ANALYSE D’UN VÊTEMENT ISSU DE L’INDUSTRIE DE LA MODE QUÉBÉCOISE DANS UNE OPTIQUE DE DÉCARBONISATION

Par
Noémie Bastien-Beaudoin

Essai présenté au Centre universitaire de formation en environnement et développement durable en vue de l’obtention du grade de maîtrise en environnement (M. Env.)

Sous la direction de Marie-Eve Faust

MAÎTRISE EN ENVIRONNEMENT
UNIVERSITÉ DE SHERBROOKE

Septembre 2020
L’objectif principal de cet essai est d’analyser le cycle de vie d’un vêtement issu de l’industrie québécoise de la mode dans une optique de décarbonisation. L’industrie de la mode génère des impacts à plusieurs niveaux à l’échelle mondiale, que ce soit sur le plan environnemental ou social. L’accès à l’eau potable mis en danger par la pollution ou la surutilisation, l’accumulation de déchets et les conditions de travail médiocres en sont des exemples. L’apparition de la mode rapide (éphémère) dans l’industrie vestimentaire au courant des années 1990 a révolutionné la façon de consommer. La méthode juste-à-temps permet aux entreprises d’être très réceptives à l’évolution de la demande. Aujourd’hui, les entreprises du secteur mettent des nouveaux vêtements sur le marché à un rythme si soutenu qu’il accélère l’évolution des tendances. L’industrie génère des milliards de dollars annuellement et sera portée à croître au cours des prochaines années avec le pouvoir d’achat des pays émergents qui augmente. Cela entrainera potentiellement des impacts environnementaux et sociaux encore plus marqués qu’ils ne le sont, particulièrement au niveau des émissions de gaz à effet de serre. Face à la crise des changements climatiques, l’industrie doit entre autres adopter des pratiques qui permettent de réduire son empreinte carbone.

L’extraction des matières premières représente la première phase du cycle de vie d’un vêtement qui a un impact sur son empreinte carbone. Alors que les fibres naturelles représentent un avantage par leur capacité à capter du dioxyde de carbone, les fibres synthétiques seront plus facilement recyclables en fin de vie, ce qui évite beaucoup d’émissions associées aux fibres vierges. Pour les procédés de transformation de la fibre en fil, puis en textile, la coloration de ce dernier et finalement l’assemblage, il s’agit de limiter l’utilisation d’énergie, la création de déchets et d’assurer une qualité et un design qui va permettre au vêtement de perdurer afin de limiter l’impact sur les émissions de gaz à effet de serre. Rapprocher les matières premières et la production du consommateur final, favoriser les alternatives à l’achat conventionnel, faire l’entretien approprié et mieux gérer le textile en fin de vie sont des pratiques qui limiteront potentiellement les émissions. Pour ce faire, l’industrie doit devenir plus transparente sur ses pratiques et assurer une traçabilité dans sa chaîne d’approvisionnement, le gouvernement doit encadrer et favoriser la production locale et le consommateur doit rester plus vigilant lorsque vient le temps d’acheter un vêtement, un geste qui représente un levier pour l’adoption des meilleures pratiques.
REMERCIEMENTS

Je tiens d’abord à remercier mes collègues de la maitrise pour leur intérêt partagé pour la cause environnementale qui donne espoir. Je ne me serais probablement pas rendue à l’étape de la rédaction de l’essai sans votre présence et votre soutien au cours des deux dernières années. Merci au corps professoral qui a su piquer notre curiosité sur des sujets divers tous aussi intéressants les uns que les autres, de l’économie de l’environnement, à l’aménagement du territoire, en passant par le droit et la chimie. On peut faire de belles choses grâce à ce désir d’apprendre qui est éveillé par des gens passionnés.

Merci particulier à Madame Marie-Eve Faust pour son soutien et ses conseils, mais aussi pour votre présence rassurante tout au long de la rédaction. Ce fut un plaisir de faire votre connaissance et de partager votre passion pour l’univers de la mode. En espérant recroiser votre chemin d’une façon ou d’une autre dans mes futurs projets.

Finalement, merci à mes amis et ma famille qui sont toujours présents et m’encouragent dans tous mes projets, académiques et autres, aussi farfelus et diversifiés soient-ils. Un merci tout spécial à la belle Camille pour l’hébergement et les expériences culinaires, qui ont certes constituées une source d’inspiration pour rédiger les pages qui suivent.
TABLE DES MATIÈRES

INTRODUCTION .. 1

1. L’INDUSTRIE DE LA MODE VESTIMENTAIRE .. 4
 1.1. L’évolution de l’industrie de la mode vestimentaire ... 4
 1.2. La chaîne d’approvisionnement et la méthode de gestion juste-à-temps 6
 1.3. Les impacts de l’industrie de la mode ... 7
 1.3.1. Les impacts économiques ... 7
 1.3.2. Les impacts environnementaux .. 8
 1.3.3. Les impacts sociaux ... 11

2. LES CHANGEMENTS CLIMATIQUES .. 13
 2.1. Les causes .. 13
 2.2. Les impacts ... 15
 2.3. Les enjeux .. 16
 2.4. L’empreinte carbone ... 17

3. L’ANALYSE DU CYCLE DE VIE .. 19
 3.1. L’historique ... 19
 3.2. La définition ... 19
 3.3. Les limites de l’analyse de cycle de vie ... 20
 3.4. L’économie circulaire et l’analyse du cycle de vie ... 21
 3.5. L’analyse du cycle de vie d’un vêtement ... 22
 3.5.1. L’extraction des matières premières ... 24
 3.5.2. La production du vêtement ... 30
 3.5.3. Le transport .. 39
 3.5.4. L’utilisation ... 45
 3.5.5. La fin de vie .. 48

4. LES RECOMMANDATIONS ... 54
 4.1. Les recommandations à l’industrie .. 54
 4.1.1. Appliquer le principe d’analyse de cycle de vie .. 54
 4.1.2. Concevoir des vêtements écoresponsables ... 55
 4.1.3. Offrir une garantie .. 57
 4.1.4. Assurer la traçabilité tout au long de la chaîne d’approvisionnement 57
4.1.5. Faire preuve de transparence ... 58

4.2. Les recommandations aux gouvernements ... 59
 4.2.1. Investir dans le secteur de la mode au Québec 59
 4.2.2. Réglementer l’étiquetage .. 60

4.3. Les recommandations aux consommateurs .. 60
 4.3.1. Voter avec son argent ... 60
 4.3.2. Entretenir convenablement ses vêtements .. 61

CONCLUSION .. 63

RÉFÉRENCES ... 65

BIBLIOGRAPHIE .. 75
LISTE DES FIGURES ET TABLEAUX

Figure 1.1 Modèle de chaîne d’approvisionnement dans l’industrie de la mode .. 6
Figure 1.2 Impacts potentiels d’une hausse de la consommation des produits de mode des pays émergents ... 10
Figure 1.3 Salaire mensuel minimum (bande unie) par rapport au minimum vital (bande rayée) en Inde, au Bangladesh et au Cambodge .. 11
Figure 2.1 Impact sur les changements climatiques des différentes phases du cycle de vie des vêtements consommés en Suède .. 14
Figure 2.2 Émissions de CO\textsubscript{2} per capita en 2017 (gauche) et modifications des températures et des précipitations dans les scénarios de 1,5 °C et 2 °C (droite) 17
Figure 3.1 Application du principe d’économie circulaire au cycle de vie d’un vêtement 22
Figure 3.2 Étapes simplifiées de la fabrication d’un vêtement ... 23
Figure 3.3 Production mondiale de fibre en 2017 .. 24
Figure 3.4 Utilisations modernes du plant de cannabis ... 27
Figure 3.5 Émissions de CO\textsubscript{2} pour la production de différentes fibres synthétiques pétrochimiques 29
Figure 3.6 Comparaison des émissions de GES reliées à la méthode de teinture conventionnelle et à la méthode de teinture spin-dyeing ... 36
Figure 3.7 Optimisation du textile par la méthode ZWFD .. 38
Figure 3.8 Transport dans la chaîne d’approvisionnement de Levis Strauss et Co. 40
Figure 3.9 Scénarios de livraison qui permettent une réduction de l’empreinte carbone par rapport au statut quo .. 44
Figure 3.10 Impact sur les changements climatiques pour un an d’utilisation d’un jeans selon différents scénario de lavage et séchage ... 47
Figure 3.11 Raisons qui poussent les consommateurs à se départer de leurs vêtements 49
Figure 3.12 Comparaison des émissions de CO\textsubscript{2} d’un vêtement recyclable et compostable par rapport à un vêtement de référence .. 53
Figure 4.1 Pourcentages des marques de mode qui divulguent les fournisseurs des tiers 1, 2 et 3 58
Figure 4.2 Effet de la combinaison de plusieurs mesures de réduction des émissions de GES dans l’industrie du vêtement .. 62
Tableau 3.1 Taux d’absorption et rendement des fibres végétales... 26
Tableau 3.2 Couleur et provenance des teintures naturelles disponibles au Québec 35
Tableau 3.3 Recyclabilité et biodégradabilité des fibres locales.. 50
Tableau 4.1 Résumé des propriétés des fibres locales ... 56
LISTE DES ACRONYMES, DES SYMBOLES ET DES SIGLES

<table>
<thead>
<tr>
<th>Acronyme</th>
<th>Signification</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACV</td>
<td>Analyse de cycle de vie</td>
</tr>
<tr>
<td>APEC</td>
<td>Asia-Pacific Economic Cooperation</td>
</tr>
<tr>
<td>ATC</td>
<td>Agreement on Textiles and Clothing</td>
</tr>
<tr>
<td>CC</td>
<td>Changements climatiques</td>
</tr>
<tr>
<td>CEM</td>
<td>Conseil emploi métropole</td>
</tr>
<tr>
<td>CPQ</td>
<td>Conseil du patronat du Québec</td>
</tr>
<tr>
<td>CH₄</td>
<td>Méthane</td>
</tr>
<tr>
<td>CLECAT</td>
<td>European Association for Forwarding, Transport, Logistics and Customs Services</td>
</tr>
<tr>
<td>CO₂</td>
<td>Dioxyde de carbone</td>
</tr>
<tr>
<td>éqCO₂</td>
<td>Équivalent en dioxyde de carbone</td>
</tr>
<tr>
<td>GES</td>
<td>Gaz à effet de serre</td>
</tr>
<tr>
<td>GIEC</td>
<td>Groupe d’experts intergouvernemental sur l’évolution du climat</td>
</tr>
<tr>
<td>HFC</td>
<td>Hydrofluorocarbures</td>
</tr>
<tr>
<td>IPBES</td>
<td>Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services</td>
</tr>
<tr>
<td>ISO</td>
<td>Organisation internationale de normalisation</td>
</tr>
<tr>
<td>MELCC</td>
<td>Ministère de l’Environnement et de la Lutte contre les changements climatiques</td>
</tr>
<tr>
<td>MAPAQ</td>
<td>Ministère de l’Agriculture, des Pêcheries et de l’Alimentation du Québec</td>
</tr>
<tr>
<td>MFA</td>
<td>Multi Fiber Agreement</td>
</tr>
<tr>
<td>MOE</td>
<td>Ministry of Environment</td>
</tr>
<tr>
<td>NO₂</td>
<td>Oxyde nitreux</td>
</tr>
<tr>
<td>ONU</td>
<td>Organisation des Nations Unies</td>
</tr>
<tr>
<td>OQLF</td>
<td>Office québécois de la langue française</td>
</tr>
<tr>
<td>PFC</td>
<td>Perfluorocarbures</td>
</tr>
<tr>
<td>PP</td>
<td>Polypropylène</td>
</tr>
<tr>
<td>THC</td>
<td>Tétahydrocannabinol</td>
</tr>
<tr>
<td>UE</td>
<td>Union européenne</td>
</tr>
</tbody>
</table>
LEXIQUE

Analyse du cycle de vie
Compilation des intrants et des extrants (flux) d’un produit matériel, d’un service ou d’un procédé (système à l’étude) et de leurs impacts environnementaux potentiels tout au long de son cycle de vie, de l’extraction des ressources jusqu’au traitement des déchets.
(Organisation internationale de normalisation [ISO], 2006)

Carboneutralité
But à atteindre dans la démarche de décarbonisation. Le bilan carbone de la production d’un bien, par exemple, est alors nul, par les technologies utilisées et la compensation lorsque nécessaire. (OQLF, 2010)

Décarbonisation
Diminution progressive de la consommation de combustibles fossiles et donc la diminution de l’empreinte carbone. L’utilisation de procédés plus efficaces et des modifications dans les façons de faire le permettent. (Office québécois de la langue française [OQLF], 2015)

Empreinte carbone
Quantité, le plus souvent exprimée en tonnes ou en kilogrammes, de CO₂ équivalent produite à travers différents procédés dans un cadre défini, qui pourrait être l’ensemble du cycle de vie d’un produit, une activité précise ou par une personne dans une période donnée par exemple. (Carbon Footprint Network, 2020)

Pensée cycle de vie
Analyse plutôt qualitative des impacts lors du processus de conception qui ne s’inscrit pas dans une méthodologie aussi stricte que l’analyse de cycle de vie. (Belem, 2005)
INTRODUCTION

L’industrie de la mode vestimentaire est potentiellement la deuxième industrie générant le plus d’émissions de gaz à effet de serre (GES) après l’industrie pétrolière (Morgan et Ross, 2015), en plus de générer d’autres impacts tels que le rejet de produits toxiques et l’accumulation de déchets en fin de vie utile. Ces impacts sont engendrés par une évolution très rapide des tendances qui met de l’avant des produits très abordables qui ne sont pas nécessairement fait pour durer, communément appelé le fast fashion ou mode rapide (Thomas, 2019). L’industrie se doit d’évoluer vers des façons de faire axées sur le prolongement de la durée de vie des vêtements et d’adopter des procédés permettant de réduire les impacts environnementaux, notamment pour être en cohérence avec l’objectif du Groupe d’experts intergouvernemental sur l’évolution du climat (GIEC) de limiter de réchauffement climatique à 1,5 °C (Groupe d’experts intergouvernemental sur l’évolution du climat [GIEC], 2019).

Au Québec, l’industrie de la mode représente plus de 82 000 emplois, principalement dans la région de Montréal. Près du quart des emplois se trouvent au niveau de la fabrication, ce qui démontre l’importance du secteur de fabrication dans la région malgré la délocalisation de nombreux emplois. (Conseil emploi métropole [CEM], 2017) Cette délocalisation s’est produite majoritairement dans les années 1990 et 2000 des grandes villes nord-américaines, comme Montréal et New York, vers les pays en voie de développement où les cadres réglementaires sont moins strictes, ce qui permet aux entreprises de produire à moindre coût. À titre indicatif, la production locale américaine est passée de 95 % à 5 % entre les années 1960 et 2000. (Pinkerson et Levin, 2009) Les travailleurs de l’industrie dans les pays en développement sont principalement des femmes et des jeunes filles qui gagnent un très faible revenu pour des horaires de travail accablants, en plus de souvent travailler dans des conditions dangereuses voire subir du harcèlement de la part des supérieurs. Des salaires insuffisants pour répondre aux besoins de base ainsi que des journées de travail allant jusqu’à 16 heures sont souvent la norme dans certains pays. (Daignault-Leclerc, 2019)

Les impacts du secteur de la mode se font sentir à plusieurs niveaux, mais en raison de l’urgence climatique, il semble prioritaire de s’intéresser à la décarbonisation de l’industrie. Il y a des impacts potentiellement considérables liés à une transition vers des procédés à faible empreinte carbone à l’échelle de la province. L’objectif principal de cet essai est d’analyser un vêtement issu de l’industrie québécoise de la mode dans une optique de décarbonisation. Pour ce faire, l’objectif principal se décline
en quatre sous-objectifs à atteindre, soit (i) d’expliquer le cycle de vie de la fabrication d’un vêtement, (ii) de comparer les émissions de GES liées aux différents procédés ou pratiques à chaque étape du cycle de vie de la fabrication du vêtement, (iii) d’identifier les limites de l’industrie dans sa forme actuelle qui sont des freins à l’atteinte de la carboneutralité, et finalement, (iv) de proposer des alternatives, si possible, en s’inspirant d’autres industries et de modèles théoriques.

La qualité des sources consultées pour la rédaction de cet essai est assurée par la vérification de plusieurs critères pour chaque source et permet d’obtenir un travail de qualité. D’abord, l’année de publication doit être ultérieure à l’année 2000 afin d’assurer que l’information est à jour, sauf exceptions. Pour les livres, journaux, quotidiens et documentaires consultés, la notoriété de l’éditeur ou du producteur est vérifiée. Ensuite, il doit y avoir des références citées dans le texte qui sont tout autant valides. Finalement, l’auteur ou producteur doit être nommé et non biaisé, ce qui peut être vérifié par une recherche sur ses affiliations et son parcours professionnel. La qualité de la langue est aussi un indice de la qualité de la source. Les articles scientifiques consultés proviennent en grande partie de journaux qui sont des références en matière de textiles et de durabilité comme le Journal of Cleaner Production et le Clothing and Textiles Research Journal.

Le premier chapitre porte sur l’industrie de la mode vestimentaire, son évolution, la méthode du juste-à-temps qui définit la gestion d’une grande part de l’industrie, ses impacts sur l’environnement, la société et l’économie. Dans le deuxième chapitre, la problématique des CC est abordée. Les causes, les impacts et les enjeux sont présentés, suivis par une définition des principes d’empreinte carbone, de carboneutralité et de décarbonisation. Le troisième chapitre expose l’analyse dans une pensée cycle de vie d’un vêtement,
de l’extraction des matières premières à sa fin de vie, dans une optique de décarbonisation. Le dernier chapitre a pour but de faire des recommandations en lien avec l’analyse effectuée, autant au niveau des gouvernements, des consommateurs et de l’industrie. À noter qu’à l’heure où ont été écrites ces lignes, la COVID-19 entrait sur le terrain canadien. En conséquence, cet essai ne tient pas compte des changements que la crise aurait pu apporter au sein de l’industrie.
1. **L’INDUSTRIE DE LA MODE VESTIMENTAIRE**

Ce chapitre met en contexte l’analyse du cycle de vie d’un vêtement qui sera effectuée au chapitre 3 par la compréhension de l’évolution de l’industrie de la mode au cours des dernières décennies et ses impacts.

