ANALYSE DU RÉGIME DE CONSERVATION DES MILIEUX HUMIDES INSTAURÉ PAR LA LOI CONCERNANT LA CONSERVATION DES MILIEUX HUMIDES ET HYDRIQUES EN VERTU DE SON OBJECTIF D’AUCUNE PERTE NETTE

Par
Charles Montbriand-Leduc

Essai présenté au Centre universitaire de formation en environnement et développement durable en vue de l’obtention du grade de maîtrise en environnement (M. Env.)

Sous la direction de Chantal d’Auteuil

MAÎTRISE EN ENVIRONNEMENT
UNIVERSITÉ DE SHERBROOKE

Juillet 2020
En 2017, le Québec adopta la Loi concernant la conservation des milieux humides et hydriques. L’objectif principal de cette loi est d’instaurer un régime de conservation des milieux humides et hydriques visant le principe d’aucune perte nette. C’est dire que tout impact découlant d’un projet sur ces milieux devra être compensé. Considérant que la conservation et la restauration des milieux humides sont différentes de celles des milieux hydriques, cet essai s’intéresse exclusivement au premier type de milieux. Le gouvernement québécois désire les protéger, car ces derniers supportent une portion importante de la biodiversité du Québec. Ils remplissent également de nombreuses fonctions écosystémiques, notamment la protection contre les inondations et la recharge des nappes phréatiques. L’objectif de cet essai est l’analyse du régime de protection des milieux humides mis en place par la Loi concernant la conservation des milieux humides et hydriques en vertu de son objectif d’aucune perte nette.

Pour se faire, une analyse approfondie des changements législatifs instaurés par la Loi concernant la conservation des milieux humides et hydriques est réalisée. Par la suite, de manière à soutenir l’analyse, trois autres modèles de conservation des milieux humides sont présentés. Il s’agit du modèle états-unien, ontarien ainsi que celui promu par l’Union internationale pour la conservation de la nature. L’analyse de ces trois modèles et celle de la littérature scientifique s’y intéressant permettent de soulever des points de vigie relatifs au nouveau régime de conservation des milieux humides. Tout d’abord, il semble incertain que le nouveau régime de conservation des milieux humides permette l’atteinte d’aucune perte nette. Plus spécifiquement, il est probable que ce dernier n’endigue point les pertes de biodiversité et de fonctions écosystémiques. Ensuite, l’analyse révèle que l’absence de lignes directrices orientant les efforts de conservation nuira sûrement à l’efficacité du nouveau régime. De plus, il semble nécessaire d’intégrer au processus de compensation les incertitudes relatives à la restauration d’habitats. Finalement, il est essentiel que le Québec applique plus rigoureusement la hiérarchie d’atténuation de manière à ce que la majorité des impacts touchant les milieux humides soit évitée. En conclusion, les changements mis en place par la Loi concernant la conservation des milieux humides et hydriques auront sans contredit des impacts positifs sur la conservation des milieux humides. Toutefois, dans sa forme actuelle, il semble incertain que la loi atteigne son objectif d’aucune perte nette.
REMERCIEMENTS

Je tiens tout d’abord à remercier ma directrice Chantal d’Auteuil qui s’est toujours montrée très disponible pour moi. Par son expérience, elle a su m’aider à mieux cibler les enjeux de mon essai. De plus, grâce à son réseau de contacts exceptionnel, elle a pu me mettre en contact avec des gens qui ont été directement impliqués dans l’évolution de la conservation des milieux humides. C’est dans ce contexte que j’ai eu la chance d’échanger avec Goulwen Dy, Martin Joly, Sophie Lavallée Stéphanie Pellerin. Je tiens à remercier chacun d’entre eux pour leur générosité. Ils ont su m’aider à comprendre les enjeux complexes de la gestion des milieux humides et surtout, m’ont partagé une perspective historique qui a permis d’enrichir mon analyse des enjeux actuels.

Finalement, un merci particulier à Laurence et Alphé qui m’ont supporté au quotidien durant la rédaction. De plus, je remercie du fond du cœur Monique et Evelyne qui m’ont chacune à leur manière, épaulé. Merci!
TABLE DES MATIÈRES

INTRODUCTION .. 1

1. MISE EN CONTEXTE .. 4
 1.1 Portrait des milieux humides du Québec .. 4
 1.2 Pressions s’exerçant sur les milieux humides du Québec ... 5
 1.2.1 Le cas particulier de l’agriculture .. 7
 1.3 Les milieux humides au Québec ... 8
 1.3.1 Définition d’un milieu humide ... 8
 1.3.2 Les types de milieux humides du Québec ... 9
 1.4 Concepts importants pour la gestion des milieux humides ... 10
 1.4.1 Bassin versant et gestion intégrée des ressources en eau ... 10
 1.4.2 Capacité de support ... 11
 1.4.3 Fonctions et services écosystémiques ... 12
 1.4.4 Hiérarchie d’atténuation des impacts et l’atteinte d’aucune perte nette 14
 1.4.5 Biodiversité .. 15

2. MÉTHODOLOGIE .. 18
 2.1 Méthodologie de l’analyse .. 18

3. ANALYSE DES CHANGEMENTS LÉGISLATIFS ENCADRANT LA CONSERVATION DES MILIEUX HUMIDES AU QUÉBEC .. 20
 3.1 Évolution des lois encadrant la conservation des milieux humides .. 20
 3.2 Loi concernant la conservation des milieux humides et hydriques ... 22
 3.3 Loi affirmant le caractère collectif des ressources en eau et favorisant une meilleure gouvernance de l’eau et des milieux associés ... 23
 3.4 Loi sur la conservation du patrimoine naturel ... 24
 3.5 Loi sur l’aménagement et l’urbanisme .. 25
 3.6 Loi sur la qualité de l’environnement .. 25
 3.6.1 Article 19.1 ... 26
 3.6.2 Article 20 .. 26
 3.6.3 Section V.1 .. 26
 3.7 Loi sur le ministère du Développement durable, de l’Environnement et des Parcs 27
 3.8 Plans régionaux des milieux humides et hydriques ... 27
 3.9 Guide d’élaboration de plans régionaux des milieux humides et hydriques 28
 3.9.1 Première partie .. 28
 3.9.2 Deuxième partie .. 30
3.9.3 Programme d’aide pour l’élaboration d’un plan régional des milieux humides
3.10 Programme de restauration et de création de milieux humides et hydriques
3.11 Règlement sur la compensation pour l’atteinte aux milieux humides et hydriques
3.12 En résumé

4 REGARDS SUR DES MODÈLES AUTRES DE COMPENSATION DES MILIEUX HUMIDES
4.1 La stratégie états-unienne
4.1.1 Le bilan des activités compensatoires
4.1.2 L’impact sur la biodiversité
4.1.3 Les méthodes de caractérisation rapide des fonctions écosystémiques
4.1.4 L’aspect économique des activités compensatoires
4.1.5 La réforme de 2008
4.1.6 Les banques d’habitats et les gains temporels
4.2 La stratégie ontarienne
4.2.1 Quand l’Habitat est-il suffisant?
4.3 La vision de l’Union internationale pour la conservation de la nature
4.3.1 La politique de l’Union internationale pour la conservation de la nature
4.3.2 Appliquer la compensation avec précaution
4.3.3 L’importance de la hiérarchie d’atténuation
4.3.4 Compenser la biodiversité seulement sous certaines conditions

5 DISCUSSION
5.1 Peut-on compenser la biodiversité des milieux humides?
5.1.1 Des écosystèmes uniques et complexes
5.1.2 L’importance des cibles
5.1.3 L’importance du contexte environnemental
5.1.4 Les limites de la formule québécoise servant à calculer les compensations
5.1.5 Synthèse
5.2 Les enjeux relatifs à l’équivalence écologique des fonctions écosystémiques
5.2.1 Les défis relatifs à la caractérisation des fonctions écosystémiques des milieux humide
5.2.2 La méthode du Québec
5.2.3 Les différentes approches pour déterminer l’équivalence entre les écosystèmes
5.2.4 Les avantages de la méthode de caractérisation rapide
5.2.5 Synthèse
5.3 La LCMHH devrait-elle fixer des seuils ou établir des lignes directrices?
5.3.1 L’importance de conserver un seuil minimal de milieux humides ... 59
5.3.2 L’importance du positionnement des milieux humides dans le bassin versant 60
5.3.3 L’importance de la zone tampon des milieux humides .. 61
5.3.4 L’importance de réfléchir les activités compensatoires en fonction du type de milieu humide .. 63
5.3.5 L’importance du couvert forestier pour les milieux humides ... 64
5.3.6 Synthèse .. 64

5.4 La LCMHH devrait-elle prendre en considération les incertitudes inhérentes aux activités de compensation? .. 65
5.4.1 La problématique du délai existant entre les pertes et les gains de milieux humides 65
5.4.2 Des pertes certaines, des gains incertains ... 67
5.4.3 Les incertitudes du programme de restauration et de création de milieux humides et hydriques .. 68
5.4.4 Comment réduire le délai et l’incertitude? ... 69
5.4.5 Synthèse .. 70

5.5 Les enjeux relatifs à l’application de la hiérarchie d’atténuation... 71
5.5.1 Renforcer l’évitement .. 71
5.5.2 Le double message du calcul du montant de compensation .. 72
5.5.3 L’enjeu foncier est-il un verrou opérationnel? .. 73
5.5.4 Synthèse .. 74

6. RECOMMANDATIONS .. 75
6.1 Renforcer la conservation de la biodiversité .. 75
6.2 Renforcer la conservation des fonctions écosystémiques .. 76
6.3 Fixer des seuils s’adaptant à chaque bassin versant .. 77
6.4 Évaluer l’impact des délais et des risques tributaires aux activités compensatoires 78
6.5 Renforcer la hiérarchie d’atténuation .. 79

CONCLUSION ... 80
RÉFÉRENCES ... 81

ANNEXE 1 : CALCUL DE LA CONTRIBUTION FINANCIÈRE. ... 88
ANNEXE 2 : SOMMAIRE DES MÉTHODES LES PLUS COMMUNES POUR CALCULER LES COMPENSATIONS ÉCOLOGIQUES ... 89
ANNEXE 3 : CALCUL DE L’ÉTAT FINAL DE LA PARTIE DU MILIEU HUMIDE AFFECTÉE PAR L’ACTIVITÉ 90
LISTE DES FIGURES ET DES TABLEAUX

Figure 1.1 Zone de gestion intégrée de l’eau par bassin versant... 11
Figure 1.2 Schématisation des liens existant entre les milieux, les fonctions et les services........ 13
Figure 1.3 Schématisation du principe d’aucune perte nette enchâssé dans la hiérarchie
d’atténuation... 15
Figure 3.1 Encadrement légal de la conservation des milieux humides.. 29
Figure 3.2 Étape d’élaboration d’un plan régional des milieux humides.. 31
Figure 4.1 Schématisation des quatre critères sur lesquels est basée la CRAM................................. 39
Figure 5.1 Importance de la zone tampon selon les fonctions.. 62
Figure 5.2 Exemple de calcul de la contribution financière en milieu humide et prise en compte
de l’impact du drainage.. 63
Figure 5.3 Représentation schématique des pertes et des gains au cours du temps......................... 66
Figure 5.4 Schématisation des pertes et des gains tributaires des activités compensatoires en
deux temps ou à l’aide des banques d’habitats... 70

Tableau 1.1 Superficies de milieux humides protégés pour l’ensemble du Québec et dans les
basses-terres du Saint-Laurent... 5
Tableau 1.2 Superficie totale des milieux humides perturbés dans les basses-terres du Saint-
Laurent entre 1998 et 2011... 6
Tableau 1.3 Les différents types de milieux humides... 9
Tableau 1.4 Catégories de services écologiques.. 13
Tableau 4.1 Sommaire des lignes directrices sur les habitats humides et forestiers......................... 44
Tableau 5.1 Calcul de l’état initial de la partie du milieu humide affectée par l’activité...................... 53
Liste des acronymes

<table>
<thead>
<tr>
<th>Acronyme</th>
<th>Signification</th>
</tr>
</thead>
<tbody>
<tr>
<td>BTSL</td>
<td>Basses-terres du Saint-Laurent</td>
</tr>
<tr>
<td>BV</td>
<td>Bassin versant</td>
</tr>
<tr>
<td>CRAM</td>
<td>California rapid assessment method</td>
</tr>
<tr>
<td>CRE</td>
<td>Conseil régional de l'environnement</td>
</tr>
<tr>
<td>CWA</td>
<td>Clean Water Act</td>
</tr>
<tr>
<td>CWMW</td>
<td>California wetland monitoring workgroup</td>
</tr>
<tr>
<td>EEE</td>
<td>Espèce exotique envahissante</td>
</tr>
<tr>
<td>GIRE</td>
<td>Gestion intégrée des ressources en eau</td>
</tr>
<tr>
<td>IUCN</td>
<td>International Union for Conservation of Nature</td>
</tr>
<tr>
<td>LAU</td>
<td>Loi sur l'aménagement et l'urbanisme</td>
</tr>
<tr>
<td>LCMHH</td>
<td>Loi concernant la conservation des milieux humides et hydriques</td>
</tr>
<tr>
<td>LCPN</td>
<td>Loi sur la conservation du patrimoine naturel</td>
</tr>
<tr>
<td>LQE</td>
<td>Loi sur la qualité de l'environnement</td>
</tr>
<tr>
<td>MELCC</td>
<td>Ministère de l'Environnement et de la Lutte contre les changements climatiques</td>
</tr>
<tr>
<td>MH</td>
<td>Milieu humide</td>
</tr>
<tr>
<td>MHH</td>
<td>Milieux humides et hydriques</td>
</tr>
<tr>
<td>MRC</td>
<td>Municipalité régionale de comté</td>
</tr>
<tr>
<td>OBV</td>
<td>Organisme de bassin versant</td>
</tr>
<tr>
<td>PDE</td>
<td>Plan directeur de l'eau</td>
</tr>
<tr>
<td>PPRLPI</td>
<td>Politique de protection des rives, du littoral et des plaines inondables</td>
</tr>
<tr>
<td>PRMHH</td>
<td>Plan régional des milieux humides et hydriques</td>
</tr>
<tr>
<td>RCAMHH</td>
<td>Règlement sur la compensation pour l'atteinte aux milieux humides et hydriques</td>
</tr>
<tr>
<td>SAD</td>
<td>Schéma d'aménagement et de développement</td>
</tr>
<tr>
<td>TCR</td>
<td>Table de concertation régionale</td>
</tr>
<tr>
<td>UICN</td>
<td>Union internationale pour la conservation de la nature</td>
</tr>
</tbody>
</table>
INTRODUCTION

Plusieurs historien(e)s retiennent la « conférence des Nations unies sur l’environnement de Stockholm » comme étant l’une des premières conventions internationales d’importance portant sur l’environnement. Un an plus tôt, en 1971, 176 pays se retrouvaient en Iran pour signer la convention de Ramsar avec pour objectif de protéger les milieux humides (MH). C’est donc dire que l’importance de ces écosystèmes est depuis longtemps mise de l’avant par la communauté internationale. C’est également au cours de cette période, plus précisément le 21 décembre 1972, que le Québec s’est doté de sa loi-cadre en environnement, la Loi sur la qualité de l’environnement (LQE). Toutefois, la première mouture de cette loi omettait complètement de légiférer sur la protection des MH. Dans ce contexte, est-il étonnant d’apprendre que leur valeur écologique ait été négligée durant des décennies ?

Cette loi plus ambitieuse, longtemps attendue par la communauté d’experts, fait du principe d’aucune perte nette son objectif principal. La justification de cette nouvelle loi repose sur deux arguments principaux : les MH sont essentiels au support de la biodiversité et, de par leurs fonctions, rendent de nombreux services aux Québécois (Ministère de l’Environnement et de la Lutte contre les changements climatiques (MELCC), 2019b). Pour atteindre cet objectif, la loi amende plusieurs lois maitresses et règlements existants. La Loi affirment le caractère collectif des ressources en eau et visant à renforcer leur protection, la Loi sur l’aménagement et l’urbanisme (LAU) et la LQE sont certaines des lois touchées par le projet de loi 132.

Bien que la conservation des milieux humides (MH) et celle des milieux hydriques ont toutes deux été modifiées par la LCMHH, l’analyse réalisée dans le cadre de cet essai se limite uniquement au MH. Même si la LCMHH confère le même statut de protection à ces deux types de milieux, la manière dont celle-ci
s’opérationnaliserà est fort différente (MELCC, 2019b). Effectivement, les méthodes utilisées pour caractériser et calculer les impacts et la valeur de ces écosystèmes différent. De plus, la littérature scientifique consultée traite souvent ces sujets de manière indépendante.

L’objectif de cet essai est d’analyser la conservation des MH en fonction de la LCMHH et en vertu de son objectif principal qui est d’empêcher toute perte nette. Cet objectif sera analysé sous plusieurs angles. La conservation de la biodiversité et des fonctions de MH sont les deux sous-objectifs de la LCMHH et constituent les deux premiers aspects analysés. Par la suite, l’analyse porte sur des éléments plus précis. Il est question de l’importance d’élaborer des lignes directrices basées sur des seuils pour guider les efforts de conservation, des enjeux relatifs à la temporalité des gains et des pertes de MH et finalement des enjeux relatifs à l’application de la hiérarchie d’atténuation.

Considérant la complexité du sujet d’analyse, les sources consultées sont diversifiées. Elles ont été sélectionnées en fonction de leur vérifiabilité et de leur crédibilité. Parmi les types de sources consultées, nommons les lois et règlements du Québec, les documents et guides produits par les différents ministères ainsi qu’un large échantillon d’articles scientifiques révisés par les pairs. La littérature a permis une analyse rigoureuse et éclairée se basant sur des références fiables et actuelles.

