Supporting Information for

Bis-Michael Acceptors as Novel Probes to Study the Keap1/Nrf2/ARE Pathway

Ludovic J. Deny†§, Hussein Traboulsi§‡, André M. Cantin§‡, Éric Marsault§||, Martin V. Richter§‡, and Guillaume Bélanger‡§*

†Département de chimie, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
§Institut de pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
‡Département de médecine, service de pneumologie, et Centre de recherche clinique du Centre hospitalier de l’Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
||Département de pharmacologie, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada

Table of contents

Table S1. Fold-induction of NQO1 by qPCR .. S2
Table S2. % Mortality of all compounds evaluated in the LDH assay.. S3
NMR spectra... S4
Table S1. Fold-induction of NQO1 by qPCR

<table>
<thead>
<tr>
<th>Compound</th>
<th>Fold-induction at: a</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2 µM</td>
</tr>
<tr>
<td></td>
<td>$R^1 = H$</td>
</tr>
<tr>
<td>Sulfaphane</td>
<td>0.81 ± 0.08</td>
</tr>
<tr>
<td>7</td>
<td>2.02 ± 0.15</td>
</tr>
<tr>
<td>8</td>
<td>1.62 ± 0.45</td>
</tr>
<tr>
<td>11</td>
<td>1.96 ± 0.72</td>
</tr>
<tr>
<td>15</td>
<td>0.63 ± 0.19</td>
</tr>
<tr>
<td>17</td>
<td>0.57 ± 0.18</td>
</tr>
<tr>
<td>18</td>
<td>3.59 ± 0.11</td>
</tr>
<tr>
<td>19</td>
<td>5.56 ± 1.64</td>
</tr>
<tr>
<td>23</td>
<td>2.78 ± 0.77</td>
</tr>
<tr>
<td>27</td>
<td>2.48 ± 0.09</td>
</tr>
<tr>
<td>30</td>
<td>5.97 ± 0.73</td>
</tr>
<tr>
<td>31</td>
<td>3.18 ± 0.17</td>
</tr>
<tr>
<td>32</td>
<td>8.38 ± 0.62</td>
</tr>
<tr>
<td>33</td>
<td>14.97 ± 4.77</td>
</tr>
<tr>
<td>34</td>
<td>14.38 ± 2.12</td>
</tr>
</tbody>
</table>

a no toxicity was observed at these concentrations
Table S2. % Mortality of all compounds evaluated in the LDH assay \(^a\)