1.1. **L’évolution de l’industrie de la mode vestimentaire**

La mode fait référence au style vestimentaire et aux accessoires qui prévalent dans un contexte et un moment donné (Ciarniene et Vienazindiene, 2014). Dans sa définition, la mode a un aspect éphémère, qui est aujourd’hui amplifié par la vitesse à laquelle l’information circule. Au-delà de l’aspect esthétique, la mode représente pour plusieurs une forme d’art qui va bien au-delà de simples morceaux de tissus. La mode est un moyen de se définir et de projeter une image de soi au monde, de se créer une identité individuelle. Simultanément, la mode a un aspect social puisqu’elle permet de définir son appartenance à un groupe. Chacun exprime sa vision de la mode et sa liberté par son *style*. Comme l’a dit Rachel Zoe, styliste américaine, « le style est une manière de dire qui vous êtes sans parler ». Alors que les styles vestimentaires étaient bien définis selon les classes sociales et les occupations au 19e siècle, tous les choix offerts sur le marché aujourd’hui démontrent une grande complexité, alors que plusieurs styles à la mode coexistent. (Crane, 2000)

L’industrie de la mode vestimentaire est incluse dans l’industrie de la mode au sens large, qui comprend les accessoires de mode (sacs, bijoux, etc.) et les chaussures. L’industrie de la mode vestimentaire est largement liée à l’industrie du textile. En effet, 60 % des textiles produits mondialement servent à la fabrication de vêtements. (Ellen MacArthur Foundation, 2017a) Avant la période industrielle, chaque morceau était fabriqué à la main par un tailleur ou à domicile pour répondre aux besoins d’un particulier. Les vêtements étaient souvent parmi les biens les plus précieux que quelqu’un pouvait posséder, le soin qui leur était accordé permettait de les utiliser le plus longtemps possible. (Crane, 2000) Au 20e siècle, le secteur manufacturier explode, et les vêtements ne font pas exception. Les vêtements passent d’une production artisanale à une production à la chaîne, et les conditions de travail sont dès lors affectées. L’incendie de l’usine *Triangle Shirtwaist* qui avait fait des dizaines de morts et de blessés avait donné de la force au mouvement syndical qui demandait de meilleures conditions pour les employés. Les entreprises se tournent alors vers des pays où elles peuvent produire à moindres coûts. (Pinkerson et Levin, 2009) Encore aujourd’hui, les syndicats ne sont pas tolérés dans les pays en voie de développement qui produisent la majorité des vêtements achetés par les consommateurs occidentaux (Daignault-Leclerc, 2019).
À partir des années 1960, de plus en plus de gens et de séries télévisées mettent de l'avant les designers, la mode se démocratise alors. Autrefois, il s’agissait d’un privilège réservé à la classe aisée de la société. Avec Internet qui devient accessible à un nombre grandissant d’usagers au cours des dernières décennies, la demande pour des produits de designers, ou encore des produits similaires, a bondie. C’est à cette époque qu’apparaît la fast fashion. La fast fashion est caractérisé par la reproduction des looks proposés par les designers à des prix très abordables, plus compétitifs les uns que les autres. Pour que cela soit possible, les compagnies qui mettent en vente ce type de vêtements doivent couper drastiquement sur la qualité du vêtement ; les vêtements deviennent presque des biens jetables. Les consommateurs n’y voient pas nécessairement une problématique, puisque les tendances évoluent à un tel rythme que le morceau de piètre qualité ne sera probablement plus à la mode dans quelques temps. (Cline, 2013)

De manière traditionnelle, il y avait deux cycles de tendances par année, pour le temps chaud et pour le temps froid, puis quatre (automne/hiver, fêtes, croisière, printemps/été). Avec le nouveau modèle juste-à-temps, certaines chaînes offrent plus de 50 cycles par année. Ce qui veut dire que des nouveaux vêtements sont mis sur les rayons de façon hebdomaire, et même quotidienne. (Morgan et Ross, 2015) La rotation des deux cycles par année était pertinente lorsque les vêtements étaient fabriqués à la main. Cependant, avec l’industrialisation et la commercialisation de la mode, il n’est pas rentable pour les détaillants que les consommateurs se rendent seulement deux fois par année en magasin, d’où l’intérêt d’offrir de nouveaux produits de plus en plus fréquemment. (Cline, 2013)

La fast fashion est aujourd’hui la façon dont la majorité des occidentaux consomment la mode et est en croissance dans les pays asiatiques (Remy, Speelman et Swartz, 2016). Cependant, le mouvement écologiste et social qui remet en cause les habitudes de consommation dans les pays occidentaux touche aussi la consommation de la mode. Le mouvement du slow fashion, en opposition au fast fashion, prend de l’ampleur. Le mouvement prône le retour aux habitudes de consommation qui s’apparentent à celles d’autrefois : opter pour des vêtements de qualité au style intemporel, des matériaux responsables et des vêtements de seconde main, prioriser la confection locale, prendre soin de ses vêtements par un entretien adapté et les réparer plutôt que de les jeter. (Kale, 2019) Les consommateurs souhaitent de plus en plus avoir accès à la mode comme un service plutôt qu’un bien, ce qui pourrait changer drastiquement la façon dont les entreprises font des affaires au cours des prochaines années. En lien avec les valeurs sociales et environnementales qui guident leurs achats, les consommateurs demandent plus de transparence de la part des entreprises. (The Business of Fashion et McKinsey & Company, 2019)
1.2. La chaîne d’approvisionnement et la méthode de gestion juste-à-temps

Les tendances qui se renouvellent continuellement constituent un défi pour les entreprises qui doivent imaginer les pièces, les produire et les livrer dans de très courts laps de temps. La demande est rarement stable ou linéaire dans le secteur, puisqu’elle est influencée par les designers de plus en plus nombreux, les séries télévisées, les films, les célébrités, le style de la rue et autres. La gestion des chaînes d’approvisionnement est la clé pour le succès des grandes chaînes de fast fashion. (Ciarniene et Vienazindiene, 2014) Avec l’arrivée des médias sociaux et des influenceurs, la demande est d’autant plus imprévisible. La fast fashion n’est plus simplement un moyen de vendre plus, mais d’avoir une meilleure offre en réagissant très rapidement à la demande de l’autre côté du globe. (Cline, 2013)

La figure 1.1 montre les quatre phases distinctes, mais interconnectées, d’une chaîne d’approvisionnement typique dans l’industrie de la mode, soit la production des matières premières (secteur primaire), transformation en biens (secteur secondaire), la distribution et la vente au détail (secteur tertiaire). Pour être compétitif, les entreprises doivent minimiser le temps de mise en marché, soit de la production des matières premières jusqu’au détaillant. (Ciarniene et Vienazindiene, 2014)

La méthode juste-à-temps ou just-in-time a été adoptée par le fabricant automobile Toyota dans les années 1970 et a rapidement été reprise par l’industrie de la mode. Cette méthode permet aux entreprises de réduire le temps et donc d’améliorer leur réponse face au marché très instable de la mode. La méthode est caractérisée par le flux des biens manufacturiers, en opposition à l’entreposage de ces derniers. Les systèmes informatiques permettent de connaître en permanence l’inventaire et d’ajuster la production en fonction de la demande, sans quoi la production devrait être amplifiée en prévision d’une pointe de
consommation. Le danger de ce type de gestion est une coupure dans la chaîne d’approvisionnement qui briserait la chaîne, ce qui demande une grande gestion du risque. (Sherman, 2018)

1.3. Les impacts de l’industrie de la mode

1.3.1. Les impacts économiques

L’autre côté de la médaille de cette industrie qui génère une forte croissance économique sont les pertes annuelles évaluées à 500 milliards de dollars en textiles incinérés et enfouis. Les pertes sont associées non seulement à la perte de valeur, mais également aux coûts pour les services et infrastructures. (Ellen MacArthur Foundation, 2017a) Se tourner vers des méthodes de production basées sur l’économie circulaire représente une opportunité de plus de 560 milliards de dollar pour l’industrie (Ellen MacArthur Foundation, 2017b).

La valeur des pertes matérielles peut être estimée relativement aisément. Cependant, l’industrie de la mode exerce beaucoup de pression sur les milieux naturels et sur la santé humaine de plusieurs façons, directement et indirectement, ce qui entraîne des coûts qui ne sont pas internalisés. Les rejets d’eaux usées, les émissions de CO₂ liés à l’utilisation d’énergie et au transport, l’utilisation de pesticides pour la culture intensive des champs de coton, l’extraction du pétrole pour la transformation en fibres synthétiques (Morgan et Ross, 2015) ou l’élevage de moutons, grands émetteurs de méthane, pour leur laine (Fletcher, 2014) en sont des exemples. La complexité des chaînes d’approvisionnement rend la tâche très difficile, et souvent, aucune obligation légale ne pousse les entreprises à quantifier les impacts et les
mitiger. S’il était possible d’établir les coûts associés aux soins de santé pour les travailleurs et les populations exposés aux produits et engrais chimiques, à la pollution de l’air par les GES et autres émissions atmosphériques, à la perte de biodiversité et s’ils étaient internalisés par l’industrie, les profits ne seraient pas aussi pharamineux qu’ils le sont aujourd’hui. (Morgan et Ross, 2015)

1.3.2. Les impacts environnementaux

Les prix de plus en plus abordables des vêtements amplifient la consommation et l’accumulation de déchets, puisque ceux-ci achetés à des prix de 5 $ ou 10 $ n’ont pas beaucoup de valeur aux yeux du consommateur dont les revenus discrétionnaires le permettent. Les vêtements sont portés de moins en moins et finissent rapidement dans les lieux d’enfouissement ou incinérés, à une vitesse estimée d’un camion à benne rempli à chaque seconde à l’échelle globale. (Ellen MacArthur Foundation, 2017a) Bien que ce serait plus de 95 % de tous les vêtements et textiles qui seraient réutilisables ou recyclables (Cline, 2019), chaque année, environ 60 % de la production est enfouie ou incinérée (Remy, Speelman et Swartz, 2016), alors que seulement 1 % est recyclée (Ellen MacArthur Foundation, 2017a). Sans compter qu’à l’étape de la fabrication, déjà 15 % de tout le textile utilisé se retrouve au sol sous forme de retaillles (Fashion Revolution, 2015). Au Québec, les textiles et habillement éliminés représentaient 95 000 tonnes en 2018, soit environ 12 kg/personne et, comme à l’échelle mondiale, la tendance est à la hausse. Les débouchés pour les textiles recyclés sont la transformation en chiffons d’essuyage ou en matériaux isolants. (Recyc-Québec, 2018) Ce type de recyclage est qualifié de décyclage ou downcycling, puisqu’il en résulte un bien de moindre valeur.

Pour ajouter à la problématique de l’accumulation des déchets, la façon dont les entreprises se débarrassent des vêtements invendus a fait l’objet de nombreux scandales dans les dernières années. En 2010, un article paru dans le New York Times révélait que des vêtements des chaînes H&M et Walmart avaient été retrouvés mutilés dans les ordures (Dwyer, 2010). La marque Burberry s’était attirée les foudres des environnementalistes lorsqu’il a été révélé au grand jour que des items d’une valeur de plus de 105 millions d’euros avaient été détruits sur une période de cinq ans. Une pratique que la marque a bannie suite au scandale. L’adoption de cette pratique semble être dans le but d’empêcher la revente des vêtements et protéger la marque et elle serait répandue dans le monde de la vente au détail. (Khomami, 2018) Toutes les ressources et le travail nécessaires pour la fabrication d’un vêtement sont déployés en vain lorsqu’un tel sort leur est réservé.
Dans un autre ordre d'idée, le polyester et les autres fibres dérivées du plastique ne sont pas biodégradables et reposent donc des centaines d’années dans les lieux d’enfouissement avant de disparaître (Chen et Burns, 2006). Même avant leur fin de vie, ces textiles posent un problème environnemental. Lors de leur lavage, des microfibres de plastique se retrouvent dans l’eau de lavage, puis éventuellement dans les cours d’eau. Les fibres ne sont pas interceptées dans les stations d’épuration en raison de leur taille microscopique. Celles-ci vont s’accumuler dans l’organisme des poissons ou autres mammifères marins qui les ingèrent. Éventuellement les microfibres des vêtements en fibres synthétiques finissent dans nos assiettes. (Boucher et Friot, 2017)

La participation à la problématique globale des CC est un autre impact attribuable à l’industrie. À chaque étape de la fabrication d’un vêtement, des GES sont émis dans l’atmosphère. Comme pour toute autre activité économique, cela est dû en grande partie à l’utilisation de combustibles fossiles comme source d’énergie pour alimenter les différents procédés. L’importance des émissions est telle que l’industrie serait la deuxième plus grande émettrice après l’industrie du pétrole. (Morgan et Ross, 2015) La fabrication du textile représente une grande part de l’empreinte carbone. Pour une tonne de textile produite, 17 tonnes de CO₂ équivalent (éqCO₂) sont produits. L’impact est énorme en comparaison avec une tonne de papier qui produit environ 3,5 tonnes d’éqCO₂. Par la suite, les émissions lors de toutes les étapes de transformation, le transport et l’utilisation du vêtement s’ajoutent. Le lavage et le séchage des vêtements émettraient environ 120 millions de tonnes de CO₂ équivalent annuellement. Dans les lieux d’enfouissement, les textiles en décomposition émettent du méthane. En bout de ligne, ce serait environ 3,1 % des émissions à l’échelle mondiale qui proviendraient du secteur du textile (production de la fibre et du textile). (Ellen McArthur Foundation, 2017a) En incluant tout le cycle de vie du vêtement (coloration, finition, assemblage, transport, fin de vie), le pourcentage des émissions atteindrait jusqu’à 6,7 % (Quantis, 2018).

D’emblée, il ne faut pas oublier que la production de certains textiles pour la fabrication des vêtements nécessite d’énormes quantités d’eau. Annuellement, plus de 62 milliards de m³ sont utilisés, entraînant des problématiques d’accès à l’eau dans des régions déjà précaires. (Ellen MacArthur Foundation, 2017a) Un seul chandail en coton peut nécessiter 2700 litres d’eau, assez d’eau pour la consommation d’une personne en une année (World Wildlife Fund, 2014). À cela s’ajoute l’eau nécessaire pour le lavage des vêtements ; la quantité utilisée annuellement est estimée à 20 milliards de m³ (Ellen MacArthur Foundation, 2017a). La pollution des cours d’eau est aussi reliée à cette industrie au sens large. Il est estimé
que 20 % de tous les rejets d’eaux usées proviennent du traitement et de la coloration des textiles, dont la majorité sert à la fabrication de vêtements. (The World Bank, 2014) Dans les pays en développement, où les biens sont manufacturés, les normes environnementales très peu restrictives ou absentes permettent aux entreprises de se dissocier de la responsabilité de traiter les polluants. Les produits chimiques utilisés pour la coloration des vêtements par exemple sont souvent rejetés sans aucun traitement dans les cours d’eau. L’accès à l’eau potable est mis en péril en lien avec la forte contamination. (Morgan et Ross, 2015)

Le fait que les vêtements, comme la majorité des biens produits aujourd’hui, soient issus d’un processus de fabrication linéaire met beaucoup de pression sur les ressources. Le modèle dit linéaire est caractérisé par l’extraction des ressources, leur transformation en bien, puis par l’action de jeter ce dernier. (Ellen MacArthur Foundation, 2017a) L’achat de vêtements a augmenté de 60 % depuis les années 2000 et sera amené à augmenter encore davantage, entre autres causé par l’augmentation du pouvoir d’achat des consommateurs des pays émergents, mettant de plus en plus de pression sur les ressources et les écosystèmes. Si 80 % des marchés émergents atteignent le niveau de consommation des pays occidentaux (niveau de consommation actuel supposé fixe), l’impact sur les émissions de CO₂, l’utilisation d’eau et l’utilisation de terres atteindra de nouveaux sommets en 2025, comme le montre la figure 1.2. (Remy, Speelman et Swartz, 2016) Les émissions de CO₂ sont particulièrement préoccupantes alors qu’elles devraient réduire considérablement pour limiter les impacts négatifs des CC.

![Figure 1.2 Impacts potentiels d'une hausse de la consommation des produits de mode des pays émergents](inspiré de : Remy, Speelman et Swartz, 2016)
1.3.3. Les impacts sociaux

Ce serait une personne sur six à l'échelle mondiale qui a un emploi relié à l'industrie de la mode, ce qui en fait l'industrie employant le plus de travailleurs (Thomas, 2019). La majorité de ces emplois se trouvent dans les pays en voie de développement. Le terme sweatshop utilisé pour nommer les manufactures dans ces pays fait référence aux conditions de travail misérables, au très faible revenu et au travail des enfants. Les salaires (bandes pleines) sont souvent en dessous du minimum requis pour subvenir aux besoins de base (bandes lignées), comme le montre les exemples de l’Inde, du Bangladesh et du Cambodge à la figure 1.3. Plusieurs travailleurs subissent de la violence à la moindre opposition face à leurs supérieurs. Au Cambodge, un travailleur est décédé en 2015 de la suite de ses blessures après avoir été battu violemment pour avoir réclamé de meilleures conditions de travail. Certes l’industrie permet la création d’emplois et la réduction de la pauvreté dans ces régions précaires. Cela représente un point de départ à partir duquel les conditions seront amenées à évoluer pour le mieux, comme il a été le cas pour les pays développés. (Morgan et Ross, 2015) Une question éthique est cependant soulevée quant à la consommation de biens produits dans ces conditions, surtout que le prix au détail serait affecté d’à peine quelques dollars pour assurer le minimum vital aux travailleurs (Fashion Revolution, 2017).

Figure 1.3 Salaire mensuel minimum (bande unie) par rapport au minimum vital (bande rayée) en Inde, au Bangladesh et au Cambodge (inspiré de : Fashion Revolution, 2017)

Des accidents comme l’effondrement du Rana Plaza, le quatrième incident industriel le plus meurtrier dans l’histoire (Fashion Revolution, 2015), rappellent que les vêtements à bon prix coûtent littéralement la vie à des travailleurs. Cet accident qui avait fortement été médiatisé n’était cependant pas isolé (Morgan et Ross, 2015). L’externalisation des coûts sociaux, comme environnementaux, très loin du lieu de consommation éloigne le consommateur de sa part de responsabilité. Au Québec, des normes du travail assurent un salaire minimum et des conditions de travail raisonnables pour tous les travailleurs. Les emplois étaient occupés à 65 % par les femmes et le salaire hebdomadaire dans les secteurs du textile et de la fabrication des vêtements se situait autour de 686,97 $ par mois en 2016. (Conseil emploi métropole [CEM], 2017) Les prix des vêtements locaux reflètent nécessairement les salaires plus élevés alloués aux travailleurs. Les étiquettes locales semblent assurer que les conditions de travail dans lesquelles les vêtements sont produits sont plus alignées avec les normes de vie occidentales.
2. LES CHANGEMENTS CLIMATIQUES

L’analyse de cycle de vie effectuée au chapitre 3, en vue de proposer des procédés de fabrication d’un vêtement dans une perspective de carboneutralité, est en lien avec la crise des CC qui sévit actuellement. Ainsi, les causes, les impacts à l’échelle mondiale, et plus particulièrement sur le Québec, et les enjeux reliés aux CC sont présentés dans cette section.

2.1. Les causes

Les CC sont associés à l’augmentation des émissions de GES dans l’atmosphère, principalement de dioxyde de carbone (CO₂), engendrées par les activités anthropiques. Le méthane (CH₄), qui représente un potentiel de réchauffement climatique 25 fois plus élevé que le CO₂, l’oxyde nitreux (NO₂), les hydrofluorocarbures (HFC) et les perfluorocarbures (PFC), bien qu’émis en moins grande quantité dans l’atmosphère, sont aussi à l’origine de la problématique. (Ministère de l’Environnement et de la Lutte contre les changements climatiques [MELCC], 2018) Puisque tous les GES n’ont pas le même potentiel de réchauffement global pour une période donnée, les émissions sont souvent rapportées en équivalent CO₂ afin d’obtenir une base commune de comparaison. Le potentiel de réchauffement d’un gaz est associé à sa structure moléculaire. Les GES ont une structure moléculaire qui leur permet d’absorber, à plus ou moins grande échelle, le rayonnement solaire. L’augmentation des ces gaz dans l’atmosphère réchauffe ainsi la surface planétaire et les océans. (F. Lafortune, notes du cours ENV 775, automne 2018) La principale source d’émissions de GES est l’utilisation de combustibles fossiles (pétrole, charbon, gaz naturel, etc.) comme source d’énergie dans les différents secteurs à l’échelle mondiale. Les activités telles que l’élevage du bétail, la déforestation et l’utilisation de fertilisants azotés en agriculture sont aussi responsables des changements qui se produisent (Union Européenne, s.d.). Au Québec, le transport (routier, aérien, ferroviaire, maritime intérieur et par pipeline) était responsable de 43 % des émissions en 2016 (MELCC, 2018). À l’échelle mondiale, c’est plutôt la production d’électricité et de chauffage qui occupe la plus grande portion des émissions de GES, ce qui représentait 49 % en 2014 (Ritchie et Roser, 2017).

L’industrie du vêtement génère des émissions de GES en raison des procédés énergivores qu’elle utilise tout au long de la fabrication d’un vêtement, l’énergie provenant majoritairement de sources non-renouvelables (Asia-Pacific Economic Cooperation [APEC], 2013). Les émissions augmentent encore pour la distribution du vêtement vers le consommateur, puis pendant son utilisation et encore à sa fin de vie. La figure 2.1 montre l’impact sur les changements climatiques des différentes phases du cycle de vie des
vêtements consommés en Suède. La production de la matière première et sa transformation en fil puis en textile génèrent environ 40 % des émissions. Le traitement des fibres par voie humide génère à lui seul environ 23,5 % des émissions. La phase d’utilisation dans ce cas équivaut à seulement 2,9 % des émissions, dû à l’utilisation d’électricité à faible empreinte carbone en Suède, comparable à l’hydroélectricité au Québec. L’impact en fin de vie ici est aussi très faible en raison de la valorisation de l’énergie produite par l’incinération des déchets, alors que l’enfouissement tel qu’il est pratiqué au Québec va émettre davantage d’émissions. (Sandin, Roos, Spak, Zamani et Peters, 2019) Ce n’est pas le cas à l’échelle mondiale où des sources d’énergie plus polluantes génèrent l’électricité. Le nombre d’utilisation par le consommateur influence alors fortement les émissions au court du cycle de vie d’un vêtement, ce qui va venir modifier les proportions allouées à chaque phase. (Peters, Sandin, Spak et Roos, 2018).

Figure 2.1 Impact sur les changements climatiques des différentes phases du cycle de vie des vêtements consommés en Suède (inspiré de : Sandin, Roos, Spak, Zamani et Peters, 2019)

Afin de limiter les impacts négatifs des CC, le GIEC (2019) recommande de limiter le réchauffement à 1,5 °C d’ici 2050, ce qui demande des efforts importants à l’échelle mondiale. Avec les procédés actuels et les prévisions de consommation à la hausse, le secteur de la mode pourrait accaparer 26 % du budget carbone dans le scénario de 2 °C (Ellen MacArthur Foundation, 2017a), un pourcentage d’autant plus élevé dans le scénario souhaitable de 1,5 °C.
2.2. Les impacts

La biodiversité est aussi fortement touchée par les CC. Les scientifiques qualifient la perte de biodiversité qui survient actuellement de sixième extinction de masse, causée entre autres par les CC. La perte d’habitat et de nourriture, la modification des interactions aux seins des populations et l’accélération de la propagation de virus sont tous reliés aux CC (Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services [IPBES], 2019). L’accélération de la propagation de maladies est une menace grandissante pour la biodiversité, mais aussi pour l’espèce humaine. La malaria et le virus de la dengue sont des exemples de maladies qui vont gagner du terrain avec le climat qui se réchauffe. (GIEC, 2019)

Le Canada, et la province du Québec, ne sont toutefois pas épargnés. Le consortium sur la climatologie régionale et l'adaptation aux CC, Ouranos, a rassemblé les impacts attendus au Québec dans les prochaines décennies. La température, les précipitations, le niveau de la mer et le nombre d’événements météorologiques extrêmes amenés à augmenter entraînent un lot d’impacts, souvent négatifs, parfois positifs. Les impacts se situent principalement au niveau de la santé de la population, la biodiversité, la culture, la foresterie, la pêche, l’utilisation d’énergie, les infrastructures et la gestion de l’eau. Les champs et les forêts pourraient être plus prolifiques et la demande en énergie pourrait diminuer en raison des hivers plus cléments.
De l’autre côté, des impacts négatifs tel que la prolifération des espèces envahissantes et nuisibles, la dégradation des infrastructures sous l’effet des événements climatiques extrêmes, la prolongation de la saison des feux de forêts, pour en nommer que quelques-uns, sont attendus. (Ouranos, 2015) De plus, la fonte du pergélisol dans les régions nordiques libère du méthane, qui vient amplifier le phénomène d’effet de serre, en plus d’endommager les infrastructures. Des répercussions économiques importantes sont associées aux modifications nécessaires des infrastructures et aux services de santé. Les coûts pourraient représenter au-delà de 2 milliards de dollars pour le gouvernement québécois. (Larrivée, Sinclair-Désgagné, Da Silva, Revéret et Desjarlais, 2015)

2.3. Les enjeux
Un important enjeu éthique soulevé en lien avec les CC est l’inadéquation entre les impacts ressentis et les responsables de la crise. Certaines régions du globe ont des climats secs et chauds qui les rendent plus vulnérables aux CC, sans nécessairement être responsables des émissions qui engendrent ces changements. La délocalisation de la production des biens délocalise par le fait même les émissions de GES du pays où les biens sont consommés vers les pays producteurs. Dans ce contexte de mondialisation, les flux entre les pays rendent d’autant plus complexe le calcul et l’attribution de la responsabilité par rapport aux émissions engendrées. La figure 2.2 montre que les émissions en fonction de la population sont les plus élevées au Canada, aux États-Unis, au Kazakhstan, en Arabie-Saoudite et en Australie, alors que les changements de températures se font ressentir le plus fortement dans la région arctique et dans une moindre mesure, mais de manière généralisée, sur les hémisphères nord et sud. Les précipitations quant à elles diminuent autour de l’équateur et de l’hémisphère sud, alors qu’elles augmentent aux pôles. (Ritchie et Roser, 2019)
De ce point de vue, les CC représentent une forme d’injustice géographique, mais on peut aussi parler d’injustice intergénérationnelle. Les scientifiques ont nommé le phénomène d’anxiété développé par certains face à l’avenir incertain de la planète « éco-anxiété ». Les jeunes n’auront potentiellement pas les mêmes opportunités et la même qualité de vie si les pires scénarios se présentent, ce qui les rend plus enclins à développer ce trouble. (Gauvreau, 2019) La difficulté de faire face à la crise actuelle provient du fait qu’elle est globale. Des actions concertées sont nécessaires pour y faire face. Cependant, les impératifs économiques freinent les gouvernements dans l’adoption de politiques environnementales, puisque ces dernières pourraient représenter une baisse de la compétitivité dans un marché mondialisé. Les mesures drastiques nécessaires se font donc attendre, laissant un doute planer sur l’avenir des futures générations. (F. Delorme, notes du cours ENV730, hiver 2019)

2.4. L’empreinte carbone

L’empreinte carbone ou bilan carbone correspond à la quantité, le plus souvent exprimée en tonnes ou en kilogrammes, d’éqCO₂ produite à travers différents procédés dans un cadre défini, qui pourrait être l’ensemble du cycle de vie d’un produit, une activité précise ou par une personne dans une période donnée par exemple. L’empreinte carbone fait partie du calcul de l’empreinte écologique, qui elle s’intéresse à l’espace productive nécessaire pour ce produit, activité ou personne. À l’échelle mondiale, l’utilisation de combustibles fossiles représente 60 % de l’empreinte écologique. (Global Footprint Network, 2020)
Les concepts de décarbonisation et de carboneutralité sont des concepts clés reliés à l’empreinte carbone qui seront pertinents pour l’analyse qui suit. La décarbonisation à laquelle appellent les scientifiques est la diminution progressive de la consommation de combustibles fossiles et donc la diminution de l’empreinte carbone. L’utilisation de procédés plus efficaces et des modifications dans les façons de faire le permettent. (Office québécois de la langue française [OQLF], 2015) La carboneutralité est un but à atteindre dans la démarche de décarbonisation. Le bilan carbone de la production d’un bien, par exemple, est alors nul, par l’utilisation de technologies et la compensation, lorsque nécessaire. (OQLF, 2010)
3. L’ANALYSE DU CYCLE DE VIE

L’étude des procédés de fabrication d’un vêtement dans une optique de carboneutralité et selon une perspective d’analyse du cycle de vie représente le cœur de l’essai. La pertinence d’une telle étude a été justifiée par une mise en contexte des impacts de l’industrie, et plus particulièrement sur les CC. L’historique, la définition et les limites de l’analyse de cycle de vie seront d’abord présentés, puis le concept sera appliqué de manière générale à un vêtement. Par la suite, chaque étape du cycle de vie sera étudiée en détails, soit l’extraction et la transformation des matières premières, la production, la distribution, l’utilisation et la fin de vie du vêtement.

3.1. L’historique

Les premiers balbutiements de l’analyse de cycle de vie (ACV) remontent aux années 1960, alors que les problématiques d’approvisionnement en ressources et d’utilisation d’énergie non-renouvelables sont soulevées. Aux États-Unis, la société Coca-Cola est la première à effectuer une analyse qui s’apparente à l’ACV afin de comparer les impacts de différents contenus pour leurs breuvages. Pendant ce temps, au Royaume-Uni, le scientifique Ian Boustead développe l’approche de l’écobilan pour comparer l’utilisation d’énergie nécessaire pour produire un contenant en utilisant différents matériaux. C’est seulement plusieurs décennies plus tard que l’ACV est standardisée par l’Organisation internationale de normalisation (ISO) afin de limiter le partage de conclusions trompeuses causé par l’utilisation de raccourcis méthodologiques. (Belem, 2005)

3.2. La définition

Tel que mentionné, la méthodologie à suivre pour effectuer une ACV est standardisée par la norme ISO14040. L’ACV consiste en une compilation des intrants et des extrants (flux) d’un produit matériel, d’un service ou d’un procédé (système à l’étude) et de leurs impacts environnementaux potentiels tout au long de son cycle de vie, de l’extraction des ressources jusqu’au traitement des déchets. (Organisation internationale de normalisation [ISO], 2006) Les intrants sont l’énergie, les matières premières et l’eau qui alimentent le système, alors que les extrants sont tous les rejets dans l’air et dans l’eau, les déchets ultimes ou valorisables produits à un moment du cycle de vie. L’analyse est souvent effectuée dans une optique de comparaison entre différentes options, mais aussi en vue d’améliorer la performance environnementale du système en prenant des décisions à partir de bases scientifiques. Il s’agit d’une méthode largement utilisée et reconnue dans le monde scientifique. La méthode est toujours en développement afin de remédier à quelques limites méthodologiques. (Belem, 2005) Selon la norme
ISO14040, l’ACV se réalise en quatre étapes : (i) définition des objectifs et du champ de l’étude, (ii) l’inventaire, (iii) l’évaluation de l’impact et (iv) l’interprétation des résultats.

L’étape de définition des objectifs et du champ d’étude comprend l’établissement des frontières du système et du niveau de détail en fonction de l’usage prévu de l’étude. L’unité fonctionnelle définie dans cette première phase de l’analyse permet de quantifier la fonction d’un produit qui servira comme base de comparaison. Par exemple, plutôt que d’évaluer les impacts de la production d’un chandail en coton, on évaluera l’impact du port d’un chandail en coton pendant un an afin de cerner les impacts rattachés à son usage et non seulement à l’objet. (Dahllöf, 2003) La durabilité du chandail entre ainsi en ligne de compte et le chandail qui a un plus grand impact lors de sa production pourrait tout de même se révéler la meilleure option (Muthu, 2015). L’étape de l’inventaire constitue la collecte de données, suite à quoi l’étape de l’évaluation de l’impact permet de pondérer les impacts en lien avec les données recueillies. Les impacts sont divisés en trois grandes catégories : (A) l’épuisement des ressources, (B) les impacts sur la santé humaine et (C) les impacts écologiques. Au sein de ces trois catégories, les impacts les plus souvent considérés sont l’épuisement des ressources naturelles et énergétiques, les CC, la toxicité humaine et l’écotoxicité. Finalement, l’interprétation des résultats consiste à formuler des recommandations ou des conclusions en lien avec l’analyse effectuée. La pensée cycle de vie est quant à elle une analyse plutôt qualitative des impacts lors du processus de conception qui ne s’inscrit pas dans une méthodologie aussi stricte que l’analyse de cycle de vie. Elle permet tout de même d’obtenir une vision globale des impacts sans les déplacer vers une autre phase. (Belem, 2005)

3.3. Les limites de l’analyse de cycle de vie

Les ACV complètes sont rares en raison de la difficulté de collecter les données, ce qui oblige à faire des choix dans les frontières et les objectifs qui sont différents d’une ACV à l’autre. Pour un système similaire, il peut donc être difficile de comparer les résultats. Même à l’intérieur des frontières établies, plusieurs estimations sont souvent nécessaires pour compléter l’inventaire des données, ce qui affecte la qualité des résultats en bout de ligne. (Dahllöf, 2003) De manière traditionnelle, les entreprises dans le secteur de la mode ne pratiquent pas d’ACV sur les produits, il s’agit plutôt d’une pratique réservée au monde académique. La complexité des chaînes d’approvisionnement et la rapidité à laquelle la production évolue sont des limites à l’application de la méthode puisqu’il est très complexe, voire impossible, de retracer chaque composante et ses méthodes de fabrication. (Park et Lennon, 2006) Ainsi, un esprit critique est nécessaire à la lecture des ACV. Celles-ci peuvent donner un portrait global assez juste des impacts d’un
produit, procédé ou service, mais il faut garder en tête que de grandes variations peuvent provenir des données ou autre décision méthodologique au cours de l’étude. (Dahllöf, 2003)

3.4. L’économie circulaire et l’analyse du cycle de vie

La conception cradle to cradle ou du berceau au berceau est un concept qui a été modelé dans les années 2000 par William McDonough et Michael Braungart. C’est la première fois que l’on proposait un modèle de conception d’un produit du berceau au berceau, en opposition au modèle linéaire du berceau au tombeau. Les auteurs appellent à une vision d’éco-efficacité, qui s’oppose à la vision de la domination de la nature pour répondre aux besoins des hommes de Francis Bacon. (McDonough et Braungart, 2002) Ainsi, dans le modèle théorique parfait, les intrants biologiques retournent à la terre, alors que les intrants techniques sont recyclés indéfiniment, faisant disparaître la notion de déchet. (Ellen MacArthur Foundation et Material Economics, 2019) Cela est possible grâce à une conception plus judicieuse des produits, par une réflexion plus poussée sur les besoins des utilisateurs et le choix des intrants dans les processus de fabrication, par exemple. (McDonough et Braungart, 2002) Le terme économie circulaire est plus répandu aujourd’hui pour faire référence au modèle cradle to cradle pensé par McDonough et Braungart.

Les concepts de l’économie circulaire peuvent très bien s’appliquer à l’industrie du vêtement pour remédier, entre autres, à sa participation au phénomène des CC. La fondation Ellen MacArthur, qui fait la promotion de l’économie circulaire, s’est intéressée à la question. La réduction de la consommation en fibre vierge, en énergie et matériaux non-renouvelables possible grâce une plus longue utilisation des vêtements (conception améliorée et alternatives à la consommation rapide) et l’amélioration des procédés de recyclage sont tous des principes qui s’inscrivent dans le modèle d’économie circulaire. Simplement en utilisant les vêtements deux fois plus longtemps qu’ils ne le sont présentement, les émissions de GES diminueraient de près de la moitié. Avec l’utilisation de fibres recyclées et des procédés plus efficaces, les émissions sont encore réduites davantage. (Ellen MacArthur Foundation, 2017a)

L’analyse de cycle de vie peut être effectuée sur un produit qui est conçu de manière traditionnelle et donc selon une approche linéaire. Afin de limiter l’empreinte carbone, l’introduction d’un aspect circulaire est primordiale. La production des biens matériels est responsable de près du quart des émissions à l’échelle mondiale, ce que l’économie circulaire permet de limiter en optimisant l’utilisation des ressources prélevées et en permettant à l’écosystème de se régénérer puis séquestrer du carbone. Ces émissions

Figure 3.1 Application du principe d’économie circulaire au cycle de vie d’un vêtement (inspiré de : WRAP, 2017)

3.5. L’analyse du cycle de vie d’un vêtement

Il s’agit dans l’analyse qui suit d’adopter une pensée cycle de vie, puisque la méthodologie d’une ACV ne sera pas appliquée de façon formelle. Il convient d’abord de définir les objectifs et les frontières de l’étude. Comme l’objectif de l’essai est d’évaluer les procédés et façon de faire de l’industrie dans une optique de carboneutralité, seulement l’impact sur les CC, et donc les émissions d’éqCO₂ produites, est évalué. Les autres catégories d’impacts sont donc laissées de côté afin de se concentrer sur la décarbonisation de l’industrie de la mode vestimentaire au Québec et ses implications.
L’extraction et la transformation des matières premières sont limitées au textile, le principal composant d’un vêtement. Il s’agit donc d’analyser un vêtement simple qui ne comprendrait aucun bouton, fermeture éclair ou autres composants. La transformation des matières premières inclus les procédés de filage et tissage ou tricotage, selon la fibre et les besoins (boîte A, figure 3.2). La production du vêtement comprend en réalité des dizaines d’étapes de préparation, elle est donc limitée au traitement des fibres par voie humide, à la coupe et l’assemblage (boîtes B et C, figure 3.2). Les procédés nommés jusqu’ici représentent les besoins primaires en énergie pour la production d’un vêtement (boîte 1, figure 3.2). En réalité, les installations ont des besoins en chauffage ou climatisation, de lumière et autres (boîte 2, figure 3.2) qui sont exclus de l’analyse. (Muthu, 2015) La distribution (ou transport) est considérée sur tout le cycle de vie, des matières premières au consommateur, et ce, considérant la difficulté de réellement tenir compte de tout le transport des nombreuses composantes qui se produit de multiples fois au cours du cycle de vie (Moazzem, Daver, Crossin et Wang, 2018). Le matériel nécessaire pour le transport est inclus dans les frontières de l’analyse (carton, plastique, etc). La phase d’utilisation est considérée pour un consommateur moyen au Québec. Pour ce qui est de la phase de fin de vie, les avenues de l’incinération, l’enfouissement et le recyclage sont examinées. L’inventaire, son analyse et l’évaluation des impacts pour chacune des phases sont basés sur des ACV existantes qui couvrent chacune leur propre champs d’étude afin de répondre à différents objectifs. L’interprétation des résultats fera l’objet de la section des recommandations.