De manière à répondre aux objectifs énoncés ci-haut, l’essai est divisé en cinq chapitres. Le premier chapitre trace un bref portait de la situation des MH au Québec et des pressions qu’ils subissent. Il s’intéresse à la définition légale de ce qu’est un MH, puis survole les concepts essentiels à l’analyse de cet essai. Le deuxième chapitre détaillé l’approche méthodologique de ce travail. Plus spécifiquement, la structure de l’analyse y est expliquée. Le troisième chapitre porte sur les changements législatifs mis en place par la LCMHH. En plus de s’intéresser aux modifications que cette loi a entraînées dans les principales lois maîtresses en gestion de l’environnement, ce chapitre se penche sur certains règlements, guides, outils et cadres normatifs publiés par le Ministère de l’Environnement et de la Lutte contre les changements climatiques (au fil des ans, ce ministère a changé plusieurs fois de nom. Pour simplifier la lecture, nous y référerons par l’acronyme actuel [MELCC] ou encore par l’expression « ministère ») connexes à la LCMHH. Le quatrième chapitre s’intéresse à trois visions de la compensation des MH à l’extérieur du Québec. Il est question du modèle états-unien, ontarien et de celui proposé par l’Union internationale pour la conservation de la nature (UICN). La discussion, qui constitue le cinquième chapitre, analyse l’objectif d’aucune perte nette de la LCMHH en fonction des sous-objectifs de la LCMHH listés ci-haut. Il est question de la conservation de la biodiversité et des fonctions des MH, de l’importance des
seuils comme outil de gestion, d’enjeux relatifs à la temporalité des pertes et des gains et des enjeux relatifs à la hiérarchie d’atténuation. Le sixième chapitre émet des recommandations relatives aux enjeux analysés dans le chapitre cinq. Finalement, la conclusion fait le point sur l’analyse.
1. MISE EN CONTEXTE

Ce premier chapitre définit le contexte dans lequel cet essai s’inscrit. Tout d’abord, un bref portrait de l’état des MH du Québec, ainsi qu’un survol des pressions s’exerçant sur ces derniers sont réalisés. Ensuite, la définition québécoise de ce qu’est un MH est présentée, ainsi que les principaux types de MH que l’on rencontre dans la province. Finalement, quelques concepts clefs nécessaires à la discussion sont explicités, dont celui de bassin versant (BV), de gestion intégrée des ressources en eau (GIRE), de capacité de support et de fonction écosystémique.

1.1 Portrait des milieux humides du Québec

Produit en 2013 par le Centre de la science de la biodiversité du Québec, le rapport d’« Analyse de la situation des milieux humides au Québec et recommandations à des fins de conservation et de gestion durable » reste le document le plus complet portant sur le sujet. Pellerin et Poulin (2013), les deux auteurs de ce rapport, sont arrivés au constat que 12,5 % du territoire de la province (excluant les milieux marins) sont des MH. La majorité de ceux-ci est des tourbières. De plus, la proportion de MH est plus faible au sud de 52e parallèle (équivalent approximativement à la limite sud du Labrador) où elle est de 7,8 %. (Pellerin et Poulin, 2013)

L’ensemble des MH de la province est protégé par l’article 22 de la LQE (voir la section 3.6). En plus, une portion d’entre eux jouit d’une protection renforcée, car elle se situe au sein des aires protégées du Québec. Cette portion s’élève à 8 % de la superficie totale des MH de la province et représente un peu plus de 10 % de la superficie des aires protégées. L’un des constats posés dans le rapport de Poulin et Pellerin (2013) sur les aires protégées est la faible représentativité des tourbières jouissant de ce statut dans les basses-terres du Saint-Laurent (BTSL). De plus, comme il est possible de le constater dans le tableau 1.1 ci-dessous, une plus grande proportion des MH des BTSL est aujourd’hui comprise dans des aires protégées. Toutefois, c’est cette région qui a encaissé les plus grandes pertes historiques, ce qui implique qu’il s’agit d’une plus grande proportion d’un tout déjà fortement amputé. On peut également remarquer que la proportion totale de MH protégés pour le Québec est de 8,1 %, ce qui se situe sous la cible qu’a le gouvernement de protéger 17 % du territoire septentrional québécois (MELCC, 2020c). Cela veut dire qu’ils ne jouissent pas d’une représentativité proportionnelle à leur abondance pour ce qui est des aires protégées. Sachant que les MH sont primordiaux au support de la biodiversité de la province et qu’ils remplissent de nombreuses fonctions écosystémiques, il aurait été attendu de les voir davantage représentés dans les superficies d’aires protégées.
Concernant leur importance pour la biodiversité, mentionnons que plus de la moitié des espèces menacées ou vulnérables habite les MH. De plus, comme ces écosystèmes sont très productifs, ils supportent une importante biomasse. C’est en partie grâce à cette dernière que les écosystèmes peuvent remplir d’autres fonctions importantes comme la filtration, la rétention d’eau, etc. (Conseil régional de l’environnement du Centre-du-Québec, 2012). La définition du concept de biodiversité pourrait paraître unanime et simple, puisque ce concept fait partie intégrante du vocabulaire propre à la conservation. Toutefois, comme nous le verrons plus spécifiquement dans la sous-section de ce même chapitre portant sur les « concepts importants pour la gestion des milieux humides », il s’agit d’un concept complexe aux multiples facettes.

1.2 Pressions s’exerçant sur les milieux humides du Québec

Les MH furent longtemps considérés comme des zones inhospitalières, impro ductives et malsaines. Effectivement, les historiens nous apprennent que, dès l’Antiquité, nous avions une vision ambivalente de ces milieux (Franchomme et Sajaloli, 2015; Morera, 2016). Ils pouvaient détenir un certain pouvoir attractif en raison des ressources qui y étaient associées, tout comme ils pouvaient s’agir de milieux mal aimés qu’il fallait « aménager » de manière à limiter leurs impacts. On croyait que les miasmes, les odeurs qui émanaient des MH, étaient responsables de nombreuses maladies contagieuses. (Franchomme et Sajaloli, 2015; Morera, 2016) Dès lors, l’un des moyens dont disposaient les dirigeants politiques pour asseoir leur pouvoir était de transformer ces milieux, de dominer la nature et de la rendre ainsi plus productive et moins délétère. Cette vision n’a cessé de se renforcer pour culminer au XXe. Elle a été promue par des géographes comme Max Sorre, auteur qui cimente l’idée selon laquelle « l’histoire des sociétés humaines
et celle de leur adaptation au milieu environnant passent par l’aménagement et l’assainissement de leurs territoires ». (Morera, 2016)

Le rapport de Poulin et Pellerin (2013) recense les grandes perturbations ayant affecté les MH du Québec lors des 50 dernières années. Les auteurs se basent sur des données compilant l’impact sur les tourbières et, comme il s’agit du type de milieu qui est le plus représenté au Québec (plus de 85 % de tous les MH de la province), ils estiment que les chiffres avancés sont représentatifs de la réalité. On y apprend que dans les dernières décennies, les grands projets hydroélectriques ont impacté plus de 1 200 km², que l’exploitation sylvicole a impacté plus de 1 000 km², que l’agriculture a impacté quelques 800 km² (principalement dans les BTSL, mais également dans la région du lac Saint-Jean et de l’Abitibi) et que le réseau routier a impacté plus de 540 km² (Pellerin et Poulin, 2013). L’ensemble des perturbations recensées dans leur rapport équivaut à près de 3 750 km².

<table>
<thead>
<tr>
<th>Catégorie de perturbations</th>
<th>Superficie (km²)</th>
<th>Superficie (%)</th>
<th>Bazoge 2008 (km²)</th>
<th>Mise à jour (km²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agricole</td>
<td>250,60</td>
<td>44,2</td>
<td>163,76</td>
<td>86,84</td>
</tr>
<tr>
<td>Aménagement</td>
<td>4,13</td>
<td>0,7</td>
<td>0,93</td>
<td>3,20</td>
</tr>
<tr>
<td>Canneberlique</td>
<td>32,71</td>
<td>5,8</td>
<td>21,15</td>
<td>11,56</td>
</tr>
<tr>
<td>Extraction de tourbe horticole</td>
<td>16,36</td>
<td>2,9</td>
<td>13,25</td>
<td>3,11</td>
</tr>
<tr>
<td>Industriel / Commercial</td>
<td>23,89</td>
<td>4,2</td>
<td>12,54</td>
<td>11,35</td>
</tr>
<tr>
<td>Loisir</td>
<td>6,26</td>
<td>1,1</td>
<td>1,62</td>
<td>4,64</td>
</tr>
<tr>
<td>Résidentiel</td>
<td>27,88</td>
<td>4,9</td>
<td>9,10</td>
<td>18,78</td>
</tr>
<tr>
<td>Sylviculture</td>
<td>144,54</td>
<td>25,5</td>
<td>65,26</td>
<td>79,28</td>
</tr>
<tr>
<td>Autres</td>
<td>12,94</td>
<td>2,3</td>
<td>6,74</td>
<td>6,20</td>
</tr>
<tr>
<td>Réseau routier</td>
<td>29,50</td>
<td>5,2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemin de fer</td>
<td>1,50</td>
<td>0,2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transport hydro-électrique</td>
<td>16,50</td>
<td>2,9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>566,81</td>
<td>100,0</td>
<td>65,26</td>
<td>79,28</td>
</tr>
</tbody>
</table>

Les 566 km² représentent près de 20 % de tous les MH qui existaient dans les BTSL au moment des pertes. Comme on peut le constater dans le tableau 1.2, l’agriculture et la sylviculture sont de loin les deux principales activités engendrant des pertes. Suivent respectivement les cannebergeries (5,8 %), le réseau...
routier (5,2 %) et le secteur résidentiel (4,9 %). Rappelons que les superficies impactées présentées dans ce tableau se limitent à une période de 22 ans et que les BTSL sont le secteur ayant souffert des plus grandes pertes historiques (entre 40 % et 85 %) (Pellerin et Poulin, 2013).

1.2.1 Le cas particulier de l’agriculture

Comme mentionné précédemment, l’agriculture est la pression actuelle la plus importante. Historiquement, tout porte à croire que la majeure partie des pertes tributaires de cette activité ont eu lieu dans les BTSL. Effectivement, une grande portion de ces terres a été mise en culture au fil des siècles. L’un des types de sols que l’on y retrouve et l’un des plus prisés est les terres noires. L’origine de ce type de sol, qui contient une très forte proportion de matière organique, provient de la mer de Champlain qui s’est retirée des BTSL suite à la dernière glaciation. Ce phénomène a favorisé l’accumulation de matière organique. La matière organique qu’on y retrouve encore aujourd’hui ne s’y est pas décomposée, car les conditions physico-chimiques qu’on y retrouvait (présence d’eau, acidité élevée, etc.) ne favorisaient pas l’action microbienne (Primeau, 2019). Selon le guide d’ « Identification et délimitation des milieux humides du Québec méridional » qui fait office de référence au Québec pour délimiter les MH, ces informations suffisent à déterminer que les terres noires sont des MH. Effectivement, le guide nous apprend que : « Tous les sols organiques (sauf les folisols) sont considérés comme hydromorphes. » (Bazoge, Lachance et Villeneuve, 2015). Selon le guide, ce facteur à lui seul permet de déterminer qu’il s’agit d’un MH.

Aujourd’hui, ces MH convertis en terres agricoles sont souvent cités comme étant « le potager du Québec » ou encore le « garde-manger de la province » en raison de leur productivité exceptionnelle qui leur est conférée, entre autres, par la matière organique qu’ils contiennent (Cliche, 2019; Primeau, 2019). Le problème des champs ainsi cultivés vient du fait que, selon le mode d’exploitation actuel, ils ne sont pas pérennes. Effectivement, comme l’ont démontré les travaux de la récente chaire de recherche de la faculté des sciences de l’agriculture et de l’alimentation (2019) de l’Université Laval portant sur le sujet, les cultures en sol organique perdent en moyenne 2 cm de substrat par année. Pour être mis en culture, les sols organiques doivent être drainés, ce qui modifie les conditions physico-chimiques et donc favorise l’action bactérienne et l’érosion éolienne. Le problème réside dans le fait que l’épaisseur des sols organiques est finie et que dans un avenir plus ou moins rapproché les terres noires aujourd’hui en exploitation seront épuisées. (Faculté des sciences de l’agriculture et de l’alimentation, 2019)
1.3 Les milieux humides au Québec

Le Québec, avec l’adoption de la LCMHH, s’est doté d’une définition bonifiée de ce qu’est un MH. Ce sous-chapitre s’intéresse à cette définition, ainsi qu’aux principaux types de MH que l’on retrouve dans la province.

1.3.1 Définition d’un milieu humide

Avec l’adoption de la LCMHH, le Québec s’est doté d’une définition légale précise de ce qu’est un MHH. La définition que l’on trouve dans la LQE, à l’article 46.0.2. est celle-ci :

« ... l’expression “milieux humides ou hydriques” fait référence à des lieux d’origine naturelle ou anthropique qui se distinguent par la présence d’eau de façon permanente ou temporaire, laquelle peut être diffuse, occuper un lit ou encore sature le sol et dont l’état est stagnant ou en mouvement. Lorsque l’eau est en mouvement, elle peut s’écouler avec un débit régulier ou intermittent.

Un milieu humide est également caractérisé par des sols hydromorphes ou une végétation dominée par des espèces hygrophiles.

Sont notamment des milieux humides et hydriques :

1. Un lac, un cours d’eau, y compris l’estuaire et le golfe du Saint-Laurent et les mers qui entourent le Québec;
2. Les rives, le littoral et les plaines inondables des milieux visés au paragraphe 1°, tels que définis par règlement du gouvernement;
3. Un étang, un marais, un marécage et une tourbière. » (LQE)

On constate, à la lecture de la définition, que cette dernière n’est pas spécifique au MH, mais qu’elle définit dans le même temps les milieux hydriques. L’adoption d’une définition plus précise a été saluée par de nombreux acteurs du milieu, car il s’agit du socle légal sur lequel l’ensemble du nouveau régime de conservation des MH repose. Toutefois, comme le fait remarquer le « Centre québécois du droit de l’environnement », cette définition laisse place à l’interprétation. L’utilisation du mot « également » dans le deuxième alinéa peut avoir une double connotation :

1. Le mot également peut signifier que pour se classer comme un MH, on doit répondre à la définition du premier et du deuxième alinéa. Cette interprétation résulte en une définition plus stricte.
2. Au contraire, le deuxième alinéa peut élargir la définition d’un MH, la rendant par le fait même plus englobante. Si tel est le cas, il aurait été préférable d’écrire : « Un milieu humide peut également être caractérisé... » (Girard et Thibault-Bédard, 2017)

Toujours est-il que la définition qui est aujourd’hui en place est consensuelle et que, jusqu’à preuve du contraire, elle n’est pas remise en cause par les demandeurs d’autorisation environnementale.

1.3.2 Les types de milieux humides du Québec

Les MH se déclinent en plusieurs types. Le tableau suivant présente les différents types que l’on rencontre au Québec. Il est primordial d’identifier le ou les types de MH lors de la caractérisation environnementale antérieure à une demande d’autorisation environnementale puisque cela pourra modifier la manière dont l’impact sera atténué (Bazoge et al., 2015). Bazoge (2015) ajoute qu’il est également important d’identifier les complexes de MH, c’est-à-dire qui sont : « ... composé de différents types de MH juxtaposés ». De plus, il est nécessaire de tenir compte du type de milieu et de sa représentativité dans son contexte. Finalement, certains types de milieux présentent un meilleur potentiel de restauration que d’autres. Par exemple, l’étude recensée par le guide ontarien Quand l’habitat est-il suffisant? spécifie que seuls les marécages et les marais peuvent être restaurés avec un certain niveau de confiance, tandis qu’il est déconseillé de restaurer des tourbières (Moilanen, van Teeffelen, Ben-Haim et Ferrier, 2009).

Tableau 1.3 Les différents types de milieux humides (tiré de : Bazoge et al., 2015)

<table>
<thead>
<tr>
<th>Type de milieux humide</th>
<th>Caractéristique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Étang</td>
<td>MH dont le niveau d’eau en étiage est inférieur à 2 m. Il y a présence de plantes aquatiques flottantes, ou submergées ainsi que des plantes émergentes dont le couvert fait moins de 25 % de la superficie du milieu.</td>
</tr>
<tr>
<td>Marais</td>
<td>Site dominé par une végétation herbacée (émergente, graminéine ou latifoliée) croissant sur un sol minéral ou organique. Les arbustes et les arbres, lorsqu’ils sont présents, couvrent moins de 25 % de la superficie du milieu. Le marais est généralement rattaché aux zones fluviales, riveraines et lacustres, le niveau de l’eau variant selon les marées, les inondations et l’évapotranspiration. Un marais peut être inondé de façon permanente, semi-permanente ou temporaire.</td>
</tr>
<tr>
<td>Marécage</td>
<td>Site dominé par une végétation ligneuse, arbustive ou arborescente (représentant plus de 25 % de la superficie du milieu) croissant sur un sol minéral de mauvais ou de très mauvais drainage. Le marécage riverain est soumis à des inondations saisonnières ou est caractérisé par une nappe phréatique élevée et une circulation</td>
</tr>
<tr>
<td>Type de milieux humide</td>
<td>Caractéristique</td>
</tr>
<tr>
<td>------------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>d’eau enrichie de minéraux dissous. Le marécage isolé, quant à lui, est alimenté par les eaux de ruissellement ou par des résurgences de la nappe phréatique.</td>
<td></td>
</tr>
<tr>
<td>MH où la production de matière organique, peu importe la composition des restes végétaux, a prévalu sur sa décomposition. Il en résulte une accumulation naturelle de tourbe qui constitue un sol organique. La tourbière possède un sol mal ou très mal drainé, et la nappe d’eau souterraine est habituellement au même niveau que le sol ou près de sa surface. On reconnaît deux grands types de tourbières, ombrotrophe (bog) et minérotrophe (fen), selon leur source d’alimentation en eau. Une tourbière peut être ouverte (non boisée) ou boisée; dans ce dernier cas, elle est constituée d’arbres de plus de 4 m de hauteur et présente un couvert égal ou supérieur à 25 %.</td>
<td></td>
</tr>
</tbody>
</table>

1.4 Concepts importants pour la gestion des milieux humides

Ce sous-chapitre présente quelques concepts clefs essentiels à l’analyse du nouveau régime de conservation des MH instauré par la LCMHH.