<table>
<thead>
<tr>
<th>Compound</th>
<th>% Mortality at:</th>
<th>1 (\mu)M</th>
<th>20 (\mu)M</th>
<th>100 (\mu)M</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>(R_1 = \text{Hex})</td>
<td>Not tested</td>
<td>2.39 ± 0.06</td>
<td>4.23 ± 0.11</td>
</tr>
<tr>
<td>4</td>
<td>(R_1 = \text{Me})</td>
<td>Not tested</td>
<td>4.04 ± 0.29</td>
<td>Not tested</td>
</tr>
<tr>
<td>7</td>
<td>(R_1 = \text{H})</td>
<td>Not tested</td>
<td>0.85 ± 0.26</td>
<td>1.91 ± 0.43</td>
</tr>
<tr>
<td>8</td>
<td>(R_1 = \text{Hex})</td>
<td>Not tested</td>
<td>0.49 ± 0.85</td>
<td>1.93 ± 0.47</td>
</tr>
<tr>
<td>9</td>
<td>(R_1 = \text{Me})</td>
<td>Not tested</td>
<td>1.33 ± 0.35</td>
<td>3.23 ± 1.49</td>
</tr>
<tr>
<td>10</td>
<td>(R_1 = \text{allyl})</td>
<td>Not tested</td>
<td>2.00 ± 0.25</td>
<td>3.54 ± 0.70</td>
</tr>
<tr>
<td>11</td>
<td>(R_1 = \text{Bn})</td>
<td>Not tested</td>
<td>1.25 ± 0.23</td>
<td>1.04 ± 0.80</td>
</tr>
<tr>
<td>12</td>
<td>(R_1 = \text{propargyl})</td>
<td>Not tested</td>
<td>1.33 ± 0.35</td>
<td>7.26 ± 3.12</td>
</tr>
<tr>
<td>13</td>
<td>(R_1 = \text{CH}_2\text{CF}_3)</td>
<td>Not tested</td>
<td>3.25 ± 0.93</td>
<td>11.43 ± 0.03</td>
</tr>
<tr>
<td>14</td>
<td>(R_1 = \text{CH}_2\text{CO}_2\text{t-Bu})</td>
<td>Not tested</td>
<td>1.68 ± 0.32</td>
<td>0.86 ± 0.74</td>
</tr>
<tr>
<td>15</td>
<td>(R_1 = \text{CH}_3\text{CN})</td>
<td>Not tested</td>
<td>-1.09 ± 0.20</td>
<td>-0.94 ± 0.02</td>
</tr>
<tr>
<td>16</td>
<td>(R_1 = \text{CH}_2\text{C(O)Me})</td>
<td>Not tested</td>
<td>-0.68 ± 0.04</td>
<td>-0.26 ± 0.27</td>
</tr>
<tr>
<td>17</td>
<td>(R_1 = (\text{CH}_2)_2\text{CO}_2\text{Me})</td>
<td>Not tested</td>
<td>0.44 ± 0.06</td>
<td>-0.31 ± 0.01</td>
</tr>
<tr>
<td>18</td>
<td>(R_2 = \text{CO}_2\text{All})</td>
<td>Not tested</td>
<td>0.49 ± 0.85</td>
<td>16.80 ± 0.09</td>
</tr>
<tr>
<td>19</td>
<td>(R_2 = \text{CO}_2\text{t-Bu})</td>
<td>Not tested</td>
<td>-1.25 ± 0.23</td>
<td>15.63 ± 0.43</td>
</tr>
<tr>
<td>20</td>
<td>(R_2 = \text{CO}_3\text{H})</td>
<td>Not tested</td>
<td>1.19 ± 0.29</td>
<td>1.12 ± 0.21</td>
</tr>
<tr>
<td>23</td>
<td>(R_2 = \text{Cl})</td>
<td>Not tested</td>
<td>1.19 ± 0.29</td>
<td>1.12 ± 0.21</td>
</tr>
<tr>
<td>24</td>
<td>(R_2 = \text{I})</td>
<td>Not tested</td>
<td>1.19 ± 0.29</td>
<td>1.12 ± 0.21</td>
</tr>
<tr>
<td>25</td>
<td>(R_2 = \text{CH}_2\text{OH})</td>
<td>Not tested</td>
<td>0.85 ± 0.26</td>
<td>1.91 ± 0.43</td>
</tr>
<tr>
<td>26</td>
<td>(R_2 = \text{CH}_2\text{O})</td>
<td>Not tested</td>
<td>2.28 ± 0.29</td>
<td>4.37 ± 1.07</td>
</tr>
<tr>
<td>21</td>
<td>(R_3 = \text{Me})</td>
<td>Not tested</td>
<td>1.07 ± 0.35</td>
<td>2.63 ± 0.60</td>
</tr>
<tr>
<td>27</td>
<td>(R_3 = \text{H})</td>
<td>Not tested</td>
<td>1.07 ± 0.35</td>
<td>4.31 ± 2.28</td>
</tr>
<tr>
<td>28</td>
<td>(R_3 = \text{Me})</td>
<td>Not tested</td>
<td>1.19 ± 0.29</td>
<td>1.12 ± 0.21</td>
</tr>
<tr>
<td>29</td>
<td>(R_4 = \text{CH}_3)</td>
<td>Not tested</td>
<td>2.28 ± 0.29</td>
<td>24.39 ± 1.16</td>
</tr>
<tr>
<td>30</td>
<td>(R_4 = (\text{CH}_2)_3)</td>
<td>Not tested</td>
<td>2.62 ± 0.01</td>
<td>35.61 ± 12.02</td>
</tr>
<tr>
<td>31</td>
<td>(R_4 = (\text{CH}_2)_4)</td>
<td>Not tested</td>
<td>2.68 ± 0.05</td>
<td>Not tested</td>
</tr>
<tr>
<td>32</td>
<td>(R_4 = (\text{CH}_2)_5)</td>
<td>Not tested</td>
<td>1.36 ± 0.27</td>
<td>Not tested</td>
</tr>
<tr>
<td>33</td>
<td>(R_4 = \text{CH}_2\text{OH})</td>
<td>Not tested</td>
<td>0.80 ± 0.04</td>
<td>Not tested</td>
</tr>
<tr>
<td>34</td>
<td>(R_4 = \text{CH}_2\text{OH})</td>
<td>Not tested</td>
<td>3.48 ± 0.27</td>
<td>11.78 ± 1.65</td>
</tr>
<tr>
<td>35</td>
<td>(R_4 = \text{CH}_2\text{O})</td>
<td>Not tested</td>
<td>3.91 ± 0.06</td>
<td>9.43 ± 0.61</td>
</tr>
<tr>
<td>36</td>
<td>(R_4 = \text{CH}_2\text{O})</td>
<td>Not tested</td>
<td>3.38 ± 2.01</td>
<td>15.24 ± 2.21</td>
</tr>
</tbody>
</table>