![Figure 3.2 Étapes simplifiées de la fabrication d’un vêtement](inspiré de : Muthu, 2015)
3.5.1. L’extraction des matières premières

La première étape du cycle de vie d’un vêtement consiste à extraire la fibre qui le compose. Le choix de la fibre a un impact sur l’empreinte carbone du vêtement en raison des différents besoins énergétiques et en pesticides qu’elle requiert et du transport pour acheminer la fibre vers son lieu de transformation. (Cline, 2019) Les fibres sont séparées en deux catégories : les fibres naturelles et les fibres synthétiques. Les fibres synthétiques subissent des traitements chimiques alors que les fibres naturelles ne subissent que des transformations mécaniques pour obtenir le textile (avant la coloration). Les fibres naturelles sont d’origine végétale ou animale. La viscose de rayonne constitue une exception. Elle est qualifiée de semi-synthétique puisqu’elle est d’origine végétale, mais nécessite des traitements chimiques pour obtenir la fibre. Les deux types de fibres peuvent être recyclés, alors que seules les fibres naturelles peuvent avoir la certification biologique, puisque cette dernière est associée aux méthodes de culture. (Daignault-Leclerc, 2019)

Les fibres les plus utilisées à l’échelle mondiale en raison de leur polyvalence sont visibles à la figure 3.3. Le polyester représente plus de la moitié de la production mondiale, suivi par le coton avec près du quart de la production. Viennent ensuite les autres types fibres conçues par l’homme (élasthanne recyclé, élasthanne d’origine végétale, biopolymères, etc.), les fibres synthétiques autres que le polyester (spandex, viscose de rayonne, etc.), le nylon, les fibres végétales (jute, lin, chanvre, etc.), puis, de façon marginale, la laine et la soie. (Textile Exchange, 2018)

![Figure 3.3 Production mondiale de fibre en 2017](inspiré de : Textile Exchange, 2018)

Deux points chauds quant aux émissions de GES liées à l’extraction des matières premières sont à considérer pour minimiser les impacts : sélectionner des matériaux à faible empreinte carbone et des
matériaux locaux afin de réduire les émissions liées au transport (APEC, 2013). Au Québec, les textiles traditionnels ont longtemps représenté un secteur économique d’importance. La mondialisation n’a pas épargné ce secteur et les textiles techniques représentent aujourd’hui le seul marché significatif à l’échelle de la province, mais il reste marginal à l’échelle mondiale. (Davidson, 2013) Bien sûr, pour que les fibres locales aient un intérêt, l’industrie de la transformation devra connaître un regain pour qu’il y ait un réel avantage. En cohérence avec ces points d’intérêt, il convient d’étudier les différentes fibres qui peuvent être produites au Québec, de préférence, mais aussi au Canada et aux États-Unis et l’empreinte carbone de leur extraction et transformation.

La laine est l’une des premières fibres qui a été produite au Canada. Les débuts de sa production remontent à l’arrivée des premiers colons dans les années 1670. Son intérêt provenait du fait que la fibre était chaude et facile à transformer. Les fibres synthétiques et semi-synthétiques (rayonne de viscose, lyocell ou Tencel™, nylon, polyester, etc.), plus récentes dans l’histoire du textile, sont introduites au Canada dans les années 1900. (Davidson, 2013) La production des différentes fibres végétales (chanvre et lin) est aussi adaptée au climat québécois, qui sont d’ailleurs considérées comme des cultures émergentes. Elles ont été importantes dans le passé et on y retrouve aujourd’hui un intérêt, sans être relié directement à l’industrie du textile. (Ministère de l’Agriculture, des Pêcheries et de l’Alimentation [MAPAQ], 2017) Le coton n’est pas produit au Canada, mais les États-Unis sont parmi les trois pays les plus grands producteurs. Vu l’importance du coton dans l’industrie et la proximité, il semble pertinent de considérer cette fibre dans l’analyse qui suit. L’empreinte carbone dépend de la source d’énergie locale utilisée. (Kirchain, Olivetti, Miller et Greene, 2015)

Les fibres végétales

Les fibres végétales sont regroupées dans cette section puisqu’elles ont toute la capacité d’absorber du CO₂ lors de leur croissance par processus de photosynthèse et de produire de l’oxygène en retour (Muthu, Li, Hu et Mok, 2012). Il s’agit d’un aspect à considérer en lien avec la décarbonisation de l’industrie. Les émissions de CO₂ produites par ces fibres sont reliées aux activités de préparation et d’ensemencement des champs, à l’irrigation, à l’utilisation de fertilisants, au contrôle des mauvaises herbes et des parasites et à la récolte. L’utilisation de fertilisants synthétiques étant le principal émetteur. (Rana et al., 2015) Le rendement est aussi un facteur qui influence les émissions ; plus le rendement (masse/surface) est élevé, plus l’utilisation de fertilisants et de la machinerie est optimisée par rapport à la quantité de fibre produite (Venkat, 2012). Le tableau 3.1 montre les différents taux d’absorption de CO₂ et les rendements du lin, du
chanvre, du coton et des fibres cellulosiques. Le coton possède le taux d’absorption le plus élevé, avec un écart remarquable par rapport aux autres fibres, et le chanvre possède quant à lui le rendement le plus élevé. Toutes les fibres végétales sont biodégradables (Chen et Burns, 2006), aspect qui sera approfondi à la section 3.5.5 *La fin de vie.*

Tableau 3.1 Taux d’absorption et rendement des fibres végétales

<table>
<thead>
<tr>
<th>Fibre</th>
<th>CO₂ absorbé (kg CO₂/hectare)</th>
<th>Rendement moyen (kg fibre/hectare)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chanvre</td>
<td>2500 (Muthu, Li, Hu et Mok, 2012)</td>
<td>1600 (Fletcher, 2014)</td>
</tr>
<tr>
<td>Lin</td>
<td>3700 (Gardetti et Muthu, 2015)</td>
<td>975 (Fletcher, 2014)</td>
</tr>
<tr>
<td>Coton</td>
<td>11 000 (Muthu, Li, Hu et Mok, 2012)</td>
<td>700 (Fletcher, 2014)</td>
</tr>
</tbody>
</table>

Les *cannabaceae*

Le chanvre et le cannabis sont cousins, ils proviennent de la même famille des *cannabaceae*, mais la teneur plus élevée en tétrahydrocannabinol (THC) du second les différencie. Traditionnellement, c’est le chanvre qui est cultivé de façon industrielle pour la production de textile, papier ou autre, puisque sa teneur en THC est faible. (Gouvernement du Canada, 2018) Cependant, avec la légalisation du cannabis au Canada, une problématique de génération de déchets organiques se développent. Seul le bourgeon est utilisé pour la consommation récréative ou médicinale. La tige du cannabis possède les mêmes propriétés fibreuses que le chanvre et pourrait donc être valorisée pour la production de textile. (Roquette, 2018) La figure 3.4 montre les différentes utilisations des parties du plant qui, à ce jour, ne sont pas suffisamment exploitées.

Un point à soulever est la production en serre très répandue pour permettre la culture à l’année, ce qui nécessite plus d’énergie que la culture extérieure pour répondre aux besoins en chaleur et lumière (Khoshnevisan et al., 2014). En ce sens, le cannabis représente d’avantage un complément au chanvre pour une production à grande échelle, mais sa valorisation répondrait à une problématique grandissante d’accumulation de déchets organiques. La croissance du chanvre se fait rapidement, entre 85 à 120 jours (Gouvernement du Canada, 2018), et ce, sans l’utilisation massive de pesticides puisqu’il contrôle naturellement la croissance de mauvaises herbes et animaux/insectes indésirables (Fletcher, 2014). Même sans certification, la fibre est intrinsèquement écoresponsable. La production des *cannabaceae* est très réglementée au Canada, ce qui peut constituer une limite à son développement (Gouvernement du Canada, 2018). La quantité de CO₂ produite par la culture du chanvre est environ 3 kg éqCO₂/kg de chanvre, selon différents scénarios de production (M.G. van der Werf et Turunen, 2007).
Figure 3.4 Utilisations modernes du plant de cannabis (inspiré de : Schadler, 2019)

Le lin
Le lin textile était très présent au Québec dans les années 1950, mais le coton provenant de l’Inde a pris d’assaut le marché à cette époque. Aujourd’hui, seulement la variété de lin dite oléagineuse est cultivée, c’est-à-dire pour ses graines qui ont de nombreuses vertus alimentaires. (Marcoux, 2002) Le lin est considéré comme un textile haut de gamme. Traditionnellement, le lin de haute qualité était sélectionné à la main, en faisant une culture coûteuse et à faible empreinte carbone. (Fletcher, 2014) Le procédé est aujourd’hui industrialisé pour permettre une production à grande échelle. Pour obtenir la fibre, les plants sont plongés dans l’eau chaude qui sépare la fibre de la tige. Une méthode moins énergivore est de laisser la plante se décomposer au sol dans les conditions appropriées d’humidité pour obtenir le même résultat. Cela soulève le point que pour une même fibre, les émissions peuvent varier selon les méthodes adoptées. Les méthodes sont similaires à la culture du chanvre puisqu’elles sont toutes les deux des fibres libériennes (fibres présentes à l’extérieur de la tige). Sa culture peut aussi se faire sans aucun fertilisant ou pesticide, ce qui représente un avantage par rapport au coton. (Muthu, 2014). Ce sont environ 2,72 kg éqCO₂/kg de lin qui sont produits lors de la culture (Van Der Wurf et Turunen, 2007), une valeur comparable au chanvre.
Le coton
La culture de coton conventionnel entraîne des impacts importants, principalement reliés à l’utilisation intensive de pesticides et d’eau. Cela amène à se tourner vers les cultures de coton alternatives qui s’inscrivent davantage dans la durabilité, comme le coton biologique, le coton IPM (integrated pest management) ou autres variétés génétiquement modifiées qui nécessitent moins d’eau et de produits chimiques. Le coton certifié biologique, l’alternative la plus répandue, signifie qu’il n’y a aucun pesticide et fertilisant synthétiques utilisés lors de la culture, que moins d’eau est nécessaire et que les fermiers ont de meilleures conditions de travail. (Fletcher, 2014) Bien que ce ne soit pas nécessairement l’impact dans la mire des producteurs de coton biologique, la réduction des émissions de GES possible en passant de la culture du coton conventionnel au coton biologique est remarquable. La culture du coton conventionnel produit environ 6 kg éqCO₂/kg, alors que le coton biologique produit 2,5 kg éqCO₂/kg, soit moins de la moitié (Muthu, Li, Hu et Mok, 2012). Les fertilisants azotés utilisés dans la culture conventionnelle ont un potentiel de réchauffement climatique 300 fois plus élevé que le CO₂, ce qui explique en partie cet écart (Muthu, 2014). Le coton biologique ne représente que 3 % de la production mondiale actuellement (Textile Exchange, 2018), mais la réduction d’une grande quantité d’émissions est enclavée dans le virage vers ce type de production (Muthu, 2014).

Les fibres cellulosiques
Les fibres cellulosiques sont disponibles sous plusieurs appellations : viscose ou rayonne ou viscose de rayonne, modal et lyocell ou Tencel™. Des légères différences dans les procédés séparent la viscose, le modal et le lyocell. La production du modal est plus énergivore, mais aussi plus durable que la viscose. La viscose, quant à elle, ressemble visuellement et au touché à la soie. Cela lui procure une apparence luxueuse, mais peut être produite à moindre coût. Le lyocell est une version moderne de la viscose, puisque la matière première provient nécessairement de forêts gérées de façon durable. À l’échelle mondiale, la majorité des pulpes de bois qui servent à produire la fibre puis le textile provient du Brésil, de l’Indonésie et du Canada. Ces pulpes sont transformées majoritairement en Chine. L’épuisement des ressources est une crainte pour l’organisme Canopy, mais certaines certifications assurent une gestion durable. (Cline, 2019) Le potentiel de réchauffement climatique de la viscose, ou lyocell, est le plus élevé parmi les fibres présentées en raison de sa transformation qui demande beaucoup d’énergie. Ce sont 9 kg éqCO₂/kg de fibre qui sont émis au stade de production. (Muthu, Li, Hu et Mok, 2012) Alors que le lin et le chanvre, par exemple, procurent des fibres à même le plant, les fibres cellulosiques sont obtenues suite à de nombreuses transformations chimiques. De plus, les processus seraient inefficaces à un tel point que
70 % de la matière première devient des déchets à un moment ou un autre de la transformation. (Cline, 2019)

Les autres fibres

Les autres fibres que celles de nature végétale qui pourraient être développées localement sont les fibres synthétiques pétrochimiques et la laine. Elles n’ont pas la capacité de séquestrer du CO₂, mais elles représentent d’autres avantages.

Les fibres synthétiques pétrochimiques

Les fibres synthétiques pétrochimiques sont disponibles en de nombreuses déclinaisons : nylon, polyester, acrylique, polypropylène (PP), etc. Au Canada, la matière première non-renouvelable pour la production des fibres synthétiques pétrochimiques est disponible sous forme de sables bitumineux en Alberta. Cette méthode d’extraction non-conventionnelle est particulièrement énergivore et requiert l’usage de produits chimiques. (Peters, Granberg et Sweet, 2015) Tout comme les fibres cellulosiques, elles sont obtenues par le processus de polymérisation, qui permet d’obtenir de longues chaînes de molécule qui donnent la structure fibreuse (Kirchain, Olivetti, Miller et Greene, 2015). La figure 3.5 montre les émissions au stade de production des différentes variantes de fibres synthétiques, ce qui comprend l’extraction et le filage primaire. Le polyester se classe bien par rapport aux autres fibres les plus populaires, avec 2,8 kg éqCO₂/kg de fibre avant la transformation. Le polypropylène (PP) a l’empreinte carbone la plus basse, mais il s’agit d’une fibre technique moins polyvalente. (Muthu, Li, Hu et Mok, 2012)

![Diagramme des émissions de CO₂ pour la production de différentes fibres synthétiques pétrochimiques](image)

Figure 3.5 Émissions de CO₂ pour la production de différentes fibres synthétiques pétrochimiques
La laine

La laine est la fibre animale la plus populaire au monde, devant l'alpaga, le mohair et le cachemire pour en nommer que quelques-unes (Textile Exchange, 2018). La production de la laine émet 8 à 9 fois plus de CO₂ par rapport au coton et au polyester. La production génère environ 24,13 kg éqCO₂/kg de laine. (Moazzem, Daver, Crossin et Wang, 2018) La laine demande moins d’énergie à produire que les autres fibres naturelles, elle émet cependant beaucoup de méthane en lien avec l’élevage des moutons (Fletcher, 2014). Sa durabilité peut cependant contrebalancer l’impact en début du cycle de vie. Seulement 15 kg de laine sont produits par hectare, ce qui est très exigeant en matière d’utilisation des terres (Muthu, 2014).

3.5.2. La production du vêtement

La production du vêtement à proprement parler est entamée suite à la transformation des matières premières (fibres) en textile/étoffe par les procédés de filage puis de tissage ou tricotage, ces étapes s’appliquant à tous les textiles peu importe l’application. De façon simplifiée, le textile passe ensuite par les procédés de traitement des fibres par voie humide (préparation, coloration et finition), la coupe et l’assemblage. Aujourd’hui, les fibres sont majoritairement transformées en Chine, où la principale source d’énergie est le charbon. Cela fait en sorte que l’impact est approximativement plus élevé de 40 % par rapport aux textiles produits en Turquie, en Europe ou en Amérique du Sud. L’utilisation d’énergie renouvelable, comme l’hydroélectricité utilisée au Québec, représente le plus grand potentiel de réduction de l’empreinte carbone des industries énergivores, comme celle du textile. Les besoins énergétiques ne sont cependant pas seulement en électricité, mais aussi en source d’énergie primaire comme le gaz naturel, propane ou autre pour les procédés thermiques. (Rana et al., 2015) Les nombreux procédés nécessaires à la production d’un vêtement ont gagné en productivité dans les dernières décennies, mais demandent beaucoup de ressources énergétiques, il est donc pertinent d’identifier les procédés les plus efficaces.

La transformation des matières premières

Une fois que la fibre est extraite, elle est transformée en fil, ce dont il est question dans un premier temps. Puis le fil est à son tour transformé en textile par un procédé de tissage ou tricotage, procédés qui font l’objet d’une deuxième partie. Le filage et le tissage qui se faisaient autrefois manuellement ont été mécanisés dans les dernières décennies. (Nayak, 2020)
Le filage
Un fil par définition consiste à induire des torsions aux fibres afin qu’elles tiennent en place par friction et développent une force, et ce, peu importe le procédé utilisé. Le filage est précédé de différentes étapes qui diffèrent en fonction de la fibre et du choix de procédé de filage lui-même. Dans le cas du coton, l’égrainage, l’ouverture, le nettoyage, le cardage et l’étirage sont nécessaires. La laine nécessite plutôt le séchage, l’époussetage, le cardage, pour ne nommer que quelques étapes. Il y a cependant des éléments communs à considérer pour tous les types de fibres en lien avec le potentiel de réchauffement climatique, à commencer par l’utilisation d’énergie et la source. (Muthu, 2014)

La filature à anneaux est le procédé de production du fil le plus fréquent qui permet l’obtention d’un fil de qualité, et aussi celui qui utilise le plus d’énergie. Il s’agit du procédé privilégié pour le filage des fibres naturelles. Bien que la production soit moins efficace que les autres options, la filature à anneaux établit un standard de qualité dans l’industrie. Elle peut produire des fils sur un grand éventail de densité, incluant les fils fins dans lesquels les autres procédés ne performent pas autant. Le « yarn count » (Tex) est une propriété importante qui fait référence à la densité du fil, soit sa masse par rapport à sa longueur. Un fil plus fin (Tex faible) requiert plus d’énergie par unité de longueur qu’un fil plus épais, peu importe la nature des fibres. Ce paramètre a un plus grand effet sur l’utilisation d’énergie que la vitesse de rotation et la grosseur des bobines produites. (Nayak, 2020) Les bobines de fil sont produites par le mouvement circulaire du fil autour de la bobine et du mouvement transversal de la bobine simultanément. (CottonWorks, 2020) Les étapes supplémentaires d’étirage des rubans de fibres et la production de mèches qu’elle nécessite expliquent le fait que la filature à anneaux est plus énergivore que celle à rotor. De plus, des pertes importantes se produisent lors des transformations préliminaires. La filature à anneaux permet de produire un fil peigné ou un fil dit semi-peigné. Le premier est un fil de plus grande qualité qui nécessite un procédé supplémentaire, donc plus d’énergie, et engendre plus de perte pour lui donner son apparence lisse. (Nayak, 2020)

Les procédés alternatifs moins énergivores sont la filature à rotor et la filature à jet d’air. Le premier consiste à enfiler directement à partir de rubans de fibres sans l’étirer préalablement grâce à un rotor, mais ce procédé performe seulement pour les fils plus épais. La force du fil obtenu est moindre par rapport aux deux autres procédés de filage, mais avec très peu d’imperfections. Le second procédé constitue la technologie la plus récente, et la moins commune des trois, et se caractérise par l’induction de torsions dans le ruban de fibres à l’aide d’un courant d’air créé à l’intérieur d’un vortex. C’est le procédé pour lequel
la production est la plus efficace. Il s’agit cependant d’un procédé adapté seulement aux fibres synthétiques et aux mélanges entre les fibres synthétiques et le coton en plus faible quantité, contrairement à la filature à rotor adapté autant aux fibres naturelles que synthétiques. Chacun des procédés présentés peut être amélioré en matière d’efficacité énergétique, mais les ordres de grandeur de leurs besoins respectifs en énergie demeurent les mêmes. (Nayak, 2020)

En résumé, la densité du fil, le type de fibre et le procédé utilisé pour le filage sont les trois composantes qui influencent le plus la quantité d’énergie nécessaire à la transformation de la matière première. Il peut y avoir de grandes variations pour une même fibre en fonction du lieu de sa transformation (type d’énergie) et du procédé choisi. Contrairement aux fibres naturelles, les fibres synthétiques requièrent un filage primaire pour lui donner l’aspect fibreux qui est loin de l’état naturel de la matière première. Différents procédés sont disponibles pour réaliser le filage primaire, comme la filature par voie humide et par voie sèche. Cette étape supplémentaire fait en sorte que les fibres synthétiques sont particulièrement énergivores à l’étape du filage. (Rana et al., 2015)

Les pertes générées par le procédé de filage en fonction du type de machinerie et de la fibre est un troisième élément à considérer, toujours en lien avec l’aspect de circularité. Les pertes sont liées à des ressources matérielles et énergétiques exploitées en vain. Les pertes lors du filage du polyester sont d’environ 4 %, ce qui est moindre que pour la laine, avec environ 10 % de pertes, et pour le coton, avec des pertes évaluées entre 13 % et 16 % (Moazzem, Daver, Crossin et Wang, 2018). Les pertes peuvent être réintroduites dans les procédés ou encore être utilisées par d’autres industries comme pour les matériaux isolants. Pour ce faire, la gestion des matières résiduelles doit faire partie de la gestion environnementale de l’entreprise. (Nayak, 2020)

La quantité de CO₂ produite par le filage du chanvre par le procédé de filature à anneau est située autour de 10 kg éqCO₂/kg de chanvre. Les émissions de CO₂ reliées au filage du lin sont comparables à celles du chanvre, avec environ 9 kg éqCO₂ émis/kg de lin. (M.G. van der Werf et Turunen, 2007) Pour le coton conventionnel et le coton biologique produit aux États-Unis, les émissions de CO₂ respectives sont de 5,89 kg CO₂ et 2,35 kg de CO₂. La laine requiert d’avantage d’énergie pour le filage que toutes autres fibres (Moazzem, Daver, Crossin et Wang, 2018). Cela fait en sorte qu’il s’agit de la fibre la plus exigeante en matière d’énergie et conséquemment avec la plus grande empreinte carbone pour la phase du filage.
Les textiles non-tissés, tissés et tricotés

Les deux procédés utilisés pour transformer le fil en textile dans l’industrie du vêtement sont le tissage et le tricotage, le premier étant dominant. Au cours des dernières années, le tissage tend cependant à se faire dépasser par le tricot. Il existe aussi des textiles non-tissés, qui sont des textiles techniques, moins souples, et donc peu fréquents dans l’industrie du vêtement. Il s’agit toutefois d’un procédé moins énergivore que le tissage et le tricotage. Les fibres synthétiques tout comme les fibres naturelles peuvent être tricotées ou tissées. Il s’agit de deux procédés énergivores, d’où l’intérêt d’adopter les technologies les plus efficaces. La difficulté de choisir la technologie et la densité du textile selon le critère énergétique provient toutefois du fait que l’aspect et les caractéristiques des textiles obtenus sont différents, ce qui ne permet pas une base commune de comparaison. (Nayak, 2020) Outre le procédé choisi, l’utilisation d’énergie est fonction de la densité du textile (Tex). Un textile plus dense nécessite moins d’énergie à produire par rapport à un textile moins dense pour une même unité de longueur, au même titre que la densité du fil influence l’utilisation d’énergie. Il s’agit cependant d’une propriété qui est souvent négligée dans les résultats rapportés dans les ACV sur le sujet. Un textile plus dense a une durée de vie plus longue mais nécessite davantage de ressources. Au stade de production, l’impact environnemental est donc plus élevé. (M. van der Velden, Patel et Vogtländer, 2013)

Plus précisément, le tissage consiste à entrelacer un fil de trame et un fil de chaîne. Le tissage requiert l’utilisation d’agents d’encollage afin de prévenir l’apparition de cassures dans le fil pendant le procédé. Ces agents devront être éliminés suite au tissage par un lavage à l’eau chaude et différents produits chimiques. C’est principalement ce qui explique les grands besoins énergétiques du tissage. (Muthu, 2014) Il a été démontré dans plusieurs études que le tissage requiert d’avantage d’énergie que le tricot, l’impact carbone du textile tissé est jusqu’à 20 fois plus élevé que celui du textile tricoté (M. van der Velden, Patel et Vogtländer, 2013).

Les différents métiers à tisser utilisés dans l’industrie ont des besoins énergétiques variables et produisent des textiles dans un créneau de densité variable d’un à l’autre. Pour une même surface de textile produit, la consommation peut passer du simple au triple. Les métiers à jet d’air sont les plus répandus et s’appliquent au coton et aux fibres synthétiques, mais nécessitent une grande quantité d’énergie pour la préparation de l’air comprimé. Les métiers à jet d’eau sont plus efficaces, mais s’appliquent d’avantage au tissage des fibres synthétiques. La laine est la fibre naturelle privilégiée pour le tricot de manière traditionnelle. L’acrylique et le polyester (fibres synthétiques) imitent cette propriété de la laine et
peuvent donc être tricotés. Par le procédé de tricot tramé, le fil devient un textile à l’aide d’une seule machine contrairement au tissage. Plusieurs étapes préliminaires sont ainsi éliminées, ce qui se traduit en économies d’énergie. (Nayak, 2020)

Le traitement des fibres par voie humide

Le traitement des fibres par voie humide est une succession de traitements pour donner la texture et la couleur désirée au vêtement, soit : la préparation, la coloration (choix de teinture et de la méthode) et la finition.

Le choix de teinture

Le choix de teinture et sa composition dépendent de la nature de la fibre et de la couleur désirées, toutes les teintures n’ayant pas la capacité d’adhérer à tous les types de fibre (Fletcher, 2014). C’est même le cas pour les différents grades d’un même textile puisque les colorants résistent plus ou moins bien dans le temps. Les teintures ou colorants sont séparés en deux grandes familles : teintures végétales et teintures chimiques. Les premières proviennent de la matière organique ou minérale, alors que les secondes sont issues de la synthèse chimique. Avec 60 % à 70 % de tous les colorants, les colorants azoïques, d’origine chimique, sont les plus utilisés dans l’industrie. Ils sont favorisés pour la facilité avec laquelle ils sont synthétisés, la variété de couleur qui peut être produite et de leur stabilité. Cependant, ces colorants représentent plusieurs menaces pour l’environnement. Une grande quantité se retrouve dans les effluents des manufactures et ils sont peu ou pas biodégradables, ce qui entraîne éventuellement l’eutrophisation des cours d’eau, la bioaccumulation chez les organismes vivants et des problèmes de santé chez les populations exposées pour ne nommer que quelques exemples. (Ben Mansour et al., 2010)

Les teintures traditionnelles utilisées au Québec au début du 20ᵉ siècle ont laissé leur place aux colorations synthétiques attrayantes pour leur facilité d’utilisation. L’utilisation d’énergie pourrait cependant être réduite par un retour aux colorants naturels, en plus de réduire les problématiques associées aux colorants synthétiques mentionnées plus haut. (Bechtold, Turcanu, Ganglberger et Geissler, 2003) Dans la même optique que le choix de fibres locales, il convient de s’intéresser aux teintures naturelles disponibles au Québec qui font appel à un retour des pratiques traditionnelles. Le tableau 3.2 présente des exemples de couleurs et leur provenance.
Tableau 3.2 Couleur et provenance des teintures naturelles disponibles au Québec (Martineau, 1978)

<table>
<thead>
<tr>
<th>Provenance</th>
<th>Couleur</th>
<th>Provenance</th>
<th>Couleur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pelure d’oignon</td>
<td>Jaune citron</td>
<td>Fleur d’épinette</td>
<td>Jaune</td>
</tr>
<tr>
<td>Betterave</td>
<td>Orange rouge</td>
<td>Racine de rhubarbe</td>
<td>Jaune vert</td>
</tr>
<tr>
<td>Bleuet</td>
<td>Bleu</td>
<td>Canneberge</td>
<td>Rouge foncé</td>
</tr>
<tr>
<td>Écorce de bouleau blanc</td>
<td>Gris violet</td>
<td>Sarrazin</td>
<td>Bleu vert</td>
</tr>
<tr>
<td>Pissenlit</td>
<td>Jaune</td>
<td>Sureau</td>
<td>Violet</td>
</tr>
</tbody>
</table>

La principale limite à l’utilisation à grande échelle des colorations naturelles dans l’industrie est la difficulté de les intégrer aux procédés en place. Ils n’adhèrent pas aussi bien aux textiles et n’ont pas une couleur aussi vibrante par rapport aux colorants synthétiques, ce qui nécessite de modifier la façon de les travailler. Il faut aussi considérer que ce type de colorant requiert l’utilisation de terres pour la culture. Dans cette optique, le virage vers des colorations entièrement naturelles semble irréaliste, mais la combinaison des colorants synthétiques et naturels est une avenue intéressante pour réduire les impacts négatifs des colorants synthétiques. Il s’agit en fait de rehausser les propriétés des colorants naturelles par l’utilisation de produits de synthèse. (Bechtold, Turcanu, Ganglberger et Geissler, 2003) L’étape de la teinture peut être complètement contournée en optant pour la couleur naturelle des fibres végétales. Cependant, cette option est rarement privilégiée puisqu’il est difficile d’obtenir un résultat constant d’un produit à l’autre, ce qui est désiré au sein de l’industrie. (Ben Mansour et al., 2010)

La préparation, la teinture et la finition

La phase de préparation, teinture et finition est identifiée comme la plus polluante dans tout le cycle de production en raison de la succession de nombreux procédés énergivores qui requièrent beaucoup d’eau (Nayak, 2020). La préparation est une étape essentielle qui sert à nettoyer les impuretés de la fibre ou du textile afin que la coloration y adhère. Le nettoyage se fait dans une solution alcaline. Les solutions exactes appliquées dépendent de la nature des fibres. Souvent, la fibre ou le textile est blanchi à cette étape pour enlever sa couleur naturelle. Les paramètres comme le pH de la solution, la température et le temps d’application vont être ajustés en fonction de la fibre et de la teinture, créant infiniment de combinaisons possibles. (Terinte et al., 2014) Les variations dans les procédés utilisés d’un textile à l’autre entraînent des écarts importants rapportés dans les analyses sur le sujet (M. van der Velden, Patel et Vogtländer, 2013).
De manière conventionnelle, la coloration est appliquée sur le textile après le tissage ou le tricotage. Le procédé se fait soit en continu, le textile passe alors à travers plusieurs solutions dans de grands bains placés en chaîne, ou encore en batch, où les solutions sont plutôt ajoutées et drainées successivement à l’intérieur d’un même réservoir. Une nouvelle façon de faire est d’ajouter la pigmentation aux fibres avant l’étape du filage, procédé qualifié de spin dyeing. Il s’agit d’un procédé marginal au sein de l’industrie avec seulement 5 % de tous les textiles teints de cette façon. La teinture conventionnelle nécessite de grandes quantités de colorants qui deviennent des déchets puisque le textile y baigne, alors que presque tout le colorant adhère aux fibres avec la nouvelle technique, ce qui se traduit en économies importantes de colorants. (Terinte et al., 2014)

L’élimination d’étapes et de ressources nécessaires se transpose en des économies d’énergie, et ultimement une moins grande empreinte carbone. La figure 3.6 montre que la réduction des émissions de GES est possible en grande partie grâce à des économies de colorants chimiques et par l’élimination des multiples étapes de lavage à l’eau chaude pour éliminer les excédents de colorant. Pour obtenir ces données, une analyse de cycle de vie a été effectuée pour quantifier les impacts de la production de la fibre cellulosique à la base du modal jusqu’à l’obtention du textile, en utilisant les deux méthodes de teinture différentes pour obtenir un kilogramme de modal tricoté noir. Il en ressort que l’impact sur les CC est 60 % moins élevé dans le cas du spin dyeing par rapport à la teinture conventionnelle. Le textile teint par le procédé de spin dyeing a pratiquement le même impact sur les CC que le textile non-teint. (Terinte et al., 2014)

![Figure 3.6 Comparaison des émissions de GES reliées à la méthode de teinture conventionnelle et à la méthode de teinture spin-dyeing](inspiré de : Terinte et al, 2014)

36
Des nouvelles technologies qui utilisent moins d’eau et d’énergie font aussi leur apparition dans l’industrie alors que les préoccupations environnementales sont grandissantes. Les deux paramètres sont reliés puisque le chauffage de l’eau constitue la principale demande d’énergie dans les procédés de teinture et il en résulte aussi une moins grande quantité d’eau à traiter. Des systèmes de réutilisation de l’eau, de récupération de chaleur et une meilleure isolation des appareils constituent des pistes d’amélioration pour l’industrie. (Nayak, 2020) La teinture à plus basse température, grâce à l’utilisation d’enzymes qui améliore l’efficacité du procédé, est de plus en plus fréquente. (Drumond Chequer et al., 2013)

La finition comprend le nettoyage du textile et différents traitements chimiques et mécaniques afin de donner au textile une meilleure apparence et une meilleure texture. C’est l’étape qui varie le plus en fonction de l’usage qui sera fait du textile. Le textile peut subir un traitement assouplissant, une protection antistatique ou antitache par exemple. (Terinte et al., 2014) Alors que l’utilisation des produits chimiques a un faible impact sur les émissions de CO$_2$, l’énergie requise pour chauffer l’eau pour le nettoyage puis pour le séchage des vêtements est considérable (Rana et al., 2015).

La coupe

À l’étape de la coupe, beaucoup de déchets sont générés. Ce serait environ 15 % du textile qui se retrouve sous forme de retailles, celles-ci étant parfois recyclées, parfois jetées. (Fashion Revolution, 2015) Le positionnement des différentes pièces sur les patrons qui servent de base pour la coupe est déjà une variable optimisée au sein de l’industrie. La motivation derrière cette pratique est essentiellement pour des raisons économiques afin de limiter les pertes matérielles qui se traduisent en pertes monétaires. (L. Arsenault, rencontre en personne, 14 janvier 2020) Cependant, l’étape du design qui vient en amont tient rarement compte de la notion de déchet. Un sketch est d’abord produit, puis le patron permet de rendre l’idée à la réalité. Il est accepté à travers l’industrie que des pertes se produisent à cette étape, malgré les ressources et l’énergie gaspillées. (Rissanen, 2015)

La méthode *zero-waste fashion design* (ZWFD) tente de répondre à cette problématique. Lorsque les morceaux sont conçus pour limiter les pertes, la coupe et les proportions sont nécessairement affectées, ce qui demande d’adopter une vision non-conventionnelle du design. Deux branches du ZWFD se distinguent. La première consiste à travailler le design en fonction du morceau de textile afin d’éviter les pertes, ce qui demande de connaître les dimensions du textile, une variable souvent ignorée. La limite de cette approche est la difficulté à reproduire le patron pour différentes tailles, ce qui demande des
morceaux de textile de différentes dimensions ou encore de modifier légèrement le design pour les différentes tailles. La figure 3.7 montre un patron et le produit final obtenu par l’application de cette première branche de la méthode du ZWFD. Il n’y a aucune retaillée produite contrairement à la coupe conventionnelle. La coupe au laser offre un avantage par rapport à la coupe conventionnelle pour limiter les pertes. Alors qu’il peut sembler que la technique du ZWFD nécessite plus de textile, ce n’est pas nécessairement le cas. La coupe au laser permet de couper le textile dans toutes les directions plutôt que d’être limité à la coupe transversale qui oblige à positionner les pièces selon un certain angle. La deuxième branche qui semble moins adaptée pour la production à grande échelle est de travailler le design directement sur un modèle avec le textile disponible, sans avoir une idée fixe en tête. Il s’agit davantage d’une pratique adaptée au milieu académique et de la haute-couture qu’au prêt-à-porter. (Plank, 2019)

![Figure 3.7 Optimisation du textile par la méthode ZWFD (tiré de : Rissanen, 2015)](image)

Figure 3.7 Optimisation du textile par la méthode ZWFD (tiré de : Rissanen, 2015)

L’assemblage

L’assemblage constitue la dernière étape de la production du vêtement. Il consiste à coudre les différentes pièces afin de former le vêtement souhaité. Ce stade demande beaucoup de travail manuel contrairement aux étapes précédentes qui sont presque toutes automatisées. Il s’agit tout de même d’un autre procédé énergivore compte tenu de toutes les machines impliquées dans l’assemblage. (Nayak, 2020) Différents
types de points peuvent permettent l’assemblage, dépendamment de la qualité et du look recherché. L’étape de l’assemblage aura une incidence sur la durée de vie du vêtement puisque ce sont en partie les coutures qui vont lui permettre de garder son aspect initial. Les coutures de qualité qui doivent être privilégiées pour assurer la durabilité sont les coutures anglaises, les coutures rabattues et le surjet (Daignault-Leclerc, 2019). Des nouvelles machines en trois dimensions peuvent tricoter un vêtement en un seul morceau, ce qui permet d’éliminer complètement l’étape de l’assemblage et l’énergie requise. Il s’agit d’une avenue prometteuse puisque, tel que mentionné à la section précédente, le tricot demande moins d’énergie que le tissage, les économies d’énergie se produisent donc à deux niveaux qui permettent des économies de 30 % à 40 % par rapport à l’assemblage conventionnel. (Fletcher, 2014)

3.5.3. Le transport
Le transport est nécessaire à de nombreuses reprises dans le cycle de vie des vêtements étant donné les chaînes d’approvisionnement complexes qui caractérisent leur production. Le dernier mile qui s’applique à la dernière portion de transport vers le consommateur a un impact particulièrement important sur l’empreinte carbone et fait donc l’objet d’une sous-section. Il convient aussi de tenir compte de l’emballage nécessaire lors de la distribution qui nécessite lui-même des ressources.

Le contexte politique
Le transport nécessaire dans la chaîne d’approvisionnement est autant à l’échelle locale qu’internationale. Lorsqu’il est question du transport international, il est nécessairement question des politiques d’échanges qui le régissent. L’entente Multi Fiber Agreement (MFA) qui a été développée dans les années 1960 a régulé les échanges de textile à l’échelle mondiale pendant une trentaine d’années. Les types de textiles, vêtements partiellement finis et finis étaient séparés en différentes catégories pour lesquelles il y avait des quotas à respecter selon leur origine. L’entente élaborée par les pays développés, les États-Unis, le Canada et des pays de l’Union européenne (UE), avait pour but de protéger la production locale des textiles bon marché en imposant des taxes et tarifs différents selon la nature et l’origine du produit. L’Agreement on Textiles and Clothing (ATC) de 1995 qui vient remplacer la MFA vient mettre fin aux mesures protectionnistes en place de manière graduelle dans un contexte économique de mondialisation. Elle n’est plus en vigueur depuis 2005. (Anguelov, 2016)

Avec la dérégulation, les lieux de transformation et de production du vêtement, de la fibre au produit fini, sont dictés par des raisons exclusivement économiques. La recherche du plus faible coût de production
est à la base de l’industrie de la mode rapide. En plus du transport nécessaire dans cette chaîne d’approvisionnement mondialisée qui produit de grandes quantités de gaz à effet de serre, les faibles coûts disponibles dans les pays en voie de développement sont souvent synonymes de normes environnementales moins strictes. Les États-Unis sont les plus grands exportateurs de coton, mais dans les faits, la majorité du coton (environ 80 %) va revenir au pays sous forme de vêtements. Alors que dans les années 1990, la proportion exportée se situait autour de 40 %, elle atteignait 75 % en 2012 avec la mondialisation de l’industrie du textile. (Anguelov, 2016)

La chaîne d’approvisionnement

La figure 3.8 montre le transport nécessaire dans la chaîne d’approvisionnement d’un vêtement de la marque Levi Strauss et Co. (2015). À partir de sa source d’origine (États-Unis, Mexique, Brésil, Chine, Grèce ou Pakistan), le coton va être transporté à l’interne ou encore outre-frontière dans un ou deux pays différents afin d’être transformé en textile puis en vêtement. Souvent, la fibre de coton est d’abord transformée dans une usine d’égrainage, puis dans une usine de filage dans un deuxième temps. La transformation du fil en textile nécessite une autre fois le transport du fil vers l’usine de textile. (Muthu, 2014) Par la suite, le transport à l’intérieur du pays se produit entre le centre de distribution, les canaux de ventes et le consommateur. Cet exemple illustre la complexité d’une chaîne d’approvisionnement, bien qu’unique à chaque vêtement, qui va entraîner des flux de matières premières et transformées et inévitablement des émissions de GES.

![Figure 3.8 Transport dans la chaîne d’approvisionnement de Levi Strauss et Co.](inspiré de : Levi Strauss and Co., 2015)
Une étude sur le cycle de vie d’un chandail en mérinos soulève 17 phases de transport sur un total de plus de 10 000 km, faisant du transport l’une des principales sources d’émissions de CO₂ aux côtés des différentes phases de production qui nécessitent de l’électricité et de l’énergie thermique. Les deux facteurs qui influencent le plus les émissions liées au transport sont la distance parcourue et le mode de transport choisi. L’importance de l’aspect local a été mentionnée à la section 3.5.1 sur l’extraction des matières premières puis à la section 3.5.2 sur la production du vêtement. Le fait de s’approvisionner en ressources locales influence le premier facteur. Dans la même étude, une réduction des émissions évaluée à 28 % est permise grâce à l’approvisionnement chez des fournisseurs locaux, c’est-à-dire une réduction de 50 % de la distance totale parcourue. Pour ce qui est du mode de transport, remplacer le transport par avions pour des bateaux, et dans le cas du transport terrestre, remplacer les camions par des trains, permet une réduction de 20 % à 30 % des émissions de CO₂. (Bevilacqua et al., 2011) Éliminer le transport aérien dans la distribution, le mode le plus coûteux, mais parfois privilégié pour sa rapidité, représente l’action à prioriser puisqu’il s’agit du mode de transport ayant le facteur d’émissions le plus élevé. Les facteurs d’émissions du cargo, train au diesel, camion et avion étant respectivement 13 g éqCO₂/km, 26 éqCO₂/km, 94 éqCO₂/km et 574 éqCO₂/km (European Association for Forwarding, Transport, Logistics and Customs Services [CLECAT], 2020).

Une réduction des distances parcourues, et donc des émissions, peut être réalisée par l’optimisation des trajets empruntés. S’il est possible d’éliminer complètement un segment, les avantages sont d’autant plus considérables. Pour citer l’exemple de H&M, alors que tous les vêtements transitaient autrefois par l’entrepôt central situé en Allemagne, un meilleur système de gestion de la demande a permis d’éliminer cet arrêt dans plusieurs cas. La connaissance de la demande en temps réel permet aujourd’hui la livraison entre le lieu de production du vêtement et son lieu de vente sans arrêt intermédiaire. Le choix de véhicules plus performants et des habitudes de conduite plus responsables permettent aussi de limiter les émissions liées au transport par la route. L’entreprise donne un cours sur la conduite écoresponsable à une proportion importante des chauffeurs, qui comprend entre autres l’arrêt complet du moteur après quelques minutes. (Aldao, David et Panagiotidou, 2009)

Le concept du « dernier mile »

Le « dernier mile » ou *last mile* a un impact significatif sur l’empreinte totale liée au transport. Il s’agit du dernier segment de transport entre le magasin ou l’entrepôt et le consommateur et aussi du plus significatif en ce qui a trait à l’empreinte carbone. Les choix qui s’offrent aux consommateurs à ce stade sont de se rendre au magasin pour l’achat du vêtement ou bien de le recevoir via un service de livraison offert lors de l’achat en ligne. Encore à cette phase, la ligne n’est pas bien tracée pour définir l’option à privilégier afin de limiter les émissions de GES. Plusieurs facteurs doivent être pris en compte en fonction des circonstances. Le mode de transport utilisé par le consommateur, la distance qui le sépare du lieu physique où il peut se procurer le vêtement, le type de véhicule de livraison, la réussite de la livraison dès le premier essai, les options de livraison standard ou express et les options de retour sont parmi ces facteurs. (Mckinnon et Cullinane, 2010)

La croissance dans le secteur de la vente en ligne pourrait avoir un impact bénéfique sur l’empreinte carbone à la phase de consommation du bien en comparaison avec les achats en magasin. De manière générale, le transport des colis est optimisé lors de la livraison à domicile, alors qu’un consommateur qui se rend dans les magasins en automobile (mode de transport le plus courant) utilise beaucoup de ressources pour peu de biens transportés. Les compagnies de livraison soucieuses de leur empreinte opteront pour une flotte efficace qui permet de réduire d’autant plus l’impact du transport. Cependant, si le consommateur est impatient et qu’il opte pour la livraison express, l’impact est supérieur par rapport au modèle d’achat traditionnel puisqu’il n’est plus possible d’optimiser autant le transport. Les consommateurs situés dans les centres urbains qui peuvent se rendre en transport collectif ou en
Alors qu’un avantage direct peut être retiré de la livraison à domicile, des effets pervers peuvent venir contrebalancer les effets positifs si les habitudes du consommateur sont modifiées par l’achat en ligne. Pour un même consommateur, les achats peuvent être plus fréquents car la possibilité d’acheter est toujours au bout des doigts et il est plus facile d’acheter des items provenant de plusieurs compagnies différentes, ce qui multiplie les livraisons. Aussi, le nombre de retour est 2,5 à 5 fois plus élevé en ligne qu’en magasin. (Mckinnon et Cullinane, 2010)

Même si la livraison est l’option la plus avantageuse dans certains cas, elle ne se fait pas sans impact. Le World Economic Forum (2020) a développé différents scénarios, présentés à la figure 3.7, qui permettent de limiter l’impact de la livraison par rapport à conserver les pratiques actuelles et avoir un impact grandissant avec l’augmentation des livraisons prévue au cours des prochaines années. Le nombre de camions de livraison sur les routes, les émissions de CO₂ rattachées ainsi que la congestion routière seront tous amenés à augmenter sans l’adoption de certaines pratiques. Le premier scénario est le plus efficace pour ce qui est de la réduction des émissions et il propose la livraison de nuit par des véhicules électriques. Il s’agit d’un scénario intéressant pour les organismes publics qui ont le devoir de se pencher sur la question des changements climatiques, mais il ne s’agit pas de l’option la plus économique pour le secteur privé.

Le deuxième scénario répond au critère économique, par l’utilisation de boîtes et casiers pour la livraison, en plus de voies express réservées et de modification dynamique des routes pour éviter le trafic, mais il ne permet pas une aussi grande réduction de l’empreinte carbone du transport. L’utilisation des boîtes et casiers réduit le nombre de voyages nécessaires pour effectuer une livraison réussie. Le troisième scénario est un hybride qui rejoint les intérêts des différentes parties prenantes par l’utilisation de véhicules électriques, la livraison de nuit, les boîtes et casiers partagés par les entreprises ainsi que la modification dynamique des routes. La figure 3.9 résume les trois scénarios et leur impact respectif sur les émissions locales de CO₂, le coût et la congestion. (World Economic Forum, 2020)
Figure 3.9 Scénarios de livraison qui permettent une réduction de l’empreinte carbone par rapport au statut quo (inspiré de : World Economic Forum, 2020)

L’emballage

Un emballage est nécessaire pour le transport des vêtements afin de les protéger. Plusieurs emballages différents sont utilisés dans le cycle, que ce soit pour les matières premières, entre les différentes étapes de production ou pour le produit fini des manufactures à l’entrepôt, puis vers les points de vente ou le consommateur. L’emballage varie aussi en fonction qu’il soit destiné à un lieu de vente physique ou en ligne. Son impact est donc relié à la phase de transport du vêtement. Dans les multiples segments de transport, l’emballage représente à lui seul environ 40 % des émissions de CO₂. (Bevilacqua et al., 2011) Pour limiter l’impact, des entreprises font le choix de réduire l’emballage et d’utiliser des matériaux réutilisables en opposition à des matériaux jetables afin de limiter l’empreinte qui leur est associée. Les supports, les boîtes, les palettes sont tous des éléments qui peuvent être réutilisés. (Aldao, David et Panagiotidou, 2009) Pour ce qui est de la phase du dernier mile, comme l’empreinte carbone des achats en ligne se situe surtout au niveau de l’emballage, il convient de favoriser des matériaux à faible empreinte et d’opter pour la taille d’emballage appropriée afin de limiter l’impact. Cela permet de maximiser les bénéfices de la vente en ligne pour laquelle l’empreinte globale reste dans plusieurs cas moindre que celle liée au modèle d’achat traditionnel. (Weideli, 2013).
3.5.4. L’utilisation

Le premier élément à considérer en lien avec la phase d’utilisation des vêtements est relié aux habitudes de consommation. L’option privilégiée par les consommateurs à ce jour est l’achat, mais la location est une option qui prend de l’ampleur. Dans un deuxième temps, il convient de se pencher sur les habitudes d’entretien (lavage, séchage et réparation) qui ont un impact significatif sur l’empreinte carbone totale du vêtement.

Les habitudes de consommation

Les entreprises et les consommateurs sont de plus en plus conscients de leur empreinte environnementale. Les technologies évoluent sans cesse depuis les débuts de l’industrie afin non seulement d’augmenter l’efficacité et l’efficience de la production, mais aussi de limiter les impacts environnementaux. D’un autre côté, la consommation continue d’augmenter dans les pays occidentaux, comme dans les pays émergents. La perception du consommateur d’acheter des produits plus durables peut entrainer une augmentation de sa consommation, ce qui est qualifié d’effet rebond. (Niinimäki, K. et Hassi, 2011) Il s’agit d’un phénomène qui s’applique non seulement à l’industrie de la mode, mais aussi à l’industrie automobile pour ne nommer qu’un exemple avec la mise en marché de véhicules à plus faible consommation qui donne une meilleure perception aux consommateurs. (Némoz, 2013) Les technologies ne suffiront pas à contrebalancer cette augmentation perpétuelle de la demande. Malgré les efforts de l’industrie pour réduire ses impacts, les modèles d’affaires des entreprises sont inévitablement basés sur l’augmentation de la consommation par la force du système économique. Cette croissance est fondamentalement opposée au principe de durabilité. Les changements de comportement nécessaires pour contrer les effets de la consommation effrénée peuvent être d’autant plus complexes à instaurer dans la société que les changements technologiques. (Fletcher, 2014)

Opter pour les alternatives à l’achat est un geste que le consommateur peut poser pour réduire son empreinte. La réparation est la première avenue à étudier en lien avec le dernier stade du cycle de vie des vêtements. Celle-ci est trop souvent négligée en raison du faible coût pour simplement les remplacer. La couture est un savoir qui se perd de nos jours en lien justement avec la valeur des vêtements qui a diminuée depuis l’industrialisation du secteur (Crane, 2000). Il y a toujours l’option de se rendre chez le couturier afin de réparer ou ajuster le vêtement afin de prolonger son utilisation qui s’offre au consommateur. Une deuxième option d’autant plus intéressante qui est disponible dans d’autres domaines comme la menuiserie par exemple est la création de lieu de partage de connaissances et de
matériel. (Conseil du patronat de Québec [CPQ], 2018) La mise à disposition d’outils pour les membres est un principe qui peut se transposer aux vêtements par la mise à disposition de machines à coudre et de matériel de couture. Ces lieux permettent d’intégrer des connaissances et des habitudes qui vont perdurer plutôt que d’être une solution occasionnellement privilégiée.

L’économie de partage est un modèle économique qui « repose sur le partage ou l’échange entre particuliers de biens, de services ou de connaissances, avec ou sans échange d’argent » (Revenu Québec, 2018). La location et les échanges de vêtements s’inscrivent dans ce principe. L’avantage environnemental provient du prolongement de la durée de vie du vêtement. Cependant, c’est aussi un modèle qui nécessite davantage de transport entre la résidence et le lieu d’échange. Pour cette raison, la durée de vie doit être quatre fois plus longue pour annuler les impacts du transport. À ce moment, le mode de transport utilisé par le consommateur n’a plus d’influence si la durée de vie du vêtement est doublée, l’impact sur les changements climatiques est très sensible au transport. (Zamani, Sandin et Peter, 2017) L’importance de l’aspect local n’est pas simplement liée à la réduction du transport, mais au fait de pouvoir accéder aux vêtements comme un service plutôt qu’un simple bien. En effet, des entreprises présentent à l’échelle locale sont plus facilement en mesure d’offrir un service de location, de réparation ou de modulation du vêtement selon le besoin. (Fletcher, 2014) Outre les habitudes de consommation qui permettent le prolongement de la durée de vie, l’entretien qu’on en fait joue un rôle à ce niveau, ce qui mène à la prochaine section qui porte sur l’entretien des vêtements.

L’entretien

La phase d’utilisation ressort dans plusieurs études comme étant la phase qui a le plus grand impact sur les changements climatiques (Yun, Patwary, LeHew et Kim, 2017). Le lavage et le séchage des vêtements requièrent en effet beaucoup d’énergie. Cependant, ce calcul est souvent basé sur l’utilisation de sources d’énergie fossile. Au Québec, l’hydroélectricité produite a un faible impact sur les émissions de GES. Ainsi, en se basant sur les résultats d’une étude suédoise où les sources d’énergie sont aussi à faible impact carbone (hydroélectricité, nucléaire et éolien), le transport du consommateur aurait potentiellement plus d’impact que l’entretien. De plus, la conclusion selon laquelle la phase d’entretien est la plus significative sur l’empreinte carbone globale est souvent basée sur la durée de vie théorique d’un vêtement, alors que l’usage qui en est fait en réalité est beaucoup plus court. (Zamani, Sandin et Peter, 2017) Les alternatives proposées à la section précédente ainsi qu’à la section 3.4.3.3 sont donc à prioriser. Il est tout de même
pertinent de chercher à réduire l’impact encore davantage en entretenant les vêtements de façon plus responsable.

La figure 3.10 montre l’impact sur les changements climatiques d’une machine à laver conventionnelle par rapport à une machine à laver à haute efficacité énergétique. Dans les deux cas, des scénarios où la température de l’eau, l’utilisation de la sécheuse et la fréquence de lavage varient sont présentés. Pour des paramètres constants, la machine à haute efficacité utilise toujours moins d’énergie que la machine conventionnelle. L’utilisation d’eau froide, le fait de sécher les vêtements à l’air libre et à une moins grande fréquence représente le scénario optimal. Laver les vêtements après 10 utilisations plutôt que deux réduit les impacts sur les changements climatiques de 77 %. (Levi Strauss & Co, 2015)

Figure 3.10 Impact sur les changements climatiques pour un an d’utilisation d’un jeans selon différents scénarios de lavage et séchage (inspiré de : Levi Strauss & Co, 2015)

Le choix du textile à l’achat, et même avant lors de la conception, a aussi un impact sur la phase d’utilisation. Les différents textiles présentent des propriétés différentes qui font en sorte que les besoins en entretien ne sont pas les mêmes. Le coton demande plus d’énergie pour le séchage et le repassage en raison de ses propriétés hydrophiles alors que le polyester absorbe moins l’humidité par exemple (Yun, Patwary, LeHew et Kim, 2017). Cette propriété est évidente pour le consommateur, alors que les recommandations sur la température à laquelle les différentes fibres devraient être lavées sont rarement respectées. La nature de la fibre influencera donc rarement l’étape du lavage. La couleur des vêtements est plutôt le critère selon lequel le consommateur sépare habituellement le lavage. (Fletcher, 2018) La laine est une exception puisqu’elle est facilement différenciable des autres fibres. Elle a le plus grand
impact lors de la production par rapport au coton et au polyester, tel qu’Il a été présenté à la section 3.5.1, mais le plus faible impact lors de l’utilisation parce qu’elle nécessite moins de lavage et de repassage, en plus d’avoir une durée de vie plus longue. Pour la laine, la durée moyenne est considérée de trois ans, ce qui est trois fois plus que le coton et le polyester. (Moazzem, Daver, Crossin et Wang, 2018)

Le repassage est le dernier aspect de l’entretien à considérer. C’est la nature de la fibre encore une fois qui dicte la nécessité de cette étape. Les fibres naturelles comme le coton et le lin froissent d’avantage que les fibres synthétiques ou les mélanges de fibres synthétiques et naturelles, ce qui a éventuellement un impact sur l’utilisation d’énergie dans la phase d’utilisation. (Yun, Patwary, LeHew et Kim, 2017) Une étude réalisée par Franklin Associates (1993) montre que le scénario qui utilise le plus d’énergie par utilisation est un vêtement porté cinq fois sans jamais être lavé, suivi par le scénario où le vêtement est porté 40 fois et lavé 20 fois. Le scénario le plus efficace par utilisation est le port du vêtement à 80 reprises et lavé 40 fois. Il faut donc en comprendre que la durée de vie du vêtement est un facteur clé dans l’impact sur son cycle de vie, puisque les besoins énergétiques pour toutes les phases précédentes sont amortis à chaque utilisation, en plus de l’entretien convenable qui en est fait.

3.5.5. La fin de vie

Pour quelque bien que ce soit, la fin de vie constitue la façon de le traiter quand il n’est plus utile. (Jorgensen, 2019) La fin de vie dans l’industrie de la mode vestimentaire a la particularité dans plusieurs cas de ne pas être associée à une fin de vie utile, mais plutôt de ne plus satisfaire les goûts du consommateur qui évoluent avec les tendances. Ces dernières évoluant de manière beaucoup plus rapide dans les dernières décennies avec l’apparition du modèle de la mode rapide, tel qu’il a été question à la section 1.1 L’évolution de l’industrie de la mode vestimentaire. Le même phénomène est aussi observé dans le secteur des technologies, où les nouveaux appareils font l’envie du consommateur, bien que leur appareil actuel soit fonctionnel. Il s’agit en grande partie d’un phénomène social. (Niinimäki et Hassi, 2011) La figure 3.9 montre les différentes raisons qui poussent les consommateurs à se départir de leurs vêtements. Seulement 19 % sont associés à des défauts, des tâches ou une déformation. Plus du quart est associé au fait que le vêtement ne plaît plus. Le reste est associé au fait que le vêtement ne fait plus, n’a plus d’utilité pour le propriétaire ou à une raison autre.
Figure 3.11 Raisons qui poussent les consommateurs à se départir de leurs vêtements (inspiré de : Ellen MacArthur Foundation, 2017a)

Au-delà du phénomène social, le terme obsolescence programmée est utilisé pour décrire le fait de délibérément raccourcir la durée de vie d’un produit mis en marché. Alors que le terme est souvent lié aux technologies, des vêtements de piètre qualité qui sont mis sur le marché peuvent être associés à une forme d’obsolescence. (Kolowski, 2012) L’obsolescence et l’accélération de la consommation font en sorte que la gestion de la fin de vie des vêtements est devenue un enjeu important (Zamani, Sandin et Peter, 2017). Bien sûr, ce sont les changements au niveau de la vitesse de production de l’industrie et des habitudes des consommateurs qui permettent de limiter de façon la plus considérable l’impact de cette phase en limitant la quantité de vêtements qui s’y rendent. Les gestes qui peuvent être posés ont fait l’objet de la section 3.5.4. Pour les vêtements qui ne peuvent pas être modifiés, donnés ou réparés, il est pertinent de s’intéresser aux différents procédés qui s’offrent pour gérer la fin de vie du vêtement afin de déterminer les options qui entraînent les plus faibles émissions de GES.

Le recyclage, le compostage ainsi que l’enfouissement sont les quatre options à l’étude. L’enfouissement étant plus répandu au Québec par rapport à l’incinération pour la gestion des déchets en fin de vie (Recyc-Québec, 2015). Parmi les trois options, le recyclage est la seule qui permet à la fibre d’avoir une deuxième vie, il s’agit donc de celle à prioriser en lien avec le principe des 3RV (réduction à la source, réemploi, recyclage, valorisation). Le compostage étant une forme de valorisation, puisque la matière est utilisée autrement, mais à une fin utile de produire des fertilisants pour le sol dans ce cas. (Saint-Bruno-de-Montarville, 2020) L’enfouissement et l’incinération représentent une fin de vie ultime pour le textile.
Toutes ces options ne s’appliquent cependant pas à toutes les fibres. Les fibres étudiées à la section 3.5.1 L’extraction de la matière premières étaient les suivantes : *cannabaceae*, le lin, le coton, les fibres cellulosiques, les fibres pétrochimiques et la laine. La recyclabilité et la biodégradabilité de ces fibres sont présentées au Tableau 3.3, ce qui permet afin de mieux cerner leur impact sur tout le cycle de vie.

Tableau 3.3 Recyclabilité et biodégradabilité des fibres locales (Chen et Burns, 2006)

<table>
<thead>
<tr>
<th>Fibre</th>
<th>Recyclabilité</th>
<th>Biodégradabilité</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coton</td>
<td>Difficile</td>
<td>Oui</td>
</tr>
<tr>
<td>Chanvre (cannabaceae)</td>
<td>Difficile</td>
<td>Oui</td>
</tr>
<tr>
<td>Lin</td>
<td>Difficile</td>
<td>Oui</td>
</tr>
<tr>
<td>Fibres cellulosiques</td>
<td>Difficile</td>
<td>Oui</td>
</tr>
<tr>
<td>Fibres pétrochimiques</td>
<td>Facile</td>
<td>Non</td>
</tr>
<tr>
<td>Laine</td>
<td>Facile</td>
<td>Oui</td>
</tr>
</tbody>
</table>

Le tableau montre que les seules fibres facilement recyclables sont les fibres pétrochimiques. Le polyester particulièrement conserve ses propriétés, même après avoir été recyclé plusieurs fois, ce qui s’inscrit dans une perspective circulaire (Kirchain, Olivetti, Miller et Greene, 2015). De l’autre côté, il s’agit aussi des seules fibres qui ne sont pas biodégradables. Toutes les fibres végétales sont quant à elles biodégradables, mais difficilement recyclables. La laine est la seule fibre naturelle facilement recyclable et aussi biodégradable.

Le recyclage

Le principe du recyclage est de transformer un déchet potentiel en un produit utile. Le recyclage du textile peut sembler être une nouvelle technologie reliée au mouvement environnementaliste des dernières décennies. Cependant, les premiers écrits qui traitent du recyclage du textile remontent au 16e siècle. En effet, les chiffons (vieux morceaux de linge) de chanvre étaient utilisés comme base pour la fabrication du papier qui nécessite une fibre cellulosique. Il s’agit d’une avenue possible encore aujourd’hui. Avec les avancées technologiques, le textile peut être recyclé en un nouveau textile. (Jorgensen, 2019) La principale limite technique du recyclage du textile est le mélange des différentes fibres. Il s’agit d’un aspect à considérer non pas en fin de vie, mais dès la conception du vêtement. (Muthu, Li, Hu et Ze, 2012) Le procédé le plus répandu consiste à déchiqueter le textile puisque le mélange de fibres ne constitue pas un obstacle. Cependant, il en ressort un textile de moindre qualité puisque la fibre est abimée par le procédé. De plus, cette même fibre a déjà été endommagée lors de son utilisation, surtout par les nombreux lavages. (Peters, Granberg et Sweet, 2015) Bien sûr, le recyclage demande son lot d’énergie et de
ressources pour que ce soit possible, mais dans un tout autre ordre de mesure que la production de fibres vierges. La production de polyester recyclé n’utilise que 1,8 % de l’énergie que la fibre vierge nécessite. Pour le coton, ce pourcentage est de 2,6 %. Pour cette raison, le recyclage est un aspect fondamental dans la réduction de l’empreinte carbone dans le cycle de vie d’un vêtement. (Rana et al., 2015)

Outre l’aspect technique du recyclage du textile qui représente ses défis, la collecte représente une problématique. Actuellement, au Québec, il n’y a pas de système en place à grande échelle pour la récupération des textiles. Tous les textiles disposés dans les poubelles et le recyclage sont enfouis. La récupération fait l’objet d’initiatives sporadiques par les entreprises privées, comme les entreprises de mode qui installent des stations de collectes en magasin ou encore les organismes ou entreprises qui offrent des vêtements de seconde main et qui disposeront convenablement des articles qui ne répondent pas aux critères de vente. (Recyc-Québec, 2018) Le système en place doit permettre facilement aux particuliers de disposer proprement du textile, au même titre que le recyclage des autres matières, pour observer un changement significatif dans le système. Les citoyens doivent être informés sur les types de fibres recyclables et la façon d’en disposer. Sans la participation citoyenne, même le meilleur système en place ne sera pas efficace. La complexité du système de recyclage provient du fait qu’il s’agit d’une responsabilité partagée entre les entreprises, qui mettent les produits recyclables ou non sur le marché, les instances gouvernementales, pour la collecte et la sensibilisation, et finalement les consommateurs à qui revient le geste de trier les matières convenablement. (Leal Filho et al., 2019)

Il va toujours y avoir un intérêt d’un point de vue environnemental de recycler un bien existant en comparaison avec l’utilisation de nouvelles ressources, c’est plutôt l’aspect économique qui peut constituer un frein. En effet, puisque la collecte n’est pas en place à grande échelle, le textile disponible pour l’industrie du recyclage est limité. Un cercle vicieux se forme puisque la collecte n’est pas encouragée par le manque de demande de l’industrie, alors que si l’offre existait, le marché serait potentiellement plus actif. De plus, il n’y a pas une forte demande pour le textile recyclé en raison du faible coût du textile vierge. (Leal Filho et al., 2019) C’est un phénomène observé pour d’autres matériaux comme le plastique.
Le compostage

Le terme biodégradable signifie que la matière se décompose dans des conditions particulières de chaleur et d'humidité. La notion de compost fait référence au fait que ces conditions soient contrôlées dans une unité industrielle. Toutes les matières compostables sont donc biodégradables, mais le processus peut être très long si l'environnement n’est pas favorable. (Mayer, 2020) Au Québec, l’accès à un bac de compost pour tous les résidents et entreprises sera obligatoire en 2025. Alors que cela peut sembler représenter une solution intéressante pour la fin de vie des fibres naturelles, les fibres textiles ne sont pas acceptées dans le compost municipal pour la raison que les mélanges de fibres sont trop fréquents (Bournival-Paré, 2019).

Deuxièmement, l’utilisation de produits chimiques lors de la phase du traitement des fibres par voie humide peut rendre les fibres naturelles non-compostables, ce qui constitue une deuxième barrière à l’utilisation de cette méthode (Peters, Sandin, Spak et Roos, 2018). Il a été question précédemment que l’utilisation de colorants naturels peut réduire l’utilisation d’énergie nécessaire à la coloration du vêtement. La pertinence de s’intéresser à ces colorants d’origine naturelle est renforcée par la fin de vie du vêtement qui en est aussi dépendante.

La figure 3.12 montre l’impact sur les changements climatiques d’un vêtement recyclable et d’un vêtement compostable en comparaison avec un vêtement de référence, un vêtement 100 % coton non-compostable attribuable à l’utilisation de produits chimiques dans sa production. Les résultats de l’analyse sont fortement dépendants du nombre d’utilisations. L’impact des trois vêtements est étudié pour une utilisation prolongée et une utilisation courte. La bande pointillée, avec le nombre d’utilisations inscrit à l’intérieur représente l’utilisation courte, alors que la bande pleine représente l’utilisation prolongée. Ainsi, un vêtement recyclable porté deux fois a un impact comparable à un vêtement non-recyclable porté 22 fois, alors que l’impact de ce même vêtement est fortement supérieur aux deux autres s’il n’est porté que 5 fois. Pour une utilisation comparable, le vêtement recyclable ou compostable représente un avantage significatif par rapport à l’homologue non-recyclable ou non-compostable pour ce qui est de l’empreinte carbone. (Peters, Sandin, Spak et Roos, 2018)
Figure 3.12 Comparaison des émissions de CO₂ d’un vêtement recyclable et compostable par rapport à un vêtement de référence (inspiré de Peters, Sandin, Spak et Roos, 2018)

L’enfouissement

L’enfouissement devrait être la méthode de gestion en fin de vie du textile utilisée en dernier recours, c’est pourtant ainsi que se termine le cycle de vie de la majorité des vêtements, compte tenu des limitations techniques et économiques dont il a été question précédemment (Ellen MacArthur Foundation, 2017a). Ce, malgré le fait que la majorité des textiles peut être recyclée ou compostée selon leur nature et les produits chimiques utilisés lors de la production. Au même titre que tout autre déchet, la problématique reliée à l’enfouissement des matières textiles est la libération de méthane pendant leur décomposition, un GES beaucoup plus puissant que le CO₂. La matière organique qui se décompose en milieu anaérobie (sans oxygène) représente une menace sur les changements climatiques, alors que cette problématique est évitée dans des conditions aérobiques, d’où l’intérêt de disposer convenablement des matières organiques. (Recyc-Québec, 2019) La quantité de méthane libérée dépend de la composition du textile. Plus le textile est inerte, moins il libère de gaz puisque sa composition reste stable sur une longue période. Ainsi, le potentiel de génération de méthane des fibres naturelles (=120 m³ méthane/tonne) qui sont biodégradables est plus élevé par rapport à celui des textiles synthétiques (=20 m³ méthane/tonne) qui vont rester stables pendant des dizaines d’années. (British Columbia Ministry of Environment [MOE], 2009) La problématique leur étant associée étant d’avantage l’accumulation de déchets dans les sites d’enfouissement.
4. LES RECOMMANDATIONS

Les recommandations présentées dans cette section s’adressent respectivement à l’industrie, aux gouvernements ainsi qu’aux consommateurs. Elles ont pour but de tendre vers une décarbonisation de l’industrie en lien avec l’analyse effectuée.

4.1. Les recommandations à l’industrie

Les recommandations à l’industrie portent sur quatre aspects : l’application du principe d’analyse de cycle de vie dans le prise de décisions au sein de l’industrie, la conception écoresponsable, la traçabilité et la transparence.

4.1.1. Appliquer le principe d’analyse de cycle de vie

Tel qu’il a été mentionné à la section 2 L’analyse du cycle de vie, cette pratique est aujourd’hui réservée presqu’exclusivement au milieu académique. Pour espérer réduire l’empreinte carbone liée au cycle de vie des vêtements, il s’agit d’une pratique qui doit se faire une place au sein de l’industrie. Parmi les nombreux impacts que l’outil permet de cibler, qui n’ont pas été exploités dans le cadre de cette analyse, il permet de déterminer les points chauds d’émissions de GES dans le cycle de vie du vêtement. L’analyse du cycle de vie de différents scénarios permet une conception écoresponsable, qui fait l’objet de la deuxième recommandation, puisqu’elle révèle l’option à privilégier pour limiter l’empreinte carbone. Le manque d’expertise ainsi que les coûts qui lui sont associés sont des limites à son application, où l’intervention gouvernementale peut entrer en jeu (voir section 4.2 Les recommandations au gouvernement). Aussi, une meilleure coordination et l’échange d’information au sein de l’industrie québécoise pourront permettre de contourner cette problématique. (FashionUnited, 2017) En effet, pour des vêtements produits au Québec qui ont un usage similaire, dans plusieurs cas, les mêmes conclusions s’appliqueront en ce qui concerne le choix de la fibre et de la coloration par exemple, puisque le type d’énergie et les distances parcourues sont semblables. Beaucoup de documentation est disponible à l’échelle mondiale, mais ne se transpose pas directement d’un produit à l’autre en raison de la sensibilité de l’analyse aux conditions uniques de production de chaque vêtement. Pour cette raison, le développement d’une expertise locale est nécessaire. Les données par rapport aux impacts sur toute la chaîne d’approvisionnement doivent être disponibles pour réaliser une telle analyse et que le designer soit en mesure de prendre des décisions éclairées (FashionUnited, 2017). Cependant, elle est possible seulement lorsqu’il y a une traçabilité et de la transparence tout au long de la chaîne d’approvisionnement, qui font l’objet de la troisième et quatrième recommandation.
4.1.2. Concevoir des vêtements écoresponsables

La conception renferme presque tous les impacts environnementaux d’un vêtement puisque c’est à cette étape que les choix de textile, de couleur, de coupe, d’assemblage et autres se font. Ces décisions auront un impact sur la phase de production, mais aussi d’utilisation puisqu’elles influent sur l’extraction des matières premières, la durabilité, l’entretien et la possibilité ou non de moduler le vêtement selon le besoin. Il n’y a pas de solution unique pour limiter les émissions de GES lors du design. Les choix doivent être guidés par la fonction que remplit le vêtement et non seulement en fonction de l’esthétique souhaitée. Par exemple, une robe de soirée qui n’est portée que quelques soirs a intérêt à avoir un impact plus faible durant la production, puisqu’il ne sera pas amorti sur plusieurs utilisations. Au contraire, un chandail noir classique composé d’une fibre plus résistante et plus dense a plus de sens d’un point de vue environnemental afin de résister aux multiples usages et lavages. (M. van der Velden, Patel et Vogtländer, 2013) Le choix de la densité du textile et de la fibre qui la compose est donc intrinsèquement lié à l’usage du vêtement.

De manière générale, les fibres naturelles sont à privilégier pour limiter les émissions de CO₂. Celles-ci captent le dioxyde de carbone lors de leur production, ce qui représente un avantage considérable par rapport aux fibres synthétiques. (Rana et al., 2015) Il faut garder en tête que l’extraction des matières premières, comme les autres phases du cycle de vie, n’a pas que des impacts qui se font sentir exclusivement sur les changements climatiques. L’utilisation d’eau, de terres, l’épuisement de ressources, etc. sont aussi des facteurs qui entrent en ligne de compte. L’importance accordée à chacun de ces critères est subjective et fait varier la durabilité associée aux différents types de fibres. La priorité a été accordée aux impacts sur les changements climatiques dans cette analyse en raison de la crise des changements climatiques qui sévit actuellement et qui entraînera des conséquences de plus en plus graves au cours des prochaines décennies.

Le Tableau 4.1 résume les points soulevés au cours de l’analyse au sujet des fibres locales (Québec, Canada et États-Unis) quant à leur extraction et leur fin de vie. Alors que les fibres naturelles ne sont pas recyclables aussi facilement que les fibres synthétiques, la possibilité de les composter en fin de vie réduit considérablement l’impact par rapport à l’enfouissement. Pour ce faire, les mélanges de fibres doivent être évités et le choix de la coloration et autres produits chimiques lors de la production doivent tenir compte de la fin de vie du produit. Les colorants naturels sont une alternative intéressante aux colorants chimiques répandus dans l’industrie et ne représentent pas une barrière au compostage du textile. Il y a
une multitude de colorants naturels disponibles au Québec qui permettent une offre diversifiée tout en favorisant le plus possible la production locale. Il y a cependant un grand travail d’adaptation pour répandre leur utilisation à grande échelle puisque les colorants naturels ne se travaillent pas aussi facilement que les colorants chimiques.

Tableau 4.1 Résumé des propriétés des fibres locales

<table>
<thead>
<tr>
<th>Fibre</th>
<th>Origine</th>
<th>Provenance</th>
<th>Avantages</th>
<th>Inconvénients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cannabaceae</td>
<td>Naturelle (végétale)</td>
<td>Québec</td>
<td>- Captation de CO$_2$ (2500 kg/ha) - Culture rapide et bon rendement - Valorisation déchets organiques - Biodégradable - Peu ou pas de fertilisants nécessaires à la culture</td>
<td>- Réglementation sévère</td>
</tr>
<tr>
<td>Coton</td>
<td>Naturelle (végétale)</td>
<td>États-Unis</td>
<td>- Cultures alternatives à moindre empreinte - Captation de CO$_2$ (11 000 kg/ha) - Biodégradable</td>
<td>- Pertes 13-16 % lors du filage - Utilisation intensive d’eau et de fertilisants/pesticides</td>
</tr>
<tr>
<td>Fibres cellulosiques</td>
<td>Semi-synthétique (végétale)</td>
<td>Québec</td>
<td>- Captation de CO$_2$ (1000 kg/ha) - Biodégradable</td>
<td>- Transformation énergivore - Utilisation de produits chimiques</td>
</tr>
<tr>
<td>Fibres synthétiques</td>
<td>Synthétique</td>
<td>Alberta</td>
<td>- Pertes de 4 % lors du filage (plus faibles p/r aux autres fibres) - Recyclabilité</td>
<td>- Non-renouvelables</td>
</tr>
<tr>
<td>Laine</td>
<td>Naturelle (animale)</td>
<td>Québec</td>
<td>- Biodégradable - Durabilité</td>
<td>- Pertes de 10 % lors du filage - Émissions de méthane</td>
</tr>
</tbody>
</table>

La production de déchets pré-consommateurs est fortement associée à la phase de coupe puisque le design tient rarement compte de l’optimisation du textile disponible. Le design doit être revu de façon à limiter les pertes auxquelles sont associés des impacts, comme par la méthode du ZWFD par exemple. À la phase d’assemblage, la qualité des coutures assurera la durabilité du vêtement. C’est aussi à ce moment qu’une certaine modulabilité ou personnalisation du vêtement est possible. Le consommateur peut se voir la possibilité de faire des choix esthétiques ou fonctionnels qui vont répondre à ses besoins. Les pièces peuvent aussi être assemblées de façon à être détachable et remplir plusieurs fonctions, en plus d’être
plus facilement remplaçables en cas de bris. La satisfaction associée à ces décisions assure une utilisation plus fréquente et sur une plus longue durée. (Niinimäki et Hassi, 2011)

4.1.3. Offrir une garantie

Offrir une garantie et un service de réparation est une action que les entreprises peuvent mettre en place pour prolonger la durée de vie des vêtements. Cela permet d’allonger la durée de vie d’un produit et que le consommateur en profite plus longtemps, et représente donc éventuellement un avantage du point de vue environnemental. (Niinimäki et Hassi, 2011) Il s’agit d’une mesure qui engendre des coûts pour l’entreprise et qui n’est donc pas viable pour des vêtements vendus à un très faible prix. La notion d’obsolescence a été abordée dans l’analyse. Si le produit n’est pas conçu pour durer, l’entreprise qui le produit ne mettra pas en place ce type de service. Pour introduire une telle mesure, le prix doit refléter l’engagement de l’entreprise à offrir un produit de qualité à long terme. L’entreprise de vêtements de plein air Patagonia, reconnue pour placer la durabilité au centre de ses préoccupations, offre une garantie à vie et un service de réparation de ses produits pour ses clients situés aux quatre coins du monde en envoyant le morceau par la poste. Ce sont environ 40 000 morceaux qui sont réparés annuellement au centre de service situé au Nevada. (Patagonia, s.d.) L’application de ce principe à grande échelle aurait un impact considérable, en autant que le consommateur ait le réflexe de profiter de cette garantie plutôt que de remplacer le vêtement.

4.1.4. Assurer la traçabilité tout au long de la chaîne d’approvisionnement

L’adoption des procédés les plus écoresponsables est freinée d’abord par l’ampleur de l’industrie et donc par la forte compétition qui s’y crée. La compétitivité entraîne une recherche constante d’abaisser les coûts de production, au détriment de l’environnement, mais aussi des travailleurs. D’un côté, la responsabilité revient aux consommateurs qui demandent des prix faibles, mais les entreprises qui cherchent à maximiser les marges de profit le sont aussi. Une étude de l’organisation à but non lucratif Fashion Revolution (2015) démontre que le fait de payer les employés un salaire décent n’affecte que très peu les coûts de production. Le même principe s’applique pour les mesures environnementales mises en place. Le coût peut être absorbé par le consommateur ou encore par l’entreprise. Il est impossible de penser réduire les impacts liés à la production des vêtements sans connaître parfaitement les impacts générés tout au long de leur cycle de vie. Actuellement, il est très commun au sein de l’industrie de ne pas mesurer les impacts ou de n’avoir qu’une visibilité partielle sur ceux-ci. La complexité des chaînes
d’approvisionnement rend difficile l’implantation de pratiques écoresponsables. Lorsqu’elles le sont, elles sont ciblées et non répandues sur l’ensemble de la chaîne. (Terinte et al., 2013)

4.1.5. Faire preuve de transparence

Cela mène à la quatrième et dernière recommandation à l’industrie selon laquelle elle doit faire preuve de plus de transparence et doit exiger la même chose de la part des fournisseurs. Faire preuve de transparence par rapport aux impacts tout au long de la chaîne d’approvisionnement est un élément clé pour la décarbonisation de l’industrie puisqu’elle démontre la prise de responsabilité de la part des compagnies et représente un engagement à vouloir réduire ces impacts. Comme le montre la figure 4.1, une tendance positive est présentement observée dans l’industrie. En effet, selon une étude auprès de plus de 250 marques de mode, elles sont de plus en plus nombreuses à divulguer les fournisseurs de leur chaîne d’approvisionnement. Les manufacturiers du premier tiers sont évidemment ceux qui sont le plus souvent divulgués puisque la marque est en contact direct avec ces derniers. La problématique se situe au niveau des fournisseurs qui extraient les matières premières (tiers 3) et les transforment (tiers 2). Les risques environnementaux sont plus susceptibles de survenir à ce niveau puisque rares sont les entreprises qui connaissent réellement les impacts produits à ces premiers stades du cycle de vie. (Fashion Revolution, 2020)

Figure 4.1 Pourcentages des marques de mode qui divulguent les fournisseurs des tiers 1, 2 et 3 (inspiré de : Fashion Revolution, 2020)
4.2. Les recommandations aux gouvernements

Les recommandations au gouvernement portent sur la protection de l’industrie au Québec, le renforcement du concept d’analyse de cycle de vie et le partage des informations aux consommateurs par l’étiquetage.

4.2.1. Investir dans le secteur de la mode au Québec

La transition vers des sources d’énergie renouvelable est au cœur de la solution pour réduire l’empreinte liée à l’industrie de la mode vestimentaire. Les besoins énergétiques varient en fonction de plusieurs paramètres, mais ce qui est certain est que les différentes phases de production dont il a été question au cours de l’analyse requièrent inévitablement beaucoup d’énergie. La production de vêtements au Québec par rapport aux grands pays producteurs actuels représente un avantage considérable puisque toute cette énergie nécessaire provient d’une source renouvelable, l’hydroélectricité, et émet donc beaucoup moins de GES que les énergies fossiles le plus souvent utilisées. (Rana et al., 2015) De plus, rapprocher la production des vêtements de l’extraction des ressources, leur transformation, jusqu’au consommateur représente l’option idéale afin de minimiser le transport (Bevilacqua et al., 2011). Il revient donc au gouvernement d’inciter la production, entre autres par des moyens financiers. Comme les coûts de production locale ne peuvent pas rivaliser avec ceux des pays émergents, des subventions gouvernementales peuvent être nécessaire pour stimuler le secteur. Des subventions supplémentaires par le biais du fond vert par exemple pour les entreprises qui adoptent des pratiques écoresponsables, comme l’analyse du cycle de vie appliquée à un produit, permettraient de diriger l’industrie vers la bonne voie pour la décarbonisation.

Investir dans le secteur de la mode signifie aussi des investissements dans le secteur du recyclage du textile. Il s’agit d’une avenue très prometteuse pour la réduction de l’empreinte carbone, mais qui n’est pas assez développée. Pour que le système soit cohérent, il faudrait développer une réglementation sur la composition des textiles mis sur le marché. La difficulté d’implanter une telle mesure provient du fait que la majorité des vêtements sont importés et donc non-réglementés. Un encadrement au niveau international par l’Organisation des Nations Unies (ONU) est nécessaire afin d’observer un changement au sein de l’industrie, sans quoi les mesures prises à l’échelle locale vont simplement favoriser l’industrie à l’étranger qui n’évolue pas dans le même cadre réglementaire. C’est le cas pour les matériaux, mais aussi l’utilisation de produits chimiques, les droits des travailleurs et autres. (Chan, 2019)
4.2.2. Réglementer l’étiquetage

La seule façon pour un consommateur de faire des choix éclairés quand vient le temps de choisir un vêtement qui respecte ses valeurs environnementales est de lui fournir l’information dont il a besoin. Il s’agit d’un principe qui ne s’applique pas seulement à l’industrie de la mode, mais à tous les choix que font les consommateurs. Certains pays appliquent déjà le principe en obligeant de partager certaines informations sur l’étiquette. C’est le cas du Royaume-Uni et du Japon, par exemple, où les étiquettes doivent indiquer soit la quantité de CO₂ produite lors de la production, ou encore les engagements à réduire les émissions dans un délai de deux ans. (Muthu, 2015) Il s’agit d’une part d’une mesure qui guide le consommateur dans ses choix, mais aussi qui force les entreprises à mesurer leur impact. Celles-ci sont alors mieux outillées pour prendre les dispositions nécessaires pour réduire les émissions là où elles sont le plus intenses.

4.3. Les recommandations aux consommateurs

Les recommandations aux consommateurs se situent au niveau des choix à privilégier pour combler un besoin vestimentaire ainsi qu’à l’application des meilleures pratiques d’entretien pour prolonger la durée de vie des vêtements.

4.3.1. Voter avec son argent

Malgré toutes les avancées technologiques qui peuvent survenir dans la chaîne de production du vêtement et la législation qui peut mieux encadrer la production et la vente, c’est le consommateur en bout de ligne qui a entre ses mains le pouvoir d’avoir le plus d’impact sur l’empreinte carbone de l’industrie. Face à la complexité du système, le consommateur perd de vue son pouvoir d’influence. Il faut se rappeler que le geste d’acheter un vêtement, ou tout autre bien, encourage la société qui le produit, et envoie le message que les pratiques et façons de faire sont endossées par le consommateur. En réalité, celui-ci n’est souvent pas au courant des impacts qui se cachent derrière la production. Il est de la responsabilité de chacun de s’informer et de demander plus de transparence afin de prendre une décision éclairée qui reflète ses valeurs.

Pour prolonger l’usage d’un vêtement, le consommateur peut opter pour un vêtement classique. Le phénomène de mode qui a été abordé au tout début de l’essai fait référence à un style qui prévaut à un certain moment, entraînant une consommation perpétuelle. Cependant, certains morceaux classiques ne s’inscrivent pas dans le concept très éphémère de mode et traversent les années. (Goldsworthy, Earley et
Politowicz, 2018) Les alternatives à l’achat de vêtements neufs et les produits locaux doivent être priorisés afin de réduire son impact. Accéder aux vêtements comme un service plutôt qu’un bien permet de maximiser leur usage et réduire l’empreinte qui leur est associée. Acheter un produit local n’est pas un gage que l’empreinte carbone est réduite, puisque même les produits locaux ont parcouru de longues distances dans leur cycle de vie et les matériaux et procédés utilisés ne sont pas nécessairement plus efficaces qu’un produit étranger. Cependant, c’est un geste qui stimule l’industrie locale tout en s’éloignant de la consommation de mode rapide qui génère d’énormes impacts. Il revient encore à ce moment de s’assurer en tant que consommateur des pratiques et valeurs prônées par l’entreprise locale. (Good On You, 2020)

4.3.2. Entretenir convenablement ses vêtements

Laver ses vêtements à la machine puis les sécher est un geste machinal pour la plupart des consommateurs qui ne se questionnent pas sur leur impact à ce stade. Comme il a été mentionné dans l’analyse qui précède, les vêtements ne représentent plus des biens de grande valeur comme autrefois pour plusieurs puisqu’ils sont facilement remplaçables en raison des prix de plus en plus abordables. Pour cette raison, ou encore par simple ignorance, cela fait en sorte que l’entretien qui en est fait n’est souvent pas le plus adéquat. Rares sont ceux qui regardent l’étiquette avec les recommandations d’entretien et savent la déchiffrer. Les vêtements sont lavés très voir trop souvent, à une température qui n’est parfois pas adéquate puis séchés à haute température, des pratiques qui ont toutes pour effet de raccourcir la durée de vie du vêtement. En effet, le vêtement a deux fois plus de chance de déchirer après 20 lavages par rapport au même vêtement lors de l’achat. (Cline, 2019) Espacer les lavages entre plusieurs usages, laver les vêtements à l’eau froide ou encore opter pour le lavage d’une tache à la main plutôt que systématiquement mettre le vêtement à la laveuse est un comportement responsable que peut adopter le consommateur. L’empreinte carbone du vêtement est amortie avec le nombre d’usage qui augmente. Le fait de bien entretenir le vêtement est donc un geste qui va avoir un impact direct sur le cycle de vie du vêtement. D’autres petits gestes comme apprendre à coudre un bouton, réparer une déchirure, utiliser les bons produits pour les différentes taches qui semblent à première vue anodins font une différence sur la durée de vie du vêtement.

La figure 4.2 montre que ce sont les efforts combinés de l’industrie et des consommateurs qui font la différence. Bien que l’ensemble des recommandations ne soient pas prises en compte sur cette figure, elle montre comment trois initiatives peuvent venir réduire de 78 % les émissions reliées au cycle de vie d’un
vêtement par rapport à la situation actuelle en Suède, soit en doublant la durée de vie (conçu pour durer et entretien), en utilisant de l’énergie solaire plutôt que des sources fossiles et en se rendant à pieds au magasin plutôt qu’en voiture. La situation actuelle représente un vêtement fabriqué dans un des principaux pays exportateurs (Chine, Bangladesh, Turquie, etc.), où l’énergie utilisée est principalement de source fossile. Déplacer la production vers le Québec a un impact comparable au passage de l’énergie fossile à l’énergie solaire tel que présenté dans cette étude. (Sandin, Roos, Spak, Zamani et Peters, 2019)

Figure 4.2 Effet de la combinaison de plusieurs mesures de réduction des émissions de GES dans l’industrie du vêtement (inspiré de : Sandin, Roos, Spak, Zamani et Peters, 2019)
CONCLUSION

L’objectif principal de cet essai était d’évaluer un vêtement issu de l’industrie québécoise de la mode dans une optique de carboneutralité. Une pensée cycle de vie a été adoptée afin de réaliser cette analyse, ce qui a permis d’avoir un portrait global de l’empreinte carbone de la fabrication d’un vêtement. Les phases dont il a été question sont : l’extraction de la fibre, la production du vêtement, le transport, l’utilisation et la fin de vie. Les différentes options de procédés ou de pratiques qui s’offrent à l’industrie concernent davantage les trois premières phases, alors que les habitudes pouvant être adoptées par le consommateur sont reliées à l’utilisation et la fin de vie. La comparaison des émissions de GES des différentes options a permis de cibler des pistes pour tendre vers la décarbonisation de l’industrie.

Les limites de l’industrie dans sa forme actuelle qui sont des freins à l’atteinte de la carboneutralité sont au niveau de la complexité des chaînes d’approvisionnement et l’opacité qui la caractérise, plus que du côté technique. De plus en plus, les consommateurs, comme l’industrie, veulent mieux connaître les impacts qui se cachent derrière les vêtements. Pour ce faire, l’industrie doit être en mesure de mieux retracer l’ensemble de sa chaîne d’approvisionnement, puis partager l’information avec les consommateurs qui pourront alors faire des choix éclairés. Le gouvernement peut s’impliquer à ce niveau pour obliger la divulgation des impacts environnementaux liés à la production des vêtements, comme c’est le cas au Royaume-Uni. Les recommandations apportées suite à l’analyse montrent la dépendance entre l’industrie, les gouvernements et les consommateurs. En effet, sans les efforts de chaque partie, la révolution nécessaire au sein de l’industrie ne se produira pas. Alors que l’industrie doit mettre sur le marché des vêtements qui respectent les critères de recyclabilité ou de biodégradabilité, les gouvernements doivent mettre en place les infrastructures pour les accueillir et le consommateur doit entretenir et disposer convenablement du vêtement.

Il n’a pas beaucoup été question des technologies émergentes qui pourraient potentiellement avoir un impact important sur les émissions de l’industrie, comme les nouveaux textiles par exemple. Il y a potentiellement des économies d’énergie reliées à ces textiles émergents (Chan, 2019), alors que ce sont les textiles les plus répandus qui ont été étudiés dans l’analyse dont les impacts sont bien documentés. Dans cette optique, les fibres naturelles représentent un avantage par rapport aux fibres synthétiques puisqu’elles captent du carbone lors de leur production. Une réduction des émissions se cache nécessairement derrière l’utilisation de fibres à faible empreinte carbone, des procédés de transformation plus éco-énergétiques et une optimisation du transport, mais le modèle de consommation de la mode
rapide est un enjeu qui ne doit pas être mis au second plan. Il est plus facile de compter sur les avancées technologiques que de changer le modèle. (Fletcher, 2014). L’industrie doit revoir la vitesse de mise en marché des produits, qui bien que produits de plus en plus efficacement, ne pourront jamais être considérés comme durables s’ils s’accumulent aussi rapidement dans les garde-robe puis dans les lieux d’enfouissement. Les consommateurs ont aussi une responsabilité de questionner leurs habitudes de consommation et d’opter pour les alternatives à l’achat conventionnel qui s’offrent à eux.

La pandémie de la COVID19 qui sévit actuellement n’a pas épargné le secteur de la mode, celui-ci a dû s’adapter rapidement et des transformations profondes se dessinent déjà à l’horizon. Certains détaillants qui ont dû fermer leurs portes pendant de nombreuses semaines ne survivront pas à la crise, alors que ceux qui ont su s’adapter et miser sur la vente en ligne ont pu tirer leur épi ngle du jeu. Il a été question brièvement de l’impact de cette nouvelle réalité du commerce en ligne à la section 3.4.3 sur la dernière portion de transport jusqu’au consommateur. Des changements majeurs au sein de l’industrie nécessiteront de se pencher plus en profondeur sur la question des impacts des émissions de GES du transport et de l’emballage liés au commerce en ligne. La crise qui touche l’humanité remet en questions le système très mondialisé qui rendent les industries dépendantes de facteurs externes. L’industrie de la mode est loin d’être la seule touchée, mais tel qu’il a été question à de nombreuses reprises dans l’essai, celle-ci est particulièrement un bon exemple de chaînes d’approvisionnement complexes qui peuvent être perturbées par des événements extraordinaires. (Goubeau, 2020) Il a été question dans l’essai de rapprocher autant la production de la fibre et des vêtements afin de limiter le transport, mais aussi afin d’être en mesure d’offrir un service plus personnalisé aux consommateurs. La réparation, l’ajustement, la transformation et la location des vêtements sont des actions à l’échelle locale qui permettent éventuellement de réduire la consommation et donc l’empreinte faramineuse de l’industrie, mais aussi d’exploiter les ressources locales. Avant la crise, les impacts de l’industrie étaient déjà dans la mire de plusieurs scientifiques, entreprises et consommateurs, reste à voir comment celle-ci va laisser sa marque dans l’industrie et potentiellement accélérer les changements nécessaires.
RÉFÉRENCES

Botsman, R. et Rogers, R.

Gardetti et Muthu, S.S. (2015). Handbook of sustainable luxury textiles and fashion: Volume 1. Repéré à https://books.google.ca/books?id=SyZcCgAAQBAJ&pg=PA27&lpg=PA27&dq=flax+2,7+co2+absorb&source=bl&ots=6TGrpQXIPM&sig=ACfU3U33U7XXWxlG0NcXfTsD WvtsU4gdUA&hl=fr&sa=X&ved=2ahUKEwio1cHs5_TnAhVVgnlEh7dCZcQ6AEwB HoECAoQAAQ#v=onepage&q&f=false

Kolowski, A. (2012). *Corporate social responsibility in the apparel industry: A multiple case study analysis*. (Mémoire de maîtrise). Ryerson University, Toronto, ON.

Muthu, S.S. (2014). Assessing environmental impact of textile and clothing supply chain. Repéré à https://books.google.ca/books?id=QAujAgAAQBAJ&pg=PA14&lpg=PA14&dq=Kaillala%20et%20Nousiainen%2C%201999&source=bl&ots=ACfU3U0YHeFcxV1kAjM8mCtPy4LLLLM-pvg&hl=fr&sa=X&ved=2ahUKEwilsOjB3vTnAhUGbawKHScWDIkQ6AEwAXoECAsQAQ&fbclid=1wAR3-naA3TRu24qGgbQvljRFsf1y0Yts8D32TL71wZqNgrH9ayfqsudEjWaPQ#v=onepage&q&f=false

Muthu, S.S. (2015). Handbook of Life Cycle Assessment (LCA) of Textiles and Clothing. Repéré à https://books.google.ca/books?hl=fr&lr=&id=V8LBwAAQBAJ&oi=fnd&pg=PP1&dq=textile%20cutting%20life%20cycle%20analysis&ots=8upCyoiq-z&sig=-.4T--xiMeZpWdG1XVVPGGDK80&fbclid=1wAR1NMD0mxrWIFyy-uef-dzcHAsudgJx35gSP_uidia1dKBD0DVHlRIU0pa-rYv=onepage&q=textile%20cutting%20life%20cycle%20analysis&f=false

73