1.4.1 Bassin versant et gestion intégrée des ressources en eau

C’est la publication de la politique nationale de l’eau en 2002 qui a instigüé la GIRE. Effectivement, l’un des cinq objectifs de cette politique était de réformer la gouvernance de l’eau. Traditionnellement, la gestion de l’eau se faisait au niveau municipal. Encore aujourd’hui, les compétences relatives à la gestion de l’eau relèvent des municipalités régionales de comté (MRC) en vertu des articles 103 à 110 de la Loi sur les compétences municipales (LAU). Toutefois, comme l’eau ne se limite pas aux découpages administratifs, cette gestion n’était pas optimale. Par exemple, il est difficile pour une municipalité traversée par un cours d’eau important d’agir sur ce dernier sans la collaboration des autres municipalités que le cours d’eau traverse en amont et en aval.

De manière à capturer cette réalité, le Québec méridional a été découpé en 40 zones de gestion intégrée. Un BV : « désigne un territoire délimité par les lignes de partage des eaux sur lequel toutes les eaux s’écoulent vers un même point appelé exutoire. »(MELCC, 2020b). Chaque BV comprend plusieurs sous-bassins versants. Bien entendu, une part d’arbitraire demeure dans le découpage des zones de gestion intégrée proposé par le ministère, représenté sur la figure 1.1. Pour refléter le contexte et plus particulièrement les pressions s’exerçant sur les ressources en eau de surface du Québec, les BV du nord, plus grands, comprennent plusieurs exutoires importants, tandis que ceux des BTSL n’en comprennent

Figure 1.1 Zones de gestion intégrée de l’eau par bassin versant (tiré de : MELCC, 2020a)

L’acteur principal de chacun de ces BV est un organisme de bassin versant (OBV). C’est la Loi affirmant le caractère collectif des ressources en eau et favorisant une meilleure gouvernance de l’eau et des milieux associés (Loi sur l’eau) qui officialise le statut de ce dernier. L’objectif principal des OBV est d’« élaborer et de mettre à jour un plan directeur de l’eau (PDE) et d’en promouvoir et d’en suivre la mise en œuvre » (Loi sur l’eau). Le PDE se structure en trois grandes sections qui sont : le portrait, le diagnostic et un plan d’action. La rédaction d’un PDE est un exercice itératif qui se répète sur un cycle de dix ans. Les PDE, de par leur nature, leur caractère itératif et leur exhaustivité, sont des outils tout désignés pour comprendre les différentes problématiques propres au contexte de chaque BV. Les OBV sont avant tout des tables de concertation où siège l’ensemble des acteurs de l’eau du BV. Ils ne disposent d’aucune compétence légale d’où l’importance du travail de concertation.

1.4.2 Capacité de support

La révolution industrielle s’est accompagnée d’une augmentation de la qualité de vie significative, et ce, au détriment des écosystèmes. Prenant conscience de ces pressions toujours grandissantes et du fait que
les écosystèmes pouvaient se maintenir à condition que certains seuils ne soient pas dépassés, la communauté scientifique s’est intéressée à ce qui advenait lorsque ceux-ci n’étaient pas respectés (Barnaud, Antona et Marzin, 2011). Ce seuil, auquel on fait souvent référence comme « capacité de support », est aujourd’hui profondément ancré dans le système juridique québécois. Pour preuve, le respect de la capacité de support est l’un des principes de la Loi sur le développement durable. La LQE fait également référence à cette notion dans la section V.1 et stipule que celle-ci doit toujours être considérée (article 46.0.1.).

Il va de soi que tout dommage à l’environnement entraîne des pertes, mais aller au-delà de la capacité de support entraîne généralement une altération plus abrupte des écosystèmes. La définition exacte de la capacité de support fournie par le site « vocabulaire du développement durable » est la : « ... pression maximale qui peut être exercée sur un écosystème sans porter atteinte à l’intégrité de celui-ci. » (Office québécois de la langue française, 2013). La LCMHH ne fixe aucun seuil de ce type en ce qui a trait aux MH.

1.4.3 Fonctions et services écosystémiques

Il existe de nombreuses manières de prendre en compte la valeur des écosystèmes. Il est important de faire la différence entre fonction et service écosystémique, car, bien qu’il s’agisse de concepts similaires, la LCMHH fait référence au premier spécifiquement. Effectivement, un des cas de figure acceptés par le ministère lors de projets de compensation est celui où l’on compense par un écosystème différent de celui impacté, mais ayant les mêmes fonctions (MELCC, 2019b).

La différence entre fonction et service écosystémique n’est pas comprise de la même manière par tous les auteurs. Effectivement, il s’agit de deux manières de « quantifier » les processus qui animent les écosystèmes. Limoge mentionne que : « Les services écologiques sont les fonctions des écosystèmes dont bénéficient les humains. »(Limoges, 2009). Comme on peut le remarquer sur la figure 1.2, chaque milieu ou écosystème, par ses processus, remplit une ou plusieurs fonctions. À titre d’exemple, une fonction peut être la « rétention de l’eau ». Si l’on met cette fonction en relation avec l’Homme, on parle alors de services. Les services découlant de cette fonction précédemment nommée pourraient être la protection contre les inondations ou encore l’approvisionnement en eau potable. Il n’est pas rare que l’on monétise les fonctions ou les services des MH pour faciliter la compréhension de leur valeur. Dans cet exemple, on peut concevoir qu’une perturbation de ces deux services nécessiterait que l’on pose une action (enrochement des berges, érection d’une digue, etc.) qui entraînerait, entre autres, des coûts monétaires.
Figure 1.2 : Schématisation des liens existant entre les milieux, les fonctions et les services (tiré de : MDDEM, 2010, p. 12)

On catégorise généralement les services en quatre groupes : d’approvisionnement, de régulation, ontogénique et socioculturel (Limoges, 2009). Le tableau 1.4 précise les services classés dans ces quatre catégories.

Tableau 1.4 Catégories de services écologiques (tiré de : Limoge, 2009, p. 16)

<table>
<thead>
<tr>
<th>Services de régulation</th>
<th>Services d’approvisionnement</th>
<th>Services ontogéniques</th>
<th>Services socioculturels</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Régulation du climat</td>
<td>• Nourriture</td>
<td>• Développement du système immunitaire</td>
<td>• Spiritualité</td>
</tr>
<tr>
<td>• Réduction des maladies, des</td>
<td>• Eau douce</td>
<td>• Épanouissement humain</td>
<td>• Récération et tourisme</td>
</tr>
<tr>
<td>déprédateurs et des odeurs</td>
<td>• Combustible</td>
<td></td>
<td>• Esthétisme</td>
</tr>
<tr>
<td>• Purification de l’eau et de l’air</td>
<td>• Fibre</td>
<td></td>
<td>• Education et inspiration</td>
</tr>
<tr>
<td>• Contrôle de l’érosion et des</td>
<td>• Espèces ornementales</td>
<td></td>
<td>• Sens d’appartenance</td>
</tr>
<tr>
<td>inondations</td>
<td>• Animaux de compagnie</td>
<td></td>
<td>• Patrimoine culturelle</td>
</tr>
<tr>
<td>• Pollinisation</td>
<td>• Éléments biochimiques</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Dispersion des semences</td>
<td>• Ressources génétiques</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Considérant la diversité de services présentés dans le tableau 1.4, on saisit qu’il n’est pas toujours aisé de traduire la valeur d’un service écosystémique en une valeur monétaire. Pour certains types de services (régulation et approvisionnement), il est relativement facile de s’entendre sur la valeur monétaire des processus en jeu. L’un des exemples les plus célèbres est celui des Catskill de New York. Fin 1990, la ville a décidé d’investir dans la protection du BV des Catskill plutôt que de construire une nouvelle usine d’épuration d’eau. L’investissement de la ville pour la mise en place d’une aire protégée se chiffre quelque part entre 1 et 1,5 milliard de dollars tandis que la construction d’une nouvelle usine aurait coûté quelque
part entre 2 et 6 milliards (Le conseil des ministres de l’Environnement, 2010). Toutefois, il n’est pas toujours évident, ou même possible d’apporter une valeur monétaire à un service écosystémique. Effectivement, quelle est la valeur socioculturelle d’un écosystème ? De plus, bien que l’exemple des Catskill soit probant, il ne prend pas en compte une foule d’autres services que joue ce même BV : support de la biodiversité, lutte aux changements climatiques, prévention des inondations, etc. En ce sens, on peut supposer que la décision du ministère de s’en tenir aux fonctions des MH simplifiera l’analyse des projets de compensation.

1.4.4 Hiérarchie d’atténuation des impacts et l’atteinte d’aucune perte nette

Dans le cadre de cet essai, l’expression « hiérarchie d’atténuation » fait référence au processus qui consiste à éviter, minimiser et compenser les impacts environnementaux. Le ministère utilise généralement l’expression « séquence d’atténuation » pour désigner ces trois étapes (RCAMHH). L’UICN, dans sa politique sur la compensation de la biodiversité (voir chapitre 4), privilégie l’utilisation du mot hiérarchie, ce qui, d’un point de vue sémantique, renforce l’idée de que la première étape est plus importante que la deuxième et ainsi de suite. Effectivement, il est plus important d’éviter que de minimiser et il est plus important de minimiser que de compenser. (International Union for Conservation of Nature [IUCN], 2016b)

La figure 1.3 schématisant la hiérarchie d’atténuation des impacts et le principe d’aucune perte nette. La première étape consiste à caractériser l’impact du projet. Si l’on constate que celui-ci impacte un MH, il est alors nécessaire de chercher des alternatives (ex. : déplacer le projet sur le terrain, trouver un nouveau site, abandonner le projet, etc.). Si le projet ne peut être modifié de manière à éviter les impacts, il est alors nécessaire de réfléchir à des solutions permettant de les minimiser (ex. : méthode de construction alternative, calendrier modifié, révision des superficies d’empiètement, etc.). La deuxième colonne du graphique démontre que l’impact du projet devrait être grandement diminué suite à ces deux étapes (éviter, minimiser). Rappelons qu’à cette étape, les impacts peuvent être nuls si le projet a été évité. Finalement, dans l’optique où des pertes subsisteraient, ces dernières devront être compensées. Si les gains correspondent aux pertes, on peut dire que le principe d’aucune perte nette a été atteint.

Toutefois, comme nous le verrons dans les prochains chapitres, ce concept d’équivalence peut être difficile à quantifier. De plus, l’un des préceptes qui supportent cette vision est qu’il est possible qu’un site X compense un site Y. Ce principe se nomme « substituabilité de la biodiversité ». Comme expliqué dans le
sous-chapitre portant sur les États-Unis, c’est la validité de ce principe que certains auteurs contestent (Burgin, 2010; Dauguet, 2015).

Figure 1.3 : Schématisation du principe d’aucune perte nette enchâssé dans la hiérarchie d’atténuation (tiré de : Quétier et al., 2012, p. 3)

1.4.5 Biodiversité

Comme nous l’avons vu précédemment, la hiérarchie d’atténuation repose sur la substituabilité de la biodiversité. Toutefois, comme relèvent certains auteurs (Bezombes, 2020; Dauguet, 2015), la biodiversité est un concept qui peut s’illustrer de nombreuses manières, ce qui complexifie cette tâche d’y trouver un substitut. Bien que le concept soit aujourd’hui extrêmement utilisé et commun, il est pertinent de se rappeler qu’il a été « inventé » tout récemment. C’est en 1984 qu’est publié le livre d’Edward O. Wilson *Biological diversity*, ouvrage qui est souvent cité comme étant celui qui a fait naître le concept, ou du moins de l’avoir pérennisé à l’aide d’une publication scientifique (Guyader, 2008). Rapidement, cette nouvelle
manière de quantifier l’ensemble du vivant dans un écosystème donné s’est popularisée. On peut dire que la consécration de ce concept a eu lieu en 1992 au Sommet de la Terre de Rio où a été signée la célèbre « convention sur la diversité écologique » par plus de 160 pays.

Le concept de biodiversité est aujourd’hui largement utilisé et fait partie intégrante des politiques environnementales du Québec et d’ailleurs. La conservation de la biodiversité est l’un des sous-objectifs centraux de la LCMHH. Bien qu’elle ne soit pas explicitement ciblée par la LCMHH, l’idée est qu’en protégeant les MH du Québec, nous protégeons leur biodiversité, ce qui est central dans la justification de cette loi. Le régime de « compensation des MH » que la LCMHH a mis en place est comparable en tout point à ce que l’on nomme à l’international la « compensation de la biodiversité ». Par exemple, en France, la « Loi pour la reconquête de la biodiversité, de la nature et des paysages » instaure l’objectif « d’absence de perte nette de biodiversité ». Cet objectif n’est pas sans rappeler l’objectif d’aucune perte nette de MH que nous retrouvons dans la LCMHH. Un autre élément qui illustre le lien entre la biodiversité et la LCMHH est le fait qu’elle serve de fondement dans plusieurs documents produits par le ministère portant sur ce nouveau régime. Par exemple, dans le chapitre « raison d’être » du « Programme de restauration et de création de milieux humides et hydriques – Cadre normatif » il est mentionné ceci : « Ces milieux assurent plusieurs fonctions écologiques, lesquelles contribuent à fournir de nombreux bénéfices matériels et immatériels à la société. Ils abritent la majeure partie de la biodiversité du Québec... » (MELCC, 2019b).

Toutefois, le fait que la LCMHH ne définisse pas directement le concept de biodiversité laisse planer une certaine imprécision. Qui plus est, le terme n’est que rarement défini dans les lois (LQE, LAU, loi de l’eau) et outils (Programme de restauration et de création de milieux humides et hydriques – Cadre normatif, Plans régionaux des milieux humides et hydriques, etc.) régissant la conservation des MH québécois. La seule loi-cadre d’intérêt pour la conservation de MH pourvue d’une définition de la biodiversité est la Loi sur la conservation du patrimoine naturel (LCPN). La définition qu’on y trouve est celle-ci :

« Biodiversité ou diversité biologique : la variabilité des organismes vivants de toute origine, y compris des écosystèmes terrestres, marins, estuariens et dulçaquicoles, ainsi que des complexes écologiques dont ils font partie; ces termes comprennent aussi la diversité au sein des espèces et entre espèces de même que celle des écosystèmes. » (LCPN)

Cette définition fait mention des trois dimensions de la biodiversité généralement admises par la communauté scientifique : les espèces, les écosystèmes et les gènes. La diversité des espèces, que l’on nomme biodiversité spécifique ou encore richesse, est en apparence la plus simple à évaluer. Toutefois,
La diversité des écosystèmes, la deuxième dimension, est particulièrement importante dans une optique de conservation. Effectivement, c’est généralement à ce niveau que les efforts de conservation sont déployés étant donné qu’il est plus efficace de protéger l’habitat d’une espèce que l’espèce en soi. Un des exemples probants de cette stratégie est celui mis de l’avant par Canards Illimités qui a opté pour la conservation de l’habitat des espèces qu’elle désirait protéger, c’est-à-dire les canards sauvages (Canards Illimités Canada, 2020). Les écosystèmes décrivent également les relations existantes entre les différentes espèces. C’est également sur ces relations que peuvent reposer les efforts de conservation. Par exemple, la réintroduction de loups dans le parc de Yellowstone a eu des impacts importants sur les populations de grands herbivores et conséquemment sur la végétation du parc. Cet exemple est intéressant, car, bien que l’habitat de Yellowstone était déjà protégé en vertu son statut de parc national, l’état général de son écosystème était perturbé dû à l’absence d’une de ses espèces clefs de voûte de celui-ci (Boyce, 2018). Cette dimension n’est pas prise en compte par la LCMHH (MELCC, 2020a).

Finalement, la dernière dimension de la biodiversité est celle de la variabilité génétique. Il s’agit sans aucun doute de la facette de la biodiversité la plus abstraite, mais non la moins importante. Effectivement, la variabilité génétique est le moteur de l’évolution et permet, dans une certaine mesure, de prévoir la capacité d’une population donnée de s’adapter à une nouvelle pression sélective. (Guyader, 2008) Cette dimension ne fait pas partie des paramètres pris en compte au Québec lors de la compensation de MH (MELCC, 2020a).
2. MÉTHODOLOGIE

Ce chapitre présente la méthodologie privilégiée pour analyser le régime de conservation des MH mise en place par la LCMHH en 2017.

2.1 Méthodologie de l’analyse

La méthodologie a été choisie de manière à répondre à l’objectif de cet essai. Rappelons qu’il s’agit d’évaluer la LCMHH en fonction de son objectif d’aucune perte nette. Plus précisément, l’analyse porte sur les deux sous-objectifs qui sont : aucune perte nette de biodiversité et aucune perte nette de fonctions. L’analyse de la LCMHH et de la revue de littérature ont permis de cibler d’autres dimensions pertinentes à l’analyse. Parmi ceux-ci, l’importance d’établir des seuils guidant les efforts de conservation, la pertinence des enjeux relatifs à la temporalité des gains et des pertes de MH et les enjeux relatifs à l’application de la hiérarchie d’atténuation.

Le troisième chapitre consiste à dresser un aperçu fonctionnel de l’ensemble des éléments structurant le nouveau régime de conservation. Ce chapitre s’intéresse plus particulièrement aux lois, règlements et guides jouant un rôle dans ce régime. L’objectif de ce chapitre est de dresser un portrait neutre de la situation qui permette de mettre en relief les différents éléments pertinents à l’analyse.

