VERS UNE DÉMARCHE DE CARBONEUTRALITÉ EN ENTREPRISE COHÉRENTE AVEC LA SCIENCE CLIMATIQUE : ANALYSE DES RÉFÉRENTIELS DE CARBONEUTRALITÉ SOUS L’ANGLE DU DISCOURS SCIENTIFIQUE SUR L’ATTEINTE DU NET ZÉRO PLANÉTAIRE

Par
Nicolas Roy-Heppell

Essai présenté au Centre universitaire de formation en environnement et développement durable en vue de l’obtention du grade de maîtrise en environnement (M. Env.)

Sous la direction de Myrzah Bello

MAÎTRISE EN ENVIRONNEMENT
UNIVERSITÉ DE SHERBROOKE

Juin 2021
SOMMAIRE

Mots clés : carboneutralité, neutralité carbone, net zéro, changements climatiques, entreprises, référentiels, normes, PAS 2060, Net Zero Initiative, CarbonNeutral Protocol

En réponse à l’intérêt grandissant que connaît l’enjeu des changements climatiques dans la sphère publique, un nombre croissant d’entreprises s’engage à atteindre la carboneutralité. Ces engagements sont présentés comme étant une solution appropriée pour éliminer entièrement l’impact climatique d’une entité. Or, il n’existe toujours pas à ce jour de définition normative et partagée quant au concept de carboneutralité à l’échelle d’une entreprise. Ainsi, l’impact climatique des démarches est grandement varié et rien ne garantit que celles-ci soient cohérentes avec l’atteinte d’un monde « neutre » en carbone. Néanmoins, des référentiels ont émergé au fil des dernières années afin d’encadrer l’atteinte d’un stade de carboneutralité par les acteurs du secteur privé. L’objectif de cet essai est de comparer les démarches proposées par les principaux référentiels de carboneutralité des entreprises à l’atteinte du net zéro à l’échelle collective.

La démarche générale de carboneutralité du secteur privé — telle que conceptualisée à l’heure actuelle — est d’abord analysée de manière critique. Il en ressort que plusieurs limites et flous méthodologiques persistent ; la détermination des sources d’émissions à prendre en compte et l’intégrité environnementale des crédits compensatoires utilisés sont deux enjeux fondamentaux. Une analyse du discours scientifique sur l’atteinte du net zéro planétaire permet ensuite d’identifier les principaux impératifs d’un tel scénario en matière de réduction des émissions et d’élimination du carbone. Par la suite, trois référentiels encadrant la démarche de carboneutralité des entreprises sont analysés (CarbonNeutral Protocol, Net Zero Initiative et PAS 2060). Quoique des jalons importants soient posés, il apparaît que les démarches méthodologiques de ces référentiels sont divergentes à certains égards et que deux d’entre elles sont considérablement laxistes. La comparaison des démarches préconisées par les référentiels avec le discours scientifique sur l’atteinte du net zéro met par après en évidence une multitude de limites. À cet égard, il est manifeste que les exigences des référentiels ne permettent pas de suivre une trajectoire de décarbonisation cohérente avec celle nécessaire pour limiter le réchauffement climatique à 1,5 °C. D’ailleurs, il existe des tensions insurmontables entre, d’un côté, le recours illimité à la compensation carbone, et de l’autre côté, la disponibilité future des réductions d’émissions et le potentiel de développement des émissions négatives.

Il est d’abord préconisé, à l’intention des développeurs de référentiels, d’établir des trajectoires d’émissions basées sur la science climatique que devraient respecter les entreprises sur la voie de la carboneutralité. En outre, la séparation des réductions d’émissions et des émissions négatives dans la comptabilisation des émissions et la fixation d’objectifs est primordiale pour assurer une action climatique compatible avec la science. Il est ensuite recommandé aux entreprises de hausser le niveau d’ambition que portent leurs engagements de carboneutralité et de mettre en place une stratégie rigoureuse et transparente pour supporter cette volonté. D’autres recommandations s’adressent à divers acteurs afin de donner lieu aux conditions nécessaires à l’émergence d’une démarche de carboneutralité cohérente avec l’atteinte du net zéro planétaire, laquelle commande des changements de paradigme importants.
TABLE DES MATIÈRES

INTRODUCTION ... 1

1. MISE EN CONTEXTE : CHANGEMENTS CLIMATIQUES ET CARBONEUTRALITÉ ... 3
 1.1 La réponse aux changements climatiques .. 4
 1.2 Le concept de carboneutralité .. 6
 1.2.1 Carboneutralité à l’échelle nationale ... 7
 1.2.2 Carboneutralité à l’échelle de l’entreprise .. 9

2. REGARD SUR LA DÉMARCHE DE CARBONEUTRALITÉ DES ENTREPRISES .. 11
 2.1 Quantification des émissions .. 11
 2.1.1 Définition du périmètre organisationnel ... 12
 2.1.2 Définition du périmètre opérationnel ... 13
 2.1.3 Calcul des émissions de GES .. 17
 2.2 Réduction des émissions ... 17
 2.3 Compensation carbone ... 19
 2.3.1 Additionnalité ... 22
 2.3.2 Détermination d’un scénario de référence ... 24
 2.3.3 Fuites d’émissions .. 26
 2.3.4 Double comptage des réductions d’émissions .. 27
 2.3.5 Enjeux éthiques ... 29

3. LE DISCOURS SCIENTIFIQUE SUR L’ATTEINTE DU NET ZÉRO À L’ÉCHELLE COLLECTIVE 31
 3.1 La réduction des émissions .. 31
 3.2. Élimination du carbone .. 37
 3.2.1 Limites de la séquestration biologique .. 39
 3.2.2 Limites des technologies à émissions négatives ... 40

4. ANALYSE DES RÉFÉRENTIELS DE CARBONEUTRALITÉ DES ENTREPRISES ... 43
 4.1 The CarbonNeutral Protocol .. 43
 4.1.1 Définition de l’entité .. 44
 4.1.2 Quantification des émissions de GES ... 46
 4.1.3 Définition d’une cible .. 47
 4.1.4 Réduction et compensation des émissions .. 48
 4.1.5 Communication de la démarche .. 49
 4.2 PAS 2060 .. 50
 4.2.1 Détermination du sujet et de son périmètre .. 50
 4.2.2 Quantification des émissions et engagement de carboneutralité .. 51
 4.2.3 Réduction des émissions .. 52
 4.2.4 Compensation des émissions résiduelles ... 53
4.2.5 Déclarer et maintenir le statut de carboneutralité ... 54
4.3 Net Zero Initiative ... 55
4.3.1 Quantification et réduction de ses émissions .. 56
4.3.2 Réduction des émissions hors de la chaîne de valeur ... 57
4.3.3 Augmentation des puits de carbone .. 59
4.3.4 Synthèse du Net Zero Initiative .. 60
4.4 Principales différences entre les référentiels .. 61

5. CARBONEUTRALITÉ DES ENTREPRISES ET NET ZÉRO À L’ÉCHELLE COLLECTIVE :
IDENTIFICATION DES LIMITES ET DES ENJEUX .. 63
5.1 Incompatibilité entre le niveau des réductions d’émissions et le 1,5 °C .. 63
5.2 Possibilité d’un recours excessif à la compensation ... 65
5.3 Permissivité dans la détermination du périmètre .. 66
5.4 Distinction entre réduction d’émissions et émissions négatives ... 67
5.5 Technologies à émissions négatives et marchés du carbone .. 67
5.6 Intégrité environnementale des crédits compensatoires .. 69
5.7 Manque d’orientation quant à l’atteinte d’un stade d’émissions négatives nettes 70

6. RECOMMANDATIONS .. 72
6.1 Recommandations à l’intention des référentiels .. 72
 6.1.1 Établir des trajectoires d’émissions minimales ... 72
 6.1.2 Intensifier les exigences dans la détermination du périmètre ... 73
 6.1.3 Exiger une distinction rigoureuse entre les réductions d’émissions et les émissions négatives 73
 6.1.4 Encadrer la sélection des crédits compensatoires ... 74
 6.1.5 Évaluer la possibilité d’encadrer l’atteinte d’un stade d’émissions négatives nettes 76
6.2 Recommandations à l’intention des entreprises .. 76
 6.2.1 Rehausser l’ambition derrière les engagements de carboneutralité 76
 6.2.2 Établir une stratégie transparente et rigoureuse ... 77
6.3 Autres recommandations ... 78
 6.3.1 Mettre en place un mécanisme d’ajustements pour éviter le double comptage des émissions 78
 6.3.2 Encadrer l’intégration des technologies à émissions négatives aux marchés du carbone 79

CONCLUSION ... 81
RÉFÉRENCES .. 84

ANNEXE 1 – PARAMÈTRES DE L’OFFRE ÉNERGÉTIQUE PROVENANT DE SCÉNARIOS
COMPATIBLES AVEC LE 1,5 °C ... 92

ANNEXE 2 – TABLEAU DE BORD DU REFERENTIEL NET ZERO INITIATIVE 93

ANNEXE 3 – SOMMAIRE DES RECOMMANDATIONS .. 94
LISTE DES FIGURES ET DES TABLEAUX

Figure 1.1 Évolution des émissions mondiales de GES en millions de kilotonnes éq. CO₂.............................. 5
Figure 2.1 Aperçu des trois scopes d’émissions .. 14
Figure 2.2 Implications climatiques de différentes trajectoires de décarbonisation .. 19
Figure 2.3 Méthode de comptabilité basée sur le niveau des émissions .. 29
Figure 3.1 Caractéristiques des scénarios d’émissions globales ... 32
Figure 3.2 Caractéristiques des quatre scénarios compatibles avec un réchauffement planétaire de 1,5 °C... 33
Figure 3.3 Juste part des pays dans la réduction des émissions ... 36
Figure 3.4 Émissions cumulatives de CO₂ entre 2018 et 2100 pour quatre scénarios compatibles avec le 1,5 °C ... 38
Figure 4.1 Processus cyclique pour démontrer la carboneutralité selon la norme PAS 2060 .. 55
Figure 4.2 Référentiels recommandés pour le Pilier A ... 57
Figure 4.3 Émissions évitées à considérer pour le Pilier B .. 59
Figure 4.4 Matrice Net Zero Initiative .. 60
Figure 5.1 Trajectoires archétypes du GIEC compatibles avec le 1,5 °C ... 64
Figure 5.2 Caractéristiques des quatre scénarios compatibles avec un réchauffement planétaire de 1,5 °C ... 68
Figure 5.3 Classification des crédits compensatoires ... 70

Tableau 2.1 Principes des normes GHG Protocol et ISO 14064-1 ... 12
Tableau 2.2 Principaux critères de qualité d’un crédit compensatoire .. 20
Tableau 3.1 Enjeux et incertitudes des méthodes d’élimination du carbone .. 42
Tableau 4.1 Sources d’émissions à prendre en compte pour les entités .. 45
Tableau 4.2 Standards approuvés pour l’utilisation de crédits compensatoires ... 48
Tableau 4.3 Standards reconnus pour l’utilisation de Certificats d’Attributes Énergétiques ... 49
Tableau 4.4 Principes à respecter pour la méthodologie de quantification des émissions .. 51
Tableau 4.5 Standards acceptés pour l’utilisation de crédits compensatoires ... 53
Tableau 6.1 Cadre de comptabilisation et de fixation des objectifs pour la période n ... 74
Tableau 6.2 Niveau de risque lié à l’intégrité environnementale de différents types de projets GES 75
LISTE DES ACRONYMES, DES SYMBOLES ET DES SIGLES

<table>
<thead>
<tr>
<th>Acronyme</th>
<th>Signification</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFOLU</td>
<td>Agriculture, foresterie et autres utilisations des terres</td>
</tr>
<tr>
<td>BECSC</td>
<td>Bioénergie avec captage et stockage du carbone</td>
</tr>
<tr>
<td>BSI</td>
<td>British Standards Institute</td>
</tr>
<tr>
<td>CCNUCC</td>
<td>Convention-cadre des Nations unies sur les changements climatiques</td>
</tr>
<tr>
<td>CDN</td>
<td>Contributions déterminées au niveau national</td>
</tr>
<tr>
<td>CH₄</td>
<td>Méthane</td>
</tr>
<tr>
<td>CO₂</td>
<td>Dioxyde de carbone</td>
</tr>
<tr>
<td>COP</td>
<td>Conférence des parties</td>
</tr>
<tr>
<td>DACCS</td>
<td>Capture directe de l'air avec stockage du carbone</td>
</tr>
<tr>
<td>éq. CO₂</td>
<td>Équivalent CO₂</td>
</tr>
<tr>
<td>GES</td>
<td>Gaz à effet de serre</td>
</tr>
<tr>
<td>GIEC</td>
<td>Groupe d'experts intergouvernemental sur l'évolution du climat</td>
</tr>
<tr>
<td>GHG Protocol</td>
<td>Greenhouse Gas Protocol</td>
</tr>
<tr>
<td>HFC</td>
<td>Hydrofluorocarbure</td>
</tr>
<tr>
<td>ISO</td>
<td>Organisation internationale de normalisation</td>
</tr>
<tr>
<td>MDP</td>
<td>Mécanisme pour un Développement Propre</td>
</tr>
<tr>
<td>MELCC</td>
<td>Ministère de l'Environnement et de la Lutte aux changements climatiques</td>
</tr>
<tr>
<td>NET</td>
<td>Technologies à émissions négatives</td>
</tr>
<tr>
<td>NZI</td>
<td>Net Zero Initiative</td>
</tr>
<tr>
<td>N₂O</td>
<td>Protoxyde d'azote</td>
</tr>
<tr>
<td>ONU</td>
<td>Organisation des Nations unies</td>
</tr>
<tr>
<td>PFC</td>
<td>Composé perfluoré</td>
</tr>
<tr>
<td>PRG</td>
<td>Potentiel de réchauffement global</td>
</tr>
<tr>
<td>Projet GES</td>
<td>Projet de réduction des émissions</td>
</tr>
<tr>
<td>SBTi</td>
<td>Science Based Target initiative</td>
</tr>
<tr>
<td>SPEDE</td>
<td>Système de plafonnement et d'échange de droits d'émission de gaz à effet de serre</td>
</tr>
<tr>
<td>VCS</td>
<td>Verified Carbon Standard</td>
</tr>
<tr>
<td>VER</td>
<td>Réductions d'émissions vérifiées</td>
</tr>
<tr>
<td>WBCSD</td>
<td>World Business Council for Sustainable Development</td>
</tr>
<tr>
<td>WRI</td>
<td>World Resource Institute</td>
</tr>
</tbody>
</table>
LEXIQUE

<table>
<thead>
<tr>
<th>Absorptions d’émissions de CO₂</th>
<th>Activités anthropiques qui retirent le CO₂ de l’atmosphère et le stockent durablement dans des réservoirs géologiques, terrestres, ou océaniques, ou dans des produits (Groupe d’experts intergouvernemental sur l’évolution du climat [GIEC], 2018b).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carboneutralité</td>
<td>Un état atteint lorsque les émissions de gaz à effet de serre associées à une entité, un produit ou une activité sont réduites et compensées à zéro durant une période définie (Natural Capital Partners, 2021).</td>
</tr>
<tr>
<td>Crédits compensatoires</td>
<td>Un instrument environnemental transigible et intangible représentant une unité d’équivalent dioxyde de carbone, généralement une tonne métrique. Les crédits compensatoires sont principalement utilisés pour compenser ou neutraliser des émissions résiduelles qui se produisent ailleurs en étant retirés ou annulés d’un registre (Natural Capital Partners, 2021).</td>
</tr>
<tr>
<td>Émissions résiduelles de GES</td>
<td>Émissions restantes après que toutes les réductions d’émissions techniquement et économiquement réalisables soient mises en œuvre (Définition de l’auteur).</td>
</tr>
<tr>
<td>Émissions directes de GES</td>
<td>Les émissions directes de gaz à effet de serre sont les émissions provenant de sources qui sont détenues ou contrôlées par l’entreprise (Greenhouse Gas Protocol [GHG Protocol], 2015).</td>
</tr>
<tr>
<td>Émissions indirectes de GES</td>
<td>Les émissions indirectes de gaz à effet de serre sont les émissions qui sont une conséquence des activités d’une entreprise, mais qui proviennent de sources détenues ou contrôlées par une autre entreprise (GHG Protocol, 2015).</td>
</tr>
<tr>
<td>Émissions négatives nettes</td>
<td>Une situation d’émissions négatives nettes est atteinte lorsqu’en raison des activités humaines, plus de gaz à effet de serre sont retirés de l’atmosphère qu’émis dans celui-ci (GIEC, 2018b).</td>
</tr>
<tr>
<td>Neutralité climatique</td>
<td>Concept d’un état dans lequel les activités humaines n’ont aucun effet net sur le système climatique. L’atteinte de cet état nécessite d’équilibrer les émissions résiduelles avec des suppressions d’émissions (de dioxyde de carbone) en plus de tenir compte des effets biogéophysiques régionaux ou locaux des activités humaines qui, par exemple, affectent l’albédo ou le climat local (GIEC, 2018b).</td>
</tr>
<tr>
<td>Net zéro émissions</td>
<td>Le net zéro émissions est atteint lorsque les émissions anthropiques de gaz à effet de serre dans l’atmosphère sont équilibrées par les absorptions anthropiques sur une période donnée (GIEC, 2018b).</td>
</tr>
</tbody>
</table>
INTRODUCTION

Face à l’abondance des preuves empiriques quant à l’impact des activités humaines sur le système terrestre, de nombreux scientifiques ont été appelés à reconnaître que la Terre est entrée dans une nouvelle ère géologique : l’Anthropocène (Waters et al., 2016). Celle-ci est notamment caractérisée par des concentrations atmosphériques accrues de gaz à effet de serre (GES), comme le dioxyde de carbone (CO$_2$) et le méthane (CH$_4$). Cette hausse des concentrations de GES s’est d’ailleurs traduite par un réchauffement du système climatique, estimé à 0,7 °C au cours du dernier siècle (Ministère de l’Environnement et de la Lutte contre les changements climatiques [MELCC], 2012). Ce phénomène est la cause d’une multitude de changements observés et sans précédent depuis des siècles, voire des millénaires, comme le réchauffement des océans, la diminution de la couverture de neige et de glace, et la hausse du niveau des océans (GIEC, 2013).

Il existe désormais un large consensus scientifique quant à l’impératif de limiter le réchauffement climatique en deça de 2 °C afin d’éviter le dépassement de points de bascules, à savour des seuils au-delà desquels certains impacts seraient irréversibles. Conformément à ce postulat, l’Accord de Paris, adoptée en 2015 par 195 pays, a pour objectif de limiter le réchauffement planétaire à 2 °C par rapport aux niveaux préindustriels et de poursuivre l’action climatique afin de freiner l’élévation de la température à 1,5 °C (Organisation des Nations Unies [ONU], 2015). Pour ce faire, l’Accord de Paris met en lumière la nécessité de parvenir à un équilibre entre les émissions anthropiques et les absorptions anthropiques de GES, c’est-à-dire le net zéro, au cours de la deuxième moitié du siècle (ONU, 2015). Depuis cet accord historique, le concept de carboneutralité a connu une montée importante en intérêt, tant dans la sphère politique qu’auprès d’acteurs économiques (Kachi et al., 2020). En effet, en 2019, ce sont 10 % des 500 plus grandes entreprises au monde qui avaient des engagements en matière de carboneutralité, un chiffre ayant doublé depuis l’accord en 2015 (Carbon Neutral, 2020).

Or, il existe des différences fondamentales entre l’atteinte d’un stade de carboneutralité à l’échelle planétaire et l’atteinte du même stade à l’échelle d’une entreprise. D’un côté, la carboneutralité planétaire est rigoureusement définie par la science : il s’agit d’égaliser le flux d’émissions anthropiques avec le flux d’absorptions anthropiques, et ce, dans le système fermé qu’est la Terre (GIEC, 2018b). De l’autre côté, il n’existe pas de définition normative quant au concept de carboneutralité d’une organisation et à la manière de l’appliquer. À ce titre, plusieurs questions centrales persistent : quelles sources d’émissions et quels types de GES devraient être inclus dans l’engagement ? Dans quelle mesure une entreprise devrait-elle avoir à réduire ses émissions absolues pour pouvoir déclarer la carboneutralité ? Quels mécanismes sont-ils légitimes pour compenser les émissions résiduelles d’une entreprise ? À l’heure actuelle, les réponses à ces questions demeurent vagues, ce qui concède au secteur privé une marge de liberté considérable en ce qui a trait ses engagements climatiques.

Néanmoins, des référentiels ont été développés et publiés au fil des dernières années — et d’autres sont en cours de développement — afin d’encadrer la démarche de carboneutralité des entreprises. L’objectif
de cet essai est de comparer les démarches proposées par les principaux référentiels de carboneutralité des entreprises à l’atteinte du net zéro à l’échelle collective. Les objectifs spécifiques sont, d’une part, d’identifier les limites et les tensions qui existent entre l’atteinte de la carboneutralité d’une entreprise et l’atteinte du net zéro planétaire et, d’autre part, d’élaborer des recommandations pour aligner la démarche de carboneutralité du secteur privé avec les impératifs d’un monde net zéro.

Cet ouvrage est construit et structuré autour de six chapitres. L’émergence du concept de carboneutralité ainsi que la problématique qui l’entoure sont d’abord mises en contexte. Ce premier chapitre met également en évidence le champ lexical entourant ledit concept et les principales différences entre son atteinte à l’échelle territoriale et à l’échelle d’une entité. Le second chapitre offre ensuite une analyse de la démarche générale de carboneutralité d’une entreprise et de ses grands principes constitutifs — mesurer, réduire et compenser — afin d’en faire ressortir les enjeux respectifs. Cette section est basée sur une multitude de sources récentes et crédibles, issues tant de la littérature scientifique que de la littérature grise. Le troisième chapitre dresse un portrait du discours scientifique sur l’atteinte du net zéro à l’échelle planétaire. Il met d’abord en lumière les principaux scénarios climatiques compatibles avec l’atteinte du net zéro vers la moitié du siècle, en mettant majoritairement l’accent sur le rythme et l’ampleur des réductions d’émissions. Ensuite, le déploiement de l’élimination du carbone et le rôle des différentes méthodes sont analysés dans le contexte du net zéro mondial. Ce chapitre est principalement basé sur les travaux du GIEC, notamment sur son Rapport spécial sur les conséquences d’un réchauffement planétaire de 1,5 °C.

1. MISE EN CONTEXTE : CHANGEMENTS CLIMATIQUES ET CARBONÉUTRALITÉ

Le rôle des activités anthropiques dans le réchauffement observé du système climatique fait l’objet d’un large consensus scientifique. Selon le GIEC (2013), il est extrêmement probable que les activités humaines soient la cause dominante de l’augmentation de la température observée entre 1951 et 2010, principalement à travers les émissions de GES. Depuis la révolution industrielle, les activités anthropiques relâchent des quantités importantes de GES dans l’atmosphère, notamment en raison de la combustion de combustibles fossiles, des procédés industriels, de la déforestation et de l’agriculture (Bush et al., 2019 ; Gouvernement du Canada, 2020). Les GES sont également émis de sources naturelles, comme la respiration végétale et animale, la décomposition de matières organiques par des micro-organismes en l’absence d’oxygène et la formation de vapeur d’eau, parmi bien d’autres. Ces sources naturelles de GES sont essentielles à la vie sur Terre ; ils produisent un effet de serre qui élève la température à la surface de la Terre et crée des conditions favorables à la vie (Bush et al., 2019). En revanche, les sources anthropiques amplifient les émissions de GES au-delà de la capacité d’adsorption des processus naturels (Bush et al., 2019). Conséquemment, les concentrations atmosphériques CO₂, de CH₄ et de protoxyde d’azote (N₂O) — les trois principaux GES d’origine humaine — ont augmenté à des niveaux jamais observés depuis au moins 800 000 ans (GIEC, 2013).

Ces gaz, au même titre que tous les autres GES, ont un effet de rétention de la chaleur ; ils absorbent et réémettent une partie de l’énergie infrarouge sortant de la Terre. Ainsi, les concentrations accrues de GES dans l’atmosphère perturbent l’équilibre global entre la quantité absorbée d’énergie incidente du soleil (sous forme de lumière) et la quantité d’énergie sortante (sous forme d’énergie infrarouge) de la Terre à l’espace. De ce fait, le changement dans la composition de l’atmosphère induit par les émissions de GES d’origine humaine se traduit par une variation du bilan énergétique de la Terre et, conséquemment, par un réchauffement du système climatique. (Bush et al., 2019)

Ce phénomène engendre déjà une multitude d’impacts observables et mesurables sur les systèmes naturels et humains. À ce titre, le cinquième rapport d’évaluation du GIEC (2013) indique notamment une augmentation des précipitations depuis 1951 dans les latitudes moyennes de l’hémisphère nord, une intensification des précipitations extrêmes et des vagues de chaleur dans la plupart des régions du monde, un réchauffement des couches supérieures (jusqu’à 700 m de profondeur) des océans, une augmentation du niveau des mers et une acidité accrue des océans. Advenant un réchauffement climatique atteignant 1,5 °C, il est anticipé que ces phénomènes, entres autres, s’intensifieront et que d’autres impacts et risques se manifesteront (GIEC, 2018a). Également, l’ensemble des composantes des changements climatiques ont des impacts significatifs sur la biodiversité, tant à l’échelle des organismes qu’à celle des biomes terrestres et aquatiques (Bellard et al., 2012). Bien que les preuves liant les extinctions actuelles aux changements climatiques soient limitées, Leadley et al. (2010) révèlent qu’ils pourraient surpasser la destruction des habitats en tant que la plus grande menace pour la biodiversité au cours des prochaines décennies.
Quant à la santé humaine, les principaux risques induits par le réchauffement planétaire sont les problèmes respiratoires et cardiovasculaires liés à la pollution atmosphérique, la mortalité et la morbidité liées à la hausse des températures et aux événements climatiques extrêmes, ainsi que la transmission de maladies infectieuses (GIEC, 2018a ; Ouranos, 2015). Par ailleurs, il est anticipé que les changements climatiques réduiront la disponibilité des ressources hydriques et qu’un réchauffement plus important réduirait davantage la disponibilité et la qualité de l’eau (GIEC, 2018a). De surcroît, la hausse du niveau de la mer et l’intensification des tempêtes posent des risques considérables pour la santé humaine, l’agriculture, les pêches, l’héritage culturel et d’autres services écosystémiques et économiques (GIEC, 2018a). Il est d’ailleurs estimé que les inondations côtières coûteront plusieurs milliers de milliards de $ US en 2100, advenant une élévation de la température de 2,6 °C (Hinkel et al., 2013).

Les changements climatiques font aussi intervenir une multitude d’enjeux d’équité. À cet égard, les bénéfices de l’industrialisation ont été répartis de manière inégale entre les pays ; il apparaît que les pays en ayant le plus bénéficié sont aussi les principaux coupables du réchauffement planétaire. À l’opposé, les principaux impacts des changements climatiques tendent à se produire dans les régions qui portent le moins de responsabilités du problème, comme les pays les moins avancés. D’ailleurs, ce phénomène exacerbe la pauvreté : il pourrait forcer entre trois et 16 millions d’individus dans la pauvreté extrême d’ici 2030, principalement à travers des impacts sur l’agriculture et l’alimentation (Hallegatte et al., 2017). Enfin, l’asymétrie entre la responsabilité des changements climatiques et les impacts subis se manifeste également entre les générations actuelles et futures. L’ensemble de ces risques et enjeux, qui ne représentent en rien une liste exhaustive, ont définitivement favorisé une prise de conscience et servi de motif à apporter une réponse politique à la crise climatique. (GIEC, 2018a)

1.1 La réponse aux changements climatiques

Dès le XIXe siècle, le chimiste suédois Svante Arrhenius émet l’inquiétude que les humains sont en train de modifier la composition de l’atmosphère à travers l’utilisation du charbon et prévoit un réchauffement du climat (Mégie et Jouzel, 2011). Néanmoins, il faut attendre jusqu’en 1979, à l’occasion de la Conférence mondiale sur le climat à Genève, pour voir naître des actions concrètes et opérer une véritable prise de conscience. Dans le cadre de ces négociations internationales, les scientifiques expriment leurs craintes grandissantes sur les impacts à long terme des émissions de CO₂ et appellent les pays à appliquer les connaissances climatologiques à la planification et à la gestion des activités humaines (Organisation Météorologique Mondiale, 1979).

Malgré l’adoption de dispositions réglementaires, institutionnelles et administratives par la mise en œuvre de la CCNUCC, force est de constater que les émissions de GES d’origine humaine n’ont guère diminué au fil des dernières décennies. À l’échelle globale, elles ont plutôt augmenté d’environ 60 % entre 1980 et 2012, exacerbant le réchauffement climatique (Banque Mondiale, s. d.). La figure 1.1 illustre l’évolution des émissions anthropiques de GES entre 1980 et 2012, en millions de kilotonnes d’équivalent CO₂ (éq. CO₂).

Figure 1.1 Évolution des émissions mondiales de GES en millions de kilotonnes éq. CO₂ (tiré de : Banque Mondiale, s. d.)

Face à cette augmentation continue des émissions anthropiques de GES, l’Accord de Paris, adopté en 2015, a fixé comme objectif de contenir « [...] l’élévation de la température moyenne de la planète nettement en dessous de 2 °C par rapport aux niveaux préindustriels et [de poursuivre] l’action menée pour limiter l’élévation de la température à 1,5 °C […] » (ONU, 2015, p. 3). Pour y arriver, l’Accord de Paris souligne la nécessité de parvenir à un équilibre entre les émissions anthropiques et les absorptions anthropiques de GES au cours de la deuxième moitié du siècle (ONU, 2015). Plus précisément, le GIEC (2018a) révèle que
pour limiter le réchauffement planétaire en deçà de 1,5 °C, les émissions nettes de CO₂ devront devenir nulles vers 2050. Bien que l’action climatique doive être massivement renforcée pour atteindre les objectifs de l’Accord de Paris, son entrée en vigueur a donné naissance à un foisonnement d’engagements de carbocneutralité, tant auprès de pays, de villes et de régions qu’auprès d’entreprises (Kachi et al., 2020).

1.2 Le concept de carbocneutralité

La récente multiplication des engagements climatiques a popularisé plusieurs termes liés à la carbocneutralité : neutralité climatique, net zéro CO₂, net zéro émissions, etc. Cependant, malgré qu’ils possèdent une signification différente, certains de ces termes sont parfois utilisés de manière interchangeable dans la pratique. Ainsi, il s’avère primordial de bien distinguer les concepts ayant été élaborés pour qualifier un état où les humains neutralisent les impacts de leurs activités sur le système climatique. D’abord, la neutralité climatique est définie comme :

« […] un état dans lequel les activités humaines n’ont pas d’effet net sur le système climatique. L’atteinte d’un tel état nécessite d’équilibrer les émissions résiduelles avec des suppressions d’émissions (de CO₂) et de prendre en compte les effets biogéophysiques régionaux ou locaux des activités humaines qui, par exemple, affectent l’albédo de surface ou le climat local. » (GIEC, 2018 b, p. 545).

De ce fait, la neutralité climatique ne prend pas seulement en compte les émissions de GES, mais plutôt l’ensemble des activités anthropiques qui ont un impact sur le forçage radiatif du système terrestre. En revanche, le net zéro (ou zéro émissions nettes) s’intéresse exclusivement aux émissions de GES. Le stade du net zéro est atteint lorsque les émissions anthropiques de GES dans l’atmosphère sont équilibrées par les absorptions anthropiques sur une période donnée. Quand plusieurs types de GES sont impliqués, la quantification du net zéro dépend de la métrique choisie pour comparer les émissions de différents gaz, comme le potentiel de réchauffement global (PRG). (GIEC, 2018b)

Le net zéro CO₂ est similaire au concept précédent, mais s’applique uniquement aux émissions et aux absorptions anthropiques de CO₂ (GIEC, 2018b). Sur le plan scientifique, le net zéro CO₂ est équivalent au concept de carbocneutralité. Ainsi, selon le GIEC (2018b), la carboneutralité tient seulement compte des émissions de CO₂. Néanmoins, le concept est couramment utilisé par une diversité d’acteurs en faisant référence à des émissions de GES autres que le CO₂. Effectivement, le concept de carbocneutralité est une métonymie et il est convenu internationalement d’utiliser ce concept pour tous les GES puisque leur unité de mesure commune utilisée est la tonne d’équivalent CO₂ (Office québécois de la langue française, 2010).