\(^a\) The data are reported as Mean ± SEM based on two separated experiments.
Methyl 8-oxo-1,4-dioxaspiro[4.5]decane-7-carboxylate (2)

^1H NMR spectrum

^{13}C NMR spectrum
Methyl 9-methyl-8-oxo-1,4-dioxaspiro[4.5]decane-7-carboxylate

1H NMR spectrum

13C NMR spectrum
Methyl 9-hexyl-8-oxo-1,4-dioxaspiro[4.5]dec-6-ene-7-carboxylate (3)

1H NMR spectrum

13C NMR spectrum
Methyl 9-methyl-8-oxo-1,4-dioxaspiro[4.5]decane-7-carboxylate

1H NMR spectrum

13C NMR spectrum
Methyl 9-methyl-8-oxo-1,4-dioxaspiro[4.5]dec-6-ene-7-carboxylate (4)

1H NMR spectrum

13C NMR spectrum
1-(2-methylprop-1-en-1-yl)pyrrolidine
1H NMR spectrum

4,4-dimethylcyclohex-2-enone (22)
1H NMR spectrum
4,4-dimethylcyclohexanone (5)

1H NMR spectrum

13C NMR spectrum
Methyl 5,5-dimethyl-2-oxocyclohexanecarboxylate (6)
\(^1\)H NMR spectrum
Methyl 3,3-dimethyl-6-oxocyclohex-1-enecarboxylate (7)

1H NMR spectrum

13C NMR spectrum
Methyl 5-hexyl-3,3-dimethyl-6-oxocyclohex-1-enecarboxylate (8)

1H NMR spectrum

13C NMR spectrum
Methyl 3,3,5-trimethyl-6-oxocyclohex-1-enecarboxylate (9)

1H NMR spectrum

13C NMR spectrum
Methyl 5-allyl-3,3-dimethyl-6-oxocyclohex-1-enecarboxylate (10)
1H NMR spectrum
Methyl 5-benzyl-3,3-dimethyl-6-oxocyclohex-1-enecarboxylate (11)

1H NMR spectrum

13C NMR spectrum
Methyl 3,3-dimethyl-6-oxo-5-(prop-2-yn-1-yl)cyclohex-1-enecarboxylate (12)

1H NMR spectrum

13C NMR spectrum
Methyl 3,3-dimethyl-6-oxo-5-(2,2,2-trifluoroethyl)cyclohex-1-enecarboxylate (13)

1H NMR spectrum

13C NMR spectrum
Methyl 5-(2-(tert-butoxy)-2-oxoethyl)-3,3-dimethyl-6-oxocyclohex-1-enecarboxylate (14)