Le quatrième chapitre consiste en un exercice comparable à celui réalisé dans le chapitre 3, mais cette fois avec des exemples non québécois. Dans un premier temps, le système états-unien sera brièvement présenté. Comme pour le chapitre précédent, il y est question de lois et règlements concernant la conservation des MH. Comme le système de compensation pour les milieux humides existe depuis près de 50 ans aux États-Unis, cette section portera également sur l’évolution du régime de conservation. De manière à poser un regard critique, de nombreux articles scientifiques ont été consultés. Dans un deuxième temps, l’analyse portera sur le modèle ontarien. L’analyse est ici plus succinte et se concentre sur le guide « Quand l’Habitat est-il suffisant » produit spécifiquement pour ce territoire dans le but de favoriser la conservation d’habitats fonctionnels. Finalement, la politique élaborée par l’UICN sera analysée. Cette dernière, adoptée en 2016, met l’accent sur les éléments essentiels nécessaires pour compenser de manière efficace les impacts sur la biodiversité. L’analyse de ces trois cas de figure, très différents les uns des autres, jette un éclairage nouveau sur la problématique qu’est la conservation des MH au Québec. L’exemple états-unien, en raison du fait qu’il est en place depuis plusieurs décennies, donne des informations réalisistes sur la pratique de compensation. De plus, une riche littérature scientifique porte sur ce système. Le modèle ontarien offre une vision originale, claire et adaptative ainsi
que de nombreuses pistes de réflexion directement applicables au contexte québécois. Finalement, la politique de l’UICN consiste en une idéation de ce que doit être un régime de compensation de la biodiversité. Effectivement, la politique rédigée par cette organisation non gouvernementale offre des lignes directrices claires à toute juridiction qui souhaite mettre sur pied un système de compensation de la biodiversité.

3. ANALYSE DES CHANGEMENTS LÉGISLATIFS ENCADRANT LA CONSERVATION DES MILIEUX HUMIDES AU QUÉBEC

Ce chapitre s’intéresse aux changements législatifs entourant la conservation des MH au Québec. Le premier sous-chapitre porte sur l’évolution des lois encadrant la conservation des MH. Les autres sous-chapitres s’intéressent aux lois et règlements encadrant la conservation des MH qui ont été amendés par la LCMHH. De plus, ce chapitre analyse les documents complémentaires produits par le gouvernement qui précisent le mode d’application et la portée de la LCMH.

3.1 Évolution des lois encadrant la conservation des milieux humides

Au Canada, la première protection dont on jouit les MH a découlé de l’adoption de « la politique fédérale sur la conservation des terres humides ». Il s’agit de la concrétisation des engagements que le Canada a pris suite à la ratification de la convention de Ramsar. Cette dernière recense entre autres les fonctions écologiques et socio-économiques, estime la valeur monétaire des fonctions, évalue l’état des pertes ainsi que les pressions que les MH subissent. (Canada, Canada et Environnement Canada, 1991) Bien que l’on puisse se réjouir des visées de cette politique, elle déçoit par son manque de profondeur. Qui plus est, elle n’a de pouvoir que sur une partie des MH du Canada (environ 29 %), c’est-à-dire les terres dont il est propriétaire. Ces dernières se situent principalement dans le nord du pays. L’objectif de cette politique est de : « favoriser la conservation des terres humides du Canada en vue du maintien de leurs fonctions écologiques et socio-économiques, pour le présent et l’avenir. »(Environnement Canada, 1991) Parmi les objectifs secondaires, notons celui de prévenir toute perte nette. Malgré ces bons coups, la politique demeurera largement critiquée, car elle n’est effective que sur une petite portion des MH du Canada, plus spécifiquement des MH nordiques qui sont généralement moins soumis aux pressions anthropiques (Austen et Hanson, 2007) (Poulin et al., 2016).

Au Québec, ce n’est qu’en 1993 que la LQE a accordé une attention particulière aux MH. Le gouvernement s’est alors autorisé un droit de regard sur toutes les activités qui pourraient avoir lieu dans un MH et ce, en modifiant le deuxième alinéa de l’article 22 de cette même loi. Il se lit alors comme suit :

« Cependant, quiconque érige ou modifie une construction, exécute des travaux ou des ouvrages, entreprend l’exploitation d’une industrie quelconque, l’exercice d’une activité ou l’utilisation d’un procédé industriel ou augmente la production d’un bien ou d’un service dans un cours d’eau à débit régulier ou intermittent, dans un lac, un étang, un marais, un marécage ou une tourbière doit préalablement obtenir du ministre un certificat d’autorisation. »(Loi sur la qualité de l’environnement)
L’article 22 comporte une fonction préventive, c’est-à-dire que le ministère demande à être informé préalablement à ce que des activités potentiellement dangereuses pour l’environnement aient lieu. L’ajout du deuxième alinéa fait en sorte que toute activité se tenant dans un MH doit maintenant obtenir une autorisation ministérielle (mis à part les exceptions réglementaires : Règlement relatif à l’application de la Loi sur la qualité de l’environnement [RRALQE]). L’article 22 a été réécrit en 2018 lors de la réforme de la LQE. L’un des objectifs de cette réforme étant de réduire la quantité de demandes d’autorisation environnementale que le ministère reçoit, les visées de l’article 22 ont été modifiées de manière à cibler plus précisément des activités à risque. Toutefois, l’obligation de demander une autorisation pour toute activité touchant les MH n’a pas changé et se lit comme suit : « ... tous travaux, toutes constructions ou toutes autres interventions dans des milieux humides et hydriques visés à la section V.1 » (LQE).

Le MELCC avait déjà, depuis 2006, adopté la pratique d’exiger des projets de compensation lorsqu’une autorisation environnementale était émise pour une activité dans un MH. Cette pratique a été mise en place suite à la directive ministérielle 06-01. C’est cette directive qui avait instauré la hiérarchie d’atténuation dans l’analyse des autorisations environnementales. Toutefois, la pratique n’était pas très efficace. Effectivement, comme l’a démontré l’article de Poulin et al. (2016), une très faible proportion des activités de compensation favorisait la création de nouveaux MH. Cet article démontre que pour 550 autorisations environnementales émises, et ce entre 2006 et 2010, concernant des projets affectant 2 870 ha de MH, seuls 1 164 ha de compensation ont été exigés. De plus, la grande majorité de ces projets de compensation consistait à protéger des MH existants. En tout, seulement 15 ha de MH ont été restaurés et/ou créés. Ce ratio correspond à une perte nette de plus de 99 %. (Poulin et al., 2016)

En plus d’être dysfonctionnelle, l’exigence de compenser n’était pas entérinée par la loi. En 2012, un promoteur a contesté les exigences du ministère en matière de compensation dans ce qui est devenu un cas de jurisprudence important en droit de l’environnement, l’affaire atocas de l’érable. Comme le gouvernement a perdu cette cause, il a dû adopter en urgence le projet de loi 71 intitulé : « Loi concernant des mesures de compensation pour la réalisation de projets affectant un milieu humide ou hydrique ». Cette loi, bien qu’imparfaite, légitimait le droit du ministère d’exiger des compensations. Il était inscrit à l’article cinq de cette loi que le ministère devait rédiger une loi plus complète sur le sujet. C’est ce qui a mené, cinq ans et deux reports plus tard, à l’adoption de la LCMHH.
3.2 Loi concernant la conservation des milieux humides et hydriques

La LCMHH est au centre de la réforme touchant la conservation des MH. Son objectif principal est d’instaurer un système où il y aurait absence de perte nette de MHH. L’argumentaire justifiant l’adoption de cette loi s’articule autour des fonctions que les MHH remplissent. Selon le ministère, la raison d’être des MH est qu’ils :

« ... assurent plusieurs fonctions écologiques, lesquelles contribuent à fournir de nombreux bénéfices matériels et immatériels à la société. Ils abritent la majeure partie de la biodiversité du Québec et contribuent aux deux pans essentiels de la lutte contre les changements climatiques, en permettant la séquestration des gaz à effet de serre et en jouant un rôle d’importance dans l’adaptation aux changements climatiques. »(MELCC, 2019b).

Cet extrait met en relief les deux sous-objectifs centraux de la LCMHH : la protection de la biodiversité et des fonctions des MH qui rendent des services directs et indirects aux Québécois. Au-delà des services liés à la lutte aux changements climatiques cités ci-haut, le document énumère également : l’approvisionnement en eau potable, en ressources alimentaires, en bois de chauffage, la régulation des inondations, l’atténuation des îlots de chaleur. (MELCC, 2019b)

La LCMHH modifie de nombreuses lois maîtresses qui encadrent la gestion de l’environnement. Les lois modifiées par la LCMHH sont : la Loi sur l’eau, la LCPN, la LAU, la LQE et la Loi sur le ministère du Développement durable, de l’Environnement et des Parcs. Les changements que la LCMHH a entraînés seront mis en relief tout au long de ce chapitre.

La LCMHH établit également des mesures et des actions qui devront être mises en place de manière à assurer la mise en œuvre des changements que cette dernière instaure. Parmi les mesures transitoires, notons l’obligation du ministre de rédiger un guide d’élaboration des plans régionaux des MHH. Ce guide est analysé dans le sous-chapitre 3.9. Le ministre, conformément aux exigences transitoires, a également créé un premier programme de création et de restauration des MHH. Finalement, le gouvernement a produit le règlement sur la compensation pour l’atteinte aux MHH. Ce dernier est présenté dans la section 3.11.
3.3 Loi affirmand le caractère collectif des ressources en eau et favorisant une meilleure gouvernance de l’eau et des milieux associés

Cette loi, à laquelle on réfère généralement par la « Loi sur l’eau »(MELCC, 2009), a été sanctionnée le 12 juin 2009. Il s’agit d’une loi importante pour la protection des ressources en eau du Québec, car elle vise à éclaircir une question importante : à qui appartient l’eau du Québec? La Loi sur l’eau établit clairement :

« ... que l'eau est une ressource faisant partie du patrimoine commun de la nation québécoise et qu’il importe de la préserver et d’en améliorer la gestion pour répondre aux besoins des générations actuelles et futures ».

La loi établit également le caractère essentiel de l’eau pour supporter la vie. De plus, elle stipule que l’État « ... en tant que gardien des intérêts de la nation dans la ressource eau, se doit d’être investi des pouvoirs nécessaires pour en assurer la protection et la gestion ». (Loi sur l’eau)

Le titre de la Loi sur l’eau a été modifié en 2017 de manière à inclure « les milieux associés »; ces derniers correspondant aux milieux humides et hydriques. Il est notamment spécifié qu’ils sont fondamentaux à la ressource en eau. De plus, la Loi sur l’eau fait maintenant mention de l’objectif d’aucune perte nette et de la nécessité d’adopter le modèle de GIRE. Les pouvoirs et les responsabilités du ministre en ce qui a trait à la protection des MH ont aussi été modifiés. Il est écrit que le ministreélaboré et propose des orientations et des objectifs en matière de protection des MHH, et ce dans le but de mettre en valeur les retombées des fonctions écologiques de ces derniers. On y liste six bénéfices, soit : 1- la filtration, 2- la régulation, 3- la biodiversité, 4- la protection solaire et éolienne, 5 – la séquestration du carbone et 6 - le paysage. (Loi sur l’eau)

Les modifications et les précisions touchant les rôles et responsabilités des acteurs de la conservation des MHH sont également nombreuses et n’affectent pas seulement le mandat du ministre. La nouvelle mouture de la Loi sur l’eau réorganise et précise les informations relatives à la réalisation d’un PDE qui est la responsabilité principale des OBV. De plus, le troisième paragraphe de l’article 13.3. spécifie que le PDE « ...doit être pris en considération par les ministères, les organismes du gouvernement, les communautés métropolitaines, les municipalités et les communautés autochtones... ». Les PDE doivent maintenant être révisés et faire l’objet d’un bilan à une fréquence établi par le ministre ou aux dix ans.

La Loi sur l’eau instaure également la création d’un nouvel outil de gestion : les plans régionaux des MHH. Ils sont un des éléments clefs qui à terme permettront d’atteindre les objectifs de conservation de MHH du Québec. L’ajout des articles 15 à 15.7 dans la Loi sur l’eau enchâsse légalement l’obligation qu’ont les
MRC de rédiger ces plans. L’élément central de ces plans est l’identification et la classification des MHH sur le territoire d’une MRC. Les MH peuvent être classés en trois catégories : présente un intérêt pour la conservation, présente un intérêt de restauration et présente une opportunité d’utilisation durable. La MRC doit également modifier son schéma d’aménagement et de développement (SAD) de manière à assurer la cohérence entre ce dernier et le plan régional des milieux humides et hydriques (PRMHH). Tout comme les PDE, les plans régionaux doivent être révisés aux dix ans. Une analyse plus approfondie sur la réalisation des plans régionaux est disponible dans la section portant sur le guide d’élaboration des plans régionaux (section 3.9). (Loi sur l’eau)

L’ajout de la section IV.1, comprenant les articles 15.8 à 15.13, instaure le programme favorisant la restauration et la création de MHH. Ce dernier opérationnalise les visées de conservation de la LCMHH. Il sert entre autres à redistribuer les sommes perçues lorsque des MH sont impactés et les attribuer à des projets de restauration ou de création. L’analyse plus complète de ce programme est disponible dans la section portant sur le cadre normatif de ce dernier (section 3.10). (Loi sur l’eau)

Finalement, les articles 17.1 et 17.2 constituent une nouvelle sous-section de la loi sur l’eau intitulée « reddition de compte ». Il y est stipulé que le ministre doit rendre accessible la liste des interventions qui portent atteinte à des MHH, ainsi que les superficies compensées dans le cadre du programme favorisant la restauration et la création de MHH. (Loi sur l’eau)

3.4 Loi sur la conservation du patrimoine naturel

La LCPN a été adoptée en 2002. Elle a alors remplacé la Loi sur les réserves écologiques (L.R.Q., chapitre R-26.1) et la Loi sur les réserves naturelles en milieu privé (2001, chapitre 14). Comme mentionné à l’article 1 de cette loi, son objectif principal est d’assurer la conservation du patrimoine naturel du Québec en favorisant la mise en place d’un réseau d’aires protégées représentatives de la biodiversité. La LCMHH a modifié largement le premier article de la LCPN. On n’y parle plus de « mesures de protection », mais des « mesures de conservation ». Selon Limoge, la définition de la conservation est : « … un ensemble de pratiques comprenant la protection, la restauration et l’utilisation durable visant le rétablissement d’espèces ou le maintien des services écologiques au bénéfice des générations actuelles et futures. » (Limoges, Boisseau, Gratton et Kasisi, 2013) Cette nouvelle définition qui laisse une place plus importante à la restauration s’accorde davantage avec l’objectif d’aucune perte nette et les moyens de conservation qui devront être mis en place pour y arriver. De plus, la version actuelle de la loi accorde une attention particulière aux MHH en mentionnant leur rôle et leur importance et ce dans le premier article. (LCPN)
Parmi les autres modifications qui ont été apportées à cette loi, mentionnons celles de l’article 13. Il y est mentionné que le ministre peut « ...désigner certains milieux en les délimitant sur plan... ». Plus spécifiquement, il peut désigner trois types de MHH pouvant être conservés, soit en vertu de la diversité biologique et des fonctions de ce dernier, soit de leur unicité à l’échelle régionale en fonction de leur intégrité, de leur rareté ou de leur superficie et finalement si ces derniers contribuent à la sécurité du public. De plus, les MHH qui auront été restaurés ou créés seront de facto désignés. L’article 14.1 stipule que les demandes d’autorisation qui visent un MHH ainsi désigné devront être analysées en tenant compte que ces derniers « ... devraient, en principe, être maintenus dans son état naturel. » La loi précise les activités compatibles et spécifie, à l’article 22.1, que le ministre peut refuser d’émettre une autorisation environnementale si elle ne répond pas à certaines conditions. (LCPN)

Finalement, la loi comprend dorénavant une section qui met en place un registre (section IV, art. 24.1.) qui contient minimalement la superficie, la localisation, le BV et la date de création des aires protégées.

3.5 Loi sur l’aménagement et l’urbanisme

La LAU a été adoptée en 1979. Parmi les objectifs fondateurs de cette loi se trouve l’obligation des MRC d’adopter SAD et l’obligation des municipalités locales d’adopter des règlements conformes à ce dernier (Rousseau, 2011). Il est établi dans cette loi que les MRC (ou les communautés métropolitaines, le cas échéant) doivent intégrer les règles minimales édictées dans la politique de protection des rives, du littoral et des plaines inondables (PPRLPI) à son SAD. La LCMHH a entraîné peu de modifications à la LAU. Le changement majeur est le remplacement « des rives, du littoral et des plaines inondables » par « milieux humides et hydriques » dans de nombreux articles. Cette modification élargit la portée de la LAU en englobant maintenant une plus grande diversité d’écosystèmes. (LAU)

3.6 Loi sur la qualité de l’environnement

Le droit à un environnement de qualité est protégé par deux lois au Québec : la Chartre québécoise des droits et libertés de la personne et la LQE. La première établit à l’article 46.1 que : « Toute personne a droit, dans la mesure et suivant les normes prévues par la loi, de vivre dans un environnement sain et respectueux de la biodiversité. » (Chartre des droits et libertés de la personne, s. d.). Bien que la charte établis le droit à un environnement sain, il est rare que cette dernière serve de socle à un recours légal en droit de l’environnement (Thériault et Robitaille, 2012).
La LQE est quant à elle la loi la plus importante en droit de l’environnement. Cette dernière a été de nombreuses fois modernisée depuis son entrée en vigueur le 21 décembre 1972. La dernière réforme de la LQE date de 2018 et visait principalement à moderniser le système d’autorisation environnementale.

3.6.1 Article 19.1

L’article 19.1 de la LQE énonce, tout comme l’article 46.1 de la charte, le droit à un environnement sain :
« Toute personne a droit à la qualité de l’environnement, à sa protection et à la sauvegarde des espèces vivantes qui y habitent, dans la mesure prévue par la présente loi... ». Bien que la portée de ces deux articles semble absolue, elle est en fait restreinte par leur formulation. Effectivement, les portions « dans la mesure et suivant les normes prévues par la loi » et « dans la mesure prévue par la présente loi » légitiment tout impact qui serait autorisé ou encadré par cesdites lois.