Dans la pratique, l’application du concept de carbocneutralité par différents types d’entités révèle une distinction considérable par rapport à sa définition scientifique. En effet, aux dires de la science, le net zéro CO₂ et la carboneutralité sont de parfaits synonymes. Dès lors, la carboneutralité est atteinte lorsque les émissions anthropiques d’une entité sont équilibrées avec des absorptions anthropiques pour une période donnée (GIEC, 2018b). En pratique, et selon les entreprises, l’atteinte de ce stade implique généralement de compenser les émissions résiduelles à l’intérieur des frontières d’une organisation avec
une quantité égale de réductions d’émissions se produisant à l’extérieur des mêmes frontières, et ce, pour une période donnée (Natural Capital Partners, 2020). Par exemple, une entreprise canadienne pourrait déclarer avoir atteint la carboneutralité en compensant ses émissions résiduelles grâce à l’achat de crédits compensatoires générés par des projets qui réduisent les émissions ailleurs dans le monde. Ainsi, deux différences significatives ressortent dans l’application générale du concept de carboneutralité par rapport à sa définition scientifique : le recours à des réductions d’émissions (en plus des absorptions d’émissions) est un mécanisme de compensation valable et la compensation se produit assurément en dehors des frontières d’une organisation. En revanche, la carboneutralité, telle que définie scientifiquement, implique une neutralisation des émissions résiduelles à travers des absorptions d’émissions qui peuvent se produire à l’intérieur ou à l’extérieur des frontières de l’entité.

Le présent ouvrage interprète la carboneutralité telle qu’elle est conceptualisée dans la pratique et non dans son sens strictement scientifique. Ainsi, bien que le concept puisse s’appliquer uniquement aux émissions de CO₂, il peut aussi prendre en compte les émissions de l’ensemble des GES. Le terme carboneutralité est donc privilégié en ce qui concerne les engagements d’entreprises et de pays. À l’opposé, le terme net zéro fait référence à sa définition scientifique. Conséquemment, il est privilégié dans cet essai pour qualifier l’atteinte d’émissions nulles à l’échelle planétaire, puisque celle-ci nécessite la neutralisation des émissions à travers des absorptions d’émissions uniquement, et ce, à l’intérieur du système fermé qu’est la Terre.

1.2.1 Carboneutralité à l’échelle nationale

À l’échelle mondiale, plus de 100 pays se sont engagés à atteindre la carboneutralité, majoritairement à l’horizon 2050 (New Climate Institute, 2020). Néanmoins, l’échéance des objectifs de carboneutralité des pays varie généralement entre 2035 et 2060. Durant l’année 2020, la liste de pays avec de tels engagements s’est grandement allongée, notamment avec la Chine, le Japon et la Corée du Sud (Murray, 2020, 5 novembre). D’ailleurs, plusieurs pays, dont le Canada, ont mis en place des dispositifs afin que ces objectifs soient légalement contraignants. En effet, le gouvernement de Justin Trudeau a déposé en novembre 2020 un projet de loi forçant le gouvernement fédéral à fixer des cibles de réduction des émissions à différentes échéances afin d’atteindre la carboneutralité d’ici 2050. Qui plus est, le projet de loi prévoit obliger le gouvernement fédéral à rendre des comptes tous les cinq ans quant à ses efforts et sa performance. (Environnement et Changement climatique Canada, 2020, 19 novembre)

De manière générale, les engagements nationaux de carboneutralité couvrent les émissions directes de GES, c’est-à-dire celles qui se produisent à l’intérieur des frontières nationales des pays. La comptabilisation de ces émissions correspond d’ailleurs à l’inventaire national que les pays doivent élaborer en vertu de la CCNUCC et de l’Accord de Paris. À cet effet, le GIEC fournit une méthode standardisée de quantification des émissions de GES pour les inventaires nationaux. Ceux-ci offrent une estimation des quantités des différents GES émis par des sources ou retirés par des puits dans les frontières d’un pays et pour une période donnée. Les émissions et absorptions sont divisées en cinq principaux secteurs qui regroupent des processus, des sources et des puits liés ensemble : l’énergie ; les processus industriels et

Les frontières géographiques des pays permettent de définir un périmètre fixe et universel qui assure que les émissions ne soient pas doublement comptées par les gouvernements. Par conséquent, la grande majorité des cibles de carboneutralité des pays n’incluent pas les émissions indirectes ou « incorporées », à savoir les émissions associées à la production des produits importés par un pays. Ces émissions sont généralement significatives et parfois plus importantes que les émissions directes des pays. En effet, une étude du Carbon Trust (2011) conclut que les pays développés sont des importateurs nets d’émissions de CO₂ tandis que les pays en développement en sont généralement des exportateurs nets. Par exemple, il est estimé que la Chine exporte environ 23 % des émissions de CO₂ générées à l’intérieur de ses frontières (Carbon Trust, 2011). Quant aux types de GES pris en compte, le champ d’application des engagements de carboneutralité des pays considère généralement l’ensemble des GES, mais certains pays ont défini des cibles qui portent uniquement sur le CO₂ ou qui excluent certains types d’émissions. (Kachi et al., 2020)

En ce qui concerne la réduction des émissions, les pays se concentrent principalement sur leurs émissions directes, conformément au champ d’application de leurs engagements. Or, il est impossible pour un pays d’éliminer l’ensemble de ses émissions ; certaines sont très difficiles et coûteuses à réduire, comme les émissions de CH₄ et de N₂O de l’agriculture (GIEC, 2018). Dès lors, ils ont généralement l’intention de compenser leurs émissions résiduelles grâce à des réductions d’émissions achetées à l’étranger ou à des absorptions d’émissions réalisées à l’intérieur du pays ou achetées à l’extérieur (Kachi et al., 2020). Par exemple, afin d’atteindre la carboneutralité, la Suède compte sur les absorptions d’émissions à travers l’augmentation des puits de carbone biologiques à l’intérieur de ses frontières et des investissements dans des projets de réductions et d’absorptions des émissions à l’étranger (Ministère de l’Environnement et de l’Énergie, 2018). Néanmoins, ces échanges de réductions d’émissions entre les pays complexifient la comptabilisation de leurs émissions et l’atteinte de leurs cibles de réduction respectives. À cet égard, lorsque les réductions ou absorptions d’émissions proviennent de l’étranger, l’Accord de Paris souligne que le double comptage des réductions d’émissions doit être évité grâce à un ajustement correspondant aux inventaires nationaux des pays importateurs et exportateurs. En vertu dudit accord, tous les pays doivent adopter des Contributions déterminées au niveau national (CDN), qui représentent des cibles de réduction des émissions. L’article 6 de l’Accord de Paris stipule qu’un pays qui vend une réduction d’émissions devrait ajuster son CDN en augmentant sa cible de réduction des émissions pour tenir compte de l’exportation du crédit compensatoire. À l’inverse, le pays acheteur devrait ajuster sa cible de réduction des émissions à la baisse. (Kizzier et al., 2019)
1.2.2 Carboneutralité à l’échelle de l’entreprise

Malgré ces engagements ambitieux et louables, il apparaît complexe de transposer le concept de carboneutralité — rigoureusement définie par la science à l’échelle planétaire — à l’échelle des activités d’une entreprise. Effectivement, les démarches de carboneutralité des entreprises sont souvent approchées d’une manière différente, voire divergente, entre les acteurs. Selon Carrillo Pineda et Faria (2019), l’approche de la carboneutralité dans le secteur privé diffère selon quatre principaux aspects : l’échéancier de l’objectif, les types de GES pris en compte dans l’objectif, la portée des activités prises en compte dans l’objectif, et les approches utilisées pour réduire et compenser les émissions de GES. Ces divergences, jumelées à un manque de transparence fréquent de la part des entreprises, rendent difficile et compliqué de comprendre la signification et les implications de la carboneutralité à l’échelle d’une organisation (Kachi et al., 2020). De plus, force est de constater que les engagements de carboneutralité du secteur privé sont rarement cohérents avec les impératifs de la transition vers un monde neutre en carbone. Par exemple, une compagnie pétrolière s’engageant à atteindre la carboneutralité d’ici 2050 pourrait vraisemblablement continuer l’exploitation de combustibles fossiles, bien que le net zéro planétaire nécessite une réduction des émissions fossiles d’environ 80 % d’ici la moitié du siècle (Dugast, 2020). À ce titre, dans une analyse des engagements climatiques des compagnies pétrolières européennes, le Transition Pathway Initiative (2020) conclut que même celles avec les engagements de carboneutralité les plus ambitieux ne sont pas alignées avec un scénario climatique compatible avec le 2 °C.
Par ailleurs, il n'existe pas à l'heure actuelle de normes communément acceptées qui encadrent la démarche de carboneutralité et qui offrent une définition normative du concept. Néanmoins, des référentiels ont émergé au courant des dernières années, tels que le CarbonNeutral Protocol, le NZI et le PAS 2060, mais leur niveau d'utilisation demeure limité (British Standards Institution [BSI], 2014 ; Carbon Disclosure Program, 2020 ; Carbone 4, 2020). À cet effet, l’Organisation internationale de normalisation (ISO) développé présentement une nouvelle norme afin d'édifier des règles claires et communes quant à la carboneutralité des entreprises (Organisation internationale de normalisation [ISO], s. d.b). Cette récente multiplication d'actions visant à encadrer l'atteinte de la carboneutralité par les entreprises met en évidence l'importance de l'enjeu qu’est celui d'aligner la démarche du secteur privé avec l'atteinte de la carboneutralité à l'échelle collective.
2. REGARD SUR LA DÉMARCHE DE CARBONEUTRALITÉ DES ENTREPRISES

Les entreprises sur la voie de la carboneutralité adoptent toutes une approche qui diffère à l’égard de certains aspects. Néanmoins, trois grandes étapes théoriques sont impératives pour une entreprise souhaitant atteindre la carboneutralité : mesurer ses émissions de GES, les réduire et compenser les émissions résiduelles. Bien que certaines normes et certains référentiels spécifient des étapes supplémentaires — comme la définition d’une cible et la communication des engagements — ces trois étapes constituent le paradigme dominant d’une démarche de carboneutralité. Ce second chapitre décrit chacune de ces étapes et offre un survol des enjeux associés à chacune d’elle.

2.1 Quantification des émissions

La première grande étape d’une démarche de carboneutralité consiste à quantifier les émissions de GES de l’entreprise. Il existe une multitude de normes et de méthodologies pour accompagner les entreprises souhaitant comptabiliser et déclarer les émissions de GES liées à leurs activités. La méthodologie la plus utilisée à l’international pour la quantification des émissions à l’échelle d’une entreprise est celle du Greenhouse Gas Protocol (GHG Protocol). Reconnaissant le besoin d’une norme internationale pour encadrer la quantification et la déclaration des émissions de GES par les entreprises, le World Resource Institute (WRI) et le World Business Council for Sustainable Development (WBCSD) ont développé le GHG Protocol en 1998. Aujourd’hui, le GHG Protocol fournit des normes, de l’encadrement, des outils et de la formation tant aux entreprises qu’aux gouvernements. L’organisation a publié en 2001 une norme méthodologique de comptabilisation et de déclaration étant destinée aux entreprises, qui a d’ailleurs été révisée à quelques reprises depuis. C’est celle-ci qui sert généralement de référence aux entreprises qui réalisent un inventaire de GES, que ce soit directement ou indirectement à travers un programme ou un outil basé sur ladite norme. (GHG Protocol, s. d.)

Par ailleurs, la série de normes ISO 14064 est aussi largement utilisée et reconnue. La première partie de cette série (ISO 14064-1) spécifie les principes et les exigences pour la quantification et la rédaction de rapports sur les émissions de GES par les entreprises (ISO, s. d.a). Les aspects importants de cette norme sont généralement cohérents avec ceux de la norme GHG Protocol, notamment puisque plusieurs éléments de la norme ISO 14064-1 en sont dérivés (Wintergreen et Delaney, 2007). En effet, les deux normes stipulent cinq principes communs sur lesquels devraient être basées la quantification et la déclaration des GES : la pertinence, l’exhaustivité (complétude), la permanence (cohérence), la transparence et l’exactitude (GHG Protocol, 2015). Les principes de ces deux normes sont définis dans le tableau 2.1.
Tableau 2.1 Principes des normes GHG Protocol et ISO 14064-1:2018 (traduction libre de : GHG Protocol, s. d.a, p. 9)

<table>
<thead>
<tr>
<th>Principe</th>
<th>Définition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pertinence</td>
<td>Définir les périmètres qui reflètent de manière appropriée les émissions de GES des entreprises et les besoins des utilisateurs et utilisatrices pour leurs prises de décision.</td>
</tr>
<tr>
<td>Exhaustivité</td>
<td>Tenir compte de toutes les activités et sources d’émission de GES au sein des périmètres organisationnels et opérationnels choisis. Toute exclusion devrait être signalée et justifiée.</td>
</tr>
<tr>
<td>Permanence</td>
<td>Permettre une comparaison valable des variations des émissions dans le temps. Tout changement dans la méthode de présentation devrait être clairement énoncé pour garantir la validité des comparaisons.</td>
</tr>
<tr>
<td>Transparence</td>
<td>Traiter tout sujet pertinent de manière factuelle, cohérente et établie par un suivi clair de vérification. Les options fondamentales devraient être divulguées ainsi que les méthodes de calcul utilisées.</td>
</tr>
<tr>
<td>Exactitude</td>
<td>Exercer une diligence raisonnable pour s’assurer que les mesures de GES ont la précision requise en fonction de l’usage auquel on les destine et pour garantir, de manière raisonnable, l’intégrité de l’information publique sur les GES.</td>
</tr>
</tbody>
</table>

2.1.1 Définition du périmètre organisationnel

La quantification des émissions d’une organisation commence habituellement par la définition du périmètre organisationnel de l’entité. Il s’agit essentiellement de choisir une approche de consolidation pour définir les entités et les installations qui constituent l’entreprise aux fins de la quantification des émissions de GES. Il existe deux approches pour les entreprises : l’approche fondée sur la part de capital et l’approche fondée sur le contrôle. La première consiste à comptabiliser les émissions de GES d’une entité ou d’une installation en fonction de la part de capital de la compagnie dans celle-ci. Par exemple, si une société détient 20 % du capital d’une entreprise donnée, elle devrait comptabiliser 20 % des émissions provenant des opérations de celle-ci dans son bilan. Selon la seconde, une entreprise prend en compte l’ensemble des émissions de GES provenant des entités ou des installations dont elle possède le contrôle financier ou opérationnel. Lorsqu’elle utilise l’approche fondée sur le contrôle, une entreprise devrait choisir l’un de ces deux types de contrôle pour déterminer les entités et les installations à considérer.

D’une part, une entreprise possède un contrôle financier sur une entité ou une installation si elle est capable d’orienter les politiques financières de cette dernière dans le but de tirer des avantages économiques de ses activités. Par exemple, il est considéré qu’une entreprise contrôle financièrement une installation si elle prend les décisions financières concernant celle-ci. D’autre part, une entreprise détient le contrôle opérationnel sur une entité ou une installation si elle, ou l’une de ses filiales, ont la pleine autorité de mettre en œuvre ses politiques opérationnelles sur celle-ci. Autrement dit, selon ce critère, l’entreprise considère les émissions provenant des installations qu’elle opère. Dans la plupart des cas, le fait qu’une entité ou une installation soit contrôlée ou non par une compagnie ne varie pas selon que le critère de contrôle financier ou de contrôle opérationnel soit choisi. Quant aux approches de consolidation, le choix d’une approche ou de l’autre n’influence pas les résultats de l’inventaire de GES si l’organisation détient et exploite la totalité de ses installations (Agence de la transition écologique [ADEME], s. d.). Inversement, les résultats peuvent
varier si l’entreprise détient conjointement des installations. Afin de guider la détermination du périmètre organisationnel, la norme ISO 14064-1 stipule qu’il :

« […] est recommandé aux organismes de se conformer au périmètre organisationnel déjà défini pour leur comptabilité générale [et qu’il] convient que les émissions et les suppressions de GES soient quantifiées et déclarées conformément à la réalité concrète et économique de l’organisme, et non simplement à sa forme juridique. » (ISO, 2018, p.18).

Ainsi, l’application de ces concepts devrait suivre les options choisies par l’entreprise dans ses états financiers, à condition que ces options soient rigoureusement respectées et choisies explicitement. Également, la substance devrait toujours l’emporter sur la forme : la comptabilisation et la déclaration des GES d’une entreprise devraient prioritairement s’aligner avec la réalité économique qui la sous-tend. (GHG Protocol, s. d.a ; GHG Protocol, 2015)

2.1.2 Définition du périmètre opérationnel

Après avoir identifié les entités et installations qu’elle détient ou contrôle, l’entreprise doit définir son périmètre opérationnel. Cette étape consiste à déterminer les émissions associées aux opérations de l’entreprise puis à les classifier selon les catégories d’émissions définies par les principales normes et méthodes internationales. D’un côté, la norme GHG Protocol segmente les émissions selon les émissions directes de scope 1, les émissions indirectes de scope 2 et les autres émissions indirectes de scope 3 (ADEME, s. d.). Les émissions directes de scope 1 sont celles qui proviennent de sources détenues ou contrôlées par l’organisation, comme ses installations et ses véhicules. Les émissions indirectes de scope 2 sont celles associées à la production d’électricité, de vapeur, de chaleur ou de froid achetés par l’entreprise ou amenés autrement dans son périmètre organisationnel. Les autres émissions indirectes de scope 3 sont conséquentes des activités de l’entreprise, mais proviennent de sources détenues ou contrôlées par une autre entreprise (à l’extérieur du périmètre organisationnel). Ces émissions découlent d’une large gamme d’activités, entre autres l’extraction et la production des biens achetés, le déplacement pendulaire des employés, les voyages d’affaires et l’utilisation des produits vendus. La figure 2.1 offre un aperçu des trois scopes de la norme GHG Protocol et des émissions tout au long de la chaîne de valeur d’une entreprise. (GHG Protocol, 2015)
Les émissions des scopes 1 et 2 sont rigoureusement définies par la norme GHG Protocol afin d’éviter un double comptage des émissions du même scope par deux ou plusieurs entreprises. Cela permet d’utiliser les scopes dans des programmes de lutte contre les changements climatiques, comme les marchés du carbone. Selon la norme GHG Protocol, les entreprises devraient minimale quantifier et déclarer les émissions des scopes 1 et 2 séparément. La même norme indique que la quantification et la déclaration des émissions de scope 3 sont optionnelles. Toutefois, elle recommande aux entreprises d’étudier leur chaîne de valeur et de considérer les émissions de scope 3 provenant des catégories pertinentes. Les critères permettant d’établir la pertinence d’une catégorie d’émissions du scope 3 comprennent son importance (relativement aux émissions des scopes 1 et 2), son lien aux objectifs de l’entreprise, son importance pour les parties prenantes, sa contribution à l’exposition aux risques GES et la disponibilité de données fiables. (GHG Protocol, 2015)

De l’autre côté, la norme ISO 14064-1 divise les émissions d’une entreprise en six catégories : les émissions et suppressions directes de GES, les émissions indirectes de GES dues à l’énergie importée, les émissions indirectes de GES dues au transport, les émissions indirectes de GES dues aux produits utilisés par l’organisme, les émissions indirectes de GES associées à l’utilisation des produits de l’organisme et les émissions indirectes de GES dues à d’autres sources. Cette norme stipule qu’une entreprise devrait quantifier et déclarer l’entièreté de ses émissions directes et ses émissions indirectes significatives. Les critères d’évaluation de la significativité incluent l’ampleur des émissions, le niveau d’influence sur les sources/puits, l’exposition à des risques ou à des opportunités, l’accès aux informations et le degré d’exactitude des données associées. (ISO, 2018)

Bien que louables, ces engagements laissent une partie significative des émissions indirectes d’une entreprise en dehors du périmètre pris en compte dans l’objectif. Or, les émissions indirectes sont souvent supérieures aux émissions directes ; Matthews et al. (2008) révèlent que les émissions directes de CO₂ d’une industrie représentent en moyenne 14 % des émissions totales de CO₂ de sa chaîne d’approvisionnement. La même étude estime également que les émissions des scopes 1 et 2 des entreprises du secteur des biens et services représentent 25 % de leur empreinte carbone totale (Matthews et al., 2008). Ces données mettent en lumière l’importance de considérer certaines catégories d’émissions du scope 3 dans les engagements de carboneutralité des entreprises.

Ainsi, un aspect important lors de la définition du périmètre opérationnel consiste à définir quelles sources d’émissions sont suffisamment importantes pour être incluses et lesquelles peuvent être ignorées. Bien que la réponse à cette question varie en fonction du secteur d’activité de l’entreprise, il arrive parfois qu’un seuil de minimis soit établi. Un tel seuil définit la quantité d’émissions qu’une entreprise peut exclure de son inventaire, relativement à ses émissions totales (Fransen et al., 2007). Par exemple, une compagnie pourrait établir un seuil de minimis de 3 % : si elle peut estimer sommairement qu’une de ses sources d’émissions contribue à moins de 3 % de ses émissions totales, elle pourrait l’exclure de son inventaire (Fransen et al., 2007). D’ailleurs, la norme PAS 2060, qui encadre la démarche de carboneutralité des entreprises, exige l’inclusion de 100 % des scopes 1 et 2 et de toutes les émissions de scope 3 qui contribuent à plus de 1 % de l’empreinte carbone totale (EcoAct, s. d.). Également, un seuil de minimis est parfois employé pour établir la méthode de calcul des émissions à utiliser selon l’importance d’une ou plusieurs sources d’émissions. Par exemple, le Règlement sur la déclaration obligatoire de certaines émissions de contaminants dans l’atmosphère permet une méthode de calcul moins précise pour une ou plusieurs sources d’émissions lorsque les émissions qui leur sont attribuables représentent cumulativement au plus 3 % des émissions totales de l’établissement concerné (Règlement sur la déclaration obligatoire de

Certains référentiels de carboneutralité des entreprises recommandent plutôt l’inclusion de certaines catégories d’émissions spécifiques du scope 3. Par exemple, le CarbonNeutral Protocol de Natural Capital Partners (2020) exige ou recommande l’inclusion de sources d’émissions parmi 7 des 15 catégories du scope 3. Cependant, plusieurs défis persistent en ce qui concerne la quantification de ces émissions indirectes. D’abord, le manque de données de qualité sur ces sources d’émissions nécessite des approches différentes comparativement à celles utilisées pour comptabiliser les émissions des scopes 1 et 2. À ce titre, le manque de ressources humaines et de connaissances est un frein important à la prise en compte des émissions du scope 3. De plus, la collecte des données s’avère particulièrement difficile puisqu’elle implique des interactions avec différents départements et une multitude de parties prenantes. Souvent, les approches de calculs pour les catégories d’émissions du scope 3 sont basées sur des données secondaires, ce qui se traduit par des résultats avec un plus grand degré d’incertitude. En somme, l’ensemble de ces problématiques laisse une marge de liberté considérable aux entreprises quant au choix du périmètre pris en compte dans leurs engagements de carboneutralité. (Erhard et al., 2019)

Le choix des GES à prendre en compte est un autre aspect important concernant la définition périmètre opérationnel. La norme GHG Protocol indique que tous les GES couverts par le Protocole de Kyoto (le CO₂, le CH₄, le N₂O, le SF₆, les hydrofluorocarbures [HFC] et les composés perfluorés [PFC]) ainsi que le NF₃ devraient être comptabilisés et déclarés dans un inventaire de GES. La norme indique qu’une entreprise peut déclarer ses émissions d’autres types de GES, mais devrait le faire séparément des GES imposés par la norme (GHG Protocol, 2015). Similairement, la norme ISO 14064-1 exige la quantification de ces sept GES pour les émissions directes de l’organisation, minimalement. Conformément à ces exigences, il serait attendu des entreprises qu’elles considèrent l’ensemble des sources d’émissions significatives de ces GES dans leur démarche de carboneutralité. Néanmoins, il apparaît que leurs approches sont variables en ce qui concerne les GES pris en compte (Carrillo Pineda et Faria, 2019). Par exemple, certaines entreprises fixent des objectifs qui portent uniquement sur le CO₂ tandis que d’autres élargissent le champ d’application de leurs objectifs à d’autres GES, et parfois à tous les GES exigés par les deux normes (Kachi et al., 2020).
2.1.3 Calcul des émissions de GES

Les étapes subséquentes à la réalisation d’un inventaire de GES consistent à gérer la qualité des données, déclarer les émissions à travers la réalisation d’un rapport et faire vérifier les émissions déclarées par un tiers indépendant – ces deux dernières étapes étant optionnelles. En outre, le GHG Protocol (2015) souligne que la mise en place d’une cible de réduction des émissions est la suite logique de la réalisation d’un inventaire de GES. Ces cibles sont généralement communiquées relativement aux émissions d’une année de base, qui sert de référence pour permettre un suivi des émissions dans le temps. D’ailleurs, les émissions de l’année de base doivent être recalculées lorsque l’entreprise subit des changements structurels importants, tels que des acquisitions et des fusions. (GHG Protocol, 2015)

2.2 Réduction des émissions

La seconde grande étape d’une démarche de carboneutralité, et probablement la plus fondamentale, consiste pour une entreprise à réduire ses émissions de GES. Les activités faisant l’objet des réductions d’émissions varient grandement selon les types d’entreprises ; certaines entreprises agissent plus particulièrement sur leurs émissions directes tandis que d’autres le font sur leurs émissions indirectes. Par exemple, pour RWE, un producteur d’électricité allemand, les émissions directes de scope 1 représentent environ 80 % de ses émissions totales (RWE, 2020). Pour cette raison, son objectif de carboneutralité implique notamment l’élimination progressive de ses usines qui génèrent de l’électricité à partir de combustibles fossiles pour les remplacer par de la production d’électricité solaire et éolienne (RWE, s. d.).

Dans d’autres cas, les émissions indirectes sont beaucoup plus importantes que les émissions directes et représentent par conséquent une meilleure opportunité de réduction des émissions (Kachi et al., 2020). Par exemple, pour l’entreprise de logiciels d’affaires SAP, les émissions directes de scope 1 sont faibles
comparativement aux émissions associées aux achats d’électricité (scope 2) qui servent à faire fonctionner ses serveurs. La société allemande estime que les émissions liées à l’utilisation de ses logiciels sont 40 fois plus grandes que ses propres émissions directes (SAP, 2020). Ainsi, pour atteindre la carboneutralité, une grande partie de ses efforts de réduction des émissions consiste à se procurer de l’électricité provenant de sources renouvelables (SAP, 2020). Pour acheter de l’électricité renouvelable sur un réseau donné, les entreprises peuvent utiliser des instruments contractuels qui garantissent que l’électricité achetée remplit certains critères environnementaux spécifiques (GHG Protocol, 2015a). Les autres manières de réduire les émissions de scope 2 consistent généralement à mettre en œuvre des mesures d’efficacité énergétique ou à produire sa propre électricité renouvelable à travers l’installation d’un système (p. ex. des panneaux solaires) ou la construction de ses propres installations de production d’électricité renouvelable (Kachi et al., 2020). Cependant, il est parfois difficile pour une entreprise d’intervenir sur ses émissions indirectes, principalement en raison d’un manque de capacité à influencer et collaborer avec les parties prenantes tout au long de la chaîne de valeur (Erhard et al., 2019). Conséquemment, les scopes 1 et 2 font habituellement l’objet de réduction d’émissions plus ambitieuses auprès des entreprises sur la voie de la carboneutralité.

La manière dont les objectifs de réduction des émissions sont communiqués, lorsqu’existants, peut poser des enjeux considérables. À cet égard, l’absence d’une cible de réduction des émissions absolues est une problématique importante. En effet, une multitude d’entreprises communiquent leurs cibles de réduction des émissions de manière nette, c’est-à-dire après avoir pris en compte la compensation carbone (Dugast, 2020). Ainsi, il est parfois impossible d’évaluer quelles seront les réductions d’émissions absolues liées à une cible donnée. Par exemple, la compagnie pétrolière Shell s’est engagée à réduire son empreinte carbone nette de 65 % d’ici 2050 et à devenir carboneutre sur ses opérations à la même échéance (Dietz et al., 2020). Toutefois, puisque l’entreprise ne spécifie pas dans quelle mesure elle compte avoir recours à la compensation carbone, il est techniquement impossible d’évaluer l’ampleur des réductions d’émissions qu’elle effectuera pour atteindre ses deux objectifs. Une entreprise qui communique ses objectifs de réduction des émissions de manière nette pourrait simplement continuer à émettre comme elle le fait aujourd’hui — ou réduire très lentement ses émissions — et compenser l’ensemble de celles-ci. Or, la communication d’une cible de réduction de manière nette dissimule la valeur de deux variables essentielles : le niveau des émissions de GES d’une entreprise et l’ampleur de son recours à la compensation carbone. Bien qu’elles soient plus rares, certaines entreprises ont des cibles de réductions absolues. C’est notamment le cas de Danone qui, dans le cadre de son engagement de carboneutralité, s’est fixé comme objectif de réduire ses émissions absolues des scopes 1 et 2 de 30 % d’ici 2030 (Danone, s. d.).

Toutefois, même si des cibles de réduction des émissions absolues sont fixées, la majorité des engagements ne permettent pas d’interpréter la future trajectoire de décarbonisation de l’entreprise menant à l’échéance de sa cible principale. Effectivement, la plupart des engagements n’incluent pas de cibles intermédiaires ou ne sont pas clairs par rapport à celles-ci (Kachi et al., 2020). L’enjeu réside dans le fait qu’en l’absence de ces cibles intermédiaires, il s’avère impossible de prédire la trajectoire de
décarbonisation d’une entreprise et, par conséquent, le réel impact climatique de l’engagement. Comme illustré à la figure 2.2, la trajectoire de décarbonisation vers la carboneutralité a un impact sur les concentrations atmosphériques de GES, malgré une même finalité.

![Diagram showing GHG emissions over time](image)

\[\sum GHG_1 > \sum GHG_2 > \sum GHG_3 \]

Figure 2.2 Implications climatiques de différentes trajectoires de décarbonisation (tiré de : Kachi et al, 2020, p. 10)

Il apparaît que des émissions continues et une réduction rapide à la fin de la période (graphique de gauche) impliquent plus d’émissions qu’une trajectoire en réduction constante (graphique du centre), qui a son tour représente un impact climatique supérieure à une réduction immédiate et rapide qui ralentit jusqu’à la fin de la période (graphique de droite). Pour cette raison, Kachi et al. (2020) souligne que la fixation de cibles intermédiaires s’avère tout autant importante que la cible principale et son année d’échéance.