1H NMR spectrum

13C NMR spectrum
Methyl 5-(cyanomethyl)-3,3-dimethyl-6-oxocyclohex-1-enecarboxylate (15)

1H NMR spectrum

13C NMR spectrum
Methyl 3,3-dimethyl-6-oxo-5-(2-oxopropyl)cyclohex-1-enecarboxylate (16)

1H NMR spectrum

13C NMR spectrum
Methyl 5-(3-methoxy-3-oxopropyl)-3,3-dimethyl-6-oxocyclohex-1-ene carboxylate (17)

\[^{1}H\text{ NMR spectrum}\]

\[^{13}C\text{ NMR spectrum}\]
Allyl 3,3-dimethyl-6-oxocyclohex-1-ene-carboxylate (18)

1H NMR spectrum

13C NMR spectrum
 tert-Butyl 3,3-dimethyl-6-oxocyclohex-1-enecarboxylate (19)

1H NMR spectrum

13C NMR spectrum
3,3-dimethyl-6-oxocyclohex-1-enecarboxylic acid (20)

1H NMR spectrum

13C NMR spectrum
Methyl 6-hydroxy-3,3-dimethylcyclohex-1-enecarboxylate (21)

1H NMR spectrum

13C NMR spectrum
2-chloro-4,4-dimethylcyclohex-2-enone (23)

1H NMR spectrum

13C NMR spectrum
2-iodo-4,4-dimethylcyclohex-2-enone (24)
1H NMR spectrum

2-(hydroxymethyl)-4,4-dimethylcyclohex-2-enone (25)
1H NMR spectrum
(3,3-dimethyl-6-oxocyclohex-1-en-1-yl)methyl 5,5-dimethyl-2-oxocyclohexanecarboxylate (26)

1H NMR spectrum

13C NMR spectrum
Methyl 5,5-dimethyl-2-oxocyclohex-3-enecarboxylate (27)
1H NMR spectrum
Methyl 1,5,5-trimethyl-2-oxocyclohex-3-enecarboxylate (28)

1H NMR spectrum

13C NMR spectrum
Methyl 3,3-dimethyl-6-oxocyclohexa-1,4-dienecarboxylate (29)

1H NMR spectrum

13C NMR spectrum
Dimethyl 5,5'-methylenebis(3,3-dimethyl-6-oxocyclohex-1-enecarboxylate) (30)

1H NMR spectrum

13C NMR spectrum
Dimethyl 5,5'-{(propane-1,3-diy)bis(3,3-dimethyl-6-oxocyclohex-1-ene)carboxylate} (31)

1H NMR spectrum

13C NMR spectrum
Dimethyl 5,5'-((butane-1,4-diyl)bis(3,3-dimethyl-6-oxocyclohex-1-enecarboxylate) (32)

1H NMR spectrum

13C NMR spectrum
(E)-dimethyl 5,5’-(but-2-ene-1,4-diyl)bis(3,3-dimethyl-6-oxocyclohex-1-ene-carboxylate) (33)

1H NMR spectrum

13C NMR spectrum
Dimethyl 5,5'-(but-2-yne-1,4-diyl)bis(3,3-dimethyl-6-oxocyclohex-1-ene-carboxylate) (34)

1H NMR spectrum

13C NMR spectrum
Bis(methyl 8-oxo-1,4-dioxaspiro[4.5]dec-6-ene-7-carboxylate) methylene (35)

1H NMR spectrum

![H NMR spectrum](image)

13C NMR spectrum

![C NMR spectrum](image)
Bis(methyl 8-oxo-1,4-dioxaspiro[4.5]dec-6-ene-7-carboxylate) propylene (36)

1H NMR spectrum

13C NMR spectrum
(3,3-dimethyl-6-oxocyclohex-1-en-1-yl)methyl 3,3-dimethyl-6-oxocyclohex-1-enecarboxylate (37)

1H NMR spectrum

13C NMR spectrum