3.6.2 Article 20

Bien que l’article 20 n’ait pas été directement modifié par la LCMHH, il a un rôle central dans la protection de l’environnement, car c’est en vertu de celui-ci que le régime d’autorisation existe. L’article se lit ainsi :

« Nul ne peut rejeter un contaminant dans l’environnement ou permettre un tel rejet au-delà de la quantité ou de la concentration déterminée conformément à la présente loi.

La même prohibition s’applique au rejet de tout contaminant dont la présence dans l’environnement est prohibée par règlement ou est susceptible de porter atteinte à la vie, à la santé, à la sécurité, au bien-être ou au confort de l’être humain, de causer du dommage ou de porter autrement préjudice à la qualité de l’environnement, aux écosystèmes, aux espèces vivantes ou aux biens. » (RLRQ, c. Q-2)

Le sens de l’article 20 informe qu’il est interdit de polluer, sauf dans certaines conditions. Le premier alinéa mentionne qu’il existe un règlement relatif à l’émission de chaque contaminant. Le premier volet du deuxième alinéa stipule que certains contaminants ne peuvent être rejetés dans l’environnement (ex. : produits dangereux) tandis que le deuxième volet stipule qu’il est interdit d’émettre des contaminants non réglementés si ceux-ci posent un risque. (Yergeau, 1998)

3.6.3 Section V.1

La LCMHH a modifié significativement la LQE de manière à orchestrer et structurer les changements légaux que la LCMHH a mis en place. De plus, la nouvelle section V.1 intitulée « milieux humides et hydriques » informe sur la manière dont le régime d’autorisation environnementale traitera les demandes impactant
un MHH. Rappelons que c’est dans cette section de la LQE que se trouve la définition de ce qu’est un MH présenté dans le chapitre 1. Cet élément est essentiel, car le paragraphe quatre du premier alinéa de l’article 22 stipule que : « ... tous travaux, toutes constructions ou toutes autres interventions dans des MHH... » doivent au préalable obtenir une autorisation ministérielle. (LQE)

En plus d’établir les assises légales du principe d’aucune perte nette et de GIRE, la section V.1 renseigne sur les points que devra démontrer l’instigateur d’un projet dans le but de recevoir une autorisation. C’est l’article 46.0.1. qui définit la hiérarchisation des impacts. Le concept est formulé comme suit :

« Les dispositions de la présente section visent à favoriser une gestion intégrée des milieux humides et hydriques dans une perspective de développement durable et en considération de la capacité de support de ces milieux et de leur bassin versant.

Elles ont notamment pour objectif d’éviter les pertes de milieux humides et hydriques et de favoriser la conception de projets qui minimisent leurs impacts sur le milieu récepteur.

De plus, elles exigent des mesures de compensation dans le cas où il n’est pas possible, pour les fins d’un projet, d’éviter de porter atteinte aux fonctions écologiques et à la biodiversité des milieux humides et hydriques. » (LQE)

On repère les trois étapes de la hiérarchie d’atténuation dans le deuxième et le troisième alinéa. Les étapes consistent à éviter, minimiser et compenser. En plus de la hiérarchie d’atténuation, le premier alinéa de cet article fait référence à la capacité de support des MH et de leur BV. Le concept de hiérarchie d’atténuation ainsi que celui de capacité de support feront l’objet d’une analyse plus poussée dans les chapitres 4 et 5.

3.7 Loi sur le ministère du Développement durable, de l’Environnement et des Parcs

Les modifications apportées à la Loi sur le ministère du Développement durable, de l’Environnement et des Parcs sont mineures. Elles visent principalement à la gestion des fonds perçus lorsqu’il y a perte de MHH. Ces fonds seront redistribués pour financer les projets de compensation.

3.8 Plans régionaux des milieux humides et hydriques

L’ensemble des MRC du Québec devront s’être dotées d’un PRMHH d’ici le 16 juin 2022 (Loi concernant des mesures de compensation pour la réalisation de projet affectant un milieu humide ou hydrique). Ce dernier est un outil de planification qui permettra d’encadrer le développement sur le territoire. De manière à faciliter la réalisation par les MRC des PRMHH, le gouvernement a mis en place certains outils.
Les deux sections suivantes présentent le guide décrivant la démarche d’élaboration des PRMHH ainsi que le programme d’aide mis en place pour supporter les MRC. (Martel, Joly, Dufour Tremblay et Dy, 2019)

3.9 Guide d’élaboration de plans régionaux des milieux humides et hydriques

Le guide nommé Les plans régionaux des milieux humides et hydriques - Démarche d’élaboration est un outil qui s’adresse tout particulièrement aux MRC qui seront les maîtres d’œuvre des PRMHH. La première partie du guide présente l’encadrement légal et le contexte dans lequel les PRMHH seront élaborés. La deuxième partie du guide s’intéresse à la manière dont les PRMHH seront élaborés. (Martel et al., 2019)

3.9.1 Première partie

La figure 2.1 résume l’ensemble des lois, règlements et outils de planification qui régissent l’élaboration et le fonctionnement des PRMHH. Les quatre lois illustrées dans cette figure sont les mêmes que celles présentées dans les sections précédentes. Même si la majorité des éléments compris dans la figure 2.1 ont été expliqués dans le texte plus haut, leur disposition dans ce schéma favorise la compréhension et les liens qui les unissent. Parmi les éléments présentés dans ce tableau n’ayant pas déjà été abordés, notons les orientations gouvernementales en matière d’aménagement du territoire et la PPRLPI. La figure met également en lumière la complexité inhérente à l’élaboration de PRMHH, attribuable aux multiples dimensions légales les régissant.
ON trouve également dans la première partie du guide les trois principes fondamentaux supportant le PRMHH. Le premier principe consiste à mettre en place une approche de conservation favorisant l’évitement. Lorsque l’évitement n’est pas possible, des mesures de compensation sont mises en place. L’objectif est d’équilibrer les superficies ainsi que les fonctions écologiques et de la biodiversité. Les moyens d’y parvenir sont :

1. La désignation de MHH de grande valeur écologique;
2. Les PRMHH;
3. La séquence d’atténuation « éviter-minimiser-compenser »;
4. La compensation balisée par voie réglementaire;
5. Le programme de restauration et de création de MHH. (Martel et al., 2019)

Ces cinq moyens sont complémentaires. Comme il a été spécifié précédemment, tous les MH d’une MRC sont théoriquement protégés par l’article 22 premier alinéa paragraphe quatre de la LQE, puisque l’obtention d’une autorisation environnementale est nécessaire pour toute intervention. Le PRMHH devra...
être pris en compte lors de l’analyse de tous les projets affectant les MH. Ce dernier devra respecter un équilibre entre les zones où des interventions pourraient avoir lieu (perte de MH) et celles où des projets de restauration et de création seraient réalisables (gain de MH). (Martel et al., 2019)

Le deuxième principe est celui d’une gestion cohérente par BV. Les MRC devront analyser les problématiques relatives au MHH à l’échelle du ou des BV auxquelles elles appartiennent. Dans cette optique, il est planifié que des MRC se situant dans un même BV pourraient rédiger conjointement un PRMHH. Les MRC auront la responsabilité de consulter les acteurs clés lors de l’élaboration du plan, notamment les OBV, les tables de concertation régionales (TCR) et les conseils régionaux de l’environnement (CRE). (Martel et al., 2019)

Finalement, le troisième principe veut que les PRMHH prennent en compte les enjeux reliés aux changements climatiques. L’objectif principal de ce principe est de favoriser l’adaptabilité à ces derniers en maximisant certains des services écologiques rendus par le MHH. (Martel et al., 2019)

3.9.2 Deuxième partie

La deuxième partie du guide s’attarde à la manière dont les PRMHH seront conçus. La figure 3.2 offre un aperçu des étapes menant à la réalisation de ces derniers. La première étape consiste à préparer et amorcer la démarche. Les MRC ont l’obligation de consulter les OBV, les TCR, les CRE ainsi que les MRC voisines. Elles ont aussi l’obligation d’adopter une méthodologie leur permettant d’acquérir les informations nécessaires selon les préoccupations propres à leur territoire. L’élaboration d’un portrait et d’un diagnostic représente les deuxième et troisième étapes. Le portrait dessine les grandes lignes du contexte d’aménagement, les principales caractéristiques socio-économiques, les orientations de planification urbanistique, les recensements des MHH, le bilan des perturbations et le recensement des milieux naturels d’intérêt. L’objectif du diagnostic est d’identifier des MHH d’intérêt pour la conservation. (Martel et al., 2019)

Une fois ces étapes complétées, la MRC devra définir ses enjeux de conservation. Il s’agit de la quatrième étape. L’analyse du contexte d’aménagement permet de mettre en relief les incompatibilités de la planification avec les MHH d’intérêt identifiés à l’étape précédente. Il est alors possible de modifier le SAD de manière à limiter le développement dans ces MHH ou encore de revoir la finalité du diagnostic de manière à protéger de nouveaux MHH ne présentant pas de conflit d’usage. Finalement, l’ampleur des pertes anticipées ou autorisées doit être comptabilisée de manière à équilibrer le tout avec les gains
La cinquième et dernière étape consiste à élaborer des stratégies de conservation. Il s’agit de mettre en place des règlements, de favoriser l’acquisition de connaissances, des actions de sensibilisation ou encore des projets d’intervention. De manière à mettre en branle la stratégie de conservation et de suivre son évolution, la MRC devra également élaborer un plan d’action ainsi que des mesures de suivi. (Martel et al., 2019)

Figure 3.2 Étape d’élaboration d’un plan régional des milieux humides
(tiré de : Martel et al., 2019, p. 24)
3.9.3 Programme d’aide pour l’élaboration d’un plan régional des milieux humides

Un programme d’aide financière a été mis sur pied de manière à supporter les MRC dans la réalisation de leur PRMHH. Une somme maximale de 83 300 $ peut être accordée à ces dernières. Comme l’entrée en vigueur des PRMHH est prévue pour le 16 juin 2022, le programme prendra fin le 31 mars 2021. (MELCC, 2019a)

3.10 Programme de restauration et de création de milieux humides et hydriques

Les compensations financières générées par la LCMHH sont versées dans le « fonds de protection de l’environnement et du domaine hydrique de l’État ». La LCMHH prévoit que « des programmes » seront mis sur pied par le ministre pour « favoriser la restauration et la création de MHH » (LQE). À ce jour, un seul programme a été mis sur pied.

Ce programme a été élaboré pour compenser les pertes qui ont eu lieu entre l’entrée en vigueur de la loi (le 16 juin 2017) et le 31 décembre 2018. Comme le programme compense financièrement, pour chaque MRC, l’ensemble des pertes ayant eu lieu, la cible est de faire de la « compensation avec avantage » plutôt que « du trait pour trait » (MELCC, 2019b). Il s’agit non de compenser un MH par un autre comparable, mais de viser un nouveau MH avec des fonctions écologiques supérieures. Le financement pour les projets prendra fin le 16 juin 2022 tandis que ceux-ci devront être réalisés avant le 16 juin 2025. L’objectif du programme est de compenser l’équivalent des 63 hectares de MH. Cet objectif se décline en deux volets : le soutien à la conception de projets de restauration ou de création de MHH et le soutien à la réalisation de projets de restauration ou de création de MHH. Le programme est pourvu d’un budget de 30M de dollars dont 1M est dédié à la conception et 29M à la réalisation des activités compensatoires. (MELCC, 2019b) Considérant qu’un hectare équivaut à 10 000 m², le budget approximatif au mètre carré est de 46 $.

3.11 Règlement sur la compensation pour l’atteinte aux milieux humides et hydriques

Le règlement sur la compensation pour l’atteinte aux milieux humides et hydriques (RCAMHH) a été édicté le 17 août 2018. Les principaux objectifs du règlement sont d’identifier les activités soustraites au règlement, de préciser les modalités selon lesquelles les compensations financières seront calculées et de préciser les situations où les compensations peuvent être réalisées par le demandeur au lieu de verser une compensation monétaire. (RCAMHH)
Il existe plus d’une dizaine de cas de figure prévus par le règlement où l’obligation de compensation est annulée. Premièrement, les projets impactant de petites superficies de MH (moins de 30 mètres) ne doivent pas être compensés. Ensuite, les travaux qui visent à améliorer les fonctions écologiques d’un MH sont également exemptés. Les travaux d’entretien d’un cours d’eau (compétence municipale) ainsi que les travaux d’urgence ou encore suivant un sinistre ne sont pas soumis à l’obligation. Finalement, certaines activités commerciales comme l’établissement d’une cannebergière ou d’une bleuetière sont dégagées de l’obligation de compenser. L’article 13 du RCAMHH précise que ces deux industries devront remettre en état les MH impactés à la cessation des activités. (RCAMHH)

Pour d’autres activités, il est possible de remplacer la contribution financière par la mise en œuvre de travaux de compensation par le demandeur de l’autorisation environnementale. C’est le cas dans les travaux relatifs à des infrastructures routières, certains types d’exploitation minérale, la mise en culture de parcelles maraîchères et les travaux exécutés dans des parcs industriels. Mis à part ces exceptions, tout projet impactant un MH doit verser une compensation financière. (RCAMHH)

Le calcul se fait en multipliant la superficie du MH impacté (en m²) par la somme de la valeur du terrain et du coût de la compensation (calcul détaillé dans l’annexe 1). Le coût de la valeur du terrain est déterminé en fonction de la valeur du terrain vague pour chaque MRC et est disponible en annexe IV du règlement. Quant à lui, le coût de la compensation est de 20 $ du mètre carré, mais est modulable en fonction de deux facteurs. Le premier facteur se rapporte à l’atteinte au MH, qui est calculée en comparant l’état initial du MH avec celui une fois que les perturbations ont eu lieu. Par exemple, un MH « non dégradé » qui aurait subi un impact « très élevé » se verrait attribuer un facteur de 1, soit le facteur maximum pour cet aspect (le minimum étant 0,3). (RCAMHH) Le deuxième facteur est régional et prend en considération le contexte du site. Il illustre l’intensité des pressions anthropiques et leurs impacts présumés sur les fonctions des MH ainsi que sur la biodiversité (MELCC, 2018). Ce dernier peut varier de 0,3 à 2. Considérant ces deux facteurs et en excluant la valeur du terrain, le prix pour un mètre carré peut varier de 1,8 $ à 40 $.

3.12 En résumé

Bien que tous les MH de la province bénéficiaient d’une protection particulière depuis 1993 grâce à l’article 22 de la LQE, ils n’ont cessé de se dégrader. La LCMHH bonifie grandement le régime de protection des MH et s’inspire des méthodes de gestion largement utilisées à l’international. Toutefois, la LCMHH est une loi complexe qui ne sera entièrement fonctionnelle que dans quelques années. Malgré le court laps de
temps s’étant écoulé depuis son adoption, l’analyse de ses différents constituants permet d’ores et déjà d’anticiper les points forts et les points faibles de cette nouvelle loi.

Le prochain chapitre s’intéresse à d’autres modèles de protection de MH. De manière à faire ressortir les comparables, la liste à puce suivante présente les éléments clefs présentés dans le chapitre 3 :

- La LCMHH modifie plusieurs lois maitresses en gestion de l’environnement.
- La Loi sur l’eau a été modifiée de manière à donner une place plus formelle au MH. La création des PRMHH et le programme favorisant la restauration et la création des MH sont enchâssés dans cette loi.
- La loi sur la conservation du patrimoine naturel a été modifiée de manière à accorder la possibilité au ministre de désigner sur un plan des MH d’exception. Ces milieux seront dorénavant répertoriés dans un registre public.
- La LAU a été modifiée de manière à ce qu’elle légifère non plus seulement sur les milieux hydriques, mais également sur les MH.
- La section V.1 de la LQE, mise en place par la LCMHH, présente la structure de la hiérarchie d’atténuation pour les MH et précise les exigences du ministère relatives à l’obtention d’une autorisation environnementale.
- Toutes les MRC et les villes ayant des responsabilités de MRC doivent se doter de PRMHH d’ici le 16 juin 2022. Les principes guidant leur rédaction sont : favoriser l’évitement, la GIRE, et l’adaptabilité aux C.C.
- La rédaction des PRMHH est un exercice itératif qui trace le portrait et le diagnostic des problématiques reliées à la conservation de MH. Ces informations permettront de classer les MH dans deux grandes catégories : à conserver ou utilisables pour le développement. La MRC doit assurer l’équilibrage entre les MH de moindre intérêt et ceux qui pourront être restaurés. Les MH qui, dans leur contexte, se distinguent en vertu de leur biodiversité ou de leurs fonctions seront désignés pour la conservation.
- Le programme de restauration et de création de MHH vise à compenser les pertes ayant eu lieu entre le 16 juin 2017 et le 31 décembre 2017.
- Le règlement sur la compensation pour l’atteinte au MHH précise dans quel contexte et selon quelles modalités des compensations seront exigées. La formule servant à calculer la compensation monétaire y est détaillée.
4 REGARDS SUR DES MODÈLES AUTRES DE COMPENSATION DES MILIEUX HUMIDES

Le Québec n’est pas la seule juridiction ayant mis en place une structure permettant de compenser les pertes de MH. Ce chapitre s’intéresse à différents modèles de compensation. Premièrement, une brève analyse critique du système états-unien est présentée. Le choix de ce modèle repose sur le fait que ce pays a été le premier à mettre en place un programme de compensation pour la perte de MH. Dès lors, le fait qu’il soit en application depuis plusieurs décennies procure une abondante littérature portant sur l’expérience. Deuxièmement, l’analyse se penchera sur l’outil de gouvernance qu’est le guide *Quand l’habitat est-il suffisant?* produit pour le sud-est du territoire ontarien. Ce dernier offre une réflexion s’articulant autour de la capacité de support et des seuils. Finalement, la politique de l’UICN sera analysée. Cette dernière offre une vision sans compromis de la compensation de la biodiversité.

4.1 La stratégie états-unienne

4.1.1 Le bilan des activités compensatoires

Le bilan en ce qui a trait à la conservation des MH aux États-Unis ne fait pas l’unanimité. Il apparaît clair que la CWA ait permis de compenser, du moins en partie, les pertes de MH, mais l’on ne s’entend pas sur la portée de ces gains. Certains experts en la matière stipulent que la création de milliers d’acres de MH est directement attribuable à cette réglementation (Kate, Bishop et Bayon, 2004). Toutefois, peut-on
véritablement parler d’aucune perte nette ? Kihslinger nous apprend qu’à chaque année pour les 26 000 acres de MH détruits, la création de 47 000 acres est exigée en vertu de la CWA. Ceci semble constituer un gain net (Kihslinger, 2008). De manière à mieux comprendre le succès de cette compensation, des méta-analyses sur ce sujet ont été réalisées. Ces dernières évaluent l’efficacité selon deux critères : les performances administratives et écologiques. Kihslinger, qui s’intéresse aux performances administratives, mentionne que parmi les 19 études analysées, neuf sont arrivées à la conclusion que le projet ne respectait pas les permis, c’est-à-dire que l’activité compensatoire n’était pas conforme aux exigences qui y étaient édictées. Les différences observées dans l’efficacité du suivi administratif varient donc grandement (Kihslinger, 2008). Nous verrons dans le chapitre 5 qu’il est important de créer des outils permettant de suivre efficacement les activités compensatoires pour simplifier la gestion et limiter ce type d’erreur.

Les études portant sur la performance écologique sont encore plus mitigées et indiquent que peu de projets rencontrent leurs cibles écologiques. C’est d’après ce constat que Kihslinger conclut que la conformité administrative n’est pas un indicateur adéquat de la conformité environnementale (Kihslinger, 2008). C’est-à-dire que, même pour les activités compensatoires se conformant à toutes les exigences administratives, le succès écologique n’est pas garanti. Par exemple, une étude menée par le Conseil national de recherche en 2001 arrive à la conclusion que seulement trois projets sur quatre atteignent les cibles de superficie de leurs permis (National Research Council, 2001). Pire encore, de nombreuses études recensées par Kihslinger démontrent que les sites restaurés, même lorsqu’ils atteignent les cibles de superficie, ne rencontrent que rarement les cibles visant les fonctions écologiques. Selon ces études, de 50 à 93 % des sites ne compensent pas « fonction pour fonction » le site d’origine. Par exemple, sur 143 sites restaurés situés en Californie, 27 % d’entre eux ne répondent pas aux critères pour être considérés comme des MH par la loi. (Kihslinger, 2008). Parmi les estimations les plus pessimistes, mentionnons les travaux réalisés par Turner et son équipe qui estiment que, à l’échelle du pays, seulement 20 % des MH détruits sont compensés en superficie et en fonctions (Turner, Redmond et Zedler, 2001). Bien qu’il n’existe pas de consensus sur l’efficacité des activités compensatoires, il va sans dire que le système éta-

Parmi les solutions recensées par Kihslinger, plusieurs auteurs s’entendent pour dire que l’amélioration des permis, notamment par l’adoption de cibles de performance environnementale telles que le type de sol, l’hydrologie, les communautés animales et végétales, est un élément de réponse essentiel. Un autre
aspect qui favoriserait l’atteinte des objectifs de restauration consiste en une meilleure analyse du contexte propre au BV ciblé par lesdits travaux. Finalement, une surveillance plus adéquate par les autorités environnementales des travaux de restauration permettrait de s’assurer que les cibles fixées au permis sont atteintes. (Kihslinger, 2008) Burgin (2010) mentionne que les autorités gouvernementales (US Army Corps of engineers) responsables de la compilation des statistiques relatives aux pertes et aux gains de MH ont échoué à cette tâche, à un tel point où l’analyse de l’efficacité du programme est compromise.

4.1.2 L’impact sur la biodiversité

Selon Burgin (2010), il est illogique de croire qu’il est possible de remplacer un MH dans un type d’habitat par sa restauration dans un autre type d’habitat si l’un des objectifs est la conservation de la biodiversité. Effectivement, la survie des espèces est souvent largement compromise par la destruction d’un habitat spécifique qui ne peut être remplacé que par le même type d’habitat (Burgin, 2010). Elle affirme également que les projets de restauration ou de protection ont souvent lieu dans des zones qui n’ont aucun attrait pour le développement et qui sont par le fait même déjà protégées. De plus, les mesures permettant de suivre l’efficacité des projets de compensation se contentent généralement de quantifier les dimensions les plus simples, telle la composition des communautés végétales ou encore les superficies. Toutefois, les éléments plus complexes et plus importants comme les services écologiques ou la diversité génétique des dites communautés sont souvent ignorés (Burgin, 2010).

Effectivement, la biodiversité ou l’habitat sont deux concepts difficilement quantifiables qui ne se limitent pas seulement à quelques paramètres physiques. La compensation d’un MH par un autre est un échange s’inscrivant dans une « structure » se rapprochant d’un marché économique standard et s’inspire de la manière dont les économistes ont su monétiser les échanges de carbone. Toutefois, bien qu’il soit relativement aisés de quantifier le nombre de molécules de CO\textsubscript{2} émises dans l’atmosphère, il n’est pas aussi facile de quantifier la valeur d’un MH. C’est pour cette raison que certains auteurs qualifient de tour de force l’idée même d’un marché capable de compenser des pertes de biodiversité (Maron et al., 2012). De plus, de manière à éviter que l’opération ne devienne trop compliquée, il est nécessaire de réduire la valeur des sites à leur plus simple expression afin d’encadrer leur compensation. Dans ces conditions, il est à prévoir que nous assisterons à une homogénéisation des sites de compensation conséquence de cette simplification. (Dauguet, 2015). Par exemple, au Québec, l’état initial d’un MH se traduit par un facteur compris entre 0,3 et 1 (voir tableau 5.1). D’un point de vue administratif, il est nécessaire que le système de compensation repose sur un modèle simple, mais, comme nous le verrons dans la section 5.1, cette simplification se fait aux dépens de la qualité des sites de compensation. Aux États-Unis, la méthode
permettant de quantifier la biodiversité change d’un état à l’autre et repose également sur une simplification de la réalité. Le sous-chapitre suivante présente les méthodes de caractérisation rapide états-uniennes, plus spécifiquement la méthode californienne.

4.1.3 Les méthodes de caractérisation rapide des fonctions écosystémiques

L’expérience de nos voisins du sud nous apprend également qu’il est essentiel de simplifier les méthodes de caractérisation des MH. Effectivement, si la caractérisation s’avère trop longue et trop coûteuse, il n’est pas réaliste de penser qu’elle sera appliquée à chaque étape. Rappelons que dans le cadre d’activités compensatoires, au moins deux caractérisations devront être effectuées : l’une permettant de caractériser le site qui sera impacté et l’autre le site de compensation. Aux États-Unis, on a développé des méthodes permettant de rapidement caractériser les fonctionnalités des MH (rapid assessment methods). Quétier résume ainsi ces méthodes :

« L’objectif des méthodes d’évaluation rapide est donc d’estimer rapidement et de façon reproductible l’état d’un système écologique complexe, ou ses fonctionnalités écologiques, à l’aide d’indicateurs simples et prédéfinis évalués sur le terrain et à partir d’informations cartographiques accessibles publiquement. »(Quétier et al., 2012)

L’une des méthodes les plus documentées est la méthode rapide d’évaluation californienne (CRAM pour *California rapid assessment method*). Elle a été rédigée par le groupe de travail de surveillance des MH de la Californie (CWMW pour *California wetland monitoring workgroup*). La Californie, comme tous les états états-uniens, encadre les activités de compensation de MH. De manière à rendre des comptes aux contribuables ainsi qu’aux promoteurs privés qui investissent d’importantes sommes dans des projets de compensation, la CRAM a été créée au début des années 2000. Cette dernière a été largement bonifiée au fil des ans et la dernière version date de 2013. Certains des objectifs de la CRAM sont : la capacité d’évaluer les projets de compensation en ayant une meilleure compréhension de l’état des MH à l’échelle étatique, le désir d’uniformiser les méthodes de suivi, de réduire les coûts de caractérisation et l’amélioration de la qualité des données. Lors de la création de la CRAM, le CWMW a fait une revue de littérature des méthodes comparables et est arrivé au constat que les méthodes les plus efficaces prenaient en considération les structures physiques et/ou biologiques des milieux humides. Ces dernières étaient par la suite corrélatées avec un ou plusieurs gradients de perturbation. Les indicateurs ont été sélectionnés suite à des études terrain plus exhaustives en vertu de leur représentativité de fonctions écologiques données. (*California Wetlands Monitoring Workgroup*, 2013)
Comme la majorité des méthodes rapides d’évaluation des milieux humides, la CRAM suit trois principes de base. Le premier étant que l’évaluation doit se limiter aux conditions existantes sans se soucier du passé ou encore du futur. Le deuxième est que la méthode doit être rapide. Par exemple, la CRAM a été réfléchie de manière à ce que deux personnes puissent évaluer un site en une demi-journée. Finalement, le troisième principe est que la CRAM repose principalement sur des données terrain et non pas sur des données existantes. (California Wetlands Monitoring Workgroup, 2013) Finalement, comme le résume Quétier (2012), le « CRAM évalue l’état des zones humides à partir de quatre critères ou attributs pour lesquels des indicateurs narratifs sont convertis en scores numériques qui sont additionnés pour donner un score total à la zone évaluée, avant et après impact ou compensation. »(Quétier et al., 2012). La figure 4.1 schématise les quatre critères évalués par la CRAM.

![Figure 4.1 Schématisation des quatre critères sur lesquels est basée la CRAM](Tiré de : Quétier et al., 2012, p. 5)

4.1.4 L’aspect économique des activités compensatoires

Des auteurs se questionnent également sur les dérives économiques du système de compensation. Effectivement, l’importance des pertes de MH annuel alimente un système où d’importantes sommes d’argent sont en jeux. L’importance du marché a comme effet de détourner les activités compensatoires de leur objectif premier au profit de la rentabilité. (Ellison et Daily, 2008) Par exemple, à l’échelle du pays, on parle de quelque 80 000 permis émis chaque année pour des investissements de plus de 3 milliards de
dollars. (Stokstad, 2008) L’importance de ce marché inquiète dans un premier temps simplement en raison de son importance. Considérant que ce sont des promoteurs privés qui récoltent la grande majorité de ces sommes, certains chercheurs craignent que l’impact premier de ces milliards soit l’engendrement d’importantes marges de profits (Burgin, 2010; Ellison et Daily, 2008). Malgré le fait que des centaines de millions de dollars aient été dépensés dans des activités compensatoires, les conditions des permis ne sont que rarement atteintes (National Research Council, 2001). De plus, le nombre important de permis émis sur une base annuelle fait penser que la hiérarchie d’atténuation n’est pas appliquée comme elle se doit (Burgin, 2010; Ellison et Daily, 2008). Effectivement, l’étape la plus importante est l’évitement.

4.1.5 La réforme de 2008

En 2008, le régime de protection des MH états-uniens a été modernisé. L’un des éléments les plus importants de cette réforme est le fait que les projets de compensation doivent maintenant se faire en prenant compte des BV (comme c’est le cas avec le nouveau régime québécois) (USACE et EPA, 2008). Bien que cette réforme ait le potentiel de corriger certains des problèmes, les scientifiques s’interrogent sur la capacité des acteurs concernés à appliquer les nouvelles contraintes. En effet, afin d’évaluer la conformité d’un projet de restauration, les autorités en la matière doivent évaluer le plan du dit BV composé d’un inventaire détaillé des cours d’eau, des menaces et des sites priorisés pour la restauration. Toutefois, l’information nécessaire n’existait généralement pas au moment de la réforme et très peu d’états ont investi les ressources appropriées pour l’élaboration d’un tel plan. (Stokstad, 2008) En contrepartie à cette réalité, au Québec, les PDE pourront offrir une partie des réponses concernant les BV même si les connaissances sont, ici aussi, fragmentaires.

Un autre changement important qu’a eu cette réforme sur les projets de compensation est de modifier la manière dont les projets de restauration sont menés. Il existe trois cas de figure possibles, soient : une compensation sous la responsabilité du titulaire (permittee-responsible mitigation), une compensation utilisant les services d’une banque d’habitats (mitigation banking) et une compensation tributaire d’un paiement à une agence gouvernementale (in-lieu fee). La compensation sous la responsabilité du titulaire est un type de compensation selon laquelle l’entrepreneur responsable de la perte de MH compense par ses propres moyens en fonction des exigences d’un permis pour lequel il aura fait une demande préalable (USACE et EPA, 2008). Avant la réforme de 2008, il s’agissait du mode de compensation le plus fréquent, mais c’était également celui pour lequel on observait les moins bons résultats (Levrel, Scemama et Vaissière, 2017). Au Québec, très peu d’industries sont soustraites de l’obligation de verser des
compensations financières, mais c’est le cas des cannebergières et des minières (RCAMHH). Ces dernières devront remettre en état les MH impactés lors de la cessation des activités. Pour d’autres secteurs d’activité tels, les infrastructures routières ou encore la culture maraîchère, le demandeur peut s’acquitter de la compensation financière ou exécuter des travaux de restauration (RCAMHH).

Les banques d’habitats sont un type de compensation qui a lieu avant toute perte de MH. Un promoteur crée, restaure ou protège une large superficie de MH pour lequel il obtient des permis. Ces permis peuvent ensuite être vendus à des promoteurs qui anticipent une perte de MH attribuable à leur projet. (USACE et EPA, 2008) Depuis la réforme, c’est ce mode de compensation qui est le plus fréquent, car c’est celui qui est mis de l’avant dans les nouvelles règles environnementales de l’agence de protection de l’environnement états-unienne. Au Québec, en revanche, ce type de compensation n’est pas envisagé (RCAMHH).

Finalement, la compensation tributaire d’un paiement à une agence gouvernementale est le mode de compensation le moins populaire aux États-Unis, mais celui qui s’apparente le plus au système mis en place au Québec. Les fonds amassés sont gérés par une organisation publique ou encore une organisation sans but lucratif. Un peu plus de 10 % des projets de compensation ayant eu lieu en 2014 se sont faits sous ce mode (Levrel et al., 2017).

4.1.6 Les banques d’habitats et les gains temporels

Comme nous venons de le voir, le modèle le plus populaire aux États-Unis est celui des banques d’habitats. Parmi les avantages généralement attribués aux banques d’habitats en comparaison aux compensations sous la responsabilité du titulaire, notons : une meilleure capacité de réguler les projets due à un moins grand nombre d’intervenants, un taux de succès plus élevé attribuable à la plus grande superficie des projets et le fait que les gains écologiques ont lieu avant les pertes (Vesk, Nolan, Thomson, Dorrrough et Nally, 2008; Gardner et al., 2013). La capacité d’assurer que les pertes de MH n’auront pas lieu avant que les gains aient été assurés est la qualité la plus importante de ce modèle. Cet aspect est étudié plus en profondeur dans la sous-chapitre 5.4.

Toutefois, il existe également de nombreux désavantages à ce mode de conservation. Tout d’abord, certains auteurs arguent que cette marchandisation ne promeut pas une diminution de la destruction de la biodiversité, mais cherche plutôt à la légitimer avec, pour conséquence, la normalisation de ces dites pertes (Spash, 2015). De plus, la marchandisation ayant lieu entre l’acteur responsable des pertes et celui
qui offre des gains repose forcément sur une conceptualisation imprécise de la valeur fondamentale du MH disparu (Dauguet, 2015).

L'utilisation de banques d'habitats privées soulève également des questions concernant la viabilité des entreprises responsables de ces sites. Il est effectivement légitime de se questionner sur la gestion à long terme ainsi que sur la pérennité de telles entreprises. (Levrel et al., 2017) Finalement, certains chercheurs rappellent qu’il est inadéquat d’utiliser les sommes perçues pour compenser des pertes de manière à atteindre les cibles de conservation préalablement fixées par le gouvernement. Les projets de compensation doivent s’ajouter aux engagements et aux cibles pris par une administration. (Maron, Gordon, Mackey, Possingham et Watson, 2015)

4.2 La stratégie ontarienne

Bien que ce guide ne s’intéresse pas seulement aux MH et qu’il n’ait pas été conçu spécifiquement dans l’objectif de limiter la perte de ces écosystèmes, la vision qu’il propose est pertinente et pourrait être mise à profit au Québec. Ce guide est un outil d’aide à la gouvernance axé sur la conservation et la restauration des écosystèmes. Toutefois, il est important de souligner que, contrairement à la LCMHH, ce guide n’a pas force de loi.

4.2.1 Quand l’Habitat est-il suffisant ?

Le sud-est de l’Ontario s’est doté d’un guide fort pertinent qui permet justement de nuancer les stratégies de conservation. La stratégie de ce guide s’articule autour de lignes directrices qui sont établies en fonction de seuils reposant sur des évidences scientifiques (Environnement Canada, 2013). On entend par seuil une limite à ne pas dépasser de manière à conserver les fonctions écosystémiques. Comme chaque BV est différent et qu’il est soumis à des problématiques qui lui sont propres, il n’est pas toujours aisé de proposer
des seuils précis. Par exemple, le guide recommande de toujours protéger une bande tampon autour des MH. Cette recommandation constitue une ligne directrice. Toutefois, selon les fonctions écosystémiques que l’on désire préserver, la bande tampon adéquate pourrait varier de quelques mètres à plusieurs dizaines de mètres. Cette appréciation plus précise de la bande tampon repose sur des seuils (Environnement Canada, 2013).

Les lignes directrices présentées s’appliquent toutes au sud-est de l’Ontario. Le guide reste fort approprié pour les décideurs québécois considérant les similitudes qui existent entre le sud-est ontarien et le sud du Québec. Qui plus est, au-delà des similitudes dans les biomes des deux provinces, c’est la structure de ce guide et la vision qu’il promeut qui le rendent si pertinent.

L’un des premiers éléments d’intérêt du guide est les principes qui ont guidé la rédaction. Nombre d’entre eux font écho à des éléments de réponse qui ont été abordés précédemment. Parmi ceux-ci, nommons :

- L’étape la plus importante consiste à conserver les habitats existants;
- Les lignes directrices qui y sont édictées constituent le minimum nécessaire pour des écosystèmes viables;
- Les lignes directrices ne doivent pas être contraignantes, mais s’adapter au contexte local;
- La nécessité de prendre en compte les autres perturbations (autre que la perte d’habitat) (Environnement Canada, 2013).

On remarque plusieurs éléments communs entre les principes de Quand l’Habitat est-il suffisant? et l’esprit de la LCMHH : l’importance de l’évitement, de poursuivre les efforts de conservation autres que ceux mis en place dans le cadre des projets de compensation et l’adaptabilité aux différents territoires. La distinction majeure entre le guide ontarien et la LCMHH est l’importance accordée à la capacité de support. Effectivement, on y édicte des lignes directrices reposant sur des seuils précis au-delà desquels les écosystèmes s’effondrent. Le tableau 4.1 présente l’ensemble des lignes directrices du guide qui touchent à des éléments particuliers de la capacité de support des MH. La pertinence de ces lignes directrices pour le Québec est élaborée dans le sous-chapitre 5.3.
Tableau 4.1 : Sommaire des lignes directrices sur les habitats humides et forestiers (inspiré de : Environnement Canada, 2013, p. 15)

<table>
<thead>
<tr>
<th>Paramètres</th>
<th>Lignes directrices</th>
</tr>
</thead>
<tbody>
<tr>
<td>Habitats des milieux humides</td>
<td></td>
</tr>
<tr>
<td>1. Pourcentage de milieux humides dans le bassin versant et sous bassin versant</td>
<td>Assurer le principe d’aucune perte nette de MH et viser la conservation et la restauration des fonctions des MH à l’échelle des BV et SBV en suivant les références historiques. Au minimum, le plus élevé de : (a) 10 % de chaque grand BV et 6 % de chaque SBV, ou (b) 40 % de la couverture historique des terres humides du BV, devrait être protégé et restauré.</td>
</tr>
<tr>
<td>2. Emplacement des milieux humides dans le bassin versant</td>
<td>Les zones humides peuvent offrir des avantages partout dans un bassin versant, mais des fonctions particulières des MH peuvent être accomplies en réhabilitant les MH dans des endroits clés, tels que les zones en amont (pour le déversement et la recharge des eaux souterraines), les plaines inondables et les MH côtiers. Il faudrait également envisager de protéger les réseaux de MH isolés en milieux urbains et ruraux.</td>
</tr>
<tr>
<td>3. Quantité de végétation naturelle adjacente aux milieux humides</td>
<td>Des zones de fonctions essentielles devraient être établies autour des MH en fonction de la connaissance des espèces présentes et de l’utilisation des types d’habitats. Les zones de protection devraient protéger les attributs des MH contre les facteurs de stress. Les largeurs recommandées doivent tenir compte de la sensibilité du MH et des espèces qui en dépendent, ainsi que des conditions environnementales locales (par exemple, pentes, sols et drainage), de la structure végétative de la zone de protection et de la nature des changements dans les utilisations des terres adjacentes. Les facteurs de stress doivent être identifiés et atténués par la conception de la zone de protection.</td>
</tr>
<tr>
<td>4. Restauration des milieux humides</td>
<td>Les efforts de restauration doivent être concentrés sur la restauration des marais et des marécages. Restaurer les fens sous certaines conditions. Pour une restauration efficace, tenir compte des conditions locales, végétaliser à l’aide de végétaux prélevés localement et, dans la mesure du possible, se référer aux emplacements ou aux conditions historiques des zones humides. Prioriser les zones d’amont, les plaines inondables et les zones humides côtières comme lieux de restauration.</td>
</tr>
<tr>
<td>Habitats forestiers</td>
<td></td>
</tr>
<tr>
<td>1. Pourcentage de couvert forestier</td>
<td>Un couvert forestier de 30 % à l’échelle du bassin versant est le seuil minimal de couverture forestière. Cela équivaut à une approche à haut risque qui ne peut soutenir moins de la moitié de la richesse potentielle en espèces et des systèmes aquatiques compromis; 40 % du couvert forestier à l’échelle du bassin versant équivaut à une approche à risque moyenne susceptible de soutenir plus de la moitié de la richesse potentielle en espèces et des systèmes aquatiques modérément sains; Un couvert forestier de 50 % ou plus à l’échelle du bassin versant équivaut à une approche à faible risque susceptible de soutenir la plupart des espèces potentielles et des systèmes aquatiques sains.</td>
</tr>
</tbody>
</table>

4.3 La vision de l’Union internationale pour la conservation de la nature

L’UICN est composée de gouvernements et de sociétés civiles. Elle est particulièrement reconnue pour son travail de protection des espèces en péril et pour la création de l’outil de communication qu’est « la liste rouge mondiale des espèces menacées ».(UICN, 2019) En 2016, elle a publié une politique portant sur la
compensation de la biodiversité. Cette politique est très pertinente dans le cadre de cette analyse, car elle ne fait aucun compromis. Effectivement, au Québec comme ailleurs, les lois et politiques de conservation s’inscrivent dans un contexte politique et légal. Ce dernier peut limiter ou bonifier la portée de la politique. Pour ces raisons, la politique de l’UICN est plus détachée de tout élément partisan. La prochaine sous-section souligne les éléments pertinents de la politique pour l’analyse du modèle québécois. Dans le cadre de cette analyse, les éléments les plus importants à retenir sont : la précaution avec laquelle l’UICN recommande cette approche, l’importance qu’elle accorde à la hiérarchie d’atténuation et les conditions sous lesquelles la compensation est envisageable.

4.3.1 La politique de l’Union internationale pour la conservation de la nature

En 2012, prenant acte de l’intérêt et de l’utilisation grandissants par la communauté internationale des mesures compensatoires à l’atteinte de la biodiversité, l’UICN a mis sur pied un comité ayant pour tâche d’analyser la pratique. Rappelons que le système de compensation pour la perte des MH mis en place au Québec est une version plus ciblée de ce que l’on nomme ailleurs « biodiversity offsets ». La version québécoise n’encadre pas l’ensemble des pertes de biodiversité, mais seulement celles ayant lieu dans les MH. En ce sens, les grands constats qu’offre la politique de l’UICN sont tout à fait transposables au régime de compensation mis en place par la LCMHH. L’objectif du comité mis sur pied par l’UICN est d’offrir des outils permettant de guider les décideurs dans l’élaboration et la mise en place de cette pratique. La politique, adoptée en 2016, fait partie des outils mis sur pied par l’UICN (IUCN, 2016a).

4.3.2 Appliquer la compensation avec précaution

4.3.3 L’importance de la hiérarchie d’atténuation

Un autre élément intéressant de la politique se trouve dans sa section « Portée de la politique ». Il y est énoncé les conditions selon lesquelles la compensation peut ou ne peut pas être utilisée, mettant en relief les limites de cet outil. L’élément central se lit comme suit :

« Dans le cas des conditions spécifiques présentées dans cette Politique, la position de l’UICN est que les compensations relatives à la biodiversité peuvent contribuer positivement à la conservation. Cependant, les compensations relatives à la biodiversité ne sont pertinentes que pour les projets ayant rigoureusement appliqué la hiérarchie des mesures d’atténuation (éviter, minimiser, restaurer/réhabiliter et compenser) et lorsqu’un ensemble complet d’alternatives au projet a été pris en compte. » (traduction libre) (IUCN, 2016)

Dans cette déclaration, l’UICN met l’emphase sur la condition sine qua non de respecter la hiérarchie d’atténuation. Plus précisément, il est spécifié que c’est l’étape d’évitement qui est la plus importante et qu’en aucun cas la compensation ne doit servir d’excuse ou encore de « droit de détruire ». C’est pourquoi, selon l’UICN, il est important que la hiérarchie d’atténuation soit intégrée dans les outils de gouvernance. Comme il a été expliqué dans le chapitre 3 de cet essai, dans la section portant sur la LQE, la hiérarchie d’atténuation est inscrite dans la loi québécoise. Le sous-chapitre 5.5 qui porte sur hiérarchie d’atténuation se penche plus spécifiquement sur cet aspect.

Toujours selon l’UICN, la compensation doit servir à compenser les impacts résiduels de manière à accomplir l’objectif d’aucune perte nette ou encore un gain net. De plus, la politique stipule que sous certaines circonstances, les impacts ne peuvent pas être compensés. Par exemple, les projets touchant des espèces dont le statut de conservation est déjà fortement compromis, ou dont les connaissances garantissant l’efficacité de la compensation sont incomplètes, ainsi que les projets qui touchent un site dont les caractéristiques sont uniques devraient tous être évités.

4.3.4 Compenser la biodiversité seulement sous certaines conditions

Les articles de la section dix de la politique s’intéressent à des éléments clefs garant du succès des mesures de compensation. On mentionne tout d’abord les craintes de l’UICN concernant les difficultés de mesurer et d’échanger la biodiversité. Comme la majorité des projets de compensation doivent tenir compte de plusieurs espèces ainsi que de nombreux habitats, il est effectivement difficile de penser les projets de manière à ce qu’ils prennent en compte l’ensemble de ceux-ci. Il est donc important de mettre en place un système de suivi tenant compte d’une multitude de paramètres représentatifs du milieu impacté, ainsi qu’un suivi plus ciblé pour les espèces ou les habitats ayant un statut de conservation particulier. La
réflexion sur les méthodes de suivi se poursuit plus spécifiquement dans la section portant sur la biodiversité du chapitre 5.
5. DISCUSSION

La mise en contexte, l’analyse des changements législatifs encadrant la conservation des MH au Québec et le chapitre portant sur des modèles autres de compensation des MH ont permis de mettre en lumière des points de vigie relatifs à la LCMHH. Ces derniers pourraient compromettre l’atteinte de l’objectif premier de cette loi qu’est l’absence de perte nette. La discussion porte sur ces points de vigie. Plus spécifiquement, il est question des enjeux relatifs à la compensation de la biodiversité, des fonctions écosystémiques, de l’importance des seuils écosystémique dans la gouvernance des MH, des incertitudes inhérentes aux activités compensatoires et des enjeux relatifs à l’application de la hiérarchie d’atténuation.

5.1 Peut-on compenser la biodiversité des milieux humides?

Comme démontré précédemment, la conservation de la biodiversité est l’un des deux enjeux centraux de la LCMHH avec la conservation des fonctions écosystémique de MH. Toutefois, le concept de biodiversité est complexe et l’atteinte de cet objectif peut s’avérer plus difficile qu’il n’y paraît. Les quatre prochaines sous-sections s’intéressent à la complexité inhérente à chaque MH, à l’importance de choisir de bonnes cibles, à l’importance de prendre en compte le contexte environnemental et aux limites de la formule permettant de calculer les compensations financières. La dernière sous-section synthétise l’ensemble des éléments importants desquels découlent les recommandations présentées dans le chapitre 6.

5.1.1 Des écosystèmes uniques et complexes

La LCMHH protège de facto l’ensemble des MH du Québec, bien qu’il existe une grande diversité parmi ceux-ci. Effectivement, il existe une différence intrinsèque importante entre la complexité d’un marais dominé par le roseau commun, une espèce exotique envahissante (EEE), et celle d’un marécage arborescent mature. Les milieux naturels non perturbés sont complexes et leurs particularités spatiales et historiques en font des éléments uniques et irremplaçables (Moreno-Mateos, Maris, Béchet et Curran, 2015). Il est alors illusoire de penser que les activités compensatoires permettront de « remplacer » tel quel le MH perdu. Prendre conscience de cette limite peut orienter la décision d’autoriser ou non un projet.

Bien que chaque site impacté soit d’une grande complexité (complexité de la biodiversité et écosystémique) de nombreux modèles de compensation utilisés à différents endroits sur la planète reposent sur une vision simplifiée des écosystèmes. C’est le fait que la majorité des suivis environnementaux ayant lieu suite à une compensation ne tiennent pas compte de cette complexité que
résulte en des données de piètre qualité qui ne reflètent pas les changements réels qui s’opèrent sur le terrain (Moreno-Mateos et al., 2015). De manière à concevoir des projets de compensation qui compenseront précisément les pertes encourues, l’enjeu relatif à la détermination des cibles est central.

5.1.2 L’importance des cibles

Comme le mentionnent Quétier et Lavorel dans leur revue de littérature (2011), l’un des éléments importants des activités compensatoires est de définir des cibles précises. Au Québec, comme nous l’avons vu dans le chapitre 3, ce sont la LQE, le RCAMHH ainsi que le document intitulé « Lignes directrices sur le calcul de la contribution financière exigible à titre de compensation pour l’atteinte aux MHH » qui détaillent les cibles visées lors de la caractérisation environnementale.

Les lignes directrices mises de l’avant par le gouvernement pour guider les professionnels en environnement qui effectueront les caractérisations environnementales sont relativement complexes. Effectivement, les rapports de caractérisation qui sont envoyés au ministère dans le but d’obtenir une autorisation environnementale doivent comprendre une foule d’éléments exigés par la loi. C’est l’article 46.0.3 qui précise les exigences. Voici la liste :

« ... 1° une étude de caractérisation des milieux visés, signée par un professionnel au sens de l’article 1 du Code des professions (chapitre C-26) ou un titulaire d’un diplôme universitaire en biologie, en sciences de l’environnement ou en écologie du paysage et, le cas échéant, ayant les compétences déterminées par règlement du gouvernement, laquelle doit notamment contenir les éléments suivants :

a) une délimitation de l’ensemble des milieux humides et hydriques affectés ainsi que la localisation des milieux dans le réseau hydrographique du bassin versant;

b) une délimitation de la portion de ces milieux dans laquelle sera réalisée l’activité concernée, incluant toute portion additionnelle susceptible d’être affectée par cette activité;

c) une description des caractéristiques écologiques de ces milieux, notamment des sols et des espèces vivantes ainsi que leur localisation, y compris des espèces menacées ou vulnérables ou susceptibles d’être ainsi désignées en vertu de la Loi sur les espèces menacées et vulnérables (chapitre E-12.01);

d) une description des fonctions écologiques des milieux qui seront affectés par le projet, en se référant aux différentes fonctions énumérées au deuxième alinéa de l’article 13.1 de la Loi affirmant le caractère collectif des ressources en eau et favorisant une meilleure gouvernance de l’eau et des milieux associés (chapitre C-6.2), dont la connectivité de ces milieux avec d’autres milieux humides et hydriques ou d’autres milieux naturels;
e) une description des orientations et des affectations en matière d’aménagement du territoire applicables aux milieux visés de même que les usages existants à proximité; ... »(Loi sur la qualité de l’environnement)

En plus d’informations stipulées par la LQE, le document portant sur les lignes directrices de la contribution financière précise d’autres éléments qui doivent être mis de l’avant lors de la caractérisation de site. Il y est entre autres spécifié l’effort d’inventaire, la nécessité de prendre en compte la richesse, les associations végétales et le type de sol. Tous ces éléments constituent les cibles visées par la caractérisation environnementale (Lachance, Valois, Bouchard et Bourret, 2019).

Toutefois, les informations recueillies ne sont pas prises en compte dans le calcul de la compensation qui repose exclusivement sur la formule du RCAMHH. Rappelons que la formule multiplie la superficie du MH impacté (en m²) par la somme de la valeur du terrain et du coût de la compensation (calcul détaillé dans l’annexe 1). Suivant cette logique, le coût de la compensation est la variable dans laquelle repose toute la complexité du MH à l’étude. Le premier facteur se rapporte à l’atteinte au MH, qui elle est calculée en comparant l’état initial du MH à l’état impacté. Le deuxième élément est le facteur R qui prend en considération le contexte du site.

C’est donc dire que, malgré le fait que la LQE et le RCAMHH exigent qu’une caractérisation relativement complète soit faite des sites, la formule réduira cette complexité à deux facteurs : l’état initial vs l’état final et le contexte régional. On remarque que les éléments caractérisés en vertu de l’article 46.0.3. de la LQE cités ci-haut, telle la connectivité, le positionnement dans le BV, l’ensemble des milieux additionnels affectés ne sont tout simplement pas considérés dans le calcul.

Bien que réductrice, la formule mise de l’avant par le ministère est comparable à ce qui se fait ailleurs dans le monde comme le démontre le tableau de l’annexe 2. Quétier et Lavorel (2011) font remarquer qu’un des points faibles de ce type de formule est le fait qu’elle ne prend pas en compte le contexte du site impacté. Toutefois, comme nous le verrons dans la prochaine sous-section, au Québec, le ministère a mis en place un élément permettant de prendre en compte le contexte.

5.1.3 L’importance du contexte environnemental

Comme mentionné dans le sous-chapitre 4.1.4, la réforme du régime de conservation des MH états-uniens qui a eu lieu en 2008 avait comme objectif de mettre en place des outils qui allaient obliger les décideurs à prendre en considération le contexte. Au Québec, le contexte sera toujours pris en compte grâce aux PRMHH et au RCAMHH. Rappelons que les PRMHH qui seront produits par les MRC prendront en
considération le contexte propre à chaque MRC et au BV dans lequel elles s’inscrivent. Malheureusement, les PRMHH ne sont pas encore disponibles pour l’analyse, car les MRC ont jusqu’au 16 juin 2022 pour les soumettre au ministre. Il est raisonnable de penser que la qualité de ces plans variera d’une MRC à l’autre. Pour cause, certaines MRC ont une meilleure connaissance de leur territoire tandis que certaines ont déjà été sensibilisées à des enjeux relatifs à la gestion de l’eau par le passé. Elles ont dès lors, pu développer une certaine expertise. À contrario, la tâche peut sembler plus colossale pour certaines MRC qui ne disposent pas des mêmes ressources internes. C’est pourquoi l’offre de rédiger les PRMHH pour le compte des MRC a été développée par certains consultants en environnement (Essor environnement, 2020) Il est aujourd’hui impossible de se prononcer sur la qualité et l’impact qu’auront ces plans dans la gestion des MH du Québec. Toutefois, la prise en compte du contexte régional dans la gestion de MH est primordiale et, si les PRMHH remplissent leurs rôles, ils seront un élément clef dans le succès de la LCMHH.