2.3 Compensation carbone

Après avoir réduit ses propres émissions, la prochaine étape de la démarche de carboneutralité d’une entreprise consiste à compenser ses émissions résiduelles à l’aide de crédits compensatoires. Il s’agit d’instruments transférables certifiés par des gouvernements ou des organismes de certification indépendants qui représentent une réduction d’émissions ou une augmentation d’absorptions utilisées pour compenser des émissions qui se produisent ailleurs (Broekhoff et al., 2019). En effet, les crédits compensatoires sont basés sur l’idée qu’un acteur ne doit pas nécessairement atténuer ses propres émissions afin de réduire la quantité de GES dans l’atmosphère (Conte et Kotchen, 2009). Puisque les GES se répartissent uniformément dans l’atmosphère, il peut payer un autre acteur pour réduire les émissions et ainsi obtenir le même résultat sur les concentrations atmosphériques de GES (Kollmuss et al., 2008). Ainsi, en matière de changements climatiques, les effets sont les mêmes si une entreprise cesse une activité émettrice de GES ou si elle permet une activité qui réduit les émissions dans une mesure équivalente ailleurs dans le monde (Broekhoff et al., 2019). L’achat de crédits compensatoires permet de financer des projets qui contribuent à diminuer les émissions de GES, tels que des projets de reforestation, d’énergies renouvelables et d’efficacité énergétique. L’acheteur d’un crédit compensatoire peut alors revendiquer la réduction d’émissions sous-jacente en vue d’atteindre ses propres objectifs de réduction des émissions (Broekhoff et al., 2019).
Une pluralité de termes est fréquemment utilisée pour définir l’intégralité environnementale et la qualité d’un crédit compensatoire. Néanmoins, cinq principaux critères essentiels ressortent de la littérature. En ce sens, un crédit compensatoire de qualité devrait être associé avec une réduction d’émissions ou une absorption d’émissions additionnelle, mesurable, permanente, unique et vérifiée indépendamment (Blaufelder et al., 2020 ; Broekhoff et al., 2019). Ces cinq critères sont sommairement définis dans le tableau 2.2.

Tableau 2.2 Principaux critères de qualité d’un crédit compensatoire (traduction libre de : Natural Capital Partners, 2020, p. 37-38)

<table>
<thead>
<tr>
<th>Critère</th>
<th>Définition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Additionnalité</td>
<td>Une réduction d’émissions est additionnelle lorsqu’il peut être démontré qu’en l’absence du financement permis par le crédit compensatoire, le projet GES n’aurait pas eu lieu, ce qui se serait traduit par un niveau d’émissions supérieur.</td>
</tr>
<tr>
<td>Mesurable</td>
<td>Une réduction d’émissions est mesurable lorsqu’elle est quantifiée par rapport à un scénario de référence transparent et robuste en utilisant des méthodes reconnues, révisées par les pairs et publiées, et des données spécifiques au projet.</td>
</tr>
<tr>
<td>Permanence</td>
<td>Une réduction d’émissions est permanente lorsqu’elle comporte de très faibles risques d’être « renversée », c’est-à-dire que les émissions réduites sont subéquemment réémises dans l’atmosphère. Lorsque les réductions sont générées par des projets qui comportent un risque de renversement, des mesures adéquates doivent être mises en place pour garantir que ce risque soit réduit au minimum et qu’en cas de renversement, un mécanisme soit en place pour garantir que les réductions seront remplacées.</td>
</tr>
<tr>
<td>Unique</td>
<td>Une réduction d’émissions est unique lorsqu’elle est maintenue et retirée sur un registre afin de s’assurer qu’un seul crédit compensatoire soit associé avec une seule réduction des émissions.</td>
</tr>
<tr>
<td>Vérifié indépendamment</td>
<td>Une réduction d’émissions doit être vérifiée par un tiers parti indépendant et qualifié pour vérifier que des crédits compensatoires respectent l’ensemble des critères.</td>
</tr>
</tbody>
</table>

L’échange des crédits compensatoires s’organise autour des marchés du carbone, qui se décline en deux grands types : les marchés réglementés et les marchés volontaires. D’une part, les marchés réglementés sont créés et réglementés par des programmes régionaux, nationaux ou internationaux de réduction des émissions de GES (WWF, 2008). Ainsi, les participants des marchés réglementés sont dans l’obligation de réduire leurs émissions en vertu d’un accord ou d’un programme gouvernemental quelconque (WWF, 2008). Par exemple, les entreprises assujetties au système de plafonnement et d’échange de droits d’émission de gaz à effet de serre (SPEDE) du Québec doivent réduire leurs émissions de GES afin de respecter le plafond annuel d’émissions établi par le gouvernement. Pour ce faire, les participants du marché peuvent se procurer des droits d’émissions auprès du gouvernement, en acheter à d’autres participants ou bien acheter des crédits compensatoires. Les projets générant des crédits compensatoires dans le SPEDE, au même titre qu’au sein des autres marchés réglementés, doivent répondre à de multiples exigences et suivre des règles et conditions déterminées par des protocoles spécifiques. (MELCC, s. d ; MELCC, s. d. a)

D’autre part, les marchés volontaires permettent à des individus, des entreprises, des gouvernements et d’autres types d’organisations non assujettis aux marchés réglementés de compenser leurs émissions au
moyen de l’achat de crédits compensatoires créés sur un marché volontaire ou à travers le Mécanisme pour un Développement Propre (MDP) (Kollmuss et al., 2008). Ainsi, les marchés volontaires sont alimentés par deux flux de crédits compensatoires. D’un côté, le MDP est l’un des mécanismes adoptés lors du Protocole de Kyoto et a pour but de générer des crédits compensatoires grâce à la réalisation de projets de réduction des émissions (projet GES) dans des pays en développement (ONU, s. d.). Ces projets doivent être qualifiés à travers un processus rigoureux et public d’enregistrement et de délivrance pour générer des réductions d’émissions certifiées (REC), qui peuvent ensuite être prises en compte pour atteindre les objectifs de Kyoto (ONU, s. d.). Bien que le MDP soit un marché réglementé, les REC peuvent également être échangées sur les marchés volontaires. En 2016, 8 % des transactions de crédits compensatoires sur les marchés volontaires provenaient de projets du MDP (Agence Fédéral de l’Environnement allemande, 2019). De l’autre côté, il n’y a pas de réglementation ni d’organisme central de vérification et d’enregistrement sur les marchés volontaires. Les crédits générés sur ces marchés sont généralement appelés des réductions d’émissions vérifiées (VER) (WWF, 2008).

L’éventail de projets GES permis sur les marchés volontaires est plus large que sur les marchés réglementés. À ce titre, Ecosystem Marketplace (2020) classe les projets GES des marchés volontaires en sept grandes catégories : l’énergie renouvelable, la foresterie et l’utilisation des terres, la gestion des déchets, les appareils domestiques, les procédés chimiques et industriels, l’efficacité énergétique et le transport. Chacune de ces catégories générales comporte plusieurs types de projets spécifiques. Par exemple, la catégorie de la foresterie et de l’utilisation des terres compte entre autres les projets de reforestation, d’afforestation et de protection des forêts. En 2019, les crédits compensatoires provenant de projets d’énergie renouvelable étaient les plus transigés sur les marchés volontaires (42,4 MtCO₂), suivis par les projets de foresterie et d’utilisation des terres (36,7 MtCO₂) et de gestion des déchets (7,3 MtCO₂). (Ecosystem Marketplace, 2020)

La réalisation de ces différents projets GES nécessite l’implication d’une multitude d’intervenants. D’abord, le ou la propriétaire du projet est une personne, une entreprise ou une organisation qui détient les installations où se produisent les réductions d’émissions. Les projets GES sont portés par des développeurs de projets ; il peut s’agir du ou de la propriétaire du projet, d’un prestataire de services ou d’un consultant ou d’une consultante. Parallèlement au financement permis par la vente du crédit compensatoire, les développeurs de projets GES peuvent obtenir du financement auprès de banques, de sociétés d’investissement privé ou d’organisations à but non lucratif. Puisqu’il n’y a pas de réglementation sur les marchés volontaires, les projets GES sont encadrés par des standards volontaires principalement issus du secteur privé. Ces derniers définissent des règles et des critères que les projets GES doivent respecter. Les principaux standards volontaires sont le Verified Carbon Standard (VCS), le Gold Standard et le Climate Action Reserve, qui détiennent respectivement 59 %, 17 % et 8 % des parts de marché (Agence Fédéral de l’Environnement allemande, 2019). D’ailleurs, la majorité des standards volontaires, ainsi que le MDP, exigent la validation et la vérification des réductions d’émissions potentielles et réalisées d’un projet GES
par une tierce partie indépendante. Enfin, les VER peuvent être vendues à des détaillants, qui détiennent des portfolios de crédits compensatoires, ou bien directement aux acheteurs finaux. (Kollmuss et al., 2008)

L’un des rôles importants des marchés volontaires du carbone consiste à permettre une action climatique auprès d’une large gamme d’acteurs. À l’heure actuelle, les engagements de carboneutralité des entreprises sont purement volontaires. Pour cette raison, une entreprise souhaitant neutraliser ses émissions résiduelles et déclarer avoir atteint la carboneutralité doit nécessairement se procurer des crédits compensatoires issus des marchés volontaires. Par exemple, dans son objectif de carboneutralité à l’horizon 2050, Volkswagen compte neutraliser ses émissions résiduelles en investissant dans des projets GES liés à la foresterie et aux énergies renouvelables (Volkswagen, 2019). Présentement, l’entreprise allemande achète des crédits compensatoires auprès du projet Katinga Mentaya, un projet de restauration et de protection des forêts en Indonésie dont les crédits compensatoires sont certifiés par le VCS (Volkswagen, 2019 ; Katingan Mentaya Project, s. d.). Toutefois, les marchés volontaires ainsi que les crédits compensatoires en étant issus sont critiqués à plusieurs égards et comptent une multitude d’enjeux, qu’il s’agisse de leur efficacité ou bien même d’aspects éthiques. Les sections qui suivent offrent un survol des principaux enjeux associés aux crédits compensatoires, et plus spécifiquement à ceux issus des marchés volontaires.

2.3.1 Additionnalité

L’additionnalité est souvent perçu comme étant le principal déterminant de l’intégrité environnementale d’un crédit compensatoire (Schneider, 2009). Ce critère signifie qu’une réduction d’émissions de GES engendrée par un projet GES ne devrait pas avoir lieu dans le cours normal des affaires et sans incitatif supplémentaire ; une réduction d’émissions additionnelle va au-delà des pratiques courantes et de la réglementation en vigueur (MELCC, s. d.b). En tant que concept, l’additionnalité décrit la relation entre cause et effet : « […] l’effet peut être qualifié d’additionnel s’il ne s’était pas produit en l’absence de la cause. » (ISO, 2019, p.18). Ainsi, un projet GES et les réductions d’émissions associées à celui-ci peuvent être qualifiés d’additionnels s’ils ne s’étaient pas produits en l’absence du programme auquel le projet GES participe, par exemple le MDP (ISO, 2019).

Dans la littérature sur les changements climatiques, plusieurs termes sont utilisés pour expliquer ou définir le concept d’additionnalité. La terminologie de l’additionnalité compte notamment l’additionnalité financière, réglementaire, technologique et des investissements, parmi bien d’autres types souvent moins communs. À titre d’exemple, l’additionnalité des investissements nécessite généralement que la valeur d’un crédit compensatoire améliore significativement la viabilité financière ou commerciale des activités du projet GES. Par ailleurs, l’additionnalité réglementaire fait référence à un projet GES qui dépasse les comportements et performances prescrits par les réglementations gouvernementales. Il importe de noter que ces différents concepts ne font pas l’objet d’une définition consensuelle dans la littérature, au même titre que les approches pour démontrer l’additionnalité. (Gillenwater, 2012)
La méthode la plus couramment utilisée pour démontrer l’additionnalité est celle du test des barrières (Schneider, 2009). Elle consiste à déterminer les principaux scénarios de remplacement au projet GES — comme le statu quo ou une autre technologie — et à identifier les différentes barrières associées à chacun de ces scénarios. Le raisonnement derrière cette méthode repose sur le fait qu’un projet GES s’avère généralement additionnel s’il fait face à minimalement une barrière significative, qu’elle soit financière, technologique, réglementaire ou institutionnelle (Banque mondiale, 2016). Dans certaines versions de ce test, il est également nécessaire de démontrer que la barrière qui fait obstacle au projet GES est absente d’au moins un des scénarios de remplacement (ONU, 2012). Dans le cas du MDP, le test des barrières est utilisé pour sélectionner des projets qui, malgré leur profitabilité financière, ne se seraient pas produits pour des raisons autres que financières. Effectivement, dans ce programme, le test des barrières vient après l’analyse des investissements, qui vise essentiellement à déterminer si le projet GES est un scénario financièrement intéressant. Même si le projet est attractif sur le plan financier et qu’il aurait pu se produire en l’absence des revenus liés à la vente des crédits compensatoires, le projet GES peut être qualifié d’additionnel s’il répond aux critères du test des barrières. (ONU, 2012)

Bien que plusieurs méthodes aient été développées pour démontrer l’additionnalité, le concept demeure très compliqué à appliquer et les projets GES sont souvent critiqués à l’égard de ce critère (Schneider, 2009). En effet, un rapport de l’Öko-Institut (2016) dévoile que jusqu’à 85 % des projets analysés du MDP avaient de faibles probabilités d’être additionnels. Deux principaux facteurs rendent difficile l’application du concept. D’une part, la question à savoir si un projet GES se serait produit en l’absence du programme auquel il s’inscrit est purement hypothétique. Étant donné que ce scénario ne peut pas être observé directement, il est techniquement impossible de prouver l’additionnalité d’un projet GES avec une certitude absolue (Broekhoff et al., 2019 ; Gillenwater, 2012 ; Schneider, 2009). D’autre part, il existe une asymétrie d’informations entre le porteur du projet GES, qui tente de démontrer l’additionnalité de son projet, et le standard qui certifie la qualité des crédits compensatoires générés par le projet en question (Broekhoff et al., 2019). Dans une telle situation d’asymétrie d’informations, les développeurs de projets ont un incitatif à fournir des informations biaisées pour que les programmes ou les standards jugent que leur projet GES est additionnel (Gillenwater, 2012). Ces deux aspects rendent la démonstration de l’additionnalité intrinsèquement subjective. D’ailleurs, Schneider (2009) indique que la manière dont le test des barrières est mis en œuvre dans le MDP peut difficilement différencier les projets additionnels de ceux non additionnels. L’auteur soulève que les barrières identifiées par les développeurs de projets manquent souvent de crédibilité, qu’elles sont mal documentées et qu’il est difficile de déterminer si le MDP a un impact sur celles-ci (Schneider, 2009).

Qui plus est, puisque l’échange des crédits compensatoires est fondé sur la dynamique des marchés, les projets GES non additionnels font concurrence aux projets GES additionnels. Effectivement, les projets GES non additionnels financièrement n’impliquent aucun coût supplémentaire pour les développeurs de projets, outre les coûts liés à la certification. En revanche, le développement d’un projet GES additionnel nécessite des ressources supplémentaires qui entraînent des coûts supérieurs par rapport au
développement d’un projet non additionnel. Ainsi, la courbe de l’offre est influencée par cette divergence de coûts et pour un même prix de vente, les projets GES non additionnels ont tendance à écarter les projets GES qui respectent ce critère. (Banque mondiale, 2016)

En définitive, l’additionnalité constitue une problématique fondamentale pour l’intégrité environnementale des crédits compensatoires, et ce, autant dans les marchés réglementés que volontaires. D’ailleurs, l’enjeu est davantage préoccupant dans les marchés volontaires, considérant la surveillance et l’encadrement moindres au sein de ceux-ci. Quoique la plupart des études se soient penchées sur le MDP en raison de son importance, il s’avère que plusieurs problèmes du MDP sont aussi présents dans les marchés volontaires, notamment parce que plusieurs standards issus de ces marchés ont mis en place des méthodologies du MDP ou ont grandement inspiré leurs méthodologies à partir de ces dernières. (Natural Capital Partners, 2020)

2.3.2 Détermination d’un scénario de référence

Le scénario de référence correspond à ce qu’il se serait produit en l’absence du projet GES. Les projets GES génèrent des crédits compensatoires dans une mesure relative à ce scénario de référence : les réductions d’émissions d’un projet GES sont égales à la différence entre le niveau d’émissions du projet et le niveau d’émissions du scénario de référence (Carbon Market Watch, 2012). Les concepts d’additionnalité et du scénario de référence sont intimement liés ensemble ; un projet GES non additionnel se trouve en fait à être le scénario de référence (Broekhoff et al., 2019). En ce qui a trait la détermination du scénario de référence, l’enjeu repose dans le fait que le choix du scénario de référence peut mener à une surestimation des réductions d’émissions liées au projet GES (Broekhoff et al., 2019). Si les émissions de référence sont surestimées, les réductions d’émissions sont conséquemment surestimées.

Les scénarios de référence sont plus faciles à déterminer pour certains types de projets que pour d’autres. Par exemple, pour un projet GES qui vise à capturer le CH₄ d’un site d’enfouissement afin de le détruire, la quantité de CH₄ qui aurait été émise en l’absence du projet est généralement égale à la quantité qui est capturée et détruite (Broekhoff et al., 2019). En revanche, l’estimation des réductions d’émissions liées à un projet d’énergie renouvelable sur un réseau électrique est associée à un niveau d’incertitude beaucoup plus grand (Broekhoff et al., 2019). Malgré des efforts de standardisation et d’encadrement de la part des programmes comme le MDP, la détermination du scénario de référence fait également intervenir de la subjectivité (Carbon Market Watch, 2012 ; Hayashi et Michaelowa, 2013). Au même titre que pour l’application du concept d’additionnalité, il est impossible d’observer directement ce qu’il se serait passé en l’absence du projet GES et il existe une asymétrie d’informations entre les développeurs de projets — qui déterminent et justifient le scénario de référence — et les organisations qui encadrent les marchés (Gillenwater, 2012). Il en résulte une manipulation des scénarios de référence afin de générer plus de crédits compensatoires (Carbon Market Watch, 2012).

Liu et Cui (2017) ont analysé la manipulation des scénarios de références pour des projets liés au secteur des bâtiments commerciaux au sein des marchés volontaires. Leur analyse révèle que les scénarios de
référence sont fréquemment manipulés afin de générer plus de crédits compensatoires. En outre, il ressort de l’ouvrage que parmi un bassin de développeurs de projets GES, ceux avec les niveaux d’émissions initiaux plus faibles sont moins à même de manipuler les scénarios de référence pour obtenir une quantité supérieure de crédits compensatoires. Les auteurs mentionnent aussi que la manipulation des scénarios de référence peut être réduite grâce à la vérification par une tierce partie, mais ils soulignent que, malgré celle-ci, les développeurs de projets GES ont tout de même de forts incitatifs à dévier d’un scénario de référence non biaisé. (Liu et Cui, 2017)

2.3.2 Permanence des réductions d’émissions

Une fois émis dans l’atmosphère, le CO₂ a une très longue durée de vie ; il peut y rester des centaines d’années, voire des milliers d’années (Broekhoff et al., 2019). D’ailleurs, Joos et al. (2013) estiment qu’environ 25 % du CO₂ émis aujourd’hui sera toujours dans l’atmosphère dans 1 000 ans. Pour cette raison, un crédit compensatoire devrait être associé à une réduction d’émissions tout autant permanente. Si une réduction ou une absorption d’émissions est « renversée », c’est-à-dire que les émissions réduites ou absorbées sont subséquemment réémises dans l’atmosphère, elle ne remplit plus son rôle de compensation. Un tel scénario fait référence à la non-permanence d’une réduction d’émissions. La permanence d’une réduction d’émissions est habituellement perçue comme étant sa capacité à maintenir les GES hors de l’atmosphère pendant 100 ans. Toutefois, sur le plan scientifique, toute séquestration d’émissions qui ne peut garantir aucun risque de retour dans l’atmosphère dans un avenir indéfini n’est pas permanente. (Broekhoff et al., 2019)

Pour plusieurs types de projets GES, la permanence n’est pas un aspect problématique étant donné que les renversements d’émissions sont physiquement impossibles ou très improbables (Broekhoff et al., 2019). Le risque de non-permanence provient plutôt des types de projets GES qui stockent le carbone, et principalement de ceux qui le font dans des réservoirs avec des risques de fuites considérables. Les projets de foresterie sont particulièrement à risque puisque plusieurs facteurs peuvent mener à l’émission du CO₂ séquestré. Par exemple, un projet de reforestation peut accroître le stockage du carbone dans les arbres et dans les sols, ajoutant ainsi du carbone dans ces réservoirs au fil du temps. Un tel projet constitue une réduction d’émissions si en son absence, moins de CO₂ a été séquestré par la forêt en question. Néanmoins, si les arbres plantés dans le cadre du projet GES brûlent en raison d’un incendie, une partie des GES stockés seraient réémis, menant à un renversement des émissions. En ce qui concerne les projets de foresterie spécifiquement, plusieurs types de risques peuvent entraîner les émissions du carbone séquestré. Il peut d’abord s’agir de risques anthropiques, qui sont soit liés au projet — comme des risques d’échec financier, technique ou de gestion du projet — ou soit de nature économique, à savoir le risque que l’augmentation des coûts d’opportunité des terres engendre une pression économique défavorable au projet. Ensuite, il existe des risques de perturbations naturelles, comme les incendies, les maladies et les événements météorologiques extrêmes. (Broekhoff et al., 2019 ; Conseil canadien des ministres des forêts, 2009)
La problématique de la non-permanence de certaines réductions d’émissions peut être exacerbée par l’octroi de crédits compensatoires à priori. Ce type de crédits compensatoires est mis en circulation avant que les réductions ou les absorptions d’émissions aient lieu et est donc généré dans une mesure relative à des prévisions. Leur octroi n’est autorisé que par certains standards, principalement sur les marchés volontaires (Kollmuss et al., 2008). Ils ont d’ailleurs été proposés pour les projets de foresterie, puisque les puits de carbone forestier peuvent seulement séquestrer une petite quantité de CO₂ annuellement, générant ainsi un nombre restreint de crédits. Or, l’octroi de crédits à priori peut faciliter le développement de projets de foresterie en permettant de générer un revenu plus tôt dans le processus des projets forestiers, qui nécessitent d’ailleurs des investissements initiaux importants. En revanche, ils compromettent l’intégralité environnementale des crédits compensatoires, comparativement à ceux octroyés a posteriori, c’est-à-dire après la vérification des réductions d’émissions. En effet, ils ne prennent pas en compte la non-permanence de certains puits de carbone tels que les forêts. Un autre enjeu fondamental lié à l’octroi de crédits compensatoires à priori est qu’ils sont fondés sur l’hypothèse que les réductions d’émissions futures ont le même impact sur le climat que les réductions d’émissions qui ont lieu aujourd’hui, ce qui n’est pas tout à fait juste sur le plan scientifique. (Conseil canadien des ministres des forêts, 2009)

En réponse à l’enjeu de la non-permanence, certains standards volontaires, dont le VCS, ont mis en place un mécanisme de « réserves tampons ». Ce dernier sert d’assurance en demandant aux développeurs de projets de mettre de côté une fraction des crédits compensatoires pour couvrir un potentiel renversement d’émissions. (Guigon, 2010)

2.3.3 Fuites d’émissions

Afin de quantifier les réductions d’émissions associées à un projet GES, les émissions du scénario de référence et du projet sont déterminées par sources et puits d’émissions. Il arrive fréquemment que les projets GES aient des effets inattendus sur les émissions de GES, principalement de manière indirecte. Si les méthodes de quantification utilisées ne prennent pas en compte les augmentations d’émissions entraînées par le projet à certaines sources, les réductions d’émissions du projet seront surestimées et une quantité trop élevée de crédits compensatoires seront générés. Les fuites d’émissions font référence à ces augmentations inattendues d’émissions hors des frontières d’un projet GES. Il importe toutefois de mentionner que les fuites d’émissions peuvent aussi être négatives, c’est-à-dire qu’elles peuvent correspondre à des réductions d’émissions inattendues. Néanmoins, Rosendahl et Strand (2011) ont étudié les fuites d’émissions dans le MDP et révèlent que de manière nette, les projets GES de ce programme comportent des fuites d’émissions positives et significatives, ce qui se traduit par un niveau d’émissions global supérieur. (Broekhoff et al., 2019)

Différents mécanismes peuvent engendrer une fuite d’émissions. Premièrement, un transfert ou un déplacement d’activités peut mener à une augmentation d’émissions hors des frontières d’un projet (Conseil canadien des ministres des forêts, 2009). Par exemple, pour un projet GES ayant comme but de protéger une parcelle de forêt, une fuite d’émissions peut se produire si une entreprise qui souhaitait initialement
exploiter la parcelle protégée se déplace et exploite une autre parcelle (Broekhoff et al., 2019). Dans un tel scénario, les réductions d’émissions du projet seraient diminuées significativement, voire rendues nulles.

Deuxièmement, une fuite d’émissions peut se produire en raison des effets du marché, c’est-à-dire « [...] lorsque des réductions d’émissions sont compensées par des émissions générées par des transferts dans l’offre et la demande de produits et de services touchés par le projet. » (Conseil canadien des ministres des forêts, 2009, p. 91). Par exemple, le MDP permet en tant que projet GES dans les pays en développement la destruction du HFC-23, un sous-produit lié à la production d’un gaz réfrigérant (le HCFC-22). Le fort PRG du HFC-23 permet de générer une grande quantité de crédits compensatoires, ce qui crée un incitatif à une production accrue de HCFC-22 afin de générer plus de HFC-23 et le détruire. Bien que ce phénomène ait été observé dans le passé, les règles du MDP et de certains standards volontaires ont depuis été revues pour ce type de projet. Néanmoins, ce genre d’effet rebond demeure un enjeu de taille pour d’autres types de projets GES. Qui plus est, Rosendahl et Strand (2011) indiquent qu’un projet GES d’envergure peut affecter l’équilibre de marché dans les marchés régionaux ou globaux des énergies ou des produits, accentuant ainsi le niveau d’émissions ailleurs dans le monde et réduisant par le fait même les réductions d’émissions générées par le projet.

Troisièmement, certains facteurs peuvent mener à une fuite d’émissions dans le temps, c’est-à-dire un peu après la réalisation du projet ou plusieurs années après celui-ci (Université d’Oxford, 2020). Par exemple, un projet GES peut réduire la consommation d’un combustible fossile donné, mais il est très difficile d’assurer que la consommation évitée du carburant n’aura pas lieu dans le futur. Advenant que les réserves de ce combustible fossile soient complètement épuisées dans le futur, le projet GES aurait simplement eu pour effet de retarder la consommation de ce dernier et les émissions de GES associées (Université d’Oxford, 2020).

Plusieurs standards et programmes ont mis en place des mesures afin de pallier la problématique des fuites d’émissions. En effet, certains standards exigent d’établir des frontières qui englobent l’ensemble des impacts du projet sur les émissions de GES. D’autres suggèrent d’analyser les impacts du projet sur les émissions hors de ses frontières. Cependant, il est impossible de tracer l’ensemble des impacts qu’un projet peut avoir sur les émissions. De ce fait, certains standards excluent explicitement certains types de fuites d’émissions de la comptabilité carbone des projets GES. (Kollmuss et al., 2008)

2.3.4 Double comptage des réductions d’émissions

d'émissions du pays vendeur et ajoutés à celui du pays acheteur, afin d'assurer que les réductions d'émissions n'étaient pas doublement revendiquées (Kreibich et Obergassel, 2016). Les pays de l’annexe B pouvaient également se procurer des unités d'émissions auprès de projets du MDP dans les pays en développement, des environnements « non-plafonnés ». En revanche, en vertu de l’Accord de Paris, tous les pays doivent adopter des CDN ; ils vont dès lors établir des plafonds d'émissions pour certains secteurs de leur économie ou pour son ensemble. Ainsi, sous l’Accord de Paris, l'environnement « non-plafonné » est grandement réduit et il est anticipé que celui-ci continue à se rapetisser au fur et à mesure que les pays adopteront des CDN à l'échelle de leur économie complète. (Agence Fédéral de l'Environnement allemande, 2019)

La participation globale induite par l’Accord de Paris se fait aux dépens d’une complexité accrue. Effectivement, il n’existe plus de distinction claire entre les environnements « plafonnés » et « non-plafonnés » : il est anticipé que la plupart des réductions d’émissions proviendront de projets GES mis en place dans le champ d’application des CDN (Agence Fédéral de l’Environnement allemande, 2019). L’enjeu émane du fait qu’un projet GES mis en place dans un tel contexte pourrait contribuer à l’atteinte de la CDN du pays hôte du projet, mais aussi de celle du pays ou de l’entreprise achetant la réduction d’émissions si aucun ajustement comptable n’est fait. Un tel scénario mènerait à une situation de double comptage, qui se produit lorsqu’une réduction ou une absorption d’émissions unique, obtenue par un mécanisme qui génère des crédits, est comptabilisée plus d’une fois pour atteindre des engagements de réduction des émissions qui ont pour but d’atténuer les changements climatiques (Stockholm Environment Institute [SEI], 2014). Pour faire face à cet enjeu, l’Accord de Paris envisage que le transfert de réductions d’émissions soit accompagné d’un ajustement correspondant par les parties (ONU, 2016). Néanmoins, les détails de la mise en œuvre de ces ajustements comptables doivent encore faire l’objet d’un accord et doivent être traduits en dispositions concrètes qui seront incluses à l’Accord de Paris. (Agence Fédéral de l’Environnement allemande, 2019)

Il est anticipé que la complexité accrue induite par l’Accord de Paris influencera considérablement le rôle des marchés volontaires du carbone, notamment celui de permettre aux acheteurs de compenser leurs émissions et de déclarer la carbonneutralité. La capacité des marchés volontaires à occuper ce rôle est intimement liée aux exigences des pays hôtes de projets GES à considérer le transfert de réductions d’émissions. En effet, sans ajustements comptables, l’utilisation de crédits compensatoires sur les marchés volontaires ne conduirait pas à des réductions d’émissions allant au-delà des engagements pris dans le cadre de l’Accord de Paris. Cela pourrait considérablement nuire à la crédibilité des marchés volontaires puisque les acheteurs finançeraient des réductions d’émissions qui ne seraient pas additionnelles aux engagements climatiques des gouvernements. (Agence Fédéral de l’Environnement allemande, 2019 ; Kreibich et Obergassel, 2016)

À l’heure actuelle, il n’y a aucune certitude quant aux types d’ajustements qui seront effectués pour prendre en compte l’utilisation de ces réductions d’émissions. À cet égard, il existe une multitude de méthodes de
comptabilité possibles pour considérer cet enjeu, chacune étant d’une rigueur variable. D’un côté, certains prônent des ajustements pour toutes les réductions d’émissions exportées à partir d’un environnement « plafonné ». Par exemple, le pays hôte peut ajuster son inventaire d’émissions en additionnant ou soustrayant les réductions d’émissions transférées à l’international pour obtenir un niveau d’émissions ajusté. Cette méthode est illustrée à la figure 2.3.

![Figure 2.3 Méthode de comptabilité basée sur le niveau des émissions](tiré de : Agence Fédéral de l’Environnement allemande, 2019, p. 15)

De l’autre côté, certains louent des approches moins rigoureuses comme le besoin d’ajustements seulement si la réduction d’émissions provient d’un secteur couvert par un instrument qui définit un plafond d’émissions (comme un système d’échange de droits d’émissions). L’Agence Fédéral de l’Environnement allemande (2019) souligne que le potentiel des marchés volontaires du carbone à continuer de remplir son rôle de compensation des émissions sera plus grand si une approche moins rigoureuse est adoptée. Effectivement, une telle approche réduirait le besoin d’ajustements, qui sont associés à des défis importants comme la possibilité d’un manque de volonté politique des pays et le besoin de capacités administratives, institutionnelles et techniques. (Agence Fédéral de l’Environnement allemande, 2019 ; Kreibich et Obergassel, 2016)

2.3.5 Enjeux éthiques

Les sections précédentes ont démontré que plusieurs problématiques peuvent limiter la capacité des crédits compensatoires à remplir leur rôle de générer les réductions d’émissions attendues. Toutefois, le débat sur la compensation carbone transcende l’efficacité de l’instrument ; le fondement éthique des crédits compensatoires soulève une multitude de préoccupations. Cet aspect pose la question de savoir quels sont les réels devoirs des individus et des organisations en matière de lutte contre les changements climatiques, et sur leur capacité à s’acquitter de ces devoirs en achetant des crédits compensatoires (Hyams et Fawcett, 2013).

Certains détracteurs des crédits compensatoires soulèvent d’abord que chaque individu a la responsabilité individuelle de réduire ses propres émissions dans le but de ne pas nuire aux victimes potentielles des changements climatiques. Comme le devoir lie directement chaque individu aux victimes potentielles, cet
argument stipule que la responsabilité ne peut pas être évitée simplement en finançant un projet qui réduit les émissions dans une mesure équivalente (Hyams et Fawcett, 2013). De plus, il est fréquemment soulevé qu’une des principales motivations derrière la compensation carbone est la volonté de se donner bonne conscience (Hyams et Fawcett, 2013). La suppression du sentiment de culpabilité implique que les individus et les organisations, grâce à la compensation carbone, continuent à entreprendre des activités intensives en émissions de GES (Hyams et Fawcett, 2013). Ainsi, il est parfois évoqué que la compensation carbone peut potentiellement ralentir l’action climatique nécessaire afin de limiter le réchauffement planétaire (Broekhoff et al., 2019).

Certains individus vont même jusqu’à comparer le recours aux crédits compensatoires à l’obtention des indulgences distribuées il y a plusieurs siècles par l’Église catholique dans le but d’obtenir la rémission totale ou partielle de la peine due à un péché (Tradition Québec, 2016 ; Hachey, 2019, 16 octobre). À cet égard, Marchildon (2020) a analysé la comparaison faite entre le commerce des indulgences et l’échange des crédits compensatoires issus des marchés volontaires. L’auteure conclut que la comparaison « [...] relève d’une posture moralisatrice, qui diabolise de façon injustifiée les crédits de carbone [...] » (Marchildon, 2020, p. 96), notamment parce qu’il est impossible pour les humains d’éliminer complètement leurs activités intensives en carbone, du moins à court terme.

Bullock et al. (2014) souligne d’ailleurs que le recours à la compensation par les pays développés pour atteindre leurs objectifs de réduction des émissions à long terme pourrait aggraver la distribution injuste des émissions de GES entre les pays riches et pauvres. Néanmoins, il importe de mentionner que les marchés volontaires et réglementés du carbone peuvent engendrer une multitude de bénéfices autres que des réductions d’émissions dans des pays en voie de développement, comme de l’emploi, de la formation, une conservation accrue de la biodiversité et l’accès à des ressources permettant de lutter contre la pauvreté (Broekhoff, Colbert-Sangree et Cage, 2019).
3. LE DISCOURS SCIENTIFIQUE SUR L’ATTEINTE DU NET ZÉRO À L’ÉCHELLE COLLECTIVE

3.1 La réduction des émissions

Les émissions de GES d’origine anthropique sont la cause dominante de l’augmentation de la température observée durant les dernières décennies (GIEC, 2013). Pour cette raison, les projections climatiques s’intéressent particulièrement à la manière dont les émissions de GES d’origine humaine vont continuer à influencer le climat jusqu’à la fin du siècle. Les différentes projections d’émissions de GES limitant le réchauffement planétaire en deçà de 2 °C varient en fonction de plusieurs caractéristiques, comme la vitesse des réductions d’émissions, le moment où elles atteindront leur sommet et le taux de déploiement des énergies à faible teneur en carbone (GIEC, 2018). Néanmoins, ces projections ont toutes un point en commun : elles nécessitent l’atteinte du net zéro émissions de CO₂ à un certain point dans le futur.

Dans son *Rapport spécial sur les conséquences d’un réchauffement planétaire de 1,5 °C*, le GIEC (2018) développe quatre scénarios archétypes et analyse une pluralité de scénarios issus de la littérature qui limitent le réchauffement climatique à 1,5 °C sans dépassement ou avec un dépassement limité. Ces scénarios nécessitent une réduction des émissions anthropiques de CO₂ d’environ 45 % d’ici 2030 par rapport aux niveaux de 2010, ce qui témoigne de l’importance de l’action climatique à court terme. Ce niveau de réduction des émissions peut être comparé à celui sous-entendu par les CDN adoptées par les pays en vertu de l’Accord de Paris. Tous ensemble, il est estimé que ces engagements devraient se traduire par des émissions des six GES de Kyoto de 52 à 58 Gt éq. CO₂ annuellement en 2030. En revanche, les scénarios compatibles avec le 1,5 °C impliquent des émissions annuelles d’environ 28 Gt éq. CO₂ en 2030. Ainsi, le GIEC évalue que le réchauffement climatique devrait excéder 1,5 °C si les émissions demeurent aux niveaux qu’impliquent les CDN d’ici 2030 puisqu’aucun scénario ne pourrait subséquemment réduire les émissions assez rapidement. En effet, des réductions d’émissions de CO₂ moindres à court terme

1 Dans les sections suivantes, les scénarios limitant le réchauffement planétaire à 1,5 °C sans dépassement ou avec un dépassement limité sont référés au terme « scénarios compatibles avec le 1,5 °C ».

31
nécessiteraient des réductions plus rapides et plus importantes à long terme pour répondre à des objectifs de réchauffement spécifiques, conformément à la relation quasi linéaire entre la quantité totale de CO₂ émise dans l’atmosphère et l’augmentation de la température moyenne mondiale. Qui plus est, le fait de retarder les réductions d’émissions mènerait aussi à un « verrouillage » économique et institutionnel dans des infrastructures intensives en carbone, c’est-à-dire l’utilisation et des investissements dans des technologies qui sont difficiles et coûteuses à cesser une fois déployés, par exemple des infrastructures énergétiques telles qu’une centrale électrique au charbon. La figure 3.1 illustre les caractéristiques des scénarios archétypes (P1, P2, P3 et P4) du GIEC compatibles avec le 1,5 °C. (GIEC, 2018)

Figure 3.1 Caractéristiques des scénarios d’émissions globales (tiré de : GIEC, 2018c, p. 13)

Le graphique à la gauche de la figure 3.1 illustre l’éventail complet des scénarios analysés dans le Rapport spécial sur les conséquences d’un réchauffement planétaire de 1,5 °C du GIEC. La zone ombragée en bleu fait référence aux trajectoires d’émissions qui limitent le réchauffement à 1,5 °C sans dépassement ou avec un dépassement limité tandis que la zone ombragée en gris illustre les trajectoires avec un dépassement supérieur du 1,5 °C. Il en ressort que les scénarios qui impliquent des délais dans les réductions d’émissions de CO₂ à court terme, tel que P4, nécessitent des réductions plus rapides et importantes à long terme et l’atteinte d’émissions nettes de CO₂ négatives plus grandes. Les graphiques à la droite de la figure 3.1 montrent les trajectoires d’émissions de trois GES avec d’importants forçages radiatifs historiques — le CH₄, le carbone noir et le N₂O — qui sont compatibles avec le 1,5 °C. Il apparaît que les émissions de ces
composés doivent aussi être réduites substantiellement pour limiter le réchauffement planétaire à 1,5 °C, sans toutefois nécessiter leur élimination complète. En effet, certaines émissions de CH₄ et de N₂O sont difficilement éliminables dans le secteur AFOLU ; elles devraient représenter la grande majorité des émissions résiduelles de ces substances en 2050. La figure 3.1 dévoile aussi que les trajectoires d'émissions compatibles avec le 1,5 °C doivent atteindre le net zéro émissions de CO₂ entre 2045 et 2055, selon un écart interquartile. Pour limiter le réchauffement à 2 °C avec une probabilité d’au moins 66 %, le net zéro émissions de CO₂ devrait être atteint autour de 2070 (entre 2065 et 2080 selon un écart interquartile). (GIEC, 2018 ; GIEC, 2018c)

Les scénarios développés par le GIEC sont dépendants d’une multitude de facteurs sous-jacents comme les changements comportementaux, le progrès technologique et des facteurs socio-économiques tels que les inégalités et la population mondiale. Plusieurs de ces facteurs constituent des obstacles considérables à un scénario compatible avec le 1,5 °C : croissance démographique importante, développement humain faible et inégal, croissance économique par habitant faible et inégale, modes de vie intensifs en ressources, etc. Ainsi, les scénarios compatibles avec le 1,5 °C développés par le GIEC comportent de multiples hypothèses sur une large gamme de variables socio-économiques et technologiques. La figure 3.2 décrits les principales hypothèses des quatre scénarios archétypes (P1-4) du GIEC compatibles avec le 1,5 °C, en plus d’illustrer la contribution de différentes stratégies d’atténuation des émissions à l’atteinte du net zéro émissions de CO₂. (GIEC, 2018)

Figure 3.2 Caractéristiques des quatre scénarios compatibles avec un réchauffement planétaire de 1,5 °C (tiré de : GIEC, 2018c, p. 14)

Les zones ombragées sur les quatre différents graphiques de la figure 3.2 représentent la contribution respective de différentes stratégies d’atténuation des émissions de CO₂ à l’atteinte du net zéro. Il en ressort que le recours à l’élimination du CO₂ est grandement variable entre les scénarios, qu’ils s’agissent d’absorptions de CO₂ provenant du secteur de l’AFOLU (zone ombragée brune) ou bien de la bioénergie avec captage et stockage du carbone (BECSC) (zone ombragée jaune). Effectivement, les scénarios où
les réductions d’émissions arrivent plus tard et sont plus lentes (P3 et P4) nécessitent une plus grande contribution de ces stratégies pour atteindre le net zéro. La contribution de l’élimination du CO₂ dans le contexte de l’atteinte du net zéro est davantage détaillée dans la section 3.2. (GIEC, 2018 ; GIEC, 2018c)

Les scénarios compatibles avec le 1,5 °C impliquent aussi des transformations disruptives des secteurs des énergies, de l’AFOLU, des bâtiments, des transports et des industries. En ce qui concerne les systèmes énergétiques, les scénarios compatibles avec le 1,5 °C requièrent une très faible croissance de la demande énergétique d’ici 2050, une croissance importante de la part d’électricité dans la demande énergétique finale et une réduction rapide de l’intensité carbone de l’électricité pour atteindre une intensité carbone négative à la moitié du siècle. De plus, la part des énergies renouvelables devrait augmenter à environ 60 % de l’offre énergétique primaire d’ici 2050. En revanche, la part de l’énergie provenant du charbon devrait atteindre entre 0 et 11 % de l’offre énergétique primaire d’ici 2050 ; les scénarios qui impliquent une utilisation accrue du charbon tendent à utiliser la capture et le stockage du carbone pour contrôler les émissions provenant de ce type d’énergie. Quant à la génération d’électricité, la part d’électricité produite à partir de sources renouvelables devrait augmenter à environ 77 % (par rapport à 23 % en 2015) dans les scénarios cohérents avec un réchauffement de 1,5 °C. Les différents paramètres de l’offre énergétique provenant de scénarios compatibles avec le 1,5 °C sont présentés à l’annexe 1. (GIEC, 2018)

En ce qui a trait la demande énergétique finale, les secteurs des industries, du transport et des bâtiments comportent de nombreuses potentialités de réduction des émissions de CO₂ à travers des mesures d’efficacité énergétique, d’électrification et d’autres moyens qui diminuent la demande énergétique. Dans un scénario compatible avec le 1,5 °C (avec dépassement), le secteur des industries devrait réduire ses émissions de CO₂ et son intensité en carbone (exprimé en CO₂ par unité d’énergie produite) de 80 % par rapport aux niveaux de 2010. Cette décarbonisation des industries s’opérait notamment par une transition vers des carburants à faible teneur en carbone et le déploiement de la capture et stockage du CO₂ et de processus innovants. Pour le secteur des bâtiments, les potentielles réductions d’émissions de CO₂ proviennent de l’électrification du secteur, ce qui permettrait le remplacement de carburants intensifs en carbone, comme le pétrole et le charbon. Au niveau du transport, des réductions importantes des émissions de CO₂ pourraient être réalisées grâce à des mesures technologiques permettant le remplacement de carburants et l’amélioration de l’efficacité énergétique. Également, des changements structurels pourraient contribuer à la décarbonisation des transports, principalement à travers des changements qui limitent les activités de transports ou qui les déplacent vers des moyens plus efficaces. Toutefois, le potentiel de réduction des émissions de CO₂ diffère grandement entre les moyens de transport ; les véhicules lourds, l’aviation et le transport maritime sont grandement dépendants des carburants issus du pétrole. Conséquemment, il est anticipé que l’intensité carbone du secteur du transport deviendra la plus élevée de tous les secteurs d’ici 2040. (GIEC, 2018)

Le secteur de l’AFOLU joue un rôle fondamental afin de limiter le réchauffement climatique à 1,5 °C et atteindre le net zéro émissions de CO₂. D’une part, les émissions du secteur doivent être réduites de
manière significative pour s’aligner avec les scénarios compatibles avec le 1,5 °C. D’autre part, le secteur est responsable d’une multitude de services tels que la production de denrées alimentaires, d’aliments pour les animaux, de bois et de biomasse pour la production d’énergie. Le fait de répondre simultanément à ces deux impératifs implique des transformations importantes dans l’utilisation des terres et dans les pratiques agricoles et forestières. Ces changements sont entraînés par trois principaux facteurs : des changements dans la demande (p. ex. à travers des changements dans les habitudes de consommation), l’efficacité de la production et des facteurs politiques (p. ex. le niveau de protection des terres et la gestion des déchets alimentaires). Les scénarios compatibles avec le 1,5 °C anticipent généralement une diminution du couvert des pâturages et des terres cultivées pour la production alimentaire, notamment grâce à l’intensification de la production sur les terres agricoles. À l’inverse, ils envisagent une augmentation du couvert de terres cultivées pour la production énergétique, tant durant la période 2010-2030 que durant la période 2030-2050. Enfin, la grande majorité des scénarios compatibles avec le 1,5 °C suggèrent une augmentation du couvert forestier durant la période 2010-2050, qui est toutefois grandement variable en raison notamment de la compétition entre les différents types d’utilisation des terres. (GIEC, 2018)

3.1.2 Juste part des réductions d’émissions
La section précédente a mis en lumière la nécessité de réduire massivement et rapidement les émissions mondiales de GES afin de contenir le réchauffement climatique en deçà de 1,5 °C. Pour ce faire, il est impératif que l’ensemble des pays participent à l’effort mondial et réduisent leurs propres émissions dans la plus grande mesure possible. Néanmoins, conformément à des principes fondamentaux d’équité, l’effort qu’un acteur devrait consentir pour lutter contre un problème dépend de sa responsabilité dans la survenue du problème et de sa capacité à le régler (Holz, 2021). Ainsi, les pays ne devraient pas nécessairement tous avoir à consentir les mêmes efforts pour lutter contre les changements climatiques. D’ailleurs, l’article 3.1 de la Convention-cadre des Nations unies sur les changements climatiques stipule qu’il :

Selon cette logique, les pays en développement, puisqu’ils ont contribué aux émissions mondiales de GES dans une moindre mesure et ont moins de ressources, devraient être contraints à des cibles de réductions des émissions moins sévères pour être en mesure de poursuivre leur développement. À l’opposé, les pays développés devraient consentir la majorité des efforts pour lutter contre les changements climatiques. D’ailleurs, Athanasiou et al. (2014) ont développé un cadre de référence pour évaluer la juste part des différents pays dans la réduction des émissions d’ici 2030 afin de limiter le réchauffement planétaire sous la barre du 2 °C. La figure 3.3 illustre les résultats de l’étude : le graphique de gauche représente l’effort mondial de réduction des émissions nécessaire (zone bleue) alors que le graphique de droite représente la juste part des pays dans ces réductions d’émissions selon leur responsabilité et leur capacité. Il en ressort
que les États-Unis est le pays qui devrait consentir le plus d’efforts, en contribuant à 29,7 % de l’effort mondial de réduction des émissions en 2025 (Athanasiou et al., 2014).

Similairement, Holz (2021) a analysé la juste part du Québec dans la lutte aux changements climatiques. Le chercheur se base sur une méthodologie développée par le Civil Society Equity Review, dans laquelle la responsabilité d’une région est basée sur ses émissions historiques de GES et sa capacité est fondée sur son revenu national. L’étude révèle que la juste part du Québec se chiffre à entre 0,38 % et 0,46 % de la totalité de l’effort mondial de réduction des émissions, tandis que sa population s’élève à seulement 0,11 % de la population mondiale. Cette juste part représente une réduction des émissions équivalente à entre 158 % et 194 % sous les niveaux de 1990 d’ici 2030, c’est-à-dire quatre à cinq fois l’objectif de réduction actuel du gouvernement québécois (37,5 % pour 2030). Pour mettre en œuvre une telle réduction, l’auteur souligne que le Québec pourrait réduire ses propres émissions d’environ 60 % d’ici 2030 et réduire le reste (98-134 %) de sa juste part à travers un soutien international envers les pays avec une faible responsabilité du problème et de faibles capacités de réduction des émissions. (Holz, 2021)

L’application de notions d’équité dans les scénarios de lutte aux changements climatiques révèle que l’atteinte du net zéro émissions ne devrait pas nécessairement se produire au même moment pour les différents pays, en fonction de leur responsabilité et de leur capacité. Bien qu’il soit uniquement appliqué aux pays et régions du monde à l’heure actuelle, le concept de la juste part s’avère également pertinent dans le contexte de la carboneutralité à l’échelle d’une organisation. En effet, l’idée peut être transposée à l’échelle d’une entreprise : une organisation étant historiquement responsable d’une grande quantité d’émissions de GES et ayant à sa disposition des ressources considérables devrait potentiellement contribuer à ce que d’autres organisations ailleurs dans le monde — moins responsables du problème et possédant moins de ressources — puissent réduire leurs émissions sans compromettre leur développement. Par exemple, une grande entreprise québécoise pourrait aller au-delà de la carboneutralité en réduisant et compensant plus de 100 % de ses émissions — conformément aux résultats de Holz (2021) — à travers l’obtention de crédits compensatoires à l’international pour compenser les
émissions d’une organisation ou d’une région avec moins de ressources et moins responsable du problème, afin que celle-ci puisse continuer son développement tout en réduisant ses émissions nettes de GES.

3.2. Élimination du carbone

L’élimination du carbone fait référence aux méthodes capables d’éliminer le CO₂ de l’atmosphère. Dans le contexte des scénarios qui limitent le réchauffement climatique, les méthodes d’élimination du carbone servent à neutraliser les émissions résiduelles et parfois à atteindre un stade d’émissions de CO₂ négatives dans la seconde moitié du siècle. Tous les scénarios compatibles avec le 1,5 °C analysés par le GIEC projettent une utilisation de l’élimination du carbone dans une mesure variant entre 100 et 1 000 GtCO₂ au cours du présent siècle. (GIEC, 2018)

Une multitude d’approches pour retirer le CO₂ directement de l’atmosphère sont envisagées pour atteindre le net zéro. Certaines visent à augmenter les stocks de carbone terrestres et côtiers dans la biomasse végétative et les sols. Ces méthodes comptent notamment la reforestation, l’afforestation, l’amélioration de la teneur en carbone des sols et d’autres options de conservation, de restauration et de gestion des terres et des écosystèmes côtiers. D’autres méthodes, comme la BECSC et la capture directe de l’air avec stockage du carbone (DACCS), visent à séquestrer le CO₂ dans des formations géologiques. D’une part, la BECSC consiste à utiliser de la biomasse pour produire de l’énergie et capter le CO₂ durant la conversion de la biomasse en énergie pour ensuite le stocker dans un réservoir, le retirant ainsi de l’atmosphère. D’autre part, la DACCS est un processus chimique à travers lequel le CO₂ est capturé directement de l’air ambiant pour ensuite être stocké. Ces deux méthodes, parmi d’autres, sont aussi appelées les technologies à émissions négatives (NET). Bien que leur potentiel soit moins bien établi, certaines approches envisagent la séquestration du CO₂ atmosphérique dans les océans alors que d’autres considèrent la minéralisation du CO₂ atmosphérique, comme l’altération forcée. En outre, certaines méthodes ont été proposées pour éliminer le CH₄, le N₂O et les halocarbures de l’atmosphère grâce à la photosynthèse, mais l’efficacité, les coûts et la durabilité de ces techniques restent à évaluer. (GIEC, 2018 ; GIEC, 2018b ; GIEC, 2018d)

Le taux et le type de déploiement des méthodes d’élimination du carbone sont grandement variables entre les différentes trajectoires d’émissions compatibles avec le 1,5 °C. De manière générale, le déploiement des méthodes d’élimination du carbone est significatif dans la grande majorité des scénarios analysés par le GIEC, mais seulement quelques-unes des approches mentionnées précédemment y sont intégrées. La plupart des scénarios limitant le réchauffement climatique à 1,5 °C comptent sur un déploiement important de la BECSC et, dans une moindre mesure, de l’afforestation et de la reforestation. Certains scénarios développés au cours des dernières années incluent aussi d’autres méthodes comme la DACCS et la conservation, la restauration et la gestion des terres. Les autres approches plus incertaines, telles que l’élimination de GES autres que le CO₂ et la séquestration du CO₂ dans les océans, ne sont toujours pas prises en compte dans les modélisations actuelles. (GIEC, 2018)

Dans les scénarios compatibles avec le 1,5 °C, il est estimé que la BECSC jouera un rôle substantiel avec un déploiement équivalent à une séquestration d’environ 480 GtCO₂ au cours du 21e siècle. Dans le même
type de scénarios, la séquestration du CO₂ provenant de la BECSC devrait atteindre environ 0,4 GtCO₂, 4,5 GtCO₂ et 12,4 GtCO₂ par année en 2030, 2050 et 2100 respectivement. Quant au secteur de l’AFOLU (incluant l’afforestation et la reforestation), le GIEC estime qu’il devrait participer à séquestrer environ 210 GtCO₂ au cours du 21ᵉ siècle pour les scénarios compatibles avec le 1,5 °C, par rapport à un scénario de référence. Les émissions nettes de CO₂ de ce secteur devraient se situer à environ -0,1 GtCO₂ par année en 2030 et -2,6 GtCO₂ par année en 2050 et 2100. La figure 3.4 illustre les émissions cumulatives de CO₂ entre 2018 et 2100 pour les quatre scénarios archétypes développés par le GIEC. Le recours à l’élimination du carbone correspond à la différence entre les émissions brutes de CO₂ (ligne horizontale rouge) et les émissions nettes de CO₂ (ligne horizontale mauve), qui s’avère grandement variable entre les quatre scénarios. D’ailleurs, l’ampleur des séquestrations d’émissions réalisées par la BECSC (zone ombragée grise) et le secteur de l’AFOLU (zone ombragée verte) est également variée selon les scénarios. Il apparaît ainsi que les méthodes d’élimination du carbone peuvent jouer un rôle fondamental à l’atteinte du net zéro émissions de CO₂, alors qu’elles peuvent parfois être inutilisées, dépendamment du type de scénarios et de ses hypothèses socio-économiques sous-jacentes. (GIEC, 2018)

Figure 3.4 Émissions cumulatives de CO₂ entre 2018 et 2100 pour quatre scénarios compatibles avec le 1,5 °C (tiré de : GIEC, 2018, p. 123)
D'un côté, les scénarios qui comportent un fort déploiement de l’élimination du carbone sont caractérisés par des températures qui excèdent généralement 1,5 °C et un déploiement important de la BECSC pour rabaisser le réchauffement climatique à 1,5 °C d’ici 2100. C’est notamment le cas du scénario S5 de la figure 3.4, dans lequel le développement économique est intensif en carbone et la majorité des réductions d’émissions se produisent grâce à des moyens technologiques. De l’autre côté, les scénarios qui comprennent un faible déploiement de l’élimination du carbone, bien que plus rares, sont associés à des trajectoires compatibles avec le 1,5 °C. Ces scénarios projettent une utilisation de l’élimination du carbone s’élevant à entre 100 et 200 GtCO₂ au cours du 21ᵉ siècle, provenant principalement de la séquestration biologique et très peu de la BECSC. Or, ces scénarios comportent souvent des hypothèses socio-économiques qui supposent des transformations sociales, économiques et technologiques importantes. Par exemple, le scénario LED de la figure 3.4 — qui ne projette pas l’utilisation de la BECSC — assume une décroissance de la demande énergétique d’ici 2050 et une décarbonisation rapide de l’offre énergétique. Similairement, le scénario S1, qui implique un recours limité à la BECSC, sous-entend une coopération internationale accrue, l’essor d’innovations technologiques faibles en carbone et une transition vers des modes de consommation durables. Malgré leur rôle souvent important dans les modélisations climatiques, les méthodes d’élimination du carbone soulèvent une multitude de préoccupations quant à leur faisabilité et leur durabilité. Ces questions sont abordées dans les sections subséquentes. (GIEC, 2018)

3.2.1 Limites de la séquestration biologique

Les principales méthodes de séquestration biologique considérées dans les scénarios climatiques sont l’afforestation et la reforestation. L’afforestation consiste à planter des arbres sur des terres dépourvues de forêts depuis longtemps tandis que la reforestation implique le rétablissement de forêts supprimées par une cause anthropique ou naturelle dans le passé. Il est estimé qu’environ 500 Mha de terres anciennement boisées et actuellement utilisées de manière non productives sont disponibles pour le rétablissement de forêts. Ensemble, l’afforestation et la reforestation pourraient contribuer à des séquestrations de CO₂ équivalentes à entre 0,5 et 3,6 GtCO₂ par année en 2050, en fonction des scénarios climatiques. (GIEC, 2018)

Une préoccupation importante liée au déploiement de l’afforestation et de la reforestation à grande échelle est la permanence des puits de carbone terrestres. En effet, une multitude de mécanismes (détailés à la section 2.3.2) peuvent renverser le carbone séquestré dans les puits terrestres et le renvoyer dans l’atmosphère. Par ailleurs, la saturation des puits de carbone terrestres affecte le potentiel de l’afforestation et de la reforestation. Ce phénomène fait référence à la limite de carbone qu’un puits peut retirer de l’atmosphère ; lorsqu’un système biologique atteint un stade de « quasi-équilibre », sa capacité à séquestrer le carbone est réduite (Mace et al., 2018). Or, bien que le potentiel de séquestration du carbone par l’afforestation et la reforestation à court terme soit substantiel, le rôle de ces activités devrait réduire au fil du temps. Le processus de saturation des puits de carbone forestiers se produit généralement en quelques années.

2 Les scénarios LED, S1, S2 et S5 de la figure 3.4 correspondent aux scénarios P1, P2, P3 et P4 de la figure 3.2, respectivement.
décennies ou siècles, comparativement à des milliers d’années pour les puits géologiques. La permanence et la saturation affectent aussi le potentiel de séquestration des autres options de séquestration biologique, comme la séquestration du carbone dans le sol (agroforesterie, restauration de terres dégradées, etc.) et le biochar. Ainsi, il s’agit de deux enjeux qui rendent la viabilité des options de séquestration biologique et leur contribution aux cibles de réduction des émissions incertaines. (GIEC, 2018a ; GIEC, 2018d)

Par ailleurs, un déploiement important de ces méthodes d’élaboration de carbone aurait des répercussions significatives sur la disponibilité des terres et de l’eau. Effectivement, l’afforestation et la reforestation ont une empreinte terrestre et une empreinte eau (principalement due à l’évapotranspiration) par tonne de CO₂ séquestrée supérieures aux autres méthodes d’élaboration du carbone, qui s’élèvent respectivement à 80 Mha/GtCO₂ et 92 km³/GtCO₂. En outre, il n’existe pas de consensus clair sur l’impact de l’afforestation et de la reforestation sur les écosystèmes et la biodiversité ; ceux-ci varient grandement en fonction du type de pratiques. Par exemple, l’afforestation avec des monocultures ou des espèces exotiques envahissantes peut avoir des impacts négatifs considérables sur la biodiversité alors que la restauration d’un écosystème forestier avec des espèces natives peut avoir des impacts sociaux et environnementaux positifs. De manière générale, des compromis doivent être faits en ce qui concerne les impacts de l’afforestation et de la reforestation sur la biodiversité et leur potentiel de séquestration du carbone. À titre d’exemple, des pratiques de gestion des forêts qui favorisent les espèces à croissance rapide peuvent mener à des séquestrations de CO₂ accrues, mais aux dépens d’impacts négatifs sur la biodiversité. (GIEC, 2018 ; GIEC, 2018a ; GIEC, 2018d)

3.2.2 Limites des technologies à émissions négatives

Le déploiement des NET envisagé dans les modélisations climatiques compatibles avec le 1,5 °C fait intervenir une variété de préoccupations d’ordre social, environnemental, technique et économique. D’abord, malgré qu’elle soit la principale contributrice à l’élaboration du carbone dans la grande majorité des scénarios climatiques, la BECSC est limitée par plusieurs contraintes. Il est estimé que le potentiel bioénergétique durable de cette technologie est restreint à environ 100 EJ par année en 2050. Au-delà de ce niveau, le déploiement de la technologie causerait des pressions significatives sur la disponibilité des terres, la production d’aliments et leur prix, la préservation de la biodiversité et des écosystèmes, l’eau et les nutriments des sols. De plus, l’intensité carbone de la BECSC demeure incertaine puisqu’elle dépend de plusieurs facteurs, tels que les émissions directes et indirectes liées aux changements d’affectation des terres, la matière première considérée et la présence de politiques pour minimiser les effets secondaires négatifs. (GIEC, 2018d)

Un autre enjeu lié à la BECSC est la capacité de stockage du CO₂ dans les réservoirs géologiques, dont les estimations varient grandement dans la littérature. Néanmoins, c’est environ 10 000 GtCO₂ qui pourraient être stockés dans les réservoirs souterrains, une capacité qui serait toutefois insuffisante pour certaines régions. De surcroît, le développement des infrastructures dans une mesure suffisante et à temps pour être capable de stocker une telle quantité de CO₂ est une contrainte importante. Également, certains
soulignent que les scénarios climatiques impliquant la BESC posent des hypothèses inadéquates concernant l’acceptabilité sociale de la technologie et les structures de gouvernance l’entourant. En effet, les incitatifs économiques pour le déploiement de la BESC sont à l’heure actuelle insuffisants, ce qui laisse présager une incertitude quant à faisabilité d’un déploiement à grande échelle et à temps pour limiter le réchauffement climatique à 1,5 °C. D’ailleurs, la BECSC figure parmi les méthodes d’élimination du carbone les plus coûteuses, avec des estimations qui varient entre 100 et 200 USD/tCO₂. (GIEC, 2018a ; GIEC, 2018d)

La DACCS, quant à elle, peut permettre d’éviter la compétition pour les terres qu’engendrent d’autres méthodes d’élimination du carbone. Toutefois, la principale limite de cette technologie est sa consommation énergétique importante, étant donné la faible concentration atmosphérique de CO₂ dans l’air ambiant. Effectivement, elle est environ 200 fois moindre que dans les gaz de capture des centrales électriques au gaz ou au charbon ; la DACCS nécessite ainsi considérablement plus d’énergie que la capture du CO₂ dans ces centrales. La consommation énergétique de cette technologie pourrait s’éllever jusqu’à 12,9 GJ/t éq. CO₂, engendrant une consommation annuelle moyenne de 156 EJ par année en 2100, ce qui représente 26 % de l’offre mondiale d’énergie primaire actuelle. Considérant le stade de développement peu avancé de cette technologie ainsi que ses coûts élevés, le déploiement de la DACCS à grande échelle demeure un défi de taille. (GIEC, 2018a ; GIEC, 2018d)

L’altération forcée fait également face à plusieurs contraintes qui limitent son potentiel déploiement. L’altération est un processus naturel de décomposition de la roche à travers des processus chimiques et physiques dans lesquels le CO₂ et consommé et converti en bicarbonates alcalins et/ou carbonates solides ou dissous. L’altération forcée vise essentiellement à accélérer ce processus grâce à la distribution de matériaux rocheux broyés sur la terre, les côtes ou dans l’océan. Comme pour bien d’autres options d’élimination du carbone, la maturité de cette technologie est une limite importante, avec un déploiement à grande échelle qui pourrait prendre jusqu’à plusieurs décennies. En effet, un tel déploiement implique des coûts considérables en matière de transport, d’élimination et d’exploitation minière. En outre, l’altération forcée compte certains effets secondaires indésirables, comme une augmentation du pH de l’eau, le rejet de métaux lourds comme le nickel et le chrome, le rejet de nutriments comme le potassium et le calcium et des changements dans les propriétés hydrologiques des sols. D’autres technologies capables d’éliminer le carbone existent, mais il existe peu de preuves et un faible consensus quant à leur capacité à contribuer à une décarbonisation rapide. (GIEC, 2018a ; GIEC, 2018d)

De manière générale, des inquiétudes sont souvent manifestées quant au fait que la création d’attentes concernant le déploiement des NET à grande échelle dans le futur pourrait mener à une diminution des efforts de réduction des émissions à court terme. À cet égard, les modélisations climatiques confirment que la disponibilité de l’élimination du carbone influence significativement la trajectoire des réductions d’émissions. Par exemple, les réductions d’émissions doivent être plus rapides et plus grandes pour limiter le réchauffement climatique à 1,5 °C lorsque la disponibilité future des méthodes d’élimination du carbone
est réduite dans les scénarios. Ainsi, un arbitrage doit être fait entre les réductions d’émissions à court terme et le recours à l’élimination du carbone à long terme, qui comporte cependant une variété d’incertitudes. Bref, l’ensemble des NET, au même titre que les autres options d’élimination du carbone, fait face à une multitude d’incertitudes et d’enjeux transversaux qui pourraient limiter leur futur déploiement. Ces derniers sont résumés dans le tableau 3.1. (GIEC, 2018d)

Tableau 3.1 Enjeux et incertitudes des méthodes d’élimination du carbone (tiré de : GIEC, 2018d, p. 347)

<table>
<thead>
<tr>
<th>Area of Uncertainty</th>
<th>Cross-Cutting issues and Uncertainties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technology upscaling</td>
<td>• Nemet et al. (2018) find >50% of the CDR innovation literature concerned with the earliest stages of the innovation process (R&D), identifying a dissonance between the large CO₂ removals needed in 1.5°C pathways and the long-time periods involved in scaling up novel technologies.</td>
</tr>
<tr>
<td></td>
<td>• Lack of post-R&D literature, including incentives for early deployment, niche markets, scale up, demand, and public acceptance.</td>
</tr>
<tr>
<td>Emerging and niche technologies</td>
<td>• For BECCS, there are niche opportunities with high efficiencies and fewer trade-offs, for example, sugar and paper processing facilities (Möllersten et al., 2003), district heating (Käki et al., 2013; Ericsson and Werner, 2016), and industrial and municipal waste (Sanna et al., 2012). Turner et al. (2018) constrain potential using sustainability considerations and overlap with storage basins to avoid the CO₂ transportation challenge, providing a possible, though limited entry point for BECCS.</td>
</tr>
<tr>
<td></td>
<td>• The impacts on land use, water, nutrients and albedo of BECCS could be alleviated using marine sources of biomass that could include aquacultured micro and macro flora (Hughes et al., 2012; Lennon, 2014).</td>
</tr>
<tr>
<td></td>
<td>• Regarding captured CO₂ as a resource is discussed as an entry point for CDR. However, this does not necessarily lead to carbon removals, particularly if the CO₂ is sourced from fossil fuels and/or if the products do not store the CO₂ for climate-relevant horizons (von der Assen et al., 2013) (see also Section 4.3.4.5).</td>
</tr>
<tr>
<td></td>
<td>• Methane is a much more potent GHG than CO₂ (Montzka et al., 2011), associated with difficult-to-abate emissions in industry and agriculture and with outgassing from lakes, wetlands, and oceans (Lackey, 2012; Stolari et al., 2012). Enhancing processes that naturally remove methane, either by chemical or biological decomposition (Sundquist et al., 2012), has been proposed to remove CH₄. There is low confidence that existing technologies for CH₄ removal are economically or energetically suitable for large-scale air capture (Boucher and Folberth, 2010). Methane removal potentials are limited due to its low atmospheric concentration and its low chemical reactivity at ambient conditions.</td>
</tr>
<tr>
<td>Ethical aspects</td>
<td>• Preston (2013) identifies distributive and procedural justice, permission, moral hazard (Shue, 2018), and hubris as ethical aspects that could allow for scale-up CDR deployment.</td>
</tr>
<tr>
<td></td>
<td>• There is a lack of reflection on the climate futures produced by recent modelling and implying very different ethical costs/risks and benefits (Minx et al., 2018).</td>
</tr>
<tr>
<td>Governance</td>
<td>• Existing governance mechanisms are scarce and either targeted at particular CDR options (e.g., ocean-based) or aspects (e.g., concerning indirect land-use change (ILUC) associated with bioenergy upscaling, and often the mechanisms are at national or regional scale (e.g., EU). Regulation accounting for ILUC by formulating sustainability criteria (e.g., the EU Renewable Energy Directive) has been assessed as insufficient in avoiding leakage (e.g., Frank et al., 2013).</td>
</tr>
<tr>
<td></td>
<td>• An international governance mechanism is only in place for R&D of ocean fertilization within the Convention on Biological Diversity (MO, 1972, 1996, CBD, 2008, 2010).</td>
</tr>
<tr>
<td></td>
<td>• Burns and Nicholson (2017) propose a human rights-based approach to protect those potentially adversely impacted by CDR options.</td>
</tr>
<tr>
<td>Policy</td>
<td>• The CDR potentials that can be realized are constrained by the lack of policy portfolios incentivising large-scale CDR (Peters and Geden, 2017).</td>
</tr>
<tr>
<td></td>
<td>• Near-term opportunities could be supported through modifying existing policy mechanisms (Lomax et al., 2015).</td>
</tr>
<tr>
<td></td>
<td>• Scott and Geden (2018) sketch three possible routes for limited progress, (i) at EU-level, (ii) at EU Member State level, and (iii) at private sector level, noting the implied paradigm shift this would entail.</td>
</tr>
<tr>
<td></td>
<td>• EM may struggle to adopt policies for CDR deployment on the scale or time-frame envisioned by IAMs (Geden et al., 2018).</td>
</tr>
<tr>
<td></td>
<td>• Social impacts of large-scale CDR deployment (Buck, 2016) require policies taking these into account.</td>
</tr>
<tr>
<td>Carbon cycle</td>
<td>• On long time scales, natural sinks could reverse (C.D. Jones et al., 2016)</td>
</tr>
<tr>
<td></td>
<td>• No robust assessments yet of the effectiveness of CDR in reverting climate change (Tokarska and Zickfeld, 2015; Wu et al., 2015; Kelley et al., 2018), see also Chapter 2, Section 2.2.2.2.</td>
</tr>
</tbody>
</table>
4. ANALYSE DES RÉFÉRENTIELS DE CARBONEUTRALITÉ DES ENTREPRISES

Au fil des dernières années, des référentiels ont été développés et publiés afin d’accompagner les entreprises souhaitant engager une démarche de carboneutralité. Ces derniers offrent une définition standardisée de la carboneutralité à l’échelle d’une organisation et encadrent la démarche en spécifiant diverses exigences. Ce troisième chapitre présente une analyse de trois référentiels de carboneutralité à l’échelle d’une organisation : les référentiels CarbonNeutral Protocol, PAS 2060 et NZI. Ces derniers ont été sélectionnés afin que l’analyse porte sur les référentiels les plus reconnus et ayant été développés par les organismes les plus crédibles. Néanmoins, il importe de mentionner que deux référentiels majeurs sont en cours de développement. Il s’agit d’un référentiel de la Science Based Targets initiative (SBTi), dont la publication est prévue pour l’automne 2021, et de la norme ISO 14068 (ISO, s. d.b ; Science Based Targets, s. d.). La démarche de chacun des référentiels à l’étude est d’abord analysée et les principales différences et incohérences entre eux sont ensuite mises en lumière.

4.1 The CarbonNeutral Protocol

L’organisation Carbon Neutral a été créée et est gérée par Natural Capital Partners, une entreprise qui fournit des solutions innovantes en ce qui a trait entre autres la réduction des émissions de GES, l’efficacité énergétique et la conservation de la biodiversité (Carbon Neutral, s. d.a ; Natural Capital Partners, s. d.). En 2002, Carbon Neutral a été la première organisation à publier un référentiel destiné aux entreprises souhaitant atteindre la carboneutralité. Ce cadre de référence, le CarbonNeutral Protocol, est soumis à une révision tous les ans grâce à un cycle de développement annuel qui implique la contribution d’une multitude de parties prenantes. Le référentiel fournit une gamme d’exigences afin de procurer aux entreprises un guide complet et unique pour réaliser une déclaration de carboneutralité crédible et transparente. L’objectif du CarbonNeutral Protocol est de fournir un cadre de référence basé sur les meilleures pratiques du marché et qui offre un processus unifié et reconnu à l’international pour déclarer la carboneutralité. (Natural Capital Partners, 2021)

Le référentiel est à la base de la certification CarbonNeutral, octroyée par Natural Capital Partners pour reconnaître les organisations, activités et produits carboneutres. Selon le CarbonNeutral Protocol, l’atteinte de cette certification est réalisée en cinq grandes étapes obligatoires : définir, mesurer, cibler, réduire et communiquer. Les sections qui suivent sont organisées conséquemment et présentent la démarche, les exigences et les recommandations associées à chacune de ces cinq étapes. (Natural Capital Partners, 2021)
4.1.1 Définition de l’entité

La première étape du CarbonNeutral Protocol consiste à définir clairement le sujet — c’est-à-dire une entité, un produit ou une activité — qui fera l’objet de la certification CarbonNeutral. Il s’agit principalement de décrire les frontières légales et/ou physiques pertinentes du sujet et d’identifier la durée de la certification CarbonNeutral avec une date de début et de fin. Il existe trois types de certification CarbonNeutral qui font référence à trois différents types de sujets : les entités, les produits et les activités. Conformément aux objectifs de l’essai, les sections suivantes se concentrent sur la certification destinée aux entités et excluent les autres types de sujets. Selon le CarbonNeutral Protocol, les entités couvrent tous les types d’organisations, notamment les compagnies et les organismes du secteur public, et sont définies par un statut légal et des frontières spatiales. (Natural Capital Partners, 2021)

C’est durant cette première étape que le CarbonNeutral Protocol indique les sources d’émissions à prendre en compte dans la démarche de carboneutralité d’un sujet. La certification pour les entités est divisée en sept groupes qui font l’objet d’exigences et de recommandations différentes : les compagnies, organisations et manufacturiers ; les transporteurs ; les hôtels ; les départements, divisions et bureaux ; les opérations ; les centres de données ; et les bâtiments. Quant à la classification des sources d’émissions, le CarbonNeutral Protocol se conforme à la norme GHG Protocol et à ses catégories d’émissions divisées selon les scopes et les catégories d’émissions. Le tableau 4.1 indique les sources d’émissions à prendre en compte selon les sept groupes de la certification pour les entités. (Natural Capital Partners, 2021)
Tableau 4.1 Sources d’émissions à prendre en compte pour les entités (tiré de : Natural Capital Partners, 2021, p. 35)

<table>
<thead>
<tr>
<th>Category</th>
<th>Emission source category / Aligned to the GHG Protocol: Corporate Standard and Value Chain Standard – numbers refer to the emission source numbering within the Value Chain Standard in Guidance 1.3</th>
<th>CarbonNeutral® entity certifications</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Company/ Organization/ Manufacturer</td>
</tr>
<tr>
<td>Scope 1</td>
<td>Direct emissions arising from owned, leased or directly controlled stationary sources that use fossil fuels and/or emit fugitive emissions (e.g. refrigerant gases)</td>
<td>✓</td>
</tr>
<tr>
<td>Scope 2</td>
<td>Direct emissions from owned, leased or directly controlled mobile sources</td>
<td>✓</td>
</tr>
<tr>
<td>Scope 3 upstream</td>
<td>Emissions from the generation of purchased electricity, heat, steam or cooling</td>
<td>✓</td>
</tr>
<tr>
<td>1 Purchased goods and services</td>
<td>1a Water supplied to subject</td>
<td>✓</td>
</tr>
<tr>
<td>2 Capital goods</td>
<td>2a Printers, laptops, computers etc.</td>
<td>✓</td>
</tr>
<tr>
<td>3 Fuel- and energy-related activities (not included in Scope 1 or Scope 2)</td>
<td>3a Upstream emissions of purchased electricity and fuels</td>
<td>✓</td>
</tr>
<tr>
<td>3b Transmission and distribution (T&D) losses²</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>4 Upstream transportation and distribution</td>
<td>4a Outbound courier deliveries of packages²</td>
<td>✓</td>
</tr>
<tr>
<td>4b Third-party transportation and storage of inbound production-related goods²</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>5 Waste generated in operations</td>
<td>5a Wastewater</td>
<td>✓</td>
</tr>
<tr>
<td>5b Other waste</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>6 Business travel</td>
<td>6a All transportation by air, public transport, rented/leased vehicle and taxi</td>
<td>✓</td>
</tr>
<tr>
<td>6b Emissions arising from hotel accommodation associated with business travel</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>7 Employee commuting and homeworking</td>
<td>7a Employee transport between home and workplaces</td>
<td>✓</td>
</tr>
<tr>
<td>7b Employee homeworking (teleworking/remote working)²</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Scope 3 Downstream</td>
<td>Downstream transportation and distribution³</td>
<td>✓</td>
</tr>
<tr>
<td>9</td>
<td>Third-party transportation and storage of sold products³</td>
<td>✓</td>
</tr>
</tbody>
</table>

As defined in the Value Chain Standard, Scope 3 upstream emission source category 8 is not currently required or recommended under any of the CarbonNeutral® entity certifications, for further details see Guidance 1.3

As defined in the Value Chain Standard, Scope 3 downstream emission source categories 10 through 15 are not currently required or recommended under any of the CarbonNeutral® entity certifications, for further details see Guidance 1.3

Certification specific requirements (See Technical Specification 1.2) | ▲ | ▲ |

Legend: ✓ Required • Recommended ▲ Guidance

Il apparaît que le CarbonNeutral Protocol exige aux entreprises de considérer les sources d’émissions des scopes 1 et 2 et de cinq sources d’émissions du scope 3 : les pertes de transmission et de distribution d’électricité, les déchets, le transport lié aux voyages d’affaires, le travail à domicile des employés et le transport et l’entreposage des produits vendus. Ainsi, quatre catégories d’émissions du scope 3 sont partiellement exigées (3, 5, 6 et 7) et une seule est entièrement exigé (9). Les autres sources d’émissions...
parmi les catégories 1 à 7 du scope 3 sont recommandées par le CarbonNeutral Protocol. Par ailleurs, six catégories du scope 3 ne sont ni exigées ni recommandées par le CarbonNeutral Protocol : les actifs loués en amont, la transformation des produits vendus, l’utilisation des produits vendus, la fin de vie des produits vendus, les actifs loués en aval, les franchises et les investissements. (Natural Capital Partners, 2021)

4.1.2 Quantification des émissions de GES

La seconde étape du référentiel à l’étude consiste à quantifier les émissions de GES du sujet et fournir un inventaire de GES complet et exact sur une échelle de temps pertinente. Pour ce faire, l’entité doit d’abord choisir un protocole de comptabilité carbone ; le CarbonNeutral Protocol exige l’utilisation d’un protocole parmi les normes GHG Protocol, ISO 14064-1, le General Reporting Protocol du Climate Registry ou un autre protocole similaire et cohérent. Ensuite, l’entreprise doit définir ses frontières en incluant tous les sites, installations et véhicules qu’elle détient ou sous son contrôle opérationnel. Par après, elle doit identifier les sources d’émissions à inclure dans sa démarche en se référant au tableau 4.1 (tableau 2 dans le CarbonNeutral Protocol). Le référentiel stipule également que tous les GES reconnus sous la CCNUCC doivent être mesurés dans la quantification des émissions de GES du sujet, c’est-à-dire le CO₂, le CH₄, le N₂O, le SF₆, les HFC, les PFC et le NF₃. (Natural Capital Partners, 2021)

Le référentiel exige que la quantification des émissions de GES soit minimalement réalisée annuellement et qu’elle porte sur une période de 12 mois. Lors de la quantification, les données primaires doivent être priorisées par rapport aux données secondaires et les données utilisées doivent être à jour et géographiquement représentatives. Les estimations, extrapolations, modèles et moyennes industrielles peuvent être utilisés lorsque les données primaires ne sont pas disponibles. Dans ce cas, ces hypothèses doivent être enregistrées par l’entité qui effectue la quantification. Lorsque la qualité de données fournies par un client est incertaine, la dépendance des résultats en fonction de la qualité des données doit être clairement indiquée. D’ailleurs, selon le référentiel, l’entité devrait effectuer une description qualitative et/ou quantitative de l’incertitude associée aux données fournies par le client. (Natural Capital Partners, 2021)

³ Dans le CarbonNeutral Protocol, le terme « devrait » est utilisé pour indiquer une recommandation alors que le terme « doit » est utilisé pour indiquer une exigence.
Les émissions de GES doivent être déclarées en éq. CO₂ et en utilisant les PRG basés sur un horizon temporel de 100 ans, et préférentiellement ceux du plus récent rapport d’évaluation du GIEC. Les PRG utilisés pour la quantification des émissions de GES doivent être clairement indiqués dans l’évaluation. Le référentiel indique que les sources d’émissions qui doivent être considérées (tableau 4.1), mais qui représentent moins de 2 % des émissions totales de GES de l’entité et toutes ensemble pas plus de 5 % des émissions de l’entité doivent être incluses et peuvent être calculées à l’aide de méthodes de calcul simplifiées. (Natural Capital Partners, 2021)

En ce qui concerne l’assurance qualité, le référentiel exige que les quantifications de GES soient réalisées par un partenaire d’évaluation approuvé ou révisées par un partenaire d’évaluation reconnu afin d’assurer que la quantification réponde aux exigences du CarbonNeutral Protocol. Pour être approuvés ou reconnus, ces partenaires doivent détenir de l’expérience et des compétences dans les quantifications de GES et les analyses du cycle de vie spécifiques au type d’évaluation (quantification ou révision) et de sujet (entité, produit ou activité). Ils doivent d’ailleurs avoir réalisé un minimum de trois quantifications ou révisions conformes aux standards recommandés par le référentiel. Les quantifications de GES directement effectuées par un partenaire d’évaluation approuvé par le certificateur CarbonNeutral sont acceptées comme étant conformes au CarbonNeutral Protocol sans vérification supplémentaire. Lorsque la quantification des GES est effectuée par le client directement ou par un évaluateur désigné par le client, le référentiel exige une révision par un partenaire d’évaluation reconnu, qui fournit par la suite une attestation que la quantification répond aux exigences du CarbonNeutral Protocol. En revanche, la vérification par une tierce partie indépendante conformément à un standard de vérification reconnu (p. ex. ISO 14064-3) est à la discrétion de l’entité qui fait l’objet de la certification. Néanmoins, le certificateur CarbonNeutral peut exiger une vérification des données utilisées par une tierce partie si l’examen de l’assurance qualité soulève des doutes sur l’exactitude, la complétude et la précision des données utilisées. (Natural Capital Partners, 2021)

4.1.3 Définition d’une cible

Après avoir quantifié ses émissions, une entreprise qui suit la démarche du CarbonNeutral Protocol doit confirmer une cible de carboneutralité qui devra être atteinte grâce à des réductions d’émissions à l’interne et l’utilisation d’instruments économiques. En plus de la cible générale de carboneutralité, le référentiel énonce que « […] le client devrait fixer une cible de réduction des émissions à l’interne afin de s’assurer que ses émissions brutes diminuent au fil du temps. » (Natural Capital Partners, 2021, p. 28). Il importe de noter que la mise en place d’une telle cible est une recommandation et non une exigence du référentiel. En effet, le CarbonNeutral Protocol souligne que :

« […] les organisations sont encouragées à utiliser les outils de gestion établis pour identifier l’équilibre approprié entre les réductions d’émissions à l’interne et l’utilisation de crédits compensatoires pour atteindre la carboneutralité de façon rentable et qui apporte une valeur stratégique. » (Natural Capital Partners, 2021, p. 63)
Par ailleurs, le référentiel recommande de considérer la fixation d’une cible de réduction des émissions alignée avec les trajectoires de réduction d’émissions établies scientifiquement qui limitent le réchauffement planétaire. À ce titre, le CarbonNeutral Protocol mentionne que le SBTi fournit de l’orientation quant à la mise en place d’objectifs alignés avec la science climatique. (Natural Capital Partners, 2021)

4.1.4 Réduction et compensation des émissions

La prochaine étape du cheminement d’une entreprise vers la certification CarbonNeutral consiste à réduire ses émissions jusqu’à la carboneutralité pour la durée de la certification, et ce, à l’aide de réductions d’émissions à l’interne et l’utilisation d’instruments économiques. Le référentiel recommande la mise en place d’un plan de réduction des émissions qui devrait être révisé pour chaque nouvelle période de certification afin d’évaluer le progrès réalisé par rapport aux actions prévues et la faisabilité de réductions supplémentaires. Quant à la compensation, le CarbonNeutral Protocol exige que les crédits compensatoires utilisés soient additionnels, légalement attribuables (les crédits doivent avoir un enregistrement clair de leur propriété à partir du propriétaire du projet GES et par la suite), mesurables, permanents, uniques et vérifiés par un tiers indépendant. À cet égard, le référentiel identifie certains standards dont les crédits compensatoires ont été évalués et respectent les critères en question. Ces standards sont présentés au tableau 4.2. (Natural Capital Partners, 2021)

Tableau 4.2 Standards approuvés pour l’utilisation de crédits compensatoires (Natural Capital Partners, 2021, p. 68)

<table>
<thead>
<tr>
<th>Approved standard</th>
<th>Type of carbon credits generated</th>
</tr>
</thead>
<tbody>
<tr>
<td>American Carbon Registry</td>
<td>Emission Reduction Tonnes (ERTs)</td>
</tr>
<tr>
<td>Australian Emissions Reduction Fund (ERF)¹</td>
<td>Australian Carbon Credit Unit (ACCU)</td>
</tr>
<tr>
<td>Climate Action Reserve</td>
<td>Climate Reserve Tonnes (CRTs)</td>
</tr>
<tr>
<td>Gold Standard for the Global Goals</td>
<td>Gold Standard Voluntary Emission Reduction (VER) credits</td>
</tr>
<tr>
<td>Japanese Credit Scheme²</td>
<td>J-Credits</td>
</tr>
<tr>
<td>Kyoto Protocol’s Clean Development Mechanism (CDM)</td>
<td>Certified Emission Reductions (CERs)</td>
</tr>
<tr>
<td>Kyoto Protocol’s Joint Implementation (JI)</td>
<td>Emission Reduction Units (ERUs)</td>
</tr>
<tr>
<td>UK Woodland Carbon Code²</td>
<td>Woodland Carbon Units</td>
</tr>
<tr>
<td>Verified Carbon Standard (VCS)</td>
<td>Verified Carbon Units (VCUs)</td>
</tr>
</tbody>
</table>

De manière générale, tous les crédits compensatoires certifiés sous l’un de ces standards et chaque type de projets GES sont acceptés par le référentiel et sont traités de manière égale. Néanmoins, il existe quelques exceptions à cette approche générale : les crédits à priori (les Forward Mitigation Units du Climate Action Reserve et les crédits forestiers à priori du Gold Standard) et les REC à long terme ou temporaire du MDP ne sont pas acceptés. De plus, les projets d’énergie hydroélectrique conventionnels d’une capacité installée supérieure à 20 MW et les projets de destruction du HFC-23 et du N₂O (où le N₂O est un sous-produit) sont également prohibés par le référentiel. Par ailleurs, il traite les projets de réduction des

Tableau 4.3 Standards reconnus pour l’utilisation de Certificats d’Attributs Énergétiques (tiré de : Natural Capital Partners, 2021, p. 69)

<table>
<thead>
<tr>
<th>Approved Standard / Governing Body</th>
<th>Type of EAC Generated</th>
<th>Geographical Area Covered</th>
<th>Scope Covered</th>
</tr>
</thead>
<tbody>
<tr>
<td>North American State and Regional level certificate tracking systems</td>
<td>Renewable Energy Certificates (RECs)</td>
<td>North America (U.S. and Canadian territories)</td>
<td>1</td>
</tr>
<tr>
<td>International REC (I-REC) Standard</td>
<td>I-RECs</td>
<td>39 countries across Asia, Latin America, Middle East and Africa</td>
<td>2</td>
</tr>
<tr>
<td>Natural Capital Partners</td>
<td>PowerPlus™</td>
<td>India, Japan, South Korea</td>
<td>2</td>
</tr>
<tr>
<td>APX</td>
<td>Tradable Instruments for Global Renewables (TIGRs)</td>
<td>10 countries across Asia and Latin America</td>
<td>2</td>
</tr>
<tr>
<td>European Energy Certificate System (EECS)</td>
<td>Guarantee of Origin (GO)</td>
<td>27 countries in Europe</td>
<td>2</td>
</tr>
<tr>
<td>Ofgem (Office of Gas and Electricity Markets)</td>
<td>Renewable Energy Guarantee of Origin (REGO)</td>
<td>United Kingdom (UK)</td>
<td>2</td>
</tr>
<tr>
<td>The Renewable Energy Act 2000 – Federal Law Australia</td>
<td>Small-scale Technology Certificates (STCs)</td>
<td>Australia</td>
<td>2</td>
</tr>
<tr>
<td>Green Power Certification, administered by the Green Energy Certification Center, Japan</td>
<td>Green Power Certificates</td>
<td>Japan</td>
<td>2</td>
</tr>
<tr>
<td>Green Gas Certificate Standard (GGCS)</td>
<td>Renewable Gas Guarantee of Origin (RGGO)</td>
<td>United Kingdom (UK)</td>
<td>1</td>
</tr>
</tbody>
</table>

4.1.5 Communication de la démarche

La cinquième et dernière étape du CarbonNeutral Protocol consiste à fournir de l’information transparente et exacte quant à la manière dont la certification CarbonNeutral a été obtenue. Le référentiel exige d’abord que les communications liées à la certification d’un client soient claires, transparentes et basées sur des faits pour éviter la confusion et les malentendus. De plus, les communications doivent être cohérentes avec le type de certification obtenue (entités, produits ou activités). Le CarbonNeutral Protocol recommande aux clients de divulguer publiquement le indicateur de leur inventaire de GES (émissions brutes et intensité GES) et les activités de réductions des émissions liées à la certification CarbonNeutral, sans toutefois l’exiger. (Natural Capital Partners, 2021)
4.2 PAS 2060

La première édition du référentiel PAS 2060 a été publiée en 2010 par l'organisation BSI. Elle a ensuite été révisée avant d'être republiée en 2014 pour tenir compte des avancées dans les connaissances sur la quantification, la réduction et la compensation des émissions de GES. Le référentiel précise les exigences à remplir pour n’importe quel type d’entité qui souhaite démontrer la carboneutralité. Ces exigences suivent un processus de huit étapes : déterminer le sujet visé par la déclaration de carboneutralité, quantifier ses émissions à l’aide d’une méthodologie reconnue, développer un plan de gestion de l’empreinte carbone, réduire l’empreinte carbone du sujet et évaluer l’efficacité des mesures, quantifier les émissions résiduelles du sujet, compenser les émissions résiduelles et réaliser une déclaration d’atteinte de la carboneutralité. Les prochaines sections sont organisées en fonction de ses étapes et présentent les exigences et les recommandations associées à chacune d’elles. (BSI, 2014)

4.2.1 Détermination du sujet et de son périmètre

La première étape que doit réaliser une entité souhaitant démontrer la carboneutralité conformément au PAS 2060 consiste à déterminer le sujet en s’assurant de spécifier toutes ses caractéristiques (fins, objectifs, ou fonctionnalité) et en tenant compte de toutes les activités matérielles4 à la réalisation des fins, objectifs ou de la fonctionnalité du sujet. Si un changement matériel survient au sujet défini au préalable, le cycle du référentiel PAS 2060 doit recommencer en fonction d’un sujet redéfini. De plus, l’entité doit documenter le raisonnement derrière la sélection du sujet en prenant soin d’expliquer la raison de l’exclusion d’une ou de plusieurs sources d’émissions matérielles. Au même titre que le référentiel précédent, le PAS 2060 s’applique à plusieurs types de sujets comme des activités, des produits, des services, des évènements, etc. L’analyse de son contenu se concentre sur les exigences et les recommandations qui s’appliquent lorsque le sujet est une entreprise ou une organisation autre. (BSI, 2014)

Lors de la détermination du périmètre à considérer, le PAS 2060 exige que l’ensemble des émissions de GES liées aux opérations essentielles de l’entité soit inclus, y compris celles liées aux filiales détenues et exploitées par l’organisation. De surcroît, la méthodologie utilisée pour déterminer les sources d’émissions à considérer devrait respecter les principes suivants :

a) Tous les GES doivent être inclus et convertis en t éq. CO₂ ;

b) 100 % des émissions directes (scope 1) matérielles doivent être incluses lors de la quantification des émissions ;

c) 100 % des émissions de scope 2 matérielles doivent être incluses lors de la quantification des émissions ;

d) Lorsque des estimations d’émissions de GES sont utilisées durant de la quantification des émissions, elles doivent être déterminées de manière à exclure les sous-estimations ;

e) Toutes les sources d’émissions matérielles (une source d’émissions est matérielle lorsqu’elle représente plus de 1 % de l’empreinte carbone total du sujet) doivent être incluses, sauf si des preuves

4 Le référentiel PAS 2060 définit la matérialité comme une contribution significative au résultat de quelque chose.
peuvent être fournies pour démontrer qu’une telle quantification ne serait pas techniquement réalisable, praticable ou rentable. Les décisions d’exclure des sources d’émissions matérielles doivent respecter trois conditions : l’empreinte carbone quantifiée doit représenter au moins 95 % des émissions totales du sujet ; lorsqu’une seule source d’émissions représente plus de 50 % des émissions totales du sujet, le seuil de 95 % s’applique aux autres sources d’émissions ; et toute exclusion et la raison d’être de celle-ci doivent être documentées. (BSI, 2014)

Le référentiel identifie trois documents dans lesquels les méthodologies de détermination du sujet sont jugées comme étant conformes aux exigences mentionnées plus haut. Il s’agit de la norme ISO 14064-1, de la norme GHG Protocol et du UK Govt Environmental Reporting Guidelines. D’ailleurs, il est présumé que les méthodologies de ces documents sont conformes aux exigences du PAS 2060 pour l’ensemble des étapes suivantes de la démarche. Les entités doivent ensuite confirmer et documenter que leur application de la méthodologie choisie pour déterminer le sujet et les sources d’émissions à considérer est conforme aux principes du PAS 2060. Qui plus est, l’entité doit fournir de la documentation, notamment des détails et la justification de toute exclusion d’une source d’émissions du scope 3 et l’identification des incertitudes et de la variabilité associées à la détermination des frontières du sujet. (BSI, 2014)

4.2.2 Quantification des émissions et engagement de carboneutralité

L’étape suivante consiste à quantifier les émissions du sujet et s’engager à atteindre la carboneutralité. La méthodologie utilisée pour quantifier les émissions doit respecter plusieurs principes, présentés dans le tableau 4.4. Si l’entité souhaite utiliser une méthodologie autre que celles des normes ISO 14064-1, GHG Protocol et UK Govt Environmental Reporting Guidelines, elle doit confirmer et documenter qu’elle est conforme à ces principes.

