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Abstract

The objective of this research is to explore the information content of repeat-pass cross-track

Interferornetric SAR (InSAR) with regard to snow, in particular Snow Water Equivalent

(SWE) and snow depth. The study is an outgrowth of earher snow cover modeling and radar

interferometry experiments at Schefferville, Quebec, Canada and elsewhere which has shown

that for reasons of loss of coherence repeat-pass InSAR is not useful for the purpose of snow

cover mapping, even when used in differential InSAR mode. Repeat-pass cross-track InSAR

would overcome this problem.

As at radar wavelengths dry snow is transparent, the main reftection is at the snow/ground

interface. The high refractive index of ice creates a phase delay which is linearly reÏated to the

water equivalent of the snow pack. When wet, the snow surface is the main reflector, aid this

enables measurement of snow depth. Algorithms are elaborated accordingly.

Field experiments were conducted at two sites and employ two different types of digital

elevation models (DEM) produced by means of cross track InSAR. One was from the Shuttie

Radar Topography Mission digital elevation model (SRTM DEM), ftown in February 2000. It

was cornpared to the photogrammetrically produced Canadian Digital Elevation Model

(CDEM) to examine snow-related effects at a site near Schefferville, where snow conditions

are well known from haif a century of snow and permafrost research. The second type of

DEM was produced by means of airborne cross track InSAR (TOPSAR). Several missions

were flown for this purpose in both summer and winter conditions during NA$A’s CoÏd Land

Processes Experiment (CLPX) in Colorado, USA. Differences between these DEM’s were

compared to snow conditions that were well documented during the CLPX field carnpaigns.

The resuits are not straightforward. As a resuit of automated correction routines employed in

both SRTM and ALRSAR DEM extraction, the snow cover signal is contaminated. Fitting

InSAR DEM’s to known topography distorts the snow information, just as the snow cover

distorts the topographic information. The analysis is therefore rnostly qualitative, focusing on

particular terrain situations.

At ScheffervilÏe, where the SRTM was adjusted to Iuown lake levels, the expected dry-snow

signal is seen near such lakes. Mine pits and waste dumps flot included in the CDEM are

depicted and there is also a strong signal related to the spatial variations in SVŒ produced by

wind redistribution of snow near lakes and on the alpine tundra.

In Colorado, cross-sections across ploughed roads support the hypothesis that in dry snow the

SWE is measurable by differential InSAR. They also support the hypothesis that snow depth

may be measured when the snow cover is wet. Difference maps were also extracted for a 1

km2 Intensive Study Area (ISA) for which intensive ground truth was available. Initial

comparison between estimated and observed snow properties yielded low coneÏations which

improved after stratification ofthe data set.

In conclusion, the study shows that snow-related signals are measurable. For operational

applications satellite-borne cross-track InSAR would be necessary. The processing needs to be

snow-specific with appropriate filtering routines to account for influences by terrain factors

other than snow.

Key words: Interferometry, InSAR, Snow Water Equivalent, SWE, Snow depth, Dry Snow,

Wet Snow, AIRSAR, CLPX, SRTM, Schefferville.



Résumé

L’objectif de cette recherche consiste à explorer le contenu en information de l’interférornétrie

radar (InSAR) à passage multiple avec deux antennes, lié à la neige, en particulier l’équivalent

en eau et sa profondeur. L’étude fait suite aux expériences de modélisation de couvert nival et

d’interférométrie radar à Schefferville, Québec, Canada et d’autre endroit. Ces dernières

montrent qu’à cause de perte de cohérence, l’interférométrie à passage multiple n’est pas

convenable pour la détection de la neige, même dans le mode de InSAR Différentielle. InSAR

à passage multiple avec deux antennes devrait résoudre le problème.

Puisque la neige sèche est transparente pour le radar, la rétrodiffusion principale se produit à

l’interface de neige/sol. Le haut indice de réfraction de la glace génère un déphasage qui est

une approximation à l’équivalent en eau du couvert neigeux. Quand la neige est humide, sa

surface est le réflecteur principal et ceci permet la mesure de profondeur de la neige. En

conséquence, des algorithmes sont développés.

Les travaux expérimentaux ont été appliqués pour deux sites en utilisant deux types de modèle

numérique d’altitude (MNA) générés par InSAR avec deux antennes. Le premier venait de

données du Shuttie Radar Topography Mission (SRTM) qui a fait le tour de Globe en février

2000. Ceci a été comparé avec le MNA canadien généré en moyen photogrammétrie pour

examiner les effets de la neige sur le radar dans un site près de Schefferville, où les conditions

de neige est bien connus d’un demie centenaire de recherche sur la neige et pergélisol. Le

deuxième type de MNA a été généré en utilisant les données InSAR aéroportées avec deux

antennes (TOPSAR). Pour cette fin, plusieurs missions ont été planifiées en été et en hiver

dans le cadre de projet Cold Land Processes Experiment (CLPX) au Colorado (ÉU). Les

différences entre ces MNA ont été comparées avec les conditions de la neige qui ont été bien

documentées pendant la campagne du terrain de projet CLPX.

Les résultats n’ont pas permis de valider la méthode de manière définitive. En raison des

routines de corrections automatisées utilisées dans l’extraction de DEM des données SRTM et

ATRSAR, le signal lié à la neige est bruité. L’ajustement de DEM d’InSAR à la topographie

connue affecte l’information de neige, de la même manière que la neige affecte l’information

topographique. L’analyse est donc qualitative, se concentrant sur des situations particulières de

terrain.

À Schefferville, où les MNA de SRTM ont été ajustés sur les niveaux connus des lacs, le

signal prévu de la neige sèche est observé près de tels lacs. Des puits de mine et les décharges

de rebut qui ne sont pas inclus dans le DEM Canadien sont détectés et il y a également un

signal fort lié aux variations spatiales de l’équivalent en eau produit par la redistribution de la

neige par le vent sur la toundra.

Au Colorado, les profils transversaux des routes déneigées soutiennent l’hypothèse que

l’équivalent en eau pour la neige sèche est mesurable par InSAR différentiel. Elles soutiennent

également l’hypothèse que la profondeur de neige peut être mesurée quand la neige est

humide. Des cartes de différence ont été également extraites pour un site d’étude I km2

(Intensive Study Area - ISA) pour lequel la vérité du terrain était disponible de façon très



détaillée. La première comparaison directe entre les propriétés de neige mesurée et estimée a

rapporté de faibles corrélations qui ont été améliorés après la stratification des données.

En conclusion, l’étude prouve que les signaux liés à la neige sont mesurables. Pour des

applications opérationnelles l’approche de l’interférométrie radar avec deux antennes par

moyen satellitaire est nécessaire. Le traitement doit être conçu pour la neige avec des routines

de filtrage appropriées pour expliquer des influences par des facteurs de terrain autres que la

neige.

Mots clefs Interférométrie, kSAR, Équivalent en eau, Profondeur de neige, Neige sèche,

Neige humide, AIRSAR, CLPX
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1 INTRODUCTION

1.1 Background to the study

Snow cover plays a significant foie in the energy and water budgets of the Earth on a variety

of spatial and temporal scales. The storage of large arnounts of fresh water in seasonal snow

covers is a critical element of the Earth’s hydrologie cycle. The Snow Water Equivalent

(SWE) determines how rnuch liquid water per unit area will result in case where the snow

cover is cornpletely melted and it is, therefore, an important quantity in snow-meh ninoff

prediction for hydro-power and agricultural purposes.

Seasonai snow covers through their influence on land surface albedo, radiation balance and

boundary layer stability, have profound effects on weather patterns over large areas.

On average, over 60% of the northem hemisphere land surface and over 30% of the Earth’s

land surface has seasonal snow (Robinson, et al., 1993). In many mountainous regions,

snowfall is a substantial part ofthe overail precipitation (Serreze et al., 2000), and snowrnelt is

a major source of the total amiuaÏ stream ftow. While water from snow meit can be a vitally

important natural resource, it can also become an environrnental hazard when rapid melting of

a snow pack produces ftooding.
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The properties ofthe slow cover are ofinterest on a local scale. At Schefferville (55°N, 67°W)

the close corTelation between local snow depth variations and the distribution of permafrost

(Annersten, 1966) sparked intensive research on the spatial variations in snow accumulation

(Thom, 1969; Thom and Granberg, 1970) which led to the development of methods to rnap

snow depth using air photo sequences ftown during spring meÏt (Granberg, 1972; 1973;

NichoÏson, 1975). It also lcd to the development of an early Geographic Information System

(GIS) technique to reconstruct past snow covers for mines already under excavation

(Granberg, 1972; 1973). The vast spatial database on snow cover characteristics thus

generated together with Ïong-term snow cover monitoring by students and staff of the McGiIl

Sub-Arctic Research Station for hydrologic and other purposes (Adams et cil., 1996; Nicholson

and Thom, 1973; Nicholson and Granberg, 1973) made Schefferville the logical choice as

principal field site for snow cover modeling experirnents sponsored by the Department of

National Defence. As part ofthese studies the Schefferville Digital Transect was established in

an area NW of Schefferville (Granberg and Irwin, 1991). The modeling research further lcd to

exploration of radar as tool for terrain mapping (Granberg, 1994; Granberg et al., 1994) and

snow model validation which brought exploratory experiments by Vachon et aï. (1995) to the

SDT. h these experiments ERS-1 in 3-day orbit over the SDT provided parent images for

repeat-pass interferornetric processing over varying time intervals extensib]e from December

25, 1993 to March 28, 1994. figure 1 shows examples of coherence images from this data set.

The InSAR data created from images with three-day intervaïs showed that for the exposed

rock and alpine tundra, the scene coherence is always high but for other surface cover types,

the coherence is more variable. In the two first images (left) snow fail between the two

satellite overpasses created a loss of coherence while in the right one there was no snow fali

between the overpasses.

Subsequent analyses (Fisette, 1999) demonstrated the existence of a strong, snow-related

topographic signal, but it also demonstrated that repeat-pass InSAR is not suited for SWE

mapping. For such mapping, cross-track interferometry is required. Other research (Côté,

1998) demonstrated that interferometric coherence is a useful and unique tool to study lake ice

forming processes, in particular internai ftooding ofthe snow cover on lakes.
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Using a different data source (RADARSAT-1), Granberg and Vachon (1998) dernonstrated

that die spatial distribution of discoutinuous permafrost can be rnapped with good accuracy

using InSAR coherence.

(c)

figure 1: Three examples ofcoherence images ofrepeat-pass interferometry with 3 days

interval, caÏcuÏated from ERS-1 parent images, (a) January 9 and 12, (b) January 12 and 15,

(c) February 14 and 17 (Images provided by Vachon et ctl., 1995)

Over the 24-day orbit interval of RADARSAT-1 snow accumulation may cause loss of

coherence, except in areas where wind continually sweeps away the snow that fails. As

previous researci has shown, such parts ofthe terrain lose their protective snow cover, causing

the average annual ground temperature to approach that of the air, which at Schefferville is

about -5 oc (Nicholson and Granberg, 1973; Granberg et al., 1994). The interferometrically

produced maps of the zones of shallow sriow (Figures. 2a, b) closeÏy match a map of

permafrost (Figure 2c) produced by the Iron Ore company of Canada (10CC) using air photo

interpretation, ground probing and geological trenching data (Granberg and Vachon, 1998).

The research at Schefferville forms the background to the current study. However, although

the research at Schefferville took the Iead in this field, research on snow cover applications of

radar interferornetry has progressed elsewhere also. Shi et aÏ., (1997) had also attempted

mapping the snow cover using repeat-pass InSAR and Strozzi et al. (1999) had found repeat

pass InSAR coherence useful in the mapping ofwet snow.

ta) (b)
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Figure 2: (a) RADARSAT coherence image from pair image ofDecember 1 and 25, 1996, (b)

RADARSAT coherence image from pair image of February 28 and March 24, 1997, (e) Part

of permafrost map produced by 10CC in 1972-74 (modified after Granberg and Vachon,

199$), Areas swep the snow bu the wind retain coherence (white) while other parts lose

coherence due to snow accumulation

Granberg and Vachon (199$) suggested that the refraction of microwaves by dry snow should

produce a phase-shifi which is linearly related to the SWE. Guneriussen et aÏ. (2001)

elaborated this relationship further, and calculated that at the nominal ERS satellite incidence

angle (&j=23°):

= 2ki(0.$7SWE) (1)

Where As represents the changes in interferometric phase due to change in SWE and k1 is the

wave number. They ernployed data from the ERS-1 and 2 Tandem Mission to show that

snowfall and snow redistribution by wind pose problems to routine monitoring of the SWE

using repeat-pass InSAR. They also showed that the SWE does produce a measurable signal.

Later Rott et aÏ. (2003), using ERS-1 3-day repeat pass data again confirmed that the temporal

decorrelation due to differential phase delays at sub-pixel scale caused by snow fall or wind

re-distribution of snow is a main lirniting factor for use of such data.

Granberg and Vachon (1998) proposed that at vertical incidence a SWE of 32.6 mm causes a

full phase-shifi at C-band (56 mm). This value was supported by the experiments of

Guneriussen et al. (2001). In C-band this rapid phase shift poses a problem to differential

interferometry because coherence is rapidly lost. Strategies have been developed to overcome

(a) (b) (c)
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this problem in the phase-unwrapping (Engen et aL. 2004; Larsen et aï., 2005) but they

engender substantial losses in spatial resolution. Use of a longer wavelength, sucli as L-band

would reduce this problem. Not only does a full phase phase-shifi require a distance which is

more thari four times that for C-barid, but it also increases the penetration depth (Rignot et aï.,

2001). However, it does not entirely solve the problem of coherence loss. This renders

differential InSAR flot very useful to SWE mapping.

A better approach which is explored here is to employ repeat-pass cross-ti-ack InSAR. Such

image acquisition is simultaneous, enabling use of C-hand and even shorter radar wavelengths.

This is necessary, because cross-track interferometry limits the possible length of the baseline

between image pairs. Two such datasets were made available, one fortuitousÏy in C-baud

through the Shuttie Radar Topographic Mission (SRTM) which was flown in the period

February 11-22, 2000 and therefore provides a DEM acquired under cold snow conditions at

Schefferville. Differences between this DEM and a DEM produced by Canada’s Topographic

Survey using photogrammetric techniques should in part resuit from the influence of the SWE

on the interferometric phase.

The second set of DEM’s using C and L-hand were flown for the purpose of this study during

the Cold Lands Processes field eXperiment (http://www.nohrsc.nws.gov[-cline/). The data set

was acquired using NASA’s AIRSAR in TOPSAR mode, i.e. equipped with dual receiving

antennas for cross-track InSAR. A reference data set was acquired over bare ground in late

summer for comparison with similar data sets acquired in coimection with field campaigns at

different times in the winters 2002 and 2003.

1.2 Objectives

1.2.1 General objective

The general objective of the present research is to explore, in theory, and by experiment, the

information content of repeat-pass cross-track In$AR, in particular that reÏated to SWE and

snow depth.
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1.2.2 Specific objectives

The specific objectives ofthe research are to:

> Elaborate in theory the relationship between InSAR phase differences. SWE, and snow

depth;

Explore experirnentally the use of repeat-pass cross-track InSAR to rnap snow depth

and SWE.

1.3 flypotheses

- The phase delay of InSAR, in dry snow, is a linear function of the arnount of ice in the

path of the radar wave (Granberg and Vachon, 1998);

> InSAR backscatter, originates at the snow/ground interface in dry-snow and snow-free

conditions. In wet snow it originates at the snow surface (Ulaby et aÏ., 1982).

In dry snow conditions the SWE is expressed as a depression of the surface with

respect to the snow-free surface.

In wet snow conditions the snow depth is expressed by an elevation of the surface with

respect to the snow-free surface.

1.4 Thesis outiine

Chapter 2 presents the object of the study of this thesis. This includes the general

characteristics of ice and various facto;s affecting the snow spatial variability. A sumrnary of

our current understanding of rnicrowave-snow interaction is also given.

The theory of InSAR is given in Chapter 3. Based on this theory the expected relationships

between interferometric phase and snow water equivalent and depth are eiaborated.

Chapter 4 gives a description of the study areas and data sets which include both remote

sensing data, and field data. The rnethod of analysis also described.

Chapter 5 presents and discusses resuits ofthe field experiments and their analysis.
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Chapter 6 gives a summary of the conclusions and makes recommendations for future

researcli.

1.5 Claim to originality

This study is, to the best knowledge of the author, the first attempt to employ repeat-pass

cross-track InSAR to map snow depth and $WE. Although there were problems introduced by

DEM colTection routines, and, in the Colorado case, an unstable remote sensing platfonn the

existence of a signal consistent with that expected was dernonstrated for both wet and dry

snow, indicating that satellite-borne cross-track InSAR is capable of overcoming coherence

problems experienced in atternpts at snow cover mapping using Differential InSAR.
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2 SNOW PROPERTIE$ AND CHARACTERESTICS

2.1 Snow cover

As atmospheric snow accumulates on the ground it bonds together, fonriing an ice skeleton. It

is the properties of this skeleton which are of interest in this study which focuses on its total

height (slow depth) and its snow water equivalent (SWE), i.e. the depth of water it would

represent if liquefied. Reviews on the properties of atrnospheric snow and its subsequent

redistribution, metamorphisrn and meit are provided by, for example, the many contributing

authors in Gray and Male (1981). A summary of the factors influencing the developrnent of

the snow cover in a sea ice environment is given by Granberg (1998). Here the focus wiÏl be

on those properties which influence its interactions with electrornagnetic radiation in the

microwave range.

A snow cover is a mixture of ice, air, and sornetimes, liquid water. Many of the characteristics

and properties of snow depend upon whether it is dry or wet. When wet, it is at its melting

temperature of O °C. In dry snow, a low thermal conductivity leads to steep temperature

gradients and large diurnal variations in its surface temperature. Snow can undergo

volumetric defomiations that are basically irreversible.

Once the snow is deposited on the ground, the shape of the ice crystals begins to change, on a

process known as metamo;phism. The type of metamorphism depends on the snow

temperature and water vapour fluxes and on whether the snow is wet or dry. The metamorphic

process controls the change of shape and size ofice particles (Colbeck, 1982). Since radiation

is absorbed near the snow surface, melting proceeds from the surface downward, with meit
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water percolating into the snow pack. When the percolating water arrives at a depth where the

snow is below the melting temperature, it freezes and releases latent heat which further warrns

the underlying snow. In this way the snow pack is gradually brought to near isothermal

conditions, at the melting temperature throughout. However, the process is oflen inteinipted

by noctumal fteezing, especially on clear, cold nights, due mainly to emission of radiation

and evaporation from the snow surface. freezing also proceeds from the surface downward,

producing a hard crust. A surface crust can also be formed by strong, cold winds. If

percolating water reaches a relatively irnpemieable boundary in the snow, it may forrn an

interior cntst or ice Yens when it freezes. Once the snow becornes wet, the grains quickly

assume the rounded, meit or melt-freeze metamorphic shape, and after the snow pack has

been wet throughout it is much more homogeneous than dry snow, although ice lenses and

layers may persist for a time.

Newly fallen snow has densities in the range 100 kg m3 to 200 kg m3 and consists of loosely

packed dendritic and plate-like ice crystals. If deposition occurs during strong winds, the

crystals are broken into srnall pieces and higher snow densities (in excess of 400 kg m3) can

resuit. After deposition a fresh snow layer tends to settie and its density increases. The

underlying layers also continue to settie and increase in density. Near the base of the snow

pack, it is common to find a layer of lower density because of temperature-gradient

metamorphism while the pack is thin. Water vapour transport due to strong temperature

gradients resuits in large faceted crystals, which can be several millimetres across with IittÏe

cohesion between them (depth hoar). In natural snow cover intermediate forrns sucli as

crystals with mixed faceted and rounded parts are more often found than fully faceted

crystals (Armstrong, 1980). In late winter and early spring, the density typicaÏly reaches a

constant value in the lower two thirds of the pack: except for lower values near the snow

ground surface. In the spring, the snow has usually attained a more uniform density

throughout the whole profile. If snow is wetted by ram and/or meÏt, grain morphoÏogy

changes rapidly and a general coarsening occurs. The typical size of the rounded particles in

wet snow is 0.5 to 2.0 mm (Dozier et al., 1987).

The natural growth of a snow pack during a winter season usually leads to stratification and

layers of different properties. In temperate climates, the ground under a snow cover usually

remains relatively warm due to the insulation provided by the snow pack. When the
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underlyinggroundis unfrozen,the basal layer may be wet while the snow aboveis dry. In

places where the snow pack persists through the winter, or at Ïeast through multiple

snowfalls, it is buiÏt up of a sequenceof layers, each having experienceddifferent

depositional and metarnorphicenvironments.The different layers thereforeusually have

quite distinctive characteristics,as long as they remaindry. The boundariesbetweenlayers

can 5e very sharp, especiallyif dust has settled on the surface, or there has been partial

melting,betweensnowfalls(Colbeck,19x2).

2.2 Snowspatialvariability anddistribution

2.2.1 Snowaccumulation

Snow covercomprisesthe accumulationof snow on the ground follow on from precipitation

depositedas snowfall, ice pelletsetc.

Its structureand dimensionsare complex and highly variable both in spaceand time. The

areavariability of snowcoveris studiedat threespatialscales(Pomeroyet ut., 1995):

• RegionctÏseule: large aieaswith linear distancesup to 1000 km in which dynarnic

meteorological effects such as wind flow around baniers and lake effects are

important;

• Local seule: areaswith linear distancesof 100 m to 1000 m in which accumulation

may 5e relatedto the elevation,aspectand siopeof the terrainand to the canopyand

crop density,treespecies,heightandextentofthevegetativecover;

• Micro scale: distancesof 10 m to 100 m over which accumulationpattemsresuit

primarily dueto surfacerouglmess.

2.2.2 Effect of topographyon snowcoverdistribution

Snow cover distribution varies dependingon the terrain topographyfeatures. Topography

elevation,topographyslopeand topographyaspectare the threeimportant featureswhich can

influencethe snowcoverdistribution:


