant 4 heures à 68°C dans une solution contenant du Tris 120 mM, NaCl 600 mM, EDTA 8mM, sodium pyrophosphate (NaPP) 0.1%, sodium dodecyl sulfate (SDS) 0.2% et de l'héparine 100 µg/ml; l'hybridation se fait pendant 18 à 24 heures à 68°C dans le même mélange sauf que la concentration d'héparine est augmentée jusqu'à 625 µg/ml et que l'on ajoute du dextran sulfate à 10%. Par la suite, les membranes sont lavées une fois à la température de la pièce dans du 2X SSC (1X SSC: 0.15M NaCl, 0.015 M sodium citrate pH 7) pendant 20 minutes, puis une fois dans du 0.1X SSC, 0.5% SDS pendant 1 heure à 68°C, puis finalement rincées à la température de
la pièce avec 0.1X SSC. Les membranes sont exposées à un film Kodak XAR-5 (Eastman Kodak, Rochester, NY), avec un écran intensificateur durant 24 h à -80°C. L'intensité du signal est quantifiée par densitométrie en utilisant un numériseur (Thunder Works) et analysée par le logiciel Scan Analysis. Les membranes sont alors déshybrdées par un lavage de 60 min à 90°C avec une solution de 0.1% SDS, puis réhybridées avec la sonde GAPDH. Les valeurs densitométriques sont exprimées par le rapport de densitométrie hPAF-R/GAPDH, les valeurs témoins étant fixées à 1.

2.4 CYTOFLUOROMÉTRIE

Suite au traitement approprié, les neutrophiles sont lavés deux fois dans du RPMI 1640 contenant 0.25% BSA pour enlever le FBS. Les cellules (2.5 X 10^5) sont incubées pendant 45 minutes à 4°C avec un anticorps polyclonal anti-hPAF-R. Elles sont ensuite lavées avec du PBS froid puis incubées pendant 30 min. à 4°C avec un anticorps de souris anti-IgG de lapin conjugué à la fluorescéine (Bio/Can Scientific, Mississauga, Ont., Canada). Cette molécule peut être excitée à 488 nm pour émettre de la fluorescence à 525 nm. Après un lavage au PBS, la fluorescence des cellules est analysée par cytofluorométrie de flux, avec un FACScan Analyzer (Becton-Dickinson, San Jose, CA). Les données sont basées sur l'analyse de 5000 cellules par échantillon.

Les anticorps polyclonaux anti-hPAF-R ayant servi pour ces études ont été produits dans des lapins par immunisations répétées avec un décapeptide synthétique
(correspondant aux résidus 164-173 du hPAF-R) couplé à la protéine porteuse KLH (Keyhole-Limpet Haemocyanin), tel que décrit par Müller et al. (1993). La fraction contenant les IgG a été obtenue par purification sur une colonne de protéine A-Sépharose (Pharmacia).

2.5 MÉSUREMENT DES NIVEAUX DE CALCIUM INTRACELLULAIRE

Les niveaux de calcium intracellulaire ([Ca$$^{2+}$$]i) sont déterminés en utilisant la molécule Fura-2 sous forme d’acétoxyméthyl ester (Fura 2-AM) (Calbiochem, San Diego, CA). Le principe est le suivant: le Fura 2-AM pénètre dans les cellules où il est clivé en Fura-2 par des estérases cytosoliques. Le Fura-2 clivé peut se complexer avec le calcium. Seuls les complexes Fura-2/calcium peuvent être excités à 340 nm et émettre de la fluorescence à 510 nm. Les mesures et les calibrations ont été effectuées sur un spectrofluorimètre SLM/Aminco (SLM Instruments, Urbana, IL), tel que décrit par Müller et al., (1991). Après le traitement approprié, les cellules sont centrifugées et resuspendues à la concentration de 5 X 10^6 cellules/ml, dans du RPMI 1640. Les cellules sont laissées pendant 30 min à la température de la pièce avant d'être chargées avec 3 μM de Fura-2-AM pendant 20 minutes. Elles sont ensuite lavées deux fois avec la solution de Hanks (HBSS; Gibco) sans Ca+2 et supplémentée avec 350 mg/L de NaHCO3 et 10 mM Hepes (pH 7.0). Les cellules sont laissées au repos pendant 15 minutes. Dix min avant de prendre les lectures, la concentration en Ca$$^{2+}$$ dans la cuvette est amenée à 1.5 mM, par l'ajout d'une solution de CaCl2. La concentration de calcium intracellulaire ([Ca$$^{2+}$$]i) est calculée
selon la méthode de Tsien et al. (1982) utilisant l'équation suivante: \([\text{Ca}^{2+}]_i = (K_d) (F_{\text{Fmin}})/(F_{\text{Fmax}} - F)\), où la valeur \(K_d\) est de 224 nM à 37°C (Gryniewicz et al., 1985; Payet et al., 1991). La fluorescence maximale (Fmax) est obtenue par l'addition du Triton X-100 à une concentration finale de 0.5%. La fluorescence minimale (Fmin) est déterminée par l'addition subséquente de EGTA dans un tampon Tris-HCl (100 mM, pH 9.0) à la concentration finale de 6.25 mM. Les stimuli consistent en l'ajout de PAF ou LTB₄, à une concentration finale de 10⁻⁸ M.

2.6 ANALYSE RT-PCR (reverse transcriptase-polymerase chain reaction):

Cinq μg d'ARN total extraits des neutrophiles et de cellules HL-60 sont incubés à la température de la pièce pendant 10 minutes avec 1 unité de DNAsse I (Gibco-BRL), 20 U de RNASine, 1X de tampon de DNAsse (Gibco-BRL). On inactive la DNAsse I en ajoutant 8 mM de EDTA et on chauffe 10 min à 65°C. La réaction de la transcriptase inverse (RT) s'effectue en ajoutant 0.75 M d'oligo dT que l'on chauffe pendant 2 minutes à 70°C et refroidit sur glace. On ajoute un mélange de tampon M.MLV 2.5X, dNTPs, 20 U RNASine et 200 U M.MLV-RT (Promega, Madison, WI) et on procède à la réaction de la transcriptase inverse, 10 min à 23°C, 60 min à 42°C, 10 min à 95°C et ensuite sur glace. La réaction de PCR est effectuée selon la même méthode que Kohno et collaborateurs, (1996) en utilisant les mêmes séquences d'amplification du récepteur d'adénosine A3. Nos oligonucléotides ont été obtenus de Gibco-BRL et donnent un produit de 361 pb. Dix μl
de produits de PCR ont été séparés par électrophorèse sur un gel d'agarose 1% et visualisés avec le bromure d'éthidium sous la lumière ultra-violette.

2.7 ANALYSE STATISTIQUE:

L'analyse statistique a été effectuée par analyse de variance ou par le test de Student pour les données pairées.

Les résultats sont présentés par des courbes représentant la moyenne des expériences ± l'écart-type.
3. RÉSULTATS

3.1 ÉTUDE DES EFFETS DES ANALOGUES DE L'ADÉNOSINE SUR L'EXPRESSION DU hPAF-R

3.1.1 AU NIVEAU DE L'ARNm;

La capacité du 2-chloroadénosine (2-CADO), un analogue de l'adénosine, de moduler l'expression du hPAF-R a premièrement été vérifiée par des études de réponse en fonction de la concentration au niveau de l'ARNm du hPAF-R. Les neutrophiles humains expriment de façon constitutive le messager du hPAF-R. La figure 4 montre que l'exposition des neutrophiles au 2-CADO (10^{-10} à 10^{-4} M) pendant 3 heures entraîne une diminution dose-dépendante de l'ARNm du hPAF-R. On note une diminution significative de 60% du niveau basal à 10^{-4} M de 2-CADO. Pour les expériences suivantes, nous avons utilisé le 2-CADO à une concentration de 10^{-4} M (100 µM).

Par la suite, nous avons vérifié la cinétique de régulation à la baisse du niveau de l'ARNm du hPAF-R par le 2-CADO. Les neutrophiles ont été traités pendant différents intervalles de temps en absence ou en présence de 2-CADO 100 µM puis l'ARN a été extrait. Ces études ont révélé que l'effet du 2-CADO débute dès 2hrs après l'exposition
Figure 4: Effet dépendant de la concentration de 2-CADO sur la diminution de l'ARNm du hPAF-R.

Les neutrophiles ont été incubés en présence de milieu ou de concentrations croissantes de 2-CADO. Après 3 hrs, les cellules ont été lysées et l'ARN a été extrait. L'ARN total (20 µg/piste) a été séparé par électrophorèse, transféré sur une membrane de nylon et hybridé avec les sondes hPAF-R et GAPDH. Le buvardage Northern et l'analyse densitométrique correspondante sont illustrés. Les résultats sont tirés d'une expérience représentative répétée cinq fois. * p < 0.05
(figure 5). L'activité maximale de baisse est observée à 3 hrs et est maintenue par la suite jusqu'à 21 hrs. Il est à remarquer l'augmentation de l'expression du hPAF-R chez les cellules non traitées dans les six premières heures et ensuite une diminution après de plus longues périodes d'exposition (>8 hrs). Cet effet est probablement dû à une auto-activation des neutrophiles durant leur isolation.

Puisque le 2-CADO peut agir sur les quatre sous-types de récepteurs d'adénosine A1, A2a, A2b et A3, il était important de tenter d'identifier le sous-type de récepteur par lequel l'effet était médié. Pour ce faire, nous nous sommes dirigés vers d'autres agonistes plus sélectifs et antagonistes des récepteurs d'adénosine.

Premièrement, nous avons utilisé des agonistes sélectifs: le 2-[[2-[4-(2-carboxyéthyl)phényl]éthyl]amino]-N-éthylcarboxamidoadénosine (CGS21680) sélectif pour le A2a, le cyclopentyladénosine (CPA) sélectif pour A1, le N-éthylcarboxamidoadénosine (NECA) sélectif pour A2b et l'adénosine, le ligand naturel. Les neutrophiles ont été traités avec différentes concentrations de ces agonistes (10^{-13} à 10^{-4} M) et les résultats sont montrés en figure 6. Le CGS 21 680 ne provoque pas de diminution de l'ARNm du hPAF-R. Le NECA montre une courbe bi-phasique avec une augmentation de l'ARNm du hPAF-R à de faibles concentrations et une diminution de l'ARNm du hPAF-R à la concentration 10^{-6} M d'environ 40% (moindre que le 2-CADO). Il est intéressant de noter que le CPA, un agoniste A1, augmente l'expression du hPAF-R à de faibles concentrations et revient au niveau basal à de fortes concentrations. De plus,
Figure 5: Cinétique de la diminution de l'ARNm du hPAFR induite par le 2-CADO 100 μM.

Les neutrophiles ont été traités en présence ou non de 2-CADO 100 μM pour différentes périodes de temps, puis lysés. L'ARN total a été extrait et préparé pour l'analyse Northern. La figure illustre le buvardage Northern d'une expérience représentative et l'analyse densitométrique correspondante de n=3.
Figure 6: Effet de divers agonistes des récepteurs d'adénosine sur l'ARNm du hPAF-R.

Les neutrophiles ont été incubés en présence de diverses concentrations des agonistes des récepteurs d'adénosine. Après 3 hrs, les cellules sont lysées et l'ARN a été extrait. Le buvardage Northern a été effectué et l'analyse densitométrique correspondante est illustrée (n=3 pour chaque agoniste).
l’adénosine, le ligand naturel, ne change pas les niveaux d’ARNm du hPAF-R probablement dû à l’annulation réciproque de ses effets via les quatre sous-types de récepteurs.

3.1.2 AU NIVEAU DE LA PROTÉINE;

Afin de déterminer si la régulation à la baisse de l’ARNm du hPAF-R par le 2-CADO est accompagnée par une diminution du récepteur à la surface cellulaire, des études de cytofluorométrie ont été entreprises. Les neutrophiles ont été traités pendant 24 ou 48 hrs avec ou sans 2-CADO, puis incubés en présence de l’anticorps polyclonal anti-hPAF-R. La figure 8 illustre les résultats d’une expérience répétée trois fois. Les neutrophiles traités pendant 24 hrs avec le 2-CADO montrent une fluorescence plus basse que celle des neutrophiles témoins. Cette diminution persiste jusqu’à 48 hrs. En moyenne, on note une
<table>
<thead>
<tr>
<th>Traitement</th>
<th>hPAFR</th>
<th>GAPDH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Témoin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-CADO 10 μM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-CADO 100 μM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8-PT 100 μM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8-PT 100 μM + 2-CADO 100 μM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DMPX 100 μM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DMPX 100 μM + 2-CADO 100 μM</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 7: Effets des antagonistes des récepteurs d'adénosine sur l'expression de l'ARNm du hPAF-R modulée par le 2-CADO.

Les neutrophiles ont été prétraités trente minutes avec l'antagoniste avant l'ajout du 2-CADO 100 μM. L'incubation s'est poursuivie pendant 3 hrs. Après, les cellules ont été lysées, l'ARN total extrait et analysé par buvardage Northern. La figure illustre le buvardage Northern et l'analyse densitométrique. Les résultats sont tirés d'une expérience représentative répétée trois fois. * p < 0.05
Figure 8: Analyse cytofluorométrique de l'expression du hPAF-R des neutrophiles traités au 2-CADO 100 µM.

Les neutrophiles ont été incubés en absence ou en présence de 2-CADO 100 µM pour 24 ou 48 hrs. Ensuite, ils ont été mis en présence de l'anticorps polyclonal anti-hPAF-R ou non et révélés par l'anticorps FITC anti-Fc (n=3). * p < 0.05
diminution significative de la fluorescence de 43 +/- 10% à 24 hrs (n=3) et 50 +/- 5% à 48 hrs (n=3). Cependant, aucun changement dans la fluorescence des cellules n'est observé pour des temps de traitements plus courts (moins de 18 h). Par contre, il est important de noter que la survie des neutrophiles n'est pas des plus longue. Après 24 h, on recueille seulement 80% des cellules de départ et après 48 hrs, on a 70%.

De plus, on remarque que le nombre de hPAF-R exprimés à la surface des neutrophiles est légèrement différent d'un donneur à l'autre et que les pourcentages de cellules positives sont faibles (3 à 18%). L'observation d'une baisse peut donc être difficile.

3.1.3 AU NIVEAU DE LA RÉPONSE CALCIQUE STIMULÉE PAR LE PAF

Puisque le 2-CADO diminue l'expression du hPAF-R autant au niveau de l'ARNm qu'au niveau de la protéine, on peut se demander s'il diminue également la réponse biologique reliée au PAF. Nous avons vérifié cela par des études de mobilisation de calcium. Les neutrophiles ont été traités comme précédemment, puis chargés avec le Fura-2-AM pour le dosage des variations du calcium intracellulaire ([Ca^{2+}]i). Les résultats d'une expérience sont illustrés à la figure 9. On note qu'à 24 h, les cellules témoins répondent au PAF (10^{-8} M) par une élévation du calcium intracellulaire de 50 +/- 8 nM. Les cellules prétraitées avec le 2-CADO répondent au PAF (10^{-8} M) avec une variation de 25 +/- 6 nM soit une diminution de moitié de l'amplitude de la réponse des cellules témoins.
Figure 9: **Effet du prétraitement au 2-CADO sur les variations de calcium induite par le PAF et le LTB4.**

Les neutrophiles ont été traités en absence ou en présence de 2-CADO 100 μM pendant 24 hrs, puis lavés et chargés avec 3 μM de Fura-2-AM pour 30 minutes. Les cellules ont alors été lavées trois fois avec du HBSS. 15 mM de CaCl₂ a été ajouté dans la cuvette 10 min. avant les stimulations avec 10 nM de PAF ou de LTB4. Les résultats sont tirés d'une expérience représentative de n=3 A) réponse au PAF et B) au LTB4.
Afin de vérifier si le 2-CADO n'affecte que la réponse biologique reliée au PAF, nous avons également examiné la réponse calcique au LTB₄ chez les neutrophiles prétraités ou non au 2-CADO. La variation du [Ca²⁺]i stimulée par le LTB₄ (10⁻⁸ M) n'est pas affectée par le prétraitement au 2-CADO (figure 9), soit une élévation de 82 +/- 9 nM de calcium chez les témoins et de 77 +/- 12 nM chez les neutrophiles traités au 2-CADO.

3.2 ÉTUDE DU MÉCANISME IMPLIQUÉ

3.2.1 DEMI-VIE DE L'ARNm DU hPAF-R;

Nous avons entamé une série d'expériences nous permettant d'évaluer les mécanismes sous-jacents à la diminution d'ARNm du hPAF-R induite par le 2-CADO. Cette diminution peut être causée par une diminution de la stabilité de l'ARNm du hPAF-R, une diminution de la transcription du gène ou encore par les deux. Afin de distinguer entre ces possibilités, nous avons évalué la demi-vie de l'ARNm du hPAF-R dans les cellules témoins et traitées au 2-CADO. Ces expériences ont nécessité l'utilisation d'un inhibiteur de la synthèse d'ARN, l'actinomycine D. Les neutrophiles sont donc incubés en présence ou en absence de 2-CADO pendant 3 h, puis l'actinomycine D est ajoutée. L'ARN total est extrait par la suite à différents temps. Comme indique le résultat de la figure 10, la demi-vie de l'ARNm du hPAF-R calculée pour les cellules témoins est
Figure 10: Évaluation de la demi-vie de l'ARNm du hPAF-R dans les neutrophiles témoins et traités au 2-CADO 100 μM.

Les neutrophiles ont été incubés avec le milieu seul ou le 2-CADO 100 μM pendant 3 hrs. La synthèse de l'ARN a alors été arrêtée par l'ajout d'actinomycine D (8 μg/ml). Les cellules ont été lysées aux temps indiqués, l'ARN a été extrait et préparé pour l'analyse Northern. Le calcul de la demi-vie donne 158 versus 150 minutes pour les cellules témoins et les traitées au 2-CADO respectivement. La figure illustre l'analyse densitométrique de n=3.
semblable à celle obtenue pour les cellules traitées au 2-CADO, soit de 158 min contre 150 min. Ces résultats suggèrent que la diminution de l'ARNm du hPAF-R causé par le 2-CADO n'est pas due à une déstabilisation du messager.

3.2.2 EFFETS DES INHIBITEURS DE KINASES;

Étant donné que nous n'avons pas déterminé par quels sous-types de récepteur la diminution du hPAF-R par le 2-CADO était causée, nous avons vérifié si cette baisse pouvait impliquer les différents effecteurs des récepteurs de l'adénosine, telles les kinases PKC, PKA et tyrosine kinases. Pour ce faire, nous avons utilisé des inhibiteurs de kinases pour contrer la diminution. La figure 11 montre les effets de ces inhibiteurs en combinaison avec le 2-CADO. La calphostine C et le H7 sont des inhibiteurs de la PKC; seuls, ils ne modulent pas l'ARNm du hPAF-R. Cependant en combinaison avec le 2-CADO (100 μM), il semble bloquer partiellement l'effet de baisse du 2-CADO. Le H89 et le RPC-AMPs sont des inhibiteurs de la PKA; les résultats suggèrent qu'ils n'ont pas d'effets bloqueurs de la baisse causée par le 2-CADO. La génistéine est un inhibiteur des tyrosine kinases; seule elle ne change pas l'expression de l'ARNm du hPAF-R, par contre, en combinaison avec le 2-CADO, elle bloque partiellement mais significativement l'effet de baisse.
Figure 11: **Effets des inhibiteurs de kinases sur la diminution de l'ARNm du hPAF-R par le 2-CADO 100 μM.**

Les neutrophiles ont été prétraités 30 minutes avec l'inhibiteur calphostine C ou H7 ou H89 ou RP-cAMPS ou génistéine avant l'ajout du 2-CADO 100 μM. L'incubation s'est poursuivie pendant 3 hrs. Après, les cellules ont été lysées, l'ARN extrait et analysé par buvardage Northern. Les résultats sont tirés d'une expérience représentative répétée trois fois. * p < 0.05
3.3 ÉTUDE DES EFFETS DES COMPOSANTS DU MÉTABOLISME DE L'ADÉNOSINE SUR L'EXPRESSION DU hPAF-R

En parallèle, nous avons voulu vérifier si l'adénosine endogène produite par nos cellules pouvait être impliquée dans la modulation de l'expression du hPAF-R. Pour ce faire, nous avons utilisé l'enzyme adénosine déaminase (ADA) qui dégrade l'adénosine en son analogue inactif l'inosine. Premièrement, nous avons vérifié la réponse à l'ADA. La figure 12 montre que le traitement des neutrophiles par l'ADA (2 U/ml) pendant 3 h ne cause aucun effet sur la modulation de l'ARNm du hPAF-R. Pour les expériences suivantes nous avons utilisé 2 U/ml d'ADA, comme dans la plupart des études publiées.

Lors de nos études avec les antagonistes des récepteurs de l'adénosine nous avons utilisé la pentoxifylline (PTX), un antagoniste peu sélectif. Nous avons remarqué une diminution significative (40%) de l'ARNm du hPAF-R causée par la PTX. La PTX, en plus d'être antagoniste, est un inhibiteur des phosphodiésterases (PDEs), nous avons supposé que cette xanthine médiait ses effets par son action inhibitrice des PDEs qui dégradent l'AMPc en AMP. La combinaison des deux, soit de l'ADA et de la PTX, résulte en un renversement par l'ADA de l'effet de baisse causé par la PTX (figure 12). Il apparaît donc que l'adénosine est impliquée dans la modulation à la baisse par la PTX puisque sa dégradation empêche cette diminution. Pour pousser ces études plus loin et confirmer que ces effets étaient dus à une inhibition des PDEs, nous avons utilisé l'inhibiteur spécifique d'AMPc-PDEs non-xanthine, le RO 20-1724. La figure 13 montre un effet dépendant de la
Figure 12: Effet de l'adénosine déaminase (ADA) et de la pentoxifylline (PTX) sur l'ARNm du hPAF-R.

Les neutrophiles ont été prétraités cinq minutes avec l'ADA (2 U/ml) avant l'ajout du milieu ou de la pentoxifylline (PTX) 100 μM. L'incubation s'est poursuivie pendant 3 hrs. Après, les cellules ont été lysées, l'ARN total extrait et analysé par buvardage Northern. Les résultats sont tirés d'une expérience représentative répétée trois fois. * p < 0.05
Figure 13: **Effet dépendant de la concentration du RO 20-1724 sur la diminution d'ARNm du hPAF-R et le rétablissement par l'ADA 2 U/ml.**

Les neutrophiles ont été incubés en présence ou non d'ADA 2 U/ml pendant 5 min. Ensuite, des concentrations de 10^{-8} à 10^{-4} M de RO 20-1724 ont été ajouté. Après 3 hrs, les cellules ont été lysées et l'ARN a été extrait. Le buvardage Northern et l'analyse densitométrique correspondante sont illustrés. Les résultats sont tirés d'une expérience représentative répétée trois fois. * p < 0.05.
concentration du RO 20-1724 (10^{-8} à 10^{-4} M) sur la diminution de l'ARNm du hPAF-R et son renversement à toutes ces concentrations par l'ADA (2 U/ml). On note une diminution significative de 70% du niveau basal de l'ARNm du hPAF-R à 100 µM de RO 20-1724.

Ensuite, nous avons voulu vérifier la cinétique de régulation à la baisse du niveau d'ARNm du hPAF-R par le RO 20-1724. Les neutrophiles ont été traités pendant différents temps en absence ou en présence de RO 20-1724 100 µM, puis l'ARN a été extrait. Ces études ont révélé que l'effet du RO 20-1724 est rapide, débutant dès une heure après le traitement (figure 14). L'activité maximale est observée à 3 h et est maintenue par la suite, jusqu'à 24 h. Encore ici, tout comme à la figure 5, la courbe témoin augmente dans les premières heures, un effet probablement dû à l'auto-activation des neutrophiles lors de l'isolement.

Nous avons voulu ensuite vérifier si le renversement par l'ADA de l'effet de baisse causé par le RO 20-1724 100 µM se passait à un moment précis durant l'incubation. Pour ce faire, nous avons ajouté l'ADA (2 U/ml) à divers temps pendant les 3 heures d'incubation du RO 20-1724 100 µM. La figure 15 illustre les résultats obtenus. On peut remarquer que l'effet de baisse est contré jusqu'à 90 minutes. Après 90 minutes, l'effet de baisse du RO 20-1724 est devenu irréversible par l'ADA. Il semble que l'adénosine impliquée dans la baisse de l'ARNm du hPAF-R médié par le RO 20-1724 100 µM soit nécessaire de façon précoce car sa dégradation après 1 hrs 30 d'incubation ne renverse plus la diminution.
Figure 14: Cinétique de la diminution de l'ARNm du hPAF-R induite par le RO 20-1724 100 µM.

Les neutrophiles ont été traités en présence ou non de RO 20-1724 100 µM pour différentes périodes de temps, puis lysés. L'ARN total a été extrait et préparé pour l'analyse Northern. La figure illustre l'analyse densitométrique de n=3.
Figure 15: Cinétique de l'adénosine déaminase (2 U/ml) pour sa réversibilité de l'effet de baisse du RO 20-1724 100 μM.

Les neutrophiles ont été traités en absence ou en présence de RO 20-1724 100 μM. À différents temps durant le 3 hrs d'incubation avec le RO 20-1724, l'adénosine déaminase (ADA) a été ajoutée, puis les cellules ont été lysées. L'ARN a été extrait et préparé pour l'analyse Northern. La figure illustre l'analyse densitométrique de n=3. * p < 0.05.
La diminution d'ARNm du hPAF-R induite par le RO 20-1724 peut être causée par une diminution de la stabilité de l'ARNm du hPAF-R, une diminution de la transcription du gène ou encore par les deux. Afin de discriminer entre ces possibilités, nous avons évalué la demi-vie de l'ARNm du hPAF-R pour les cellules témoins et traitées au RO 20-1724. Les neutrophiles ont été incubés en présence ou non de RO 20-1724 100 μM pendant 3 hrs, puis l'actinomycine D a été ajoutée. L'ARN total a été extrait par la suite à différents temps. Comme l'indique le résultat à la figure 16, la demi-vie de l'ARNm du hPAF-R calculée pour les cellules témoins est 164 minutes et celle obtenue pour les cellules traitées au RO 20-1724 est de 120 minutes. Ces résultats suggèrent que la diminution de l'ARNm du hPAF-R causée par le RO 20-1724 est due au moins en partie, à une déstabilisation de l'ARNm, mais ceci n'exclut pas une diminution de la transcription du gène.

3.4 ÉTUDE DE L'EXPRESSION DU RÉCEPTEUR D'ADÉNOSINE A3 DANS LES NEUTROPHILES HUMAINS

Les inhibiteurs des kinases nous ont révélé que plusieurs effecteurs pouvaient être impliqués dans la diminution d'expression du hPAF-R. Nos résultats suggèrent que la PKC semble impliquée dans l'effet de baisse du 2-CADO et que les tyrosine kinases sont impliquées partiellement dans la diminution causée par le 2-CADO. Ces effecteurs PKC et tyrosine kinases suggèrent une voie de signalisation similaire à A1/A3. Similairement à A2,
Figure 16: Évaluation de la demi-vie de l'ARNm du hPAF-R dans les neutrophiles témoins et traités au RO 20-1724 100 µM.

Les neutrophiles ont été incubés avec le milieu seul ou le RO 20-1724 100 µM pendant 3 hrs. La synthèse de l'ARN a alors été arrêtée par l'ajout d'actinomycine D (8 µg/ml). Les cellules ont été lysées aux temps indiqués, l'ARN a été extrait et préparé pour l'analyse Northern. Le calcul de la demi-vie donne 158 versus 102 minutes pour les cellules témoins et les traitées au RO 20-1724 respectivement. La figure illustre l'analyse densitométrique de n=3.
on suggère que A3 médie des actions anti-inflammatoires mais l'expression du A3 dans les neutrophiles humains n'a pas été démontrée. Par conséquent, nous avons vérifié l'expression génique du récepteur sous-type A3 dans les neutrophiles humains. Les résultats obtenus en figure 17, démontrent la présence de l'ARNm du sous-type A3 dans les neutrophiles humains. Le récepteur A3 ne comporte pas d'introns dans le gène ce qui fait qu'on peut obtenir un produit de même longueur si on ne traite pas à la DNAse. Les pistes 3 et 4 représentent les produits de RT-PCR obtenus de l'ARN des cellules HL-60 qui servent de témoins positifs comme décrit par Kohno et al. (1996). La piste 3 sans transcriptase inverse (RT) nous montre aucun produit de RT-PCR comme attendu et la piste 4 (avec RT) nous montre un produit de 361 pb concordant avec la séquence du récepteur d'adénosine A3 humain attendue. Les pistes 1 (sans RT) et 2 (avec RT) révèlent les produits de RT-PCR obtenus de l'ARN des neutrophiles confirmant la présence de l'ARNm du A3. Le témoin où l'eau remplace l'ADN en piste 5, nous indique qu'il n'y a pas de contamination extérieure dans notre expérience et la piste 6 (l'ADN de Raji) nous montre une légère bande indiquant que le traitement à la DNAse n'a pas complètement fonctionné comme en piste 1 avec les neutrophiles sans RT. Cependant, la bande est moins importante que celle du témoin.
Légende des pistes:

1 ARN de neutrophiles sans RT
2 ARN de neutrophiles avec RT
3 ARN de cellules HL-60 sans RT
4 ARN de cellules HL-60 avec RT
5 Témoin avec de l’eau (H2O)
6 Témoin avec de l’ADN de Raji

Figure 17: RT-PCR dans les neutrophiles et les cellules HL-60 pour détecter le récepteur sous-type A3 des récepteurs d’adénosine.

Produits de RT-PCR obtenus des neutrophiles (pistes 1 et 2) et des HL-60 (pistes 3 et 4) séparés sur un gel d’agarose 1%. Le produit de PCR en piste 2, 4 et 6 est long de 361 pb (situé entre les marqueurs de poids moléculaire 404 et 322 pb). Les pistes 1 et 3 sont des témoins sans la transcriptase inverse, en piste 5 l’eau remplace l’ADN et en piste 6 l’ADN de Raji.
4. DISCUSSION

L'adénosine exerce une variété d'effets biologiques sur de nombreux types cellulaires mais est fréquemment associée à des effets immunosupresseurs et anti-inflammatoires dans les leucocytes. Il existe quatre sous-types de récepteurs d'adénosine distincts, A1, A2a, A2b et A3 méditant les effets de ce nucléoside. L'adénosine peut inhiber la production de TNF-α, IL-6 et IL-8 dans les monocytes humains prétraités au LPS (Bouma et al., 1994). L'adénosine peut diminuer plusieurs fonctions des neutrophiles comme la phagocytose, l'adhésion, le chimiotactisme, la relâche d'enzymes lysosomales et de radicaux oxygénés. De plus, l'adénosine endogène diminue la biosynthèse du médiateur inflammatoire LTB4 dans les neutrophiles activés (Krump et al., 1997). Au niveau de ses influences sur l'expression de récepteurs, Walker et al. (1989) ont montré une diminution des récepteurs pour le FMLP, le CR3 et les complexes immuns à la surface cellulaire des neutrophiles. Les résultats présentés dans cette étude nous permettent d'ajouter la diminution d'expression du hPAF-R de façon dépendante de la concentration du 2-chloroadénosine (2-CADO), un analogue de l'adénosine dans les neutrophiles humains.

L'étude de la cinétique d'accumulation d'ARNm du hPAF-R par le 2-CADO nous a dévoilé que l'effet du 2-CADO est rapide, commençant après seulement 2 heures de stimulation. Les résultats obtenus avec l'inhibiteur de la transcription, l'actinomycine-D, nous permettent de conclure que cette diminution n'est pas due à une déstabilisation de
l'ARNm du hPAF-R. On peut suggérer que cette baisse est due à une diminution de la transcription du gène hPAF-R. La modulation à la baisse de l'expression du hPAF-R par l'AMPc et la PMA a déjà été rapportée (Thivierge et al., 1993; 1997). Ce qui confirme que le gène du hPAF-R est un récepteur qui peut être modulé.

Nous avons démontré que l'inhibition de la teneur d'ARNm du hPAF-R causée par le 2-CADO atteint son niveau maximal à 3 heures de stimulation, et demeure stable par la suite, jusqu'à 24 heures. Cette expression diminuée d'ARNm à plus long terme pourrait être due, au moins en partie, à un effet secondaire-indirect du 2-CADO sur l'ARNm du hPAF-R. En effet, le 2-CADO peut inhiber l'expression de cytokines, telles que l'IL-6, IL-8, et TNFα (Bouma et al., 1994) ou activer l'expression d'IL-10 (LeMoine et al., 1996) (cytokine souvent associée à des effets anti-inflammatoires), qui pourraient également moduler à la baisse le messager du hPAF-R, s'ajoutant à l'effet direct du 2-CADO.

L'étude de l'effet des agonistes et antagonistes sélectifs des récepteurs d'adénosine ne nous permet pas de distinguer par quel sous-type des récepteurs, l'effet produit par le 2-CADO serait médiaé. En fait, l'utilisation d'agoniste A1 et A2a ne module pas à la baisse l'ARNm du hPAF-R. Cependant, le NECA, agoniste A2b, à la concentration de 1 μM produit une baisse de 40 % de l'ARNm du hPAF-R. Cette baisse est moindre que celle médie par le 2-CADO mais peut peut-être impliquer la participation partielle de l'activation du A2b dans la diminution du hPAF-R. De plus, l'étude des antagonistes démontre aussi la possibilité de blocage du 2-CADO ce qui suggère l'implication partielle des récepteurs d'adénosine dans la diminution du hPAF-R causée par le 2-CADO.
Cependant, il semble que les récepteurs de l'adénosine A1 ou A2 ne médient pas complètement l'effet du 2-CADO ce qui peut impliquer le récepteur A3. L'implication de ce sous-type reste à démontrer. Au début de ce projet, il n'était pas connu si le récepteur A3 était exprimé dans les neutrophiles. L'analyse RT-PCR nous démontre la présence de A3 dans les neutrophiles humains. Ceci fut récemment confirmé et publié par le groupe de Bouma et al. (1997). Cependant, la diminution du hPAF-R par le 2-CADO serait bloquée par l'antagoniste 8-phénylthéophylline si le A3 est impliqué et l'adénosine elle-même médierait les même effets que le 2-CADO par A3. Donc, on peut supposer l'activation d'un nouveau récepteur d'adénosine ou d'un récepteur spécifique au 2-CADO. La possibilité de ce dernier a déjà été proposée par Williams et al. (1997) dans les cellules NK (natural killer) de souris, pour supporter leurs résultats non-concordants avec la classification actuelle.

La régulation de l'expression du hPAF-R à la surface des cellules a été étudiée à l'aide d'un anticorps polyclonal anti-PAF-R (Müller et al., 1993). Les analyses de cytofluorométrie nous ont révélé que l'inhibition d'ARNm du hPAF-R causée par le 2-CADO s'accompagne d'une régulation à la baisse de l'expression du hPAF-R à la surface des cellules. Cette diminution est évidente après 24 heures de stimulation et baisse jusqu'à 48 heures. De plus, nous avons démontré que ces récepteurs sont fonctionnels puisque le prétraitement au 2-CADO est associé à une diminution de la réponse biologique au PAF en terme de variations de [Ca^{2+}]_{i}. En regard de ces aspects fonctionnels, il faut noter que le 2-CADO peut affecter non seulement l'expression de récepteurs mais également des éléments de la cascade de transduction du signal. Les récepteurs du FMLP et/ou des
éléments de transduction de son signal étaient probablement affectés également dans notre système, ce qui expliquerait les diminutions des niveaux de [Ca2+]i obtenus suite à la stimulation avec le FMLP 10^{-8} M sur les neutrophiles prétraités avec le 2-CADO (résultats non montrés). La diminution du FMLP-R par l'adénosine a déjà été démontrée par le groupe du Walker en 1989. Cependant, la réponse au LTB4 reste la même pour les cellules traitées ou non au 2-CADO.

L'utilisation des inhibiteurs de kinases apporte une précision sur les effecteurs pouvant participer à l'effet de baisse du 2-CADO sur le hPAF-R. Les résultats démontrent que seulement la génistéine, inhibiteur des tyrosines kinases, bloque significativement l'effet de baisse du 2-CADO. La PKA n'est pas impliquée dans cette baisse puisque les inhibiteurs ne montrent pas d'effets. Par contre, la PKC semble impliquée mais de façon partielle et non significative. En somme, les effecteurs tyrosine kinase et PKC participent, en partie, à la diminution du hPAF-R par le 2-CADO.

Par ailleurs, les études avec la pentoxifylline et le RO 20-1724, des inhibiteurs de phosphodiésterases (PDEs) démontrent une modulation à la baisse du hPAF-R. Il est possible que l'augmentation d'AMPc intracellulaire induite par ces agents cause une diminution de l'expression du hPAF-R comme ce fut démontré dans les monocytes (Thivierge et al., 1993). Par contre, nous avons observé que la dégradation de l'adénosine par l'ADA renverse cette baisse. Ceci impliquerait que l'adénosine participe à la diminution du hPAF-R médiane par ces inhibiteurs de PDEs. Celle-ci serait essentielle pendant les 90 premières minutes d'incubation car après cette période, la baisse est irréversible.
L'évaluation de la demi-vie de l'ARNm du hPAF-R démontre que la diminution causée par le RO 20-1724 100 μM est en partie due à une désstabilisation de l'ARNm.

L'importance de cette régulation à la baisse du hPAF-R dans les neutrophiles peut être examinée dans le cadre de l'inflammation (figure 18). Les neutrophiles sont considérés comme étant au centre de la réaction inflammatoire. Il ne fait aucun doute que l'adénosine, en tant que principal inhibiteur de ces cellules, joue également un rôle important dans l'inflammation. Le PAF possède aussi plusieurs activités pro-inflammatoires importantes.

Figure 18: Modèle d'atténuation de la réponse inflammatoire en présence de 2-CADO et du hPAF-R.
Dans les neutrophiles, le PAF augmente la cytotoxicité, l'agréagation, la chimiotaxie, et la production d'IL-1 et de TNF-α (Braquet et Rola-Pleszczynski, 1987). Ces cytokines sont fortement impliquées dans les phénomènes inflammatoires. Les résultats présentés dans cette étude suggèrent que le 2-CADO peut induire les neutrophiles humains à diminuer leurs réponses au PAF, en régulant à la baisse l'expression de son récepteur (figure 18). Une telle interaction (2-CADO/PAF) pourrait jouer un rôle majeur dans le processus inflammatoire, ainsi que dans des situations pathologiques où ces deux médiateurs seraient impliqués, telles que l'asthme, les allergies et l'arthrite rhumatoïde. Étant donné que l'adénosine agit sur tous ses récepteurs, le 2-CADO, même s'il n'est pas le médiateur naturel, pourrait être utilisé comme un médicament potentiel contre ces pathologies.

Comme nous l'avons vu précédemment, l'adénosine est obtenue du catabolisme de l'ATP nécessaire lors d'une demande d'énergie en situation de stress ou de réponse inflammatoire. Cette adénosine via ces récepteurs respectifs stimule ou inhibe l'induction d'une série d'événements et de gènes qui font partie de la réponse primaire. Les résultats présentés ici pour le hPAF-R suggèrent fortement qu'il fait partie de cette série de gènes de la réponse primaire à l'adénosine.

L'adénosine relâchée au site d'inflammation fournit l'énergie nécessaire à la réponse. Les neutrophiles procurent une première ligne de défense contre les infections microbiennes, mais ils sont aussi impliqués dans les réactions menant aux dommages cellulaires et tissulaires. Par la sécrétion de plusieurs sortes de cytokines, les neutrophiles
ne sont pas seulement actifs et éléments centraux de la réponse inflammatoire mais ils influencent significativement la direction et l'évolution du processus immun (Cassatella, 1995). L'adénosine est reconnue comme un important modulateur de la fonction des neutrophiles particulièrement de la production de superoxydes, de l'adhérence et de la cytotoxicité à l'endothélium vasculaire. Donc, elle peut avoir des effets immuno-protecteurs contre les dommages tissulaires médiés par les neutrophiles. À date, quatre différents récepteurs de l'adénosine ont été identifiés qui médient les effets de l'adénosine dans différentes cellules (A1, A2a, A2b et A3). Notre travail suggère que les récepteurs A1 et A2a peuvent contribuer à l'inflammation en augmentant l'expression du hPAF-R alors que le récepteur A2b et possiblement le récepteur A3 (ou un autre récepteur pour le 2-CADO) soit plutôt anti-inflammatoire.
5. CONCLUSION

Ce travail nous a permis de connaître un peu mieux les mécanisme de régulation du hPAF-R, récepteur d'un important médiateur inflammatoire dans les neutrophiles. On sait que le hPAF-R peut être modulé par différentes cytokines et facteurs de croissance. Nous avons démontré que le 2-CADO cause une diminution de l'expression du gène du hPAF-R chez les neutrophiles humains. Le 2-CADO cause une diminution rapide d'ARNm du hPAF-R de même qu'il diminue le nombre de hPAF-R à la surface des neutrophiles. Ceci est accompagné par une diminution de la réponse biologique au PAF chez les cellules prétraitées avec le 2-CADO. La diminution de l'ARNm du hPAF-R induite par le 2-CADO n’est pas attributable à une déstabilisation de l’ARN suggérant qu’elle implique une régulation transcriptionnelle. Cette dernière pourrait dépendre de facteurs transcriptionnels sujets à l’action des tyrosines kinases.

Nos résultats ont également démontré que l'adénosine est impliquée dans la modulation à la baisse de l'ARNm du hPAF-R causée par les inhibiteurs de phosphodiésterases puisque sa dégradation par l'adénosine déaminase renverse cette diminution. L'adénosine agit à un moment précoce car après 90 minutes sa dégradation n'a plus d'effet.
Ces résultats apportent de nouvelles connaissances au niveau des relations entre l'adénosine et le médiateur lipidique PAF. Ils nous suggèrent un rôle important joué par certains récepteurs de l'adénosine dans la réponse immune, puisque les neutrophiles, traités par le 2-CADO, répondent de façon diminuée au PAF. Ceci pourrait être pertinent et offrir une approche thérapeutique dans les situations pathologiques, telles que l'asthme, les allergies et l'arthrite rhumatoïde.
6. REMERCIEMENTS

Je tiens à remercier sincèrement mon directeur de recherche, le Dr Marek Rola-Pleszczynski, pour avoir augmenté le contenu de ce mémoire par ses interactions, idées et connaissances. Plus particulièrement, je le remercie pour avoir eu confiance en mes capacités dès le début, et ainsi m'avoir permis de travailler sur ce projet, qui m'a passionné pendant ces deux années.

Je remercie également la Dre Jana Stankova, directrice du programme d'Immunologie. De par son expertise et ses précieux conseils ont participé grandement au succès de ce projet.

De même, je remercie Maryse Thivierge pour sa précieuse aide, sans elle ce projet n'aurait pas commencé. Ainsi que, Sylvie Turcotte, Denis Gingras, Denise Fecchio, Annie Larouche, Suzanne Bédard, François Blanchette, Marie-Hélène Laprise, Francine Grondin, Christian Le Gouill, Pierre Dagenais, Jean-Luc Parent qui ont tous participé à ce projet de près ou de loin en m'accordant leur aide et support lorsque la tempête faisait rage. Je me dois de souligner la contribution de madame Carole Jacques, secrétaire du Service d'Immunologie, toujours souriante et disponible pour rendre service et nous faciliter des fardeaux administratifs. Finalement, un merci spécial, à tous ceux et celles du groupe d'immunologie pour leur entraîn, sociabilité et leurs partys qui m'ont permis de faire sortir la vapeur de temps en temps.

MERCI !!!
7. RÉFÉRENCES

acts as an endogenous modulator of IL-2 dependent proliferation of cytotoxic T

BENVENISTE, J., HENSON, P.M. et COCHRANE, C.G. (1972) Leukocyte-dependent
histamine release from rabbit platelets: the role of IgE, basophils, and platelet-

BENVENISTE, J., TENCE, M., VARENNE, P., BIDAULT, J., BOULLET, C. et
POLONSKY, J. (1979) Semi-synthesis and proposed structure of platelet-
activating factor (PAF): PAF-acether, an alkyl ether analogue of

BERNE, R.M. (1963) Cardiac nucleotides in hypoxia: a possible role in regulation of

Antihypertensive activity of an alkyl ether analogue of phosphatidylcholine.

BURNSTOCK, G. (1978) A basis for distinguishing two types of purinergic receptors. In:
Bolis L, Straub R, eds. Cell membrane receptors for drugs and hormones: a

BUSSOLINO, F., SOLDI, R., ARESE, M., JARANOWSKA, A., SOGOS, V. et

CHAGOYA de SANCHEZ, V. (1995) Circadian variations of adenosine and of its
metabolism. Could adenosine be a molecular oscillator for circadian rhythms?

CHAO, W., LIU, H., ZHOU, W., HANAHAN, D.J. et OLSON, M.S. (1990) Regulation
of platelet-activating factor receptor and platelet-activating factor receptor-

Modulation de l'explosion oxydative des polynucléaires neutrophiles humains par
les cytokines pro- et anti-inflammatoires. Path. Biol. 44 No1: 36-41.

indicators with greatly improved fluorescence properties. J. Biol. Chem. 260:
3440-3450.

GUSTAFSSON, L.E., WIKLUND, C.U. WIKLUND, N.P. et STELIUS, L. (1990) Sub-
classification of neuronaladenosine receptors. In Purines in cellular signalling:
target for new drugs (JACOBSON K.A., DALY J.W. et MANGANIELLO V.,
eds) Springer-Verlag, New York: 200-205.

Identification of platelet-activating factor isolated from rabbit basophils as acetyl

2676.

LINDEN, J., TAYLOR, H.E., ROBEVA, A.S., TUCKER, A.L., STEHLE, J.H.,
functional expression of a sheep A3 adenosine receptor with widespread tissue

LORENZEN, A., GROBEKATTHÖFER, B., KERST, B., VOGT, H., FEIN, T. et
sensitive to cyclic AMP in rat brain cytosolic and particulate fractions. Biochem.
Pharmacol. 52: 1375-1385.

MAENHAUT, C., VAN SANDE, J., LIBERT, F., ABRAMOWICZ, M., PARMENTIER,
M., VANDERHAEGEN, J-J., DUMONT, J.E., VASSART, G. et
SCHIFFMANN, S. (1990) RDC8 codes for an adenosine A2 receptor with

TINTON, S. et BUC-CALDERON, P. (1995) Inhibition of protein synthesis induced by
adenine nucleotides requires their metabolism into adenosine. Biochem. Pharmacol.
50: 481-488.

Differential synthesis of 1-acyl-2-acetyl-sn-glycero-3-phosphocholine and platelet-

WALKER, B.A.M., CUNNINGHAM, T.W., FREYER, D.R., TODD III, R.F.,
JOHNSON, K.J. et WARD, P.A. (1989) Regulation of superoxide responses of
human neutrophils by adenine compounds. Lab. Invest. 61: 515-521.

Adenosine A2a receptor activation delays apoptosis in human neutrophils. J.

WATSON, R.W.G., ROSTEIN, O.D., NATHENS, A.B., PARODO, J. et MARSHALL
J.C. (1997) Neutrophil apoptosis is modulated by endothelial transmigration and

granule exocytosis from mouse natural killer cells: evidence for signal transduction