Tableau 4.4 Principes à respecter pour la méthodologie de quantification des émissions (traduction libre de : BSI, 2014, p. 9)

<table>
<thead>
<tr>
<th>Principe</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Le sujet et ses frontières doivent être clairement identifiés et documentés.</td>
</tr>
<tr>
<td>2</td>
<td>L’empreinte carbone doit être basée sur des données d’activités primaires sauf si l’entité peut démontrer qu’il ne serait pas faisable de faire ainsi et qu’une source de données secondaires crédible et cohérente avec l’entité est disponible.</td>
</tr>
<tr>
<td>3</td>
<td>La méthodologie utilisée doit minimiser l’incertitude et donner des résultats précis, cohérents et reproductibles.</td>
</tr>
<tr>
<td>4</td>
<td>Lorsque la quantification est basée sur des calculs, les émissions de GES doivent être calculées en utilisant les facteurs d’émissions provenant de publications nationales. Si ces facteurs d’émissions sont indisponibles, les lignes directrices internationales ou d’industrie doivent être utilisées.</td>
</tr>
<tr>
<td>5</td>
<td>Les facteurs d’émissions utilisés doivent être pertinents à l’activité concernée et à jour au moment de la quantification.</td>
</tr>
<tr>
<td>6</td>
<td>La conversion des GES autres que le CO₂ en éq. CO₂ doit être basée sur les PRG (100 ans) du GIEC.</td>
</tr>
<tr>
<td>7</td>
<td>La quantification de l’empreinte carbone doit être réalisée en excluant tout achat de crédits compensatoires.</td>
</tr>
<tr>
<td>8</td>
<td>Les empreintes carbones doivent être exprimées en t éq. CO₂.</td>
</tr>
</tbody>
</table>
Le PAS 2060 exige que l’entité prépare de la documentation pour corroborer la quantification de l’empreinte carbone, notamment en justifiant la méthodologie, les hypothèses, les méthodes de calcul et les facteurs d’émissions utilisés. À la suite de la quantification des émissions, l’entité doit s’engager à atteindre, et à maintenir lorsqu’applicable, la carboneutralité du sujet défini. Pour ce faire, l’entité doit développer un plan de gestion de l’empreinte carbone qui doit notamment inclure :

a) Une déclaration d’engagement à atteindre la carboneutralité pour le sujet ;

b) Un échéancier pour atteindre la carboneutralité du sujet ;

c) Des cibles de réduction des émissions appropriées avec l’échéancier pour atteindre la carboneutralité ;

d) Les moyens prévus pour atteindre et maintenir des réductions d’émissions ;

e) La stratégie de compensation qui sera adoptée, incluant une estimation des émissions à compenser et la nature, le nombre et le type des crédits compensatoires. (BSI, 2014)

La déclaration d’engagement à atteindre la carboneutralité est valide pour une durée maximale de 12 mois, après laquelle les conditions de qualification et les actions doivent être revalidées. Lorsque l’entité compte maintenir le statut de carboneutralité, elle doit mettre à jour son plan de gestion de l’empreinte carbone tous les 12 mois minimalement (BSI, 2014).

4.2.3 Réduction des émissions

Afin d’atteindre des réductions d’émissions, le référentiel PAS 2060 exige que l’entité implémente son plan de gestion de l’empreinte carbone développé préalablement. D’ailleurs, l’entité doit avoir un processus en place pour réaliser une évaluation périodique de sa performance par rapport à ce plan et pour mettre en place des actions correctives afin d’atteindre les cibles établies. Pour la première période d’application, l’entité peut prendre en compte des réductions d’émissions historiques pour atteindre ses cibles de réduction, c’est-à-dire des réductions d’émissions qui ont été réalisées immédiatement avant la date de référence (le début de la première période d’application). Ainsi, une déclaration d’atteinte de la carboneutralité peut être faite à la fin de la première période d’application et peut être basée sur des réductions d’émissions durant cette période et des réductions d’émissions réalisées durant une période continue et spécifique immédiatement avant la date de référence (voir figure 4.1). Lorsque de telles réductions historiques sont prises en compte, l’entité doit identifier la période en question et confirmer que suffisamment de données sont disponibles pour quantifier l’empreinte carbone conformément à la méthodologie utilisée. (BSI, 2014)

L’entreprise doit ensuite quantifier les réductions d’émissions du sujet pour déterminer le niveau des émissions résiduelles qui nécessiteront une compensation. Pour ce faire, l’entité doit utiliser une méthodologie qui respecte les principes suivants :

a) Les quantités et les types de GES qui ont été réduits et la période doivent être documentés ;

b) Les réductions d’émissions doivent être exprimées de manière absolue et faire référence à la période d’application choisie ou être exprimées en termes d’intensité (p. ex. par unité d’un produit) ;

c) La méthodologie utilisée doit être la même que celle utilisée pour quantifier l’empreinte carbone ;

52
Les réductions d’émissions réalisées à l’extérieur du périmètre du sujet ne devraient pas être inclues. (BSI, 2014)

Par la suite, l’entreprise doit justifier les réductions des émissions en fournissant de la documentation, notamment sur : les moyens entrepris pour atteindre les réductions ; le niveau de réduction d’émissions atteint ; le pourcentage des réductions d’émissions par rapport à l’empreinte carbone initiale ; et l’alignement ou non des réductions d’émissions par rapport à celles prévues au plan de gestion de l’empreinte carbone et les raisons des variations. (BSI, 2014)

4.2.4 Compensation des émissions résiduelles

En ce qui a trait à la compensation des émissions résiduelles, la méthodologie utilisée et les crédits compensatoires doivent répondre à une multitude d’exigences. D’abord, les projets qui génèrent les crédits compensatoires doivent respecter les critères d’additionnalité, de permanence, de fuites d’émissions et de double comptage. De plus, les crédits compensatoires doivent être vérifiés par un tiers indépendant, être de type ex-post (livré après que la réduction d’émissions est générée), être supportés par de la documentation disponible publiquement et être enregistrés et retirés d’un registre crédible et indépendant. Le référentiel PAS 2060 présume que les crédits compensatoires issus des standards présentés dans le tableau 4.5 respectent ses exigences. Toutefois, d’autres standards peuvent être utilisés, à condition qu’ils respectent les critères définis par le PAS 2060. (BSI, 2014)

Tableau 4.5 Standards acceptés pour l’utilisation de crédits compensatoires (traduction libre de : BSI, 2014, p. 29)

<table>
<thead>
<tr>
<th>Type de marché</th>
<th>Standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marchés réglementés</td>
<td>CDM ; Joint Implementation ; Quotas européens (European Union Allowances) ; Woodland Carbon Code</td>
</tr>
<tr>
<td>Marchés volontaires</td>
<td>Gold Standard ; Voluntary Carbon Standard ; Climate, Community and Biodiversity Standard</td>
</tr>
</tbody>
</table>

Ensuite, l’entité doit documenter sa démarche de compensation des émissions résiduelles en incluant :

a) Les émissions de GES ont été compensées ;
b) La quantité de crédits compensatoires requise ;
c) Le type de projets GES et le type de crédits compensatoires utilisés ;
d) La confirmation que le standard utilisé pour les crédits compensatoires respecte les principes du référentiel et qu’il a été utilisé conformément à ses propres dispositions ;
e) Le nombre et le type de crédits compensatoires utilisés, la période pendant laquelle les crédits ont été générés et la date à laquelle ils ont été retirés ;
f) Suffisamment d’informations quant au retrait des crédits compensatoires pour prévenir leur utilisation par d’autres acteurs. (BSI, 2014)

Il importe de mentionner que l’atteinte de la carboneutralité peut être réalisée entièrement à partir de l’obtention de crédits compensatoires pour la première période d’application, sans que l’entité ait besoin de
réduire ses émissions. Durant les périodes subséquentes, le PAS 2060 exige que des réductions d’émissions soient réalisées pour que le statut de carboneutralité soit déclaré (voir figure 4.1). (BSI, 2014)

4.2.5 Déclarer et maintenir le statut de carboneutralité

Les dernières étapes de la démarche de carboneutralité du référentiel à l’étude consistent à déclarer avoir atteint la carboneutralité conformément au PAS 2060 et à maintenir le statut de carboneutralité. Cette déclaration est faite de manière rétrospective et est applicable à la période couverte par les données validées. Ces déclarations sont ainsi valides et permanentes pour la période en question, mais ne peuvent pas être extrapolées à des périodes subséquentes. La déclaration de conformité au PAS 2060 doit identifier le type d’évaluation de la conformité auquel l’entité souscrit dans sa démarche, parmi :

a) Une certification d’un tiers indépendant ;
b) Une validation d’un tiers autre ;
c) Une « autovalidation ». (BSI, 2014)

Dans les deux premiers cas, les entités qui souhaitent la certification d’un tiers indépendant ou la validation d’un tiers autre doivent s’assurer que ces acteurs appliquent des méthodologies d’évaluation appropriées, comme notamment les normes ISO 14065, ISO 14064-3 et GHG Protocol. Dans le cas d’une « autovalidation », les entités doivent être en mesure de démontrer que la quantification et les actions prises pour atteindre la carboneutralité sont conformes aux exigences du PAS 2060. Le référentiel stipule que la méthode appropriée pour une « autovalidation » et pour la présentation des résultats doit être à travers l’application de la norme ISO 14064-1. Le référentiel PAS 2060 souligne que les entités qui utilisent ce type d’évaluation de la conformité devraient être conscientes que la validation à l’externe peut être exigée en cas de contestation. Toutes déclarations faites conformément au PAS 2060 doivent inclure les éléments suivants : identification du sujet, identification de l’entité responsable de faire la déclaration, date de début et période d’application, le type d’évaluation auquel la démarche souscrit et une référence donnant accès facilement et gratuitement à toutes les pièces justificatives de la démarche. La figure 4.1 offre un aperçu du processus cyclique pour démontrer la carboneutralité selon le PAS 2060. (BSI, 2014)
4.3 Net Zero Initiative

Le référentiel NZI a été publié en 2020 par Carbone 4, une entreprise de consultation française spécialisée dans les stratégies de réduction des émissions et l’adaptation aux changements climatiques (Carbone 4, s. d.). Il est le fruit d’un travail de concertation et de collaboration avec plusieurs entreprises et un conseil scientifique. L’objectif principal du référentiel NZI est « [...] de proposer aux organisations une vision des choses leur permettant d’optimiser (et de rendre visible) leur action climat en vue de l’émergence de la neutralité carbone mondiale [...] » (Carbone 4, 2020, p. 38). Le document à l’étude est divisé en deux grandes parties : une partie informative, intitulée « Comprendre la neutralité carbone », et une partie normative, le référentiel NZI. La partie informative prend notamment la forme d’une analyse critique du concept de carboneutralité tel qu’appliqué à l’heure actuelle par les entreprises. C’est à partir de cette analyse que sont développés les grands principes sur lesquels se base le référentiel :

a) Considérer les organisations comme des participantes à l’action collective vers le net zéro mondial, plutôt que comme des entités individuellement « neutres en carbone » ;

b) Réhabiliter le juste niveau d’ambition derrière le mot « neutralité ». Afin d’éviter le greenwashing, il s’agit que la neutralité carbone à l’échelle de l’entreprise porte le même degré d’ambition que celle qui prévaut pour la neutralité carbone à l’échelle planétaire, qui nécessite des transformations importantes ;

c) Distinguer rigoureusement les réductions d’émissions et les émissions négatives ;

Figure 4.1 Processus cyclique pour démontrer la carboneutralité selon le référentiel PAS 2060 (tiré de : BSI, 2014, p. 6)
d) Clarifier le concept des « émissions évitées » et élargir le concept à « contribution à la neutralité planétaire » ;

e) Réexaminer le statut de la compensation carbone et séparer strictement ce qui est réalisé à l’intérieur et à l’extérieur de la chaîne de valeur d’une organisation. Il s’agit de séparer la déclaration des émissions de GES d’une organisation et ses financements de projets GES hors de sa chaîne de valeur et qu’aucune opération (addition, soustraction, etc.) ne soit effectuée entre ces deux composantes. (Carbone 4, 2020)

Le référentiel NZI est divisé en trois grandes sections, que le référentiel réfère à trois piliers : réduire ses émissions de GES (Pilier A), réduire les émissions des autres (Pilier B) et augmenter les puits de carbone (Pilier C). Les sections qui suivent présentent le contenu de ces sections ainsi que les exigences et recommandations y étant associées. (Carbone 4, 2020)

4.3.1 Quantification et réduction de ses émissions

Selon le référentiel, le premier levier d’une organisation consiste à réduire ses émissions directes et indirectes, à savoir l’ensemble des émissions dans sa chaîne de valeur. Il s’agit d’abord de quantifier les émissions annuelles de GES de l’organisation en exprimant la quantité totale en éq. CO₂. Pour la quantification des émissions, le référentiel NZI recommande l’utilisation des normes ISO 14064-1, GHG Protocol ou du Bilan Carbone, en laissant toutefois la possibilité aux organisations de choisir une autre méthodologie. Ensuite, il recommande l’utilisation de la SBTi pour fixer des cibles de réduction des émissions compatibles avec la science climatique. Les principaux critères de la SBTi sont de fixer une cible sur au moins 95 % des scopes 1 et 2 et sur au moins deux tiers du scope 3 s’il représente au moins 40 % des émissions totales. Néanmoins, le référentiel NZI n’exige ni l’utilisation d’un référentiel spécifique pour la fixation de cibles ni la fixation même d’une cible. L’étape suivante consiste à piloter les réductions d’émissions pour assurer l’efficacité de la stratégie de décarbonisation. À cet égard, le référentiel recommande d’ailleurs l’utilisation de l’outil Assessing Low-Carbon Transition, qui propose des référentiels sectoriels pour que les entreprises alignent leur stratégie de réduction des émissions avec l’ambition de décarbonisation portée par l’Accord de Paris. L’organisation offre des référentiels pour neuf secteurs, entre autres la production automobile, le commerce de détail, les bâtiments, le transport et le ciment (Assessing Low Carbon Transition, s. d.). Ainsi, pour le référentiel NZI, la réduction des émissions (Pilier A) passe par trois étapes — quantifier, fixer des cibles et piloter — qui sont chacune régies par des référentiels déjà existants que le référentiel recommande. Le pilier A est résumé dans la figure 4.2. (Carbone 4, 2020)
4.3.2 Réduction des émissions hors de la chaîne de valeur

Le second pilier du référentiel NZI consiste pour une organisation à réduire les émissions hors de sa chaîne de valeur, c'est-à-dire réduire les émissions des autres. Selon le référentiel, les actions qui visent à réduire les émissions des autres peuvent relever de deux types de réductions d'émissions : les émissions évitées par les produits et services de l'entreprise et les émissions évitées par le financement de projets GES (compensation traditionnelle). Premièrement, le référentiel NZI juge que la commercialisation de produits et services faibles en carbone, lorsqu'il est possible de garantir qu'ils remplacent des produits ou services plus carbonés chez les clients, constitue une réduction d'émissions valide qui contribue à l'atteinte de la carboneutralité de l'entreprise. Le référentiel souligne que ces réductions d'émissions ne sont pas « visibles » dans les cadres de déclaration d'émissions traditionnelles, comme le GHG Protocol et ISO 14064-1. Par exemple, une entreprise commercialisant des véhicules électriques qui remplacent des véhicules plus intensifs en émissions provoque des réductions d'émissions chez ses clients, sans que ces dernières soient prises en compte dans le scope 3 de l'entreprise (les ventes vont plutôt engendrer une augmentation du scope 3). Ainsi, le référentiel déclare que ces contributions devraient être quantifiées puisque « [...] toutes les contributions des entreprises à l'atteinte du net zéro mondial doivent être identifiées et quantifiées [...] pour les faire exister aux yeux des firmes [...] » (Carbone 4, 2020, p. 48). (Carbone 4, 2020)

Ces réductions d'émissions peuvent être considérées selon trois cas. Le premier, et le plus robuste, se présente lorsque la réduction d'émissions fait l'objet d'une certification par un standard reconnu qui atteste que les réductions d'émissions sont « [...] réelles, additionnelles, vérifiables et permanentes, labélisées, vendues et éventuellement achetées par un organisme tiers. » (Carbone 4, 2020, p. 49). Le deuxième cas concerne les produits ou services commercialisés qui sont reconnus par un tiers indépendant comme évitant réellement des émissions, sans toutefois faire l'objet d'un crédit compensatoire puisque le critère d'additionnalité financière ne peut pas être rencontré. En effet, selon le référentiel NZI, une « [...] organisation dont le cœur de métier induit une baisse des émissions de GES de ses clients, que les
services proposés soient financièrement additionnels ou non, est une organisation […] » qui contribue au net zéro mondial (Carbone 4, 2020, p. 49). Le troisième cas survient quand les réductions d’émissions engendrées par la vente de produits et services ne font pas l’objet d’une certification, mais dont la réalité a été vérifiée par un organisme tiers. Le référentiel souligne que l’organisme étant responsable de la vérification doit se baser sur une méthodologie de calcul des émissions évitées robuste et transparente, qu’il s’agisse d’une méthodologie officielle et reconnue (CDM, Gold Standard, etc.) ou développée par lui-même, à condition qu’elle soit argumentée et que le scénario de référence soit très explicite. (Carbone 4, 2020)

Deuxièmement, l’organisation peut réduire les émissions des autres en finançant des projets GES additionnels hors de sa chaîne de valeur. Selon le référentiel NZI, ce financement peut prendre deux formes. La première consiste à financer des projets GES certifiés, c’est-à-dire à se procurer des crédits compensatoires sur les marchés volontaires du carbone. Le référentiel souligne que l’achat de crédits compensatoires ne permet pas à l’organisation de revendiquer la possession de la réduction d’émissions sous-jacentes, mais plutôt son simple financement. Le référentiel énumère une multitude de standards volontaires (Gold Standard, Verra, Plan Vivo, etc.) qui témoignent de la robustesse d’un projet GES, sans toutefois exiger l’utilisation de certains standards en particulier. La seconde forme consiste à financer des projets GES validés, à savoir des projets GES « […] qui n’ont pas spécifiquement fait l’objet d’une labélisation officielle par un standard existant, mais dont la robustesse a été contrôlée par un organisme tiers selon une méthodologie reconnue. » (Carbone 4, 2020, p. 53). Plusieurs cas représentent ce type de financement :

a) L’achat de crédits compensatoires provenant de projets GES non certifiés par un standard, mais validés par une tierce partie selon une méthodologie existante reconnue ;

b) Le financement direct de projets GES dont les réductions d’émissions ont été validées par une tierce partie selon une méthodologie existante reconnue. Dans ce cas, l’entreprise peut revendiquer une quantité d’émissions évitées équivalente à sa contribution financière sur l’ensemble du coût du projet ;

c) La souscription à des contrats d’énergie (électricité, biogaz, etc.) moins carbonés que le mix du pays qui induisent une décarbonisation du mix électrique du territoire en question. Ce cas est applicable à condition que les réductions d’émissions liées à ces contrats ne soient pas prises en compte dans le scope 2 de l’entreprise puisqu’elle comptabilise ses émissions selon l’approche « location-based » et si le financement est additionnel ;

d) L’achat d’obligations vertes, à condition qu’il soit possible de quantifier exactement les émissions réduites par chaque dollar d’obligation à l’aide d’une méthodologie transparente et reconnue ;

e) L’achat de certificats d’économie d’énergie, « […] à condition que ces économies aillent au-delà de la réglementation et que la conversion des kWh [cumulés et actualisés] en tonnes éq. CO₂ soit faite via une méthodologie transparente et reconnue. » (Carbone 4, 2020, p. 54). (Carbone 4, 2020)

Les émissions évitées à considérer dans le Pilier B du référentiel NZI (réduire les émissions des autres) sont résumées dans la figure 4.3.
Lorsque les réductions d’émissions sont uniquement validées et non certifiées par un tiers indépendant, le référentiel suggère d’appliquer une pondération aux réductions d’émissions calculées pour tenir compte de la moindre robustesse et fiabilité de ces réductions d’émissions. Or, le référentiel ne recommande pas de niveaux de pondération spécifiques et laisse le choix des pondérations à appliquer à la discrétion de l’entreprise. Enfin, le référentiel recommande aux organisations de se fixer des cibles quant à leurs contributions aux émissions évitées, et ce, à l’intérieur et à l’extérieur de la chaîne de valeur. (Carbone 4, 2020)

4.3.3 Augmentation des puits de carbone

Le référentiel NZI évoque qu’il importe de séparer la compatibilité des émissions négatives (élimination du carbone) de la comptabilité des réductions d’émissions. Conformément à cette proposition, le troisième pilier du référentiel consiste à augmenter les puits de carbone à l’intérieur et à l’extérieur de la chaîne de valeur. D’un côté, les flux de carbone négatifs directs et indirects dans la chaîne de valeur doivent être quantifiés annuellement. Les flux de carbone négatifs directs sont directement possédés par l’entreprise, par exemple des absorptions de carbone provenant des arbres d’une société forestière ou des techniques de conservation des sols d’un agriculteur. Les flux de carbone négatifs indirects proviennent de la chaîne de valeur de l’entreprise, par exemple chez un fournisseur, par les produits et services vendus (similaire au Pilier B) et dans les actifs de l’organisation (p. ex. dans les bâtiments en bois de l’entreprise). Le référentiel souligne que les cadres de comptabilisation des flux négatifs de carbone sont toujours à développer et que plusieurs clarifications méthodologiques doivent être apportées pour pouvoir prendre en compte les flux négatifs de carbone de manière robuste et fiable. (Carbone 4, 2020)

D’un autre côté, l’entreprise peut augmenter les puits de carbone mondiaux en finançant des projets de séquestration du carbone hors de sa chaîne de valeur. Ce type de financement prend sensiblement la même forme que le financement de projets GES qui réduisent les émissions, à la différence qu’il concerne l’élimination du carbone au lieu des réductions d’émissions. Ainsi, il peut s’agir du financement de projets GES certifiés par un standard volontaire ou du financement de projets GES validés (achats d’unités d’absorption de carbone non certifiées mais validées par une tierce partie, financement direct de projets...
GES et achats d'obligations vertes). Au même titre que pour les réductions d'émissions non certifiées, le référentiel recommande la pondération des flux négatifs de carbone qui émanent d'émissions négatives non certifiées. Le référentiel recommande aux entreprises de fixer des cibles quant à leurs puits de carbone directs et indirects afin qu'elles contribuent à l'augmentation des puits de carbone mondiaux, sans toutefois indiquer de niveaux quelconques. Une classification des trois piliers du référentiel NZI est présentée à l’annexe 2 (Carbone 4, 2020).

4.3.4 Synthèse du Net Zero Initiative

En définitive, le référentiel NZI considère une multitude de catégories d'émissions au sein de trois piliers : réduire ses émissions, réduire les émissions des autres et augmenter les puits de carbone. Ces catégories d'émissions sont aussi divisées selon leur emplacement dans la chaîne de valeur et hors de la chaîne de valeur de l'entreprise. La figure 4.4 présente ces catégories d'émissions à l'intérieur d'une matrice. (Carbone 4, 2020)

![Figure 4.4 Matrice Net Zero Initiative](tiré de : Carbone 4, 2020, p. 73)

Selon le référentiel, un changement de paradigme important s'impose : une entreprise n'est pas carboneutre, elle contribue à la carboneutralité. Cela signifie que le processus lié à la carboneutralité n'est plus statique, mais plutôt dynamique : « l'entreprise doit viser non plus à atteindre une neutralité ponctuelle et immédiate, mais à gérer dynamiquement sa performance climat afin de maximiser sa contribution à l'atteinte de la neutralité mondiale. » (Carbone 4, 2020, p. 7). Ce faisant, le référentiel NZI propose d'abolir le statut de carboneutralité au profit d'un pilotage dynamique de plusieurs paramètres au fil du temps :

a) $A_1 + A_2 + A_3$ doit être aligné avec une trajectoire 1,5 °C ou 2 °C ;

b) B_2 doit être aligné avec une trajectoire à définir ;

c) C_3 doit être aligné avec une trajectoire à définir ;

d) $C_1 + C_2$ et C_3 doivent être alignés avec une trajectoire à définir. (Carbone 4, 2020)
4.4 Principales différences entre les référentiels

L’analyse de ces trois référentiels a permis de mettre en lumière certaines différences et incohérences entre eux. En premier lieu, les référentiels CarbonNeutral Protocol et PAS 2060 ont un caractère normatif tandis que le référentiel NZI a un caractère qui tend davantage sur le côté informatif. À ce titre, le référentiel NZI recommande de suivre ses grandes lignes directrices, sans toutefois exiger des mesures particulières. Malgré un niveau de laxisme accru, les recommandations du référentiel NZI sous-entendent des transformations et des changements de paradigme importants. Par exemple, il met de l’avant l’idée qu’une entreprise ne peut pas être carboneutre, mais qu’elle peut simplement contribuer à la carboneutralité à l’échelle collective. L’utilisation du référentiel NZI implique dès lors une remise en question fondamentale de la définition actuelle de la carboneutralité à l’échelle de l’entreprise ainsi que de la manière dont elle peut être atteinte. Pour cette raison, plusieurs éléments du référentiel NZI correspondent à des propositions et plusieurs clarifications méthodologiques sont de mises pour que sa démarche soit suivie de manière robuste. Les deux autres référentiels comportent quant à eux plusieurs exigences sur les différents éléments de la démarche de carboneutralité d’une entreprise. D’ailleurs, les entreprises qui entreprennent des démarches de carboneutralité conformes aux référentiels PAS 2060 et CarbonNeutral Protocol peuvent voir celles-ci être certifiées tandis que le référentiel NZI agit plutôt comme un guide de référence.

En second lieu, le niveau de transparence et de documentation requis lors d’une démarche selon l’un ou l’autre de ces référentiels est grandement variable. En effet, le référentiel NZI n’exige de la documentation qu’implicitement, c’est-à-dire à travers l’application des méthodologies qu’il recommande, tandis que le CarbonNeutral Protocol et le PAS 2060 exigent une quantité d’informations accrue pour appuyer la démarche. À ce titre, le PAS 2060 s’avère très rigoureux puisqu’il exige de la documentation à toutes les étapes afin de confirmer et vérifier que l’entreprise respecte ses exigences. De plus, il exige à toute entreprise qui souhaite faire une déclaration d’engagement ou d’atteinte de la carboneutralité de rendre publique une liste de vérification qu’elle doit remplir.

En troisième lieu, les sources d’émissions à prendre en compte lors de la quantification des émissions varient en fonction des référentiels. Pour le CarbonNeutral Protocol, le périmètre exigé à considérer est le même pour chaque entreprise (voir tableau 4.1) et rien ne garantit que l’ensemble des émissions matérielles de celle-ci sont prises en compte. D’ailleurs, le référentiel mentionne que l’ensemble des sources d’émissions du scope 3 applicables à l’entité devraient être incluses, lorsqu’faissable. En raison de l’asymétrie d’informations qui existe entre l’entité qui tente de certifier sa démarche et le certificateur qui vérifie la démarche, il apparaît que cette exception (faissabilité) peut permettre aux entreprises d’exclure certaines sources d’émissions matérielles relativement facilement. Ainsi, le CarbonNeutral Protocol laisse une certaine marge de liberté aux entreprises quant au choix de leur périmètre opérationnel. Du côté du référentiel PAS 2060, il exige de prendre toutes les sources d’émissions matérielles, c’est-à-dire celles qui contribue à plus de 1 % des émissions totales de l’entité, sauf si des preuves peuvent être fournies pour démontrer qu’une telle quantification ne serait pas techniquement réalisable, praticable ou rentable. Quant
au référentiel NZI, il laisse l’entreprise définir son périmètre opérationnel avec une norme externe, sans spécifier d’exigences particulières.

En dernier lieu, plusieurs éléments varient en ce qui concerne la réduction et la compensation des émissions. D’abord, le référentiel PAS 2060 est le seul à exiger explicitement une réduction d’émissions pour pouvoir déclarer la carboneutralité sur une période donnée, à l’exception de la première période d’application. En effet, la fixation d’une cible de réduction des émissions est une recommandation du CarbonNeutral Protocol ; une entreprise dont la démarche est certifiée par ce référentiel peut atteindre la carboneutralité sans réduire ses propres émissions et en compensant 100 % de celles-ci grâce à l’obtention de crédits compensatoires. Ensuite, les mécanismes pris en compte pour compenser les émissions résiduelles diffèrent fortement pour le référentiel NZI. Celui-ci considère les réductions d’émissions (émissions évitées ou absorptions d’émissions) par les produits et services de l’entreprise — qu’elles soient additionnelles ou non — comme étant des réductions d’émissions légitimes qui contribuent à la carboneutralité d’une entreprise. De surcroît, le référentiel recommande de considérer des mécanismes tels que des obligations vertes et des certificats d’économie d’énergie, tandis que les deux autres référentiels exigent de considérer uniquement les crédits compensatoires certifiés. Qui plus est, le référentiel NZI est le seul des trois à faire une distinction entre réductions des émissions et émissions négatives. Enfin, le CarbonNeutral Protocol et PAS 2060 prohibe l’utilisation de crédits compensatoires à priori alors que le référentiel NZI ne précise pas d’exigences à cet égard. (BSI, 2014 ; Carbone 4, 2020 ; Natural Capital Partners, 2021)
5. CARBONEUTRALITÉ DES ENTREPRISES ET NET ZÉRO À L’ÉCHELLE COLLECTIVE : IDENTIFICATION DES LIMITES ET DES ENJEUX

5.1 Incompatibilité entre le niveau des réductions d’émissions et le 1,5 °C

Le stade de carboneutralité est atteint lorsqu’une entreprise neutralise ses émissions résiduelles grâce à l’achat de crédits compensatoires. Or, le résultat de carboneutralité, puisqu’il est communiqué de manière nette, dissimule la valeur de deux variables essentielles : le niveau d’émissions de l’entreprise et l’ampleur du recours aux crédits compensatoires. Il en va de même pour les cibles de réductions communiquées de manière nette, comme celle de Shell qui compte réduire ses émissions nettes de 65 % d’ici 2050 (Dietz et al., 2020). Bien que cette cible soit un incitatif considérable à la réduction des émissions absolues de Shell, rien ne garantit que ces émissions vont suivre les trajectoires compatibles avec le 1,5 °C. De plus, certaines organisations ayant entrepris une démarche de carboneutralité ne fixent tout simplement pas de cibles de réduction des émissions, ou le font sans fournir des informations suffisantes ou facilement accessibles (Kachi et al.). Ainsi, il s’avère que le fait de communiquer les objectifs de carboneutralité ou de réduction des émissions de manière nette rend impossible l’évaluation de la soutenabilité d’une trajectoire d’émissions. Par ailleurs, bien que les référentiels exigent ou recommandent la mise en place d’une cible de réduction des émissions, aucun d’entre eux n’établit les trajectoires que les émissions devraient suivre au fil du temps. Pour cette raison, même lorsqu’une cible de réduction est fixée, force est de constater qu’il est peu probable que celle-ci soit cohérente avec les trajectoires d’émissions compatibles avec le 1,5 °C, telles qu’illustrent à la figure 5.1.
Figure 5.1 Trajectoires archétypes du GIEC compatibles avec le 1,5 °C (tiré de : GIEC, 2018c, p. 13)

Ces trajectoires mettent en lumière l’importance de réduire rapidement et massivement les émissions anthropiques de CO₂ pour avoir une chance d’atteindre le net zéro vers la moitié du siècle. Par exemple, un scénario compatible avec le 1,5 °C implique une réduction des émissions anthropiques de CO₂ d’environ 45 % d’ici 2030 par rapport aux niveaux de 2010 (GIEC, 2018). Le GIEC (2018) souligne que les émissions des GES autres que le CO₂ devront également être réduites considérablement pour limiter le réchauffement planétaire à 1,5 °C. Ainsi, il s’avère que la réduction des émissions est fondamentale dans l’action climatique d’une entreprise. Cependant, l’objectif de carboneutralité dissimule souvent l’évolution des émissions de GES absolues d’une entreprise. Par exemple, une entreprise dont les émissions sont stables au fil du temps, mais qui les compense entièrement d’année en année, peut tout autant déclarer avoir atteint la carboneutralité qu’une entreprise dont les émissions diminuent conformément aux trajectoires compatibles avec le 1,5 °C. En outre, les démarches conformes aux référentiels analysés au chapitre 4 peuvent comporter des cibles de réductions, mais rien ne contraint les entreprises à établir des cibles compatibles avec le 1,5 °C. Néanmoins, il importe de mentionner que deux des référentiels (CarbonNeutral Protocol et NZI) recommandent l’utilisation du SBTi pour la fixation de cibles, dont le cœur de métier consiste à accompagner les entreprises dans la fixation de cibles de réductions des émissions basées sur la science climatique. Ce premier enjeu met en évidence l’importance de séparer rigoureusement les réductions d’émissions des compensations d’émissions dans la comptabilité et la fixation d’objectifs d’une entreprise, une idée fréquemment soulevée dans la littérature (Carbone 4, 2020 ; McLaren et al., 2019).
5.2 Possibilité d'un recours excessif à la compensation

À l’heure actuelle, les entreprises ne sont pas contraintes à réduire drastiquement leurs émissions de GES pour respecter leurs engagements de carboneutralité puisqu’elles peuvent se procurer la quantité de crédits compensatoires souhaitée. En effet, les crédits compensatoires sont souvent utilisés pour atteindre une grande partie ou l’entièreté des réductions d’émissions liées aux objectifs de réduction ou de carboneutralité des entreprises (Broekhoff et al., 2019). L’utilisation d’une clause de « supplémentarité », qui limite le recours aux crédits compensatoires à un certain niveau, n’est que très peu répandue dans les démarches de carboneutralité. En revanche, son utilisation est courante dans les marchés du carbone réglementés. À titre d’exemple, les industries assujetties au SPEDE, afin d’assurer leur conformité réglementaire, peuvent utiliser jusqu’à 8 % de crédits compensatoires par rapport à leur niveau de conformité total (MELCC, s. d.). De cette manière, le SPEDE peut assurer que la majorité des réductions d’émissions soient réalisées par les industries assujetties au système et qu’elles proviennent de sources visées par celui-ci (MELCC, s. d.).

Aucun des trois référentiels étudiés n’exige ou ne recommande l’utilisation d’une telle clause pour limiter la compensation et davantage inciter les réductions d’émissions. Un tel recours excessif à la compensation carbone met en évidence une limite fondamentale des démarches de carboneutralité telles que conceptualisées aujourd’hui ; la compensation excessive des émissions n’est pas une solution qui peut être universalisée. Effectivement, compenser l’ensemble des émissions des pays industrialisés signifierait l’élimination de toutes les émissions des pays en développement et des pays émergents afin de les monétiser sous forme de crédits compensatoires (Merono, 2018). Ainsi, les émissions à réduire dépassent largement la disponibilité des compensations par réductions d’émissions disponibles dans le monde.

De plus, au fur et à mesure que la planète se décarbonisera, il y aura de moins en moins de possibilités d’acheter des crédits compensatoires provenant de réductions d’émissions (Kachi et al., 2020). Dans un scénario où le réchauffement climatique est limité à 1,5 °C, la décarbonisation de la planète d’ici la moitié du siècle devrait graduellement éliminer les possibilités de monétiser des réductions d’émissions sous forme de crédits compensatoires. Plutôt, d’ici 2050, la proportion de crédits compensatoires provenant de réductions d’émissions devra graduellement être réduite au profit de la proportion de ceux provenant de l’élimination du carbone (Université d’Oxford, 2020).

Malgré cela, le GIEC (2018) estime que les principales méthodes de séquestration biologique (l’afforestation et la reforestation) pourraient contribuer à des séquestrations de CO₂ équivalentes à au plus 3,6 GtCO₂ par année en 2050, soit un peu moins qu’un dixième des émissions de GES globales actuelles. De surcroît, considérant l’ensemble des incertitudes et des enjeux liés aux NET, il est imprudent de leur concéder un rôle important en tant que mécanisme de réduction et de compensation des émissions à long terme (Anderson et Peters, 2016). Ainsi, il apparaît que l’ensemble des mécanismes pouvant servir à la compensation des émissions comporte des limites qui empêchent que la compensation carbone illimitée soit une solution viable pour l’ensemble du système (Carbone 4, 2020).
5.3 Permissivité dans la détermination du périmètre

Le second chapitre a révélé que les entreprises jouissent d'un certain degré de liberté dans la détermination des sources d'émissions à prendre en compte dans leur objectif de carboneutralité. Certaines entreprises s'engagent à atteindre la carboneutralité sur un périmètre se limitant aux émissions des scopes 1 et 2, alors que d'autres le font également sur une partie des émissions du scope 3. À priori, un tel engagement de carboneutralité s’avère problématique puisqu’il exclut potentiellement une partie significative des émissions indirectes de l’entreprise de son objectif. Or, l’analyse des référentiels de carboneutralité — qui prétendent mettre de l’avant les meilleures pratiques en la matière — ne permet guère d’envisager une meilleure prise en compte des émissions dans les objectifs de carboneutralité.

Effectivement, le CarbonNeutral Protocol est relativement permissif en exigeant seulement la prise en compte des émissions des scopes 1 et 2 et de cinq sources d’émissions du scope 3, sans égard aux particularités de l’entreprise qui fait l’objet de la certification. Le référentiel stipule explicitement que l’inclusion d’autres sources d’émissions indirectes est à la discrétion de l’entreprise. Dès lors, une entreprise dont les émissions proviennent presque entièrement de sources d’émissions non exigées par le référentiel pourrait tout simplement atteindre la carboneutralité sur un périmètre qui exclut ses émissions significatives et voir sa démarche certifiée. Le référentiel NZI, quant à lui, recommande l’utilisation des normes ISO 14064-1, GHG Protocol ou du Bilan Carbone pour quantifier les émissions (et indirectement déterminer le périmètre). Comme discuté au chapitre 2, les méthodologies de ces normes rendent optionnelle la comptabilisation des émissions indirectes et seulement les entreprises proactive ont tendance à les comptabiliser et à les déclarer. Toutefois, le référentiel recommande l’utilisation de la SBTi pour la fixation de cibles de réduction (qui exige une cible sur au moins deux tiers du scope 3 s’il représente plus de 40 % des émissions totales), mais encore faut-il quantifier les émissions en question pour pouvoir établir un objectif qui les couvre. Le référentiel PAS 2060, quoique beaucoup plus exigeante que les deux précédentes en ce qui concerne le périmètre, permet aux entreprises d’exclure des sources d’émissions matérielles si elles sont en mesure de prouver que la quantification ne serait pas techniquement ou économique faisable. Néanmoins, le PAS 2060 exige que 95 % des émissions totales du sujet soient prises en compte, ce qui lui confère un niveau d’exigence bien supérieur aux autres référentiels.

Il s’avère alors qu’il existe un certain niveau de permissivité quant au choix des sources d’émissions à prendre en compte dans les démarches de carboneutralité, que la démarche soit encadrée par un référentiel ou non. Le défi ne consiste pas nécessairement à prendre en compte 100 % des émissions directes et indirectes d’une entreprise, puisque cela serait infaisable sur le plan technique et économique, en plus de mener à une situation de double comptage accrue où des sources d’émissions non significatives seraient couvertes dans les objectifs de carboneutralité de diverses entreprises. L’enjeu repose plutôt dans la comptabilisation de l’ensemble des sources d’émissions significatives et pertinentes d’une entreprise, afin que ces dernières soient sujettes aux cibles de réductions des émissions et qu’elles soient atténuées conformément à ce qui est attendu dans un scénario compatible avec l’atteinte du net zéro à l’échelle collective.
5.4 Distinction entre réduction d'émissions et émissions négatives

L’atténuation des changements climatiques passe par deux principaux leviers : la réduction des émissions de GES et l’augmentation des puits de carbone, autrement dit l’élimination du carbone. Ces deux mécanismes sont physiquement différents : l’un consiste à réduire le flux de GES vers l’atmosphère tandis que l’autre vise à ce que le flux de GES absorbé hors de l’atmosphère soit augmenté. Par ailleurs, dans le contexte de l’atteinte du net zéro planétaire, les réductions et les absorptions d’émissions ont des rôles et des potentiels de développement différents (GIEC, 2018). Ces disparités font en sorte que les deux mécanismes devraient être traités et hiérarchisés différemment dans les démarches de carboneutralité des entreprises, ce qui n’est pas le cas actuellement. À ce titre, le référentiel NZI est le seul référentiel analysé à mettre de l’avant la nécessité de distinguer rigoureusement les deux mécanismes. Cependant, le référentiel amène la distinction des deux mécanismes comme une idée nouvelle et celle-ci ne semble que très peu répandue dans la pratique.

Le principal risque lié au fait de ne pas traiter séparément les réductions et les absorptions d’émissions est celui que les deux mécanismes soient perçus comme étant interchangeables. Or, ils ne sont pas équivalents ; le carbone absorbé par des puits est vulnérable aux fuites d’émissions futures tandis que les réductions d’émissions ont des impacts permanents sur les concentrations atmosphériques de GES (McLaren et al., 2019). Le référentiel NZI souligne qu’une « élimination future du carbone ne peut […] pas bénéficier du même niveau de certitude que les émissions présentes ou passées […] » (Carbone 4, 2020, p. 31). Cet aspect met en évidence l’importance d’éviter toute forme de substitution entre les mécanismes, et que les absorptions d’émissions soient réalisées en addition à des réductions d’émissions rapides et importantes (McLaren et al., 2019). En outre, en rendant les deux leviers interchangeables, une confiance excessive est souvent conférée aux émissions négatives futures, notamment aux NET, une promesse qui peut ralentir l’action climatique à court terme (Broekhoff et al., 2019 ; McLaren et al., 2019). Par ailleurs, le fait de retarder les réductions d’émissions nécessaires à court terme peut mener à un « verrouillage » économique et institutionnel dans des infrastructures intensives en carbone, qui rendrait la limitation du réchauffement climatique sous la barre du 2 °C beaucoup plus difficile (Broekhoff et al., 2019 ; GIEC, 2018).

5.5 Technologies à émissions négatives et marchés du carbone

Parallèlement à des réductions d’émissions rapides et importantes, le GIEC (2018) souligne la nécessité de déployer les NET afin d’espérer atteindre le net zéro vers 2050. Les scénarios compatibles avec le 1,5 °C ont d’ailleurs recours à ces technologies dans des mesures variables, telles qu’illustré à la figure 5.2, où les séquestrations permises par les NET (BECCS dans ce cas) sont ombragées en jaune.
Il apparaît que l’ampleur du déploiement des NET est grandement tributaire de la vitesse et de la magnitude des réductions d’émissions à court terme ; plus elles se font lentes, plus les émissions négatives seront nécessaires à plus long terme pour pouvoir espérer limiter le réchauffement climatique à 1,5 °C ou 2 °C (le scénario P4 de la figure 5.1 représente bien une telle situation). Ainsi, dans les modélisations climatiques, le déploiement des NET est associé à une séquestration nette d’émissions. Une question qui sème actuellement beaucoup d’intérêt dans la littérature est celle à savoir si les NET devraient être intégrées aux marchés du carbone pour générer des crédits compensatoires. Leur intégration dans les marchés du carbone comporte indéniablement des avantages : elle permettrait d’améliorer les technologies, de bénéficier d’économies d’échelle et d’apprentissage, et de rendre les technologies commercialement viables (McLaren et al., 2019). En contrepartie, l’utilisation des NET pour générer des crédits compensatoires mènerait à un bilan nul d’émissions ; l’entité qui se procure un tel crédit le fait dans le but de compenser des émissions résiduelles. Ainsi, l’intégration des NET aux marchés du carbone — en traitant les émissions négatives de manière équivalente aux réductions d’émissions — pourrait mener à une situation de substitution entre les deux mécanismes (tel que discuté à la section 5.4) où les NET ne permettraient pas de générer des absorptions d’émissions nettes (McLaren et al., 2019). Autrement dit, leur intégration aux marchés du carbone pourrait compromettre le réel rôle qui leur est concédé dans les modélisations climatiques, celui de séquestrer du carbone de manière nette pour atteindre le net zéro vers la moitié du siècle.

Cet enjeu est fondamental dans le contexte d’une démarche de carboneutralité considérant l’importance du rôle de la compensation des émissions dans celle-ci. Par exemple, une entreprise de transport pourrait atteindre son objectif de carboneutralité en se procurant des crédits compensatoires provenant d’émissions négatives pour légitimer une croissance de ses activités, plutôt que de minimiser ses émissions en utilisant des carburants moins intensifs en carbone. Dans une telle situation, les capacités limitées d’émissions négatives seraient allouées pour compenser des émissions qui auraient pu être directement réduites, ce qui augmente le coût et l’ampleur des futures réductions d’émissions (McLaren et al., 2019). D’ailleurs, selon McLaren et al. (2019), le fait de combiner les NET et les réductions d’émissions au sein des mêmes marchés du carbone aurait comme effet de retarder les changements transformationnels nécessaires, de « verrouiller » l’utilisation de combustibles fossiles et d’institutionnaliser les circonstances dans lesquelles
la réduction des émissions à court terme continue d’être coûteuse sur le plan politique et économique. Cette problématique est davantage préoccupante considérant que la compensation d’émissions à travers les NET devrait connaître beaucoup d’intérêt dans le futur. En effet, le potentiel de développement limité de la séquestration biologique, la permanence des absorptions par les NET (discuté à la section 5.6) et l’importance de favoriser la compensation par absorption du carbone à plus long terme (par rapport à la compensation par réduction d’émissions) sont trois facteurs qui pourraient augmenter la demande future pour des crédits compensatoires provenant des NET, advenant leur existence. Par exemple, le Boston Consulting Group, une entreprise certifiée carboneutre par CarbonNeutral, s’est engagé à atteindre le net zéro d’ici 2030 en effectuant une transition vers des crédits compensatoires provenant entièrement de l’élimination du carbone, tant de la séquestration biologique que des NET (Natural Capital Partners, 2021).

5.6 Intégrité environnementale des crédits compensatoires

Le deuxième chapitre a démontré que les crédits compensatoires, et l’idée même de la compensation carbone, souffrent d’une multitude de lacunes qui laissent envisager une efficacité environnementale incertaine. La qualité d’un crédit compensatoire fait référence au niveau de confiance qu’un individu peut avoir par rapport au fait que l’utilisation d’un crédit va remplir son utilité de base, c’est-à-dire générer les réductions d’émissions sous-jacentes (Greenhouse Gas Management Institute [GHG Management Institute] et SEI, s. d.). Les différents critères pouvant affecter la qualité d’un crédit compensatoire incluent l’additionnalité, les surestimations, la permanence, les fuites d’émissions et le double comptage. Or, la qualité d’un crédit compensatoire n’est pas binaire ; elle existe plutôt sur un continuum. Deux crédits compensatoires certifiés par le même standard n’ont pas nécessairement le même niveau de qualité, malgré le fait que les standards affirment généralement que leurs crédits sont tous également valables (GHG Management Institute et SEI, s. d.).

Une multitude de types de projets GES peuvent générer des réductions d’émissions, mais certains projets ont plus de difficultés à répondre à certains critères de qualité. Par exemple, il est généralement facile de démontrer l’additionnalité d’un projet de destruction de gaz industriels — principalement parce que s’ils ne sont pas requis par la loi, il y a peu de raisons, voire aucune, de les entreprendre mis à part la génération de crédits compensatoires — tandis que la démonstration d’additionnalité d’un projet d’énergie renouvelable est beaucoup plus ardue (Broekhoff et al., 2019). La permanence est un autre critère de qualité qui varie grandement entre les différents types de projets GES. La figure 5.3 offre une classification des projets GES en fonction de leur niveau de permanence.
Figure 5.3 Classification des crédits compensatoires (tiré de : Université d'Oxford, 2020, p. 7)

Il en ressort d’abord que les projets où le carbone n’est pas stocké ne présentent pas d’enjeu de permanence puisque les renversements d’émissions y sont physiquement impossibles ou très improbables (Broekhoff et al., 2019). Ensuite, les projets d’élimination du carbone les plus susceptibles de renversement sont ceux de séquestration biologique (afforestation, gestion du carbone du sol, etc.) et les projets de réductions d’émissions avec stockage de courte durée (Université d'Oxford, 2020).

Ces aspects témoignent que la qualité des crédits compensatoires existe sur un continuum et que le simple fait qu’ils soient certifiés par un même standard ne devrait pas être un motif suffisant pour traiter tous les crédits de manière équivalente. Toutefois, les trois référentiels analysés au chapitre précédent exigent ou recommandent l’obtention de crédits compensatoires certifiés par certains standards spécifiques, sans offrir d’orientation supplémentaire quant au choix des crédits. Seul le CarbonNeutral Protocol énonce certaines contraintes quant au choix des crédits, par exemple en prohibant l’utilisation de crédits provenant de projets spécifiques (Natural Capital Partners, 2021). Bien que la certification d’un crédit compensatoire soit un bon indicateur de sa qualité générale, une multitude d’autres informations peuvent être utilisées pour assurer que les crédits génèrent l’ensemble des réductions d’émissions sous-jacentes.

5.7 Manque d’orientation quant à l’atteinte d’un stade d’émissions négatives nettes

Un stade d’émissions négatives nettes, aussi appelé « carbonégativité », fait référence à une situation où, en raison des activités d’une entreprise (ou des humains), plus de GES sont retirés de l’atmosphère qu’émis dans celui-ci (GIEC, 2018b). Microsoft (2020) et IKEA (2021) font partie des quelques entreprises avant-gardistes s’étant engagées à atteindre la « carbonégativité » d’ici 2030. En effet, en 2020, c'est seulement 1 % des 500 plus grandes entreprises au monde qui avait établi une cible de « carbonégativité » (Natural
Néanmoins, un nombre croissant d’entreprises explorent la possibilité que leurs activités se traduisent par un impact positif sur le climat (Natural Capital Partners, 2021).

Comme il a été mentionné au troisième chapitre (section 3.1.2), l’application de principes d’équité dans la lutte aux changements climatiques permet d’évaluer la juste part d’un acteur dans la réduction des émissions. En effet, la responsabilité d’un acteur dans la survenance des changements climatiques (émissions historiques) et sa capacité à les régler (capacité financière, possibilité de réductions, etc.) sont deux critères qui permettent d’évaluer quelle devrait être sa juste part dans la réduction des émissions. Selon cette logique, les pays en développement devraient être contraints à des cibles de réductions des émissions moins sévères que les pays développés. Similairement, une entreprise historiquement responsable d’une grande quantité d’émissions de GES et disposant de beaucoup de ressources — ou tout simplement une entreprise au sein d’un pays développé — devrait potentiellement atteindre un stade d’émissions négatives nettes pour laisser les entreprises dans les pays en développement poursuivre leur croissance en étant moins contraintes. Autrement dit, en plus de neutraliser ses propres émissions, cette entreprise devrait également financer les réductions d’émissions d’autres entreprises situées dans les pays en développement pour qu’elles puissent aussi atteindre la carboneutralité.

L’intérêt croissant porté envers la « carbonégativité », jumelé à la nécessité éthique d’atteindre un tel stade dans les pays développés, laisse présager un nombre grandissant d’entreprises souhaitant entreprendre une démarche pour y arriver. Cependant, les actions et les cibles de « carbonégativité » actuellement mises en place par les entreprises manquent généralement d’intégrité structurelle (Natural Capital Partners, 2021). Ainsi, il existe un besoin d’encadrer ces démarches, au même titre que les démarches de carboneutralité, afin que les objectifs et les mesures qui les sous-tendent soient rigoureux, justes et transparents. Toutefois, aucun des trois référentiels de carboneutralité analysés au quatrième chapitre n’encadre de quelconque manière les entreprises souhaitant atteindre un stade d’émissions négatives nettes. Le CarbonNeutral Protocol est le seul référentiel à aborder le concept, mais ce dernier stipule qu’aucune définition opérationnelle du concept ne répond à tous ses principes (Natural Capital Partners, 2021).
6. RECOMMANDATIONS

Le présent ouvrage aura permis d’élaborer une multitude de recommandations afin de mieux aligner la démarche de carboneutralité des entreprises à l’atteinte du net zéro planétaire. Ces recommandations sont faites à l’intention d’une multitude d’acteurs : les référentiels de carboneutralité, les entreprises, les standards des marchés du carbone, les gouvernements, les autres décideurs, ainsi qu’à tout autre acteur concerné. Les sections suivantes sont organisées de manière à présenter les recommandations en fonction des acteurs à qui elles s’adressent. Un tableau présentant sommairement toutes les recommandations se trouve à l’annexe 3.

6.1 Recommandations à l’intention des référentiels

Ces premières recommandations sont faites à l’intention des référentiels qui encadrent la démarche de carboneutralité des entreprises, et toute autre organisation qui encadre ou qui compte encadrer cette démarche. Néanmoins, il importe de mentionner qu’elles sont également pertinentes et valables pour une entreprise qui entreprend une démarche de carboneutralité sans suivre un référentiel ou une norme, en plus des recommandations élaborées à la section 6.2. Ainsi, les démarches de carboneutralité, qu’elles soient basées sur un référentiel ou non, devraient s’appuyer sur les recommandations suivantes.

6.1.1 Établir des trajectoires d’émissions minimales

Il est d’abord recommandé aux référentiels de carboneutralité d’établir des trajectoires d’émissions minimales pour contraindre les entreprises à des réductions d’émissions conformes à la science climatique. Cette première recommandation devrait d’ailleurs être supportée par l’obligation d’effectuer des réductions d’émissions chaque année et de mettre en place une cible de réduction des émissions. Les trajectoires mises de l’avant par les référentiels devraient être cohérentes avec des scénarios qui limitent le réchauffement climatique à 1,5 °C et qui permettent d’atteindre le net zéro vers la moitié du siècle (voir la figure 5.1). Afin d’assurer le respect de ces trajectoires, les entreprises devraient avoir à établir des cibles de réduction d’émissions qui les respectent ou qui sont plus ambitieuses. Ce faisant, une entreprise souhaitant déclarer la carboneutralité devrait absolument réduire ses émissions à un rythme compatible avec l’atteinte du net zéro planétaire vers la moitié du siècle — environ 7 % par année selon Dugast (2020) — et compenser le reste à travers des instruments économiques. Il importe de mentionner que le SBTi s’avère une ressource pertinente pour encadrer la fixation d’objectifs compatibles avec le 1,5 °C, de laquelle les référentiels pourraient s’inspirer.

L’ampleur du défi que représentent les réductions d’émissions est grandement variable entre les entreprises et dépend notamment de la disponibilité des énergies renouvelables, de ses connaissances, de ses ressources financières et de sa dépendance aux industries fortement émettrices, comme celle des combustibles fossiles (Kachi et al., 2020). Afin de tenir compte de la faisabilité technique et économique des réductions d’émissions et des capacités respectives de chaque entreprise, il est recommandé d’évaluer la possibilité de mettre en place des mécanismes permettant une certaine flexibilité dans le respect des trajectoires d’émissions, tout en demeurant rigoureux à cet égard. Par exemple, une entreprise qui ne
répond pas aux exigences de réductions des émissions durant une période donnée pourrait potentiellement réduire ses émissions dans une mesure supérieure à sa cible durant la période subséquente pour compenser le manque antérieur, et tout de même voir sa démarche être certifiée.

D’une part, cette recommandation permettrait d’aligner les trajectoires d’émissions des entreprises à celles des scénarios compatibles avec le 1,5 °C, en plus de catalyser les transformations nécessaires pour limiter le réchauffement climatique. D’autre part, elle aurait comme effet de limiter l’utilisation des crédits compensatoires par les entreprises puisqu’ils ne pourraient plus être utilisés pour compenser l’ensemble des émissions d’une organisation. Plutôt, une partie des émissions serait assurément réduite d’année en année ; il en découlerait un recours aux crédits compensatoires décroissant au fil du temps.

6.1.2 Intensifier les exigences dans la détermination du périmètre

Il est également recommandé aux référentiels de carboneutralité d’intensifier les exigences en ce qui concerne la détermination du périmètre d’émissions à prendre en compte dans les engagements d’entreprises. À l’heure actuelle, les organisations jouissent d’un certain degré de liberté quant au choix des sources d’émissions à considérer, notamment parce que deux des trois référentiels s’avèrent laxistes à cet égard. En effet, l’un suggère l’utilisation d’une méthodologie externe (GHG Protocol) de déclaration et de quantification des émissions — dont les principes et objectifs diffèrent de ceux d’une démarche de carboneutralité — alors que l’autre laisse à la discrétion de l’entreprise le choix des émissions indirectes à prendre en compte.

Bien que la recommandation d’utiliser le GHG Protocol pour la détermination du périmètre soit appropriée, des critères additionnels devraient encadrer cette étape pour tenir compte des particularités d’une démarche de carboneutralité. À ce titre, l’utilisation d’un seuil de matérialité peut s’avérer pertinente pour déterminer quelles sources d’émissions sont significatives et conséquemment importantes à considérer dans l’objectif. De plus, l’emploi d’un seuil minimal d’émissions à considérer par rapport aux émissions totales de l’entreprise peut permettre d’assurer que les émissions significatives et pertinentes soient prises en compte dans le périmètre. Par exemple, le référentiel PAS 2060 exige qu’un minimum de 95 % des émissions totales de l’entreprise soit couvert par l’engagement de carboneutralité. Un tel mécanisme s’avère essentiel étant donné que les émissions des scopes 1 et 2 ne représentent parfois qu’une faible partie des émissions totales (directes et indirectes) d’une entreprise (Matthews et al., 2008). L’émergence d’un niveau d’exigence accru en ce qui a trait le périmètre d’émissions à considérer permettrait de rehausser l’ambition que porte le concept de carboneutralité auprès des entreprises et d’assurer que l’ensemble des émissions significatives d’une entreprise donnée soient couvertes par son engagement.

6.1.3 Exiger une distinction rigoureuse entre les réductions d’émissions et les émissions négatives

Les réductions d’émissions et les émissions négatives sont deux mécanismes qui diffèrent sur le plan physique et qui comportent des potentiels de développement et des rôles différents. Pourtant, ils sont à l’heure actuelle considérés comme étant des mécanismes équivalents et interchangeables dans les démarches de carboneutralité. Il est ainsi recommandé aux référentiels de carboneutralité d’exiger une
distinction rigoureuse entre les réductions d’émissions et les émissions négatives. Cette séparation pourrait notamment s’opérer en exigeant une comptabilisation et une fixation d’objectifs distinctes entre quatre mécanismes : les émissions induites d’une entreprise, ses absorptions directes, ses compensations par réduction d’émissions et ses compensations par émissions négatives. Un tel cadre de comptabilisation pourrait prendre la forme de la matrice illustrée dans le tableau 6.1. Il importe de souligner la pertinence de la proposition du référentiel NZI pour effectuer la séparation des deux mécanismes, dont la matrice est présentée à l’annexe 2.

Tableau 6.1 Cadre de comptabilisation et de fixation des objectifs pour la période n

<table>
<thead>
<tr>
<th></th>
<th>Réduction des émissions</th>
<th>Compensation des émissions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Émissions induites</td>
<td>Absorptions directes</td>
</tr>
<tr>
<td>Niveau pour la période n</td>
<td>A (t eq. CO₂)</td>
<td>B (t eq. CO₂)</td>
</tr>
<tr>
<td>Cible (réduction ou augmentation)</td>
<td>%</td>
<td>%</td>
</tr>
</tbody>
</table>

L’utilisation d’une telle matrice incarne une première étape intéressante pour éviter l’interchangeabilité entre les réductions d’émissions et les émissions négatives. Pour aller plus loin, les référentiels pourraient développer des trajectoires archétypes pour les réductions d’émissions (C) et les absorptions indirectes (D), au même titre que pour les émissions induites (voir section 6.1.1). Les entreprises pourraient alors suivre ces trajectoires en fixant des objectifs cohérents avec celles-ci pour ces deux mécanismes. Ces dernières permettraient de tenir compte du rôle et du potentiel de développement respectifs de chacun des mécanismes. En effet, l’Université d’Oxford (2020) souligne l’importance que les utilisateurs de crédits compensatoires augmentent graduellement la proportion de leurs crédits provenant d’absorptions de carbone, plutôt que de réductions d’émissions, afin d’ultimement atteindre une proportion de 100 % d’ici la moitié du siècle. Néanmoins, Broekhoff (2020) mentionne qu’un intérêt porté dès maintenant et uniquement sur les méthodes d’absorptions du carbone (pour générer des crédits compensatoires) peut être contreproductif à l’atteinte des objectifs climatiques, puisque les réductions d’émissions sont primordiales pour favoriser la décarbonisation de la planète d’ici 2050. Ainsi, le fait de séparer la fixation d’objectifs pour chacun des mécanismes permettrait d’assurer un équilibre entre réductions d’émissions et émissions négatives dynamique et cohérent avec la science climatique.

6.1.4 Encadrer la sélection des crédits compensatoires
Dans les méthodologies des référentiels de carboneutralité, la tâche d’assurer la qualité des crédits compensatoires est entièrement confiée aux standards qui certifient les crédits. Dès lors, les référentiels font l’hypothèse que tous les crédits compensatoires sont également valables, comme le font les standards. Or, la qualité d’un crédit compensatoire existe sur un continuum et sa capacité à générer les réductions d’émissions sous-jacentes dépend d’une multitude de facteurs, malgré sa certification par un standard.
Ainsi, il est recommandé aux référentiels de carboneutralité d’encadrer la sélection des crédits compensatoires en offrant une hiérarchisation des types de projets GES en fonction de critères de qualité. Par exemple, les différents types de projets GES pourraient être classés selon leur niveau de risque, lequel pourrait être évalué grâce aux risques associés à l’additionnalité, la permanence, la détermination du scénario de référence, la propriété et aux impacts sociaux et environnementaux du type de projet. Broekhoff et al. (2020) proposent d’ailleurs une telle classification des types de projets GES en fonction du niveau de risque associé à son intégrité environnementale, illustré au tableau 6.2.