L’autre élément permettant de considérer le contexte est le RCAMHH. Ce règlement contient la formule permettant de calculer la compensation financière. Elle comprend le facteur « R » qui module le calcul en fonction de la région (RCAMHH). L’annexe 5 du même règlement informe que cette modulation régionale peut varier d’un facteur passant de 0,3 à 2. Un facteur R a été attribué à chaque municipalité du Québec en se basant sur le « portrait de l’utilisation du territoire québécois », ouvrage cartographique qui recense les différents types de pression anthropique à l’échelle municipale (MELCC, 2016). Plus spécifiquement, le facteur le plus faible a été attribué aux municipalités dont moins de 30 % du territoire a fait l’objet d’une coupe totale, ou est utilisé à des fins agricoles. Le facteur le plus élevé a été attribué aux municipalités dont plus de 20 % du territoire est urbanisé. Le Québec, en considérant le contexte environnemental, fait donc bonne figure comparativement aux juridictions qui modulent la compensation uniquement en fonction de la qualité et de la superficie du MH impacté. Toutefois, le système pourrait être bonifié en s’intéressant plus spécifiquement aux caractéristiques écologiques ou « aux fonctions et aux services écologiques » que joue le MH dans la région. Parmi les éléments qui pourraient être pris en considération, pensons à l’unicité du milieu impacté dans son contexte environnemental régional, à son rôle de corridor écologique ou encore à son importance dans le maintien des processus écologiques importants qui ont lieu sur le territoire (Quétier et Lavorel, 2011).

De plus, le fait que le facteur soit attribué au niveau municipal plutôt qu’au niveau des MRC peut avoir un effet pervers. Effectivement, les MH d’une MRC donnée peuvent être très dégradés sans pour autant que la situation soit homogène pour toutes les municipalités qu’elle comprend. Certaines d’entre elles peuvent être moins développées et auront un facteur R modulé à la baisse. Ce facteur R plus petit pourrait favoriser
le développement dans ces municipalités. Plutôt que de renforcer la protection dans les municipalités qui possèdent une importante proportion de MH, la formule encourage leur destruction.

5.1.4 Les limites de la formule québécoise servant à calculer les compensations

L’un des enjeux fondamentaux de la formule permettant de calculer la compensation financière est le peu de flexibilité qu’a cette dernière pour quantifier l’atteinte au MH. Effectivement, comme nous l’avons brièvement démontré dans le sous-chapitre 5.1.2, le RCAMHH stipule que l’atteinte à un MH se calcule par la différence entre l’état initial et l’état final. Le tableau 5.1 informe sur le pointage que l’on accorde à chaque composant selon son état initial. Un tableau similaire permet de déterminer le pointage attribué aux impacts sur le MH. Les trois composants ciblés par le MELCC sont la végétation, le sol et l’eau. L’ambition du ministère est de capturer l’essentiel de la complexité d’un écosystème par l’analyse de ces trois composants :

« Ce facteur (Δl) de la formule de calcul proposée dans le RCAMHH s’inspire d’une réflexion menée depuis plusieurs années par le ministère. Cependant, les documents consultés font généralement référence à un vocabulaire technique et à des inventaires particuliers, et nécessitent des moyens géomatiques et l’application d’algorithmes mathématiques qui peuvent paraître complexes.

À des fins de simplification, un choix a été fait de s’en tenir aux aspects de ces travaux qui 1) font consensus dans la littérature scientifique, 2) réfèrent à un vocabulaire déjà utilisé dans les publications du ministère et 3) sont suffisamment simples pour être compris par tous. »(Lachance et al., 2019)

Le ministère a simplifié la réalité terrain à ces trois composants dans le but de faciliter l’application du règlement et le calcul des compensations. Bien qu’ils soient tous évalués lors de la caractérisation du MH (végétation, sol et eau), le calcul ne reposera en fait que sur le composant le plus dégradé, simplifiant encore davantage la représentation de la réalité terrain. L’objectif du ministère est de refléter adéquatement les pertes encourues par le passé qui n’ont pas nécessairement été engendrées par le demandeur actuel (Lachance et al., 2019).
Tableau 5.1 Calcul de l’état initial de la partie du milieu humide affectée par l’activité (tiré de : RCAMHH, partie 2)

<table>
<thead>
<tr>
<th>Composantes</th>
<th>Non dégradé (I_{nu} = 1)</th>
<th>Peu dégradé (I_{nu} = 0,8)</th>
<th>Dégradé (I_{nu} = 0,6)</th>
<th>Très dégradé (I_{nu} = 0,3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Végétation</td>
<td>Végétation typique des milieux humides occupant toute la superficie inventoriée</td>
<td>Végétation typique des milieux humides occupant 33 % à 99 % de la superficie inventoriée</td>
<td>Végétation typique des milieux humides occupant moins de 33 % de la superficie inventoriée</td>
<td>N/A</td>
</tr>
<tr>
<td>Sol</td>
<td>Sol minéral hydromorphe occupant toute la superficie inventoriée OU Sol organique hydromorphe dont une partie du profil n’est pas humique sur toute la superficie inventoriée</td>
<td>Sol hydromorphe sur 33 % à 99 % de la superficie inventoriée OU Sol organique hydromorphe dont tout le profil est humique sur toute la superficie inventoriée</td>
<td>Sol hydromorphe ou non, retourné ou labouré il y a moins de 5 ans, sur toute la partie affectée du milieu humide OU Sol hydromorphe ou non, excavé et remis en place il y a moins de 5 ans, sur plus de 33 % de la partie affectée du milieu humide OU Sol hydromorphe occupant moins de 33 % de la superficie inventoriée</td>
<td>N/A</td>
</tr>
<tr>
<td>Eau</td>
<td>Régime hydrologique typique des milieux humides occupant toute la superficie inventoriée</td>
<td>Régime hydrologique typique des milieux humides sur 33 % à 99 % de la superficie inventoriée OU Présence d’ouvrages de drainage dans le milieu humide ou à moins de 30 m de celui-ci</td>
<td>Régime hydrologique typique des milieux humides sur moins de 33 % de la superficie inventoriée</td>
<td>N/A</td>
</tr>
</tbody>
</table>

L’imprécision que peut engendrer un calcul reposant uniquement sur le composant le plus dégradé a déjà été portée à l’attention du ministère par de nombreux organismes. Effectivement, quelques mémoires déposés sur le projet de règlement sur la compensation pour l’atteinte aux milieux humides et hydriques portaient sur l’impact des EEE. Dans sa version originale, le règlement stipulait que le composant végétal était considéré comme dégradé en présence de EEE. L’argument avancé par les organismes de conservation est que même si un MH est envahi par des EEE, il conserve une portion de ces fonctions écosystémiques (ROBVQ, 2018; Vivre en ville, 2018). Dès lors, il est inexact de niveler à la baisse la valeur de ces écosystèmes en fonction de cette unique composante. Le règlement a été modifié et les EEE
n’affectent plus l’état d’un MH. Suivant cette même logique, il semble que la formule actuelle, reposant sur une seule composante, peut « camoufler » la valeur écologique réelle d’un écosystème.

Par exemple, ce « camouflage » peut se produire si un marécage arborescent ayant récemment subi une coupe forestière est évalué. Il est possible de supposer que l’état initial de la « végétation » se ferait attribuer la cote « très dégradée » en raison de la récente perturbation (se référer au tableau 5.1). Il est également probable que les composants « sol » et « eau » se feraient attribuer la cote « non dégradée », ayant été peu perturbée par les activités sylvicoles. Dans ce cas de figure, serait-il adéquat d’exiger une plus petite contribution financière ? N’est-il pas réaliste de penser que la végétation du marécage arborescent se restaurerait naturellement à moyen terme ? Est-il réaliste de recréer un écosystème comparable avec une compensation modulée à la baisse ? Effectivement, ce milieu qui était peut-être en place depuis fort longtemps avait hypothétiquement une capacité importante de stocker le carbone ou peut-être connectait-il hydrologiquement des portions du BV névralgiques. Pour ces raisons, il semble que le calcul proposé par le ministère peut, dans certaines conditions, être réducteur.

5.1.5 Synthèse

Chaque MH non impacté est unique et il est improbable que les activités compensatoires offrent des MH équivalents (Moreno-Mateos et al., 2015). De manière à compenser efficacement les pertes de MH, des cibles précises doivent orienter la caractérisation du milieu impacté (Quétier et Lavorel, 2011). Bien que les lois et règlements québécois ciblent une foule d’informations devant être recueillies lors de la caractérisation environnementale, peu d’entre elles serviront à calculer la compensation financière (Lachance et al., 2019). Même si ce modèle constitue la norme internationale, il engendre une perte d’information qui ne favorise pas la compensation optimale (Quétier et Lavorel, 2011).

Le modèle québécois se démarque toutefois par l’importance qu’il accorde au contexte environnemental. Premièrement, les PRMHH ciblent le MH pour la conservation en fonction du contexte propre à leur territoire (Martel et al., 2019). Deuxièmement, le facteur R de la formule servant à déterminer les compensations financières repose sur une étude du contexte environnemental propre à chaque municipalité du Québec (RCAMHH). Certaines interrogations demeurent, notamment en ce qui a trait à la qualité des PRMHH qui seront soumis au ministère le 16 juin 2022. Finalement, le fait que la formule servant à calculer les compensations financières repose uniquement sur la composante la plus dégradée du milieu impacté peut camoufler la valeur écologique réelle du site.
5.2 Les enjeux relatifs à l’équivalence écologique des fonctions écosystémiques

L’un des deux sous-objectifs de la LCMHH est de préserver les fonctions écosystémiques des MH qui seront impactés. Pour ce faire, il est prévu qu’un MH impacté puisse être compensé par un MH du même type ou encore par un MH différent, mais ayant des fonctions comparables (MELCC, 2019b). Il est alors nécessaire de développer une formule d’équivalence écologique. Les quatre prochaines sous-sections s’intéressent au défi qu’est la caractérisation des fonctions écosystémiques des MH, à la méthode québécoise, aux différentes approches existantes et aux avantages qu’offre la méthode de caractérisation rapide. La dernière sous-section synthétise l’ensemble des éléments importants desquels découleront les recommandations présentées dans le chapitre 6.

5.2.1 Les défis relatifs à la caractérisation des fonctions écosystémiques des milieux humides

Le ministère, dans le chapitre « raison d’être » du cadre normatif de son programme de restauration et de création de MHH (2019), précise que tous les MH de la province ont des fonctions dont bénéficient directement les Québécois. Il mentionne que les MH : « ... assurent plusieurs fonctions écologiques, lesquelles contribuent à fournir de nombreux bénéfices matériels et immatériels à la société. »(MELCC, 2019b). Toutefois, la littérature scientifique est souvent plus nuancée.

Effectivement, Bullock et Acreman (2003) dans leur imposante revue de littérature analysant 169 études sur le sujet ont nuancé les fonctions hydrologiques généralement attribuées au MH et ont mis en relief le manque de connaissance dans ce domaine. Bien que de nombreuses études ont démontré que les MH peuvent réduire les inondations, favoriser la recharge des nappes phréatiques ou limiter les périodes d’étiage, d’autres nous apprennent que ce n’est pas toujours le cas. Pis, certains MH ont même l’effet inverse et peuvent augmenter l’intensité des inondations, limiter la recharge des nappes phréatiques et augmenter les périodes d’étiage.(Bullock et Acreman, 2003) Une récente étude chinoise démontre qu’à l’échelle du BV, l’impact cumulatif des MH est positif, mais que les connaissances actuelles ne permettent pas de déterminer l’impact qu’a un MH en particulier selon le type, la taille ou l’emplacement de ce dernier (Wu, Zhang et Rousseau, 2020). Cela veut donc dire que même si l’on compense un MH donné par un autre MH du même type, il est possible que ce dernier n’ait pas les mêmes fonctions. À la lumière de ces informations, il est nécessaire que le Québec améliore l’évaluation des fonctions de MH. Effectivement, il serait contre-productif de compenser un MH ayant des fonctions bénéfiques par un MH ayant des fonctions non bénéfiques.
5.2.2 La méthode du Québec

Selon la littérature scientifique, le calcul de l’équivalence écologique se fait généralement en trois étapes. La première étape consiste à quantifier les pertes. Ensuite, il est nécessaire d’évaluer le rendement des mesures de compensation. Finalement, il est possible de déterminer les mesures de compensation qui devront être mises en place. (Quétier et al., 2012) L’un des enjeux principaux de ce processus est de choisir les indicateurs les plus adéquats permettant de définir précisément les pertes encourues.

Comme nous l’avons démontré précédemment, l’une des méthodes les plus reprises pour déterminer l’équivalence écologique entre le site impacté et le site de compensation consiste à multiplier la superficie par la qualité de l’écosystème du site impacté (voir annexe 2). C’est la méthode qui est actuellement en place au Québec en vertu de la formule du RCAMHH.

Le cadre normatif du programme de restauration et de création de milieux humides et hydriques (2019a) précise que la correspondance entre deux sites de type différent pourra être évaluée grâce à des facteurs d’équivalence écologique. En ce sens, il serait envisageable qu’un site de compensation soit de plus petite superficie que le site impacté s’il remplit les mêmes fonctions que ce dernier. À contrario, il serait également possible qu’un site de compensation soit plus grand que le site impacté pour la raison inverse. À ce jour, la méthodologie pour déterminer l’équivalence écologique n’a pas encore été produite par le ministère. Toutefois, de nombreuses méthodologies existent déjà dans d’autres juridictions et certaines d’entre elles sont présentées dans la prochaine sous-section.

5.2.3 Les différentes approches pour déterminer l’équivalence entre les écosystèmes

Quétier et Lavorel (2011), dans leur revue de littérature, ont compilé les différentes approches utilisées pour établir l’équivalence écologique et les ont classifiées en trois catégories : le raisonnement circonstanciel, la méthode de notation normalisée et l’équivalence pour les sites « différents, mais similaires ». Le raisonnement circonstanciel est la méthode proposée pour les projets importants qui impactent des sites uniques pour lesquels une méthode plus classique, comme la méthode de notation, ne permettrait pas de mettre en lumière l’ensemble des enjeux. Par exemple, on pourrait l’appliquer à un projet de développement touchant des espèces à statut, des habitats considérés comme uniques ou encore des projets d’envergure. Cette démarche exige un plus grand investissement de ressources, car des indicateurs propres à chaque projet doivent être développés. Ce type d’analyse taillé sur mesure pour un projet donné peut toutefois être moins attrayant sur le plan politique, car il est moins facile à comprendre par toutes les parties prenantes et peut paraître moins transparent. (Quétier et Lavorel, 2011)
Au Québec, il serait possible d’envisager ce type d’évaluation plus spécifique pour des projets qui se verrai
raient obligés de suivre la procédure d’évaluation et d’examen d’impacts sur l’environnement en vertu
de l’article 31.1 de la LQE.

La méthode de notation normalisée est ce qui se rapproche le plus de ce que la LCMHH a mis en place au
Québec. Effectivement, c’est la méthode toute désignée pour des types de dommages récurrents (ex.:
aricole, résidentiel, route, etc.) dans des écosystèmes ciblés comme les MH. Elle est basée sur un système
de pointage qui en facilite la compréhension, améliore la comparabilité entre projets et réduit les risques
légaux. De plus, comme le système de pointage mis en place par le règlement sur la compensation pour
l’atteinte aux MHH, la méthode de notation peut facilement être modélisée par des multiplicateurs tenant
compte du contexte. (Quétier et Lavorel, 2011)

Finalement, la dernière approche consiste à établir une méthode standardisée, mais qui permet de faire
correspondre les enjeux d’équivalences entre des habitats différents, mais similaires. Cette approche
présente les mêmes avantages que la méthode normalisée, mais offre une plus grande flexibilité dans le
design des compensations. Elle repose généralement sur une échelle qui établit la correspondance entre
des habitats différents. L’avantage principal de cette méthode est qu’il est alors possible de compenser la
perte d’un habitat de moindre importance dans un contexte donné pour un habitat différent ayant une
priorité plus élevée. (Quétier et Lavorel, 2011) Rappelons que cette approche est envisagée au Québec,
car il sera possible de compenser par un écosystème ayant des fonctions similaires ou meilleures à celui
impacté. C’est ce que le ministère nomme la « compensation avec avantages » (MELCC, 2019b). Toutefois,
la méthode québécoise permettant de quantifier les équivalences fonctionnelles n’a pas encore été
dévoilée. Des exemples fort intéressants existent toutefois aux États-Unis.

5.2.4 Les avantages de la méthode de caractérisation rapide

Les méthodes de caractérisation rapide développées aux États-Unis présentées au chapitre 4 permettent
de répondre à quelques enjeux soulevés dans cet essai. Elles ont entre autres permis de réduire les coûts
de caractérisation, d’améliorer la qualité des données et de déterminer les fonctions hydrologiques des
MH (Quétier et al., 2012). Au Québec, la LQE, le RCAMHH et le guide de Bazoge (2015) informent et
précisent la teneur de la caractérisation écologique qui doit avoir lieu dans le processus d’autorisation
environnementale. Cette méthodologie est, à plusieurs égards, plus complète que la CRAM présentée plus
haut. Il est logique que le promoteur qui prévoit impacter un site soit tenu d’évaluer en profondeur ce
dernier. Toutefois, une méthode rapide d’évaluation pourrait être mise à profit dans une multitude de
contextes. Elle pourrait notamment être utilisée par les MRC désirant bonifier leurs connaissances du