Tableau 6.2 Niveau de risque lié à l’intégrité environnementale de différents types de projets GES (tiré de : Broekhoff et al., 2020, p. 37)

<table>
<thead>
<tr>
<th>Lower risk</th>
<th>Medium risk</th>
<th>Higher risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO₂ usage</td>
<td>Methane capture and utilization</td>
<td>Agriculture</td>
</tr>
<tr>
<td>Methane destruction (w/o utilization)</td>
<td>Methane avoidance</td>
<td>Biomass energy</td>
</tr>
<tr>
<td>N₂O avoidance from nitric acid production</td>
<td>Energy distribution</td>
<td>Cement production</td>
</tr>
<tr>
<td>N₂O – adipic acid*</td>
<td>Energy efficiency, household demand</td>
<td>Energy efficiency, industrial demand side</td>
</tr>
<tr>
<td>Ozone-depleting substance (ODS) destruction</td>
<td>PFCs & SF₆ avoidance/ reuse</td>
<td>Energy efficiency -- supply side</td>
</tr>
<tr>
<td></td>
<td>Renewable energy, small scale</td>
<td>Forestry & land use</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fossil fuel switching</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fugitive gas capture or avoidance</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low-carbon transportation measures</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Renewable energy, large scale</td>
</tr>
</tbody>
</table>

Une hiérarchisation des projets GES permettrait d’inciter l’utilisation de crédits compensatoires dont la qualité comporte un risque moindre. Par ailleurs, elle permettrait aux entreprises ayant recours à des crédits compensatoires plus risqués d’en avoir conscience et, au besoin, de se renseigner et de demander des informations supplémentaires quant à certains aspects des projets GES. En outre, la hiérarchisation des projets GES pourrait potentiellement permettre de favoriser le développement des projets GES moins risqués et agir en tant qu’incitatif à un meilleur encadrement de ceux plus risqués. Parallèlement à cet effort pour réduire les risques associés aux projets GES, les référentiels pourraient également imposer des contraintes supplémentaires quant aux choix des crédits compensatoires. L’imposition de contraintes quant au type de crédit, au type de projet GES et aux standards, entre autres, pourrait permettre d’exclure d’emblée les crédits compensatoires de moindre qualité. Par exemple, la proscription des crédits octroyés à priori — puisque ce type de crédit compromet l’intégralité environnementale en exacerbant la problématique de permanence — peut constituer une contrainte facilement applicable et efficace (comme le fait le CarbonNeutral Protocol).
Évaluer la possibilité d’encadrer l’atteinte d’un stade d’émissions négatives nettes

Tel que mentionné au chapitre précédent, l’intérêt porté envers la « carbonégativité » par les entreprises s’accroît et devrait continuer à croître au fil des prochaines années. Pour cette raison, il est recommandé aux référentiels de carbonutralité d’entamer une réflexion quant à la possibilité d’encadrer la démarche associée à l’atteinte du stade de « carbonégativité ». Quoique cette démarche serait relativement similaire à celle de la carbonutralité, certaines clarifications techniques et méthodologiques devraient être apportées. Par exemple, les principes, exigences spécifiques et particularités méthodologiques associés à l’atteinte de la « carbonégativité » pourraient être présentés dans une annexe des référentiels. D’ailleurs, pour les référentiels qui offrent une certification, cette nouvelle démarche pourrait faire l’objet d’une certification distincte. Advenant l’intégration d’un tel cadre de référence, les référentiels devraient répondre à une multitude de questions, par exemple :

a) Pour déclarer avoir atteint le stade de « carbonégativité », quel devrait-être le niveau minimal d’émissions négatives à atteindre par l’entreprise ?

b) Ce niveau minimal devrait-il être communiqué en t éq. CO₂e ou par rapport à un pourcentage des émissions induites par l’entreprise ?

c) Cette portion d’émissions négatives devrait-elle absolument provenir entièrement de l’élimination du carbone ?

d) Pour déclarer l’atteinte d’un tel stade, l’entreprise devrait-elle avoir à réduire ses émissions absolues dans une plus grande mesure que les trajectoires d’émissions minimales (voir 6.1.1) ?

Recommandations à l’intention des entreprises

Les prochaines recommandations sont faites à l’intention des entreprises, et de tout autre type d’organisations, qui s’engagent à atteindre le stade de carbonutralité. Elles devraient être appliquées à la démarche de l’organisation, que celle-ci soit encadrée par un référentiel ou non.

Rehausser l’ambition derrière les engagements de carbonutralité

Les scénarios du GIEC qui projettent l’atteinte du net zéro planétaire vers 2050 impliquent des transformations politiques, économiques et comportementales profondes (GIEC, 2018). En revanche, le niveau d’ambition des entreprises sur la voie de la carbonutralité est grandement hétérogène. En effet, la carbonutralité à l’échelle de l’entreprise, telle que conceptualisée aujourd’hui, offre une latitude aux entreprises quant à certains aspects normatifs et méthodologiques. Par exemple, une entreprise peut intervenir sur un périmètre d’émissions arbitraire et ne réduire que très peu ses émissions absolues, tout en revendiquant avoir atteint la carbonutralité. Également, rien n’oblige une entreprise à aligner ses activités principales avec ce qu’il serait attendu dans un scénario compatible avec le 1,5 °C. Par exemple, une compagnie pétrolière s’engageant à atteindre la carbonutralité d’ici 2050 pourrait vraisemblablement continuer l’exploitation de combustibles fossiles, bien que le net zéro planétaire nécessite une réduction des émissions fossiles d’environ 80 % d’ici la moitié du siècle (Dugast, 2020). Or, il existe un écart important
entre les transformations sociotechniques que sous-tendent l’atteinte du net zéro planétaire et les transformations qu’implique l’atteinte de la carboneutralité par une entreprise.

Il est donc recommandé aux entreprises souhaitant atteindre la carboneutralité de rehausser l’ambition que porte leur engagement de carboneutralité. Ce dernier devrait représenter un cheminement ambitieux et transformationnel et faire l’objet d’une remise en question du modèle d’affaires, des produits, des processus et des activités fondamentales de l’entreprise. Par ailleurs, l’écart conceptuel entre le net zéro planétaire et la carboneutralité à l’échelle de l’entreprise impose un changement de paradigme, qui constitue l’un des principes du référentiel NZI : il importe de « considérer les organisations comme des participantes à l’action collective vers le net zéro mondial, plutôt que comme des entités individuellement “neutres en carbone”. » (Carbone 4, 2020, p. 38). Cette proposition du référentiel NZI apparaît pertinente puisque le net zéro planétaire et la carboneutralité à l’échelle de l’entreprise sont deux concepts très difficilement conciliables ; le premier est rigoureusement défini par la science tandis que le second est pourvu de limites et de flous méthodologiques. Dans le référentiel NZI, Carbone 4 explique habilement le raisonnement derrière sa proposition :

« Net Zero Initiative estime qu’il est beaucoup plus puissant et efficace de considérer les organisations comme des agents pouvant contribuer à l’émergence d’une neutralité carbone mondiale et territoriale, plutôt que comme des entités indépendantes pouvant devenir elles-mêmes neutres en carbone. Par conséquent, nous affirmons que la performance de “neutralité” d’une organisation ne peut être efficacement appréhendée par un critère binaire tel que “être neutre/ne pas être neutre”. Elle doit plutôt être décrétée comme un niveau d’alignement dans le temps avec les impératifs nécessaires à l’émergence d’un monde net zéro suivant les critères que nous décrivons plus loin. » (Carbone 4, 2020, p. 38).

Tant et aussi longtemps que la carboneutralité sera perçue comme un critère binaire, il sera difficile de réellement aligner les actions d’une entreprise avec les impératifs du net zéro planétaire. En revanche, « s’aligner » avec le 1,5 °C pourrait impliquer des réductions d’émissions, des absorptions d’émissions et des changements organisationnels cohérents avec les scénarios compatibles avec le 1,5 °C et leurs impératifs. Or, il est recommandé aux entreprises, et à tous les acteurs concernés, d’entamer une réflexion quant à la possibilité de considérer l’entreprise comme un acteur participant à l’émergence du net zéro planétaire plutôt que comme une organisation carboneutre ou net zéro indépendante, afin d’amorcer un changement de paradigme dans la manière dont les entreprises contribuent à l’action climatique mondiale.

6.2.2 Établir une stratégie transparente et rigoureuse

Comme mentionné précédemment, les entreprises en cheminement vers la carboneutralité devraient fixer des cibles compatibles avec le 1,5 °C. Il importe toutefois que ces cibles soient accompagnées d’un plan afin d’assurer que les ambitions des organisations se traduisent par des actions concrètes et efficaces. Par conséquent, il est recommandé aux entreprises d’établir une stratégie transparente et rigoureuse pour supporter leur volonté d’atteindre la carboneutralité. Une telle stratégie devrait d’abord décrire comment les émissions directes de l’entreprise seront réduites, en précisant notamment les sources d’émissions spécifiques, l’échéancier des réductions d’émissions et les moyens utilisés. Ensuite, elle devrait détailler
comment l’entreprise compte collaborer avec ses fournisseurs et ses clients pour réduire ses émissions indirectes. Par exemple, la stratégie de réduction des émissions pourrait prendre la forme d’un plan d’action qui détaillle les actions (objectifs, échéancier, responsables, etc.) à court, moyen et long terme. Similairement, une entreprise devrait élaborer une stratégie pour détailler comment elle compte compenser ses émissions résiduelles, notamment en spéciifiant la quantité de crédits compensatoires à acheter, les types de projets GES desquels les crédits proviennent, leur certificateur et leur nature (réduction d’émissions ou absorption d’émissions). La validité des crédits compensatoires est un autre aspect qui devrait être surveillé ; après leur octroi, il arrive parfois que certains crédits compensatoires soient déclarés invalides par l’organisme qui les certifie en raison de nouveaux faits, comme la non-permanence d’une réduction d’émissions. À cet effet, la stratégie devrait aussi inclure un mécanisme pour assurer que les crédits compensatoires devenus invalides soient remplacés par l’entreprise, à moins que le standard prenne la responsabilité de l’invalidité potentielle du crédit.

Il est aussi recommandé aux entreprises de mettre en place des dispositifs afin de favoriser la mise en place des actions qui émanent de la stratégie. En ce sens, elle devrait être accompagnée d’un processus qui assure une évaluation périodique de la performance de l’entreprise par rapport aux actions prévues dans celle-ci. Une telle évaluation permettrait de constater les écarts et de mettre en place des actions correctives pour remédier à la situation et atteindre les objectifs. Une organisation pourrait aussi établir des objectifs à court terme liés à la rémunération de ses dirigeants pour assurer que la gestion de l’entreprise soit cohérente avec les objectifs climatiques à long terme.

6.3 Autres recommandations

Outre les référentiels, diverses parties prenantes interviennent dans l’environnement externe d’une entreprise s’étant engagée à atteindre la carboneutralité. Les recommandations ci-après s’adressent à différents acteurs ayant un pouvoir d’influence sur ladite démarche.

6.3.1 Mettre en place un mécanisme d’ajustements pour éviter le double comptage des émissions

Les changements induits par l’Accord de Paris ont complexifié les transferts d’unités de réductions d’émissions entre les pays et au sein d’un même pays. La capacité des marchés volontaires du carbone à remplir efficacement leur rôle de compensation des émissions est tributaire de la mise en place d’ajustements comptables pour tenir compte de ces transferts (voir section 2.3.4). Or, la prise en compte de ces ajustements comptables représente un défi de taille pour les pays : elle nécessite des capacités administratives, institutionnelles et techniques ; elle requiert une volonté politique ; et les pays ont des points de vue parfois divergents quant à l’ampleur de l’encadrement international nécessaire (Agence Fédéral de l’Environnement allemande, 2019 ; SEI, 2014). Ainsi, il est recommandé aux gouvernements, aux standards des marchés du carbone, aux décideurs et à tous acteurs concernés d’engager une réflexion et de collaborer pour mettre en place un mécanisme d’ajustements comptables afin d’éviter le double comptage des réductions d’émissions.
L’objectif n’est pas ici de détailler les spécificités techniques que devrait comporter ce cadre de référence, mais plutôt de souligner que le foisonnement d’engagements de carboneutralité de la part des entreprises pourrait potentiellement exacerber la problématique, et qu’il importe d’agir pour la pallier. En effet, le double comptage d’une réduction d’émissions, entre le pays hôte du projet GES et des actions volontaires, peut compromettre les efforts mondiaux de réduction des émissions (SEI, 2014). Pour cette raison, ce cadre de référence devrait s’appliquer non seulement à tous les mécanismes visant à générer des unités de réduction d’émissions pouvant être utilisées pour atteindre les engagements de la CCNUCC, mais aussi à ceux qui en génèrent pour une utilisation domestique ou pour les marchés volontaires (SEI, 2014).

Le cadre de comptabilité devrait également remplir une multitude d’exigences : il devrait être transparent, offrir des conditions équitables à tous les pays, être rigoureux et être facilement accessible pour les pays (Agence Fédéral de l’Environnement allemande, 2019). Il est d’ailleurs recommandé que le cadre de comptabilisation utilise les CDN comme point de référence au lieu d’autres paramètres comme des politiques nationales ou des cibles sectorielles, ce qui pourrait affaiblir l’approche comptable (Agence Fédéral de l’Environnement allemande, 2019). En définitive, il importe de souligner que la collaboration des différents acteurs est fondamentale afin de concilier la rigueur comptable de l’approche développée avec la faisabilité technique des ajustements comptables pour les pays.

6.3.2 Encadrer l’intégration des technologies à émissions négatives aux marchés du carbone

5 Pour cela, voir : Kreibich et Obergassel, 2016 ; SEI, 2014.
La possibilité d’empêcher l’échange des émissions négatives au sein des marchés du carbone existants devrait être évaluée. À ce titre, la création d’un marché du carbone spécifiquement pour les émissions négatives représente une option intéressante pour effectuer une séparation efficace. Advenant l’intégration des NET au sein des marchés existants, un plafond décroissant devrait être inclus sur le niveau de compensation permis par ces technologies en fonction de leur contribution anticipée à l’atteinte du net zéro planétaire. Ainsi, les émissions négatives générées par les NET pourraient compléter les réductions d’émissions, au lieu de les substituer. (McLaren et al., 2019)
CONCLUSION

Maints acteurs du milieu des affaires se mobilisent afin que leurs activités reflètent les changements que commande le réchauffement climatique. Ces efforts sont toutefois d’une rigueur et d’une intégrité grandement variables; force est de constater que plusieurs entreprises s’approprient le concept de carboneutralité à des fins économiques plutôt qu’environnementales. En plus de mener à une forme de greenwashing auprès de diverses parties prenantes, ces engagements de carboneutralité ne permettent pas d’amorcer les changements qui seraient attendus dans la transition vers un monde neutre en carbone, tels que des réductions rapides et sévères des émissions, l’élimination progressive des combustibles fossiles et le développement de puits de carbone. En réponse à cette situation, des référentiels ont été développés afin de mettre de l’avant les meilleures pratiques quant à l’atteinte de la carboneutralité par les acteurs du secteur privé.

L’objectif de cet essai était de comparer les démarches proposées par les principaux référentiels de carboneutralité des entreprises à l’atteinte du net zéro à l’échelle collective. Spécifiquement, l’essai visait d’abord à identifier les limites et les tensions qui existent entre l’atteinte de la carboneutralité d’une entreprise et l’atteinte du net zéro planétaire, et ensuite à élaborer des recommandations pour aligner la démarche de carboneutralité du secteur privé avec les impératifs d’un monde net zéro. Pour répondre à ces objectifs, les trois étapes théoriques associées à la démarche générale de carboneutralité — mesurer, réduire et compenser — ont d’abord été analysées pour en faire ressortir les enjeux, sans égard à ce qui est préconisé par les référentiels. Ce premier examen a révélé que les entreprises jouissent de beaucoup de liberté en ce qui concerne la définition du périmètre d’activités à prendre en compte, ce qui ne permet pas de garantir que l’ensemble des sources d’émissions significatives et pertinentes d’une entité soient couvertes par son engagement de carboneutralité. D’ailleurs, l’absence de cibles de réduction des émissions ne permet pas d’assurer que les émissions absolues d’une organisation diminuent dans le temps — encore moins qu’elles suivent une trajectoire compatible avec la science climatique — malgré l’atteinte du stade de carboneutralité. Qui plus est, les projets GES générant les crédits compensatoires utilisés pour compenser les émissions résiduelles d’une entreprise font face à une multitude d’enjeux qui compromettent leur capacité à générer les réductions d’émissions sous-jacentes, tels que l’additionnalité, la permanence, les fuites d’émissions et le double comptage.

Par après, l’analyse du discours scientifique sur l’atteinte du net zéro a permis d’identifier les principales caractéristiques de la transition vers un monde net zéro. À cet égard, l’analyse a témoigné de la nécessité de réduire rapidement et massivement les émissions de CO₂ pour avoir une chance de limiter le réchauffement climatique à 1,5 °C, ce qui implique des transformations disruptives de plusieurs secteurs économiques. Il apparaît que le fait de retarder les réductions d’émissions nécessaires à court terme implique des réductions plus importantes à long terme et comporte des risques de verrouillage économique et institutionnel dans des infrastructures intensives en carbone. En ce qui concerne les méthodes d’élimination du carbone, le niveau de leur déploiement est grandement tributaire des hypothèses socio-économiques que comportent les modélisations climatiques. De manière générale, la BECSC connaît un
fort déploiement d’ici la moitié du siècle, mais cette méthode soulève une multitude de préoccupations d’ordre social et éthique. Les méthodes de séquestration biologique, notamment l’afforestation et la reforestation, sont aussi généralement incluses dans les modélisations qui projettent l’atteinte du net zéro vers 2050. Or, le potentiel de développement limité des puits de carbone terrestres s’avère un frein important au déploiement à grande échelle de l’afforestation et de la reforestation.

L’analyse de trois référentiels de carboneutralité des entreprises a par la suite permis d’identifier certaines limites entre les démarches préconisées par ceux-ci et les impératifs du net zéro planétaire. Cette analyse a attesté que, même lorsqu’une démarche de carboneutralité est encadrée par l’un ou l’autre des trois référentiels, rien ne peut garantir que les émissions absolues d’une entité diminuent conformément au rythme de décarbonisation préconisé par la science climatique. Il en ressort aussi que les référentiels permettent un recours excessif à la compensation carbone, ce qui est incohérent avec le potentiel de développement limité des puits de carbone et la disponibilité décroissante des réductions d’émissions dans le futur. De surcroît, deux des référentiels étudiés n’exigent pas une distinction entre les réductions d’émissions et les émissions négatives dans la comptabilisation et la fixation d’objectifs, malgré des différences majeures entre ces deux mécanismes sur le plan scientifique.

À la lumière des enjeux identifiés au cinquième chapitre, des recommandations ont été formulées à l’intention de divers acteurs de manière à permettre une action climatique cohérente avec la science. Parmi celles-ci, il est essentiel pour les référentiels d’établir des trajectoires d’émissions minimales afin de contraindre les entreprises à des réductions d’émissions absolues compatibles avec le rythme de décarbonisation que commande l’atteinte du net zéro. Il est d’ailleurs recommandé aux entreprises de hauser le niveau d’ambition que portent leurs engagements de carboneutralité afin d’induire les changements transformationnels qu’implique le net zéro planétaire, en plus d’établir une stratégie rigoureuse et transparente pour supporter cette volonté. Par ailleurs, certaines recommandations visent à favoriser l’émergence des conditions nécessaires à une démarche de carboneutralité cohérente avec le net zéro. À cet effet, les standards des marchés du carbone, les gouvernements et les décideurs devraient collaborer pour mettre en place un mécanisme d’ajustements comptables afin d’éviter le double comptage des réductions d’émissions — notamment entre les marchés volontaires et les engagements de la CCNUCC — de manière à assurer la crédibilité et l’intégrité des réductions d’émissions échangées à des fins de carboneutralité.

En définitive, l’essai a permis de conclure que les référentiels de carboneutralité des entreprises ne permettent guère, à l’heure actuelle, d’assurer une démarche de carboneutralité cohérente avec ce qui serait attendu dans un monde net zéro. De ce fait, il importe de rehausser les exigences et d’apporter des clarifications méthodologiques aux référentiels afin de refléter les impératifs d’un réchauffement climatique limité en deçà de 1,5 °C. À ce titre, il serait pertinent de développer des trajectoires d’émissions archétypes, non seulement pour les réductions d’émissions absolues, mais également pour les réductions d’émissions en dehors de la chaîne de valeur d’une organisation (compensations d’émissions) et pour ses émissions
négatives. Ce faisant, les entreprises sur la voie de la carboneutralité pourraient contribuer à ces mécanismes dans une mesure cohérente avec l’atteinte du net zéro à l’échelle collective. En outre, les recherches futures pourraient se pencher sur la démarche de carboneutralité de certains secteurs spécifiques, comme le transport ou l’agriculture, afin de tenir compte de leurs particularités respectives et d’apporter un niveau de détails accru. D’ailleurs, la question à savoir quel périmètre d’émissions à prendre en compte dans un engagement de carboneutralité sème plusieurs incertitudes ; il s’avère qu’une approche sectorielle pourrait potentiellement aider à y répondre. Somme toute, la carboneutralité d’une entreprise et le net zéro planétaire sont deux concepts très difficilement conciliables. Quoique des améliorations puissent être apportées aux référentiels, la recherche d’une cohérence entre les deux concepts appelle une remise en question profonde du paradigme social entourant la carboneutralité à l’échelle d’une entreprise.
RÉFÉRENCES

Agence de la transition écologique (ADEME). (s. d.). Bilan GES organisation. https://www.bilans-ges.ademe.fr/fr/accueil/contenu/index/page/bilan%2Bges%2Borganisation/siGras/1#:~:text=donn%C3%A9es%20%C3%A0%20utiliser,-,P%C3%A9riode%20organisationnelle%2C%20P%C3%A9riode%20de%20capital%2C%20participation%20dans%20les%20derni%C3%A8res%20ann%C3%A9es.

Broekhoff, D. (2020). Should carbon offsets only include removing CO₂ from the atmosphere? https://www.sei.org/perspectives/should-carbon-offsets-only-include-removing-co2-from-the-atmosphere/

Carbon Neutral. (s. d.a). Who we are. https://www.carbonneutral.com/who-we-are

Groupe d’experts intergouvernemental sur l’évolution du climat (GIEC). (s. d.). About the IPCC. https://www.ipcc.ch/about/#:-text=Created%20in%201988%20by%20the,use%20to%20develop%20climate%20policies.

Microsoft. (2020). Microsoft will be carbon negative by 2030.
https://blogs.microsoft.com/blog/2020/01/16/microsoft-will-be-carbon-negative-by-2030/

Ministère de l’Environnement et de la Lutte contre les changements climatiques (MELCC). (s. d.). *Le système québécois de plafonnement et d’échange de droits d’émission en bref.*

http://www.environnement.gouv.qc.ca/changements/carbone/credits-compensatoires/index.htm

http://www.environnement.gouv.qc.ca/changements/carbone/credits-compensatoires/definitions.htm

https://www.government.se/495f60/contentassets/883ae8e123bc4e42aa8d59296ebe0478/the-swedish-climate-policy-framework.pdf

Natural Capital Partners. (s. d.). About our company.
https://www.naturalcapitalpartners.com/company

https://assets.naturalcapitalpartners.com/downloads/Deeds_Not_Words_-_The_Growth_Of_Climate_Action_In_The_Corporate_World.pdf

New Climate Institute. (2020). Ambitious climate actions and targets by countries, regions, cities and businesses.
https://newclimate.org/ambitiousactions

http://gdt.oqlf.gouv.qc.ca/ficheOqlf.aspx?id_Fiche=26502873#~:text=Condition%20id%C3%A9ale%20%C3%A0%20atteindre%20dans,n’ont%20pu%20%C3%AAtre%20%C3%A9duites.
Öko-Institut. (2016). How additional is the clean development mechanism? Analysis of the application of current tools and proposed alternatives (Rapport technique).
https://www.researchgate.net/publication/316216473_How_additional_is_the_Clean_Development_Mechanism_Analysis_of_the_application_of_current_tools_and_proposed_alternatives_Study_prepared_for_DG_CLIMA

ISO/WD 14068: Greenhouse gas management and related activities — Carbon neutrality.
https://www.iso.org/standard/43279.html

https://unfccc.int/files/cooperation_and_support/cooperation_with_internationalorganizations/application/pdf/convfr.pdf

https://unfccc.int/sites/default/files/french_paris_agreement.pdf

Organisation international de normalisation (ISO). (s. d.a). ISO 14064-1: gaz à effet de serre — Partie 1 : Spécifications et lignes directrices, au niveau des organismes, pour la quantification et la déclaration des émissions et des suppressions des gaz à effet de serre.
https://www.iso.org/fr/standard/38381.html

https://library.wmo.int/doc_num.php?explnum_id=3777

Règlement sur la déclaration obligatoire de certaines émissions de contaminants dans l’atmosphère, Q-2, r. 15, art. 6.3.

ANNEXE 1 – PARAMÈTRES DE L’OFFRE ÉNERGÉTIQUE PROVENANT DE SCÉNARIOS COMPATIBLES AVEC LE 1,5 °C (tiré de : GIEC, 2018, p. 132-133)

Le tableau ci-dessous met en lumière les paramètres de l’offre énergétique primaire mondiale compatibles avec des scénarios limitant le réchauffement climatique à 1,5 °C sans dépassement ou avec un faible dépassement. Les valeurs médianes (maximum, minimum) proviennent de 85 scénarios issus de la littérature.

<table>
<thead>
<tr>
<th>Median (max, min)</th>
<th>Count</th>
<th>Primary Energy Supply (EJ)</th>
<th>Share in Primary Energy (%)</th>
<th>Growth (factor) 2020-2050</th>
</tr>
</thead>
<tbody>
<tr>
<td>Below-1,5°C and 1,5°C-low-OS pathways</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>total primary</td>
<td>50</td>
<td>565.33 (619.70, 483.22)</td>
<td>464.50 (619.87, 237.37)</td>
<td>553.23 (725.40, 289.02)</td>
</tr>
<tr>
<td>renewables</td>
<td>50</td>
<td>87.14 (101.60, 60.16)</td>
<td>146.96 (203.90, 87.75)</td>
<td>291.33 (584.78, 176.77)</td>
</tr>
<tr>
<td>biomass</td>
<td>50</td>
<td>60.41 (70.03, 40.54)</td>
<td>77.07 (113.02, 44.42)</td>
<td>152.30 (311.72, 40.36)</td>
</tr>
<tr>
<td>non-biomass</td>
<td>50</td>
<td>26.35 (36.57, 17.78)</td>
<td>62.58 (114.41, 25.79)</td>
<td>146.23 (409.94, 53.79)</td>
</tr>
<tr>
<td>wind & solar</td>
<td>44</td>
<td>10.93 (20.16, 2.61)</td>
<td>40.14 (82.66, 7.05)</td>
<td>121.82 (342.77, 27.95)</td>
</tr>
<tr>
<td>nuclear</td>
<td>50</td>
<td>10.91 (18.55, 8.52)</td>
<td>16.26 (36.80, 6.80)</td>
<td>24.51 (60.30, 3.09)</td>
</tr>
<tr>
<td>fossil</td>
<td>50</td>
<td>462.95 (520.41, 376.30)</td>
<td>310.36 (479.13, 70.14)</td>
<td>183.79 (394.71, 54.86)</td>
</tr>
<tr>
<td>coal</td>
<td>50</td>
<td>136.89 (191.02, 83.23)</td>
<td>44.93 (127.98, 5.97)</td>
<td>24.15 (71.12, 9.92)</td>
</tr>
<tr>
<td>gas</td>
<td>50</td>
<td>132.95 (152.80, 105.01)</td>
<td>112.51 (137.56, 17.50)</td>
<td>76.03 (198.19, 14.92)</td>
</tr>
<tr>
<td>oil</td>
<td>50</td>
<td>197.26 (245.15, 151.02)</td>
<td>156.16 (202.57, 38.94)</td>
<td>69.94 (167.52, 15.07)</td>
</tr>
</tbody>
</table>

Le tableau ci-dessous présente les paramètres de la génération d’électricité mondiale compatibles avec des scénarios limitant le réchauffement climatique à 1,5 °C sans dépassement ou avec un faible dépassement. Les valeurs médianes (maximum, minimum) proviennent de 89 scénarios issus de la littérature.

<table>
<thead>
<tr>
<th>Median (max, min)</th>
<th>Count</th>
<th>Electricity Generation (EJ)</th>
<th>Share in Electricity Generation (%)</th>
<th>Growth (factor) 2020-2050</th>
</tr>
</thead>
<tbody>
<tr>
<td>Below-1,5°C and 1,5°C-low-OS pathways</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>total generation</td>
<td>50</td>
<td>98.45 (113.98, 83.53)</td>
<td>115.82 (152.40, 81.28)</td>
<td>215.58 (354.48, 126.96)</td>
</tr>
<tr>
<td>renewables</td>
<td>50</td>
<td>26.28 (41.80, 18.50)</td>
<td>63.30 (111.70, 32.41)</td>
<td>145.50 (324.26, 90.66)</td>
</tr>
<tr>
<td>biomass</td>
<td>50</td>
<td>2.02 (7.00, 0.76)</td>
<td>4.29 (11.96, 0.79)</td>
<td>20.75 (39.28, 0.24)</td>
</tr>
<tr>
<td>non-biomass</td>
<td>50</td>
<td>24.21 (35.72, 17.70)</td>
<td>57.12 (101.90, 25.79)</td>
<td>135.04 (323.91, 53.79)</td>
</tr>
<tr>
<td>wind & solar</td>
<td>50</td>
<td>1.66 (6.60, 0.38)</td>
<td>8.91 (48.04, 0.69)</td>
<td>208.97 (291.72, 2.68)</td>
</tr>
<tr>
<td>nuclear</td>
<td>50</td>
<td>10.84 (18.55, 8.52)</td>
<td>15.46 (36.80, 6.80)</td>
<td>21.97 (64.72, 3.19)</td>
</tr>
<tr>
<td>fossil</td>
<td>50</td>
<td>59.43 (68.75, 39.48)</td>
<td>36.51 (66.07, 2.25)</td>
<td>14.81 (57.76, 0.00)</td>
</tr>
<tr>
<td>coal</td>
<td>50</td>
<td>31.02 (42.00, 14.40)</td>
<td>8.83 (34.11, 0.00)</td>
<td>1.38 (17.39, 0.00)</td>
</tr>
<tr>
<td>gas</td>
<td>50</td>
<td>24.70 (32.46, 13.44)</td>
<td>22.59 (42.08, 2.01)</td>
<td>12.79 (53.17, 0.00)</td>
</tr>
<tr>
<td>oil</td>
<td>50</td>
<td>2.48 (13.36, 1.12)</td>
<td>1.89 (7.56, 0.24)</td>
<td>0.10 (8.78, 0.00)</td>
</tr>
</tbody>
</table>

92
ANNEXE 2 – TABLEAU DE BORD DU REFERENTIEL NET ZERO INITIATIVE (tiré de : Carbone 4, 2020, p. 42)

La figure ci-dessous illustre les trois différents piliers du Net Zero Initiative (A, B et C) et les met en relation avec les leviers à l’échelle planétaire (réduction des émissions et augmentation des puits de carbone). De plus, les différentes catégories d’émissions sont présentées en fonction de leur emplacement au sein de l’entreprise (dans et hors de la chaîne de valeur) et de leur pilier respectif.
Le tableau ci-dessous présente sommairement les recommandations élaborées dans le cadre de cet essai.

<table>
<thead>
<tr>
<th>Acteurs visés</th>
<th>Section</th>
<th>Recommandation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Référentiels de carboneutralité</td>
<td>6.1.1</td>
<td>Établir des trajectoires d’émissions minimales pour contraindre les entreprises à des réductions d’émissions compatibles avec la science climatique.</td>
</tr>
<tr>
<td></td>
<td>6.1.2</td>
<td>Intensifier les exigences en ce qui concerne la détermination du périmètre d’émissions à prendre en compte afin que l’entièreté des émissions significatives soit couverte par l’engagement de carboneutralité.</td>
</tr>
<tr>
<td></td>
<td>6.1.3</td>
<td>Exiger une distinction rigoureuse entre les réductions d’émissions et les émissions négatives dans la comptabilisation des émissions et la fixation d’objectifs.</td>
</tr>
<tr>
<td></td>
<td>6.1.4</td>
<td>Encadrer la sélection des crédits compensatoires en offrant une hiérarchisation des types de projets GES en fonction de critères de qualité.</td>
</tr>
<tr>
<td></td>
<td>6.1.5</td>
<td>Évaluer la possibilité d’encadrer l’atteinte d’un stade d’émissions négatives nettes (carbonégativité) par les entreprises.</td>
</tr>
<tr>
<td>Entreprises</td>
<td>6.2.1</td>
<td>Rehausser l’ambition que portent les engagements de carboneutralité pour assurer une cohérence avec l’atteinte d’un monde net zéro.</td>
</tr>
<tr>
<td></td>
<td>6.2.2</td>
<td>Établir une stratégie transparente et rigoureuse pour supporter leur volonté d’atteindre la carboneutralité.</td>
</tr>
<tr>
<td>Gouvernements, standards des marchés du carbone et décideurs</td>
<td>6.3.1</td>
<td>Mettre en place un mécanisme d’ajustements comptables afin d’éviter le double comptage des unités de réductions d’émissions pouvant être utilisées dans les engagements de la CNUCC et les marchés volontaires ou domestiques.</td>
</tr>
<tr>
<td></td>
<td>6.3.2</td>
<td>Encadrer l’intégration des NET aux marchés du carbone afin d’éviter la substitution des réductions d’émissions avec les émissions négatives.</td>
</tr>
</tbody>
</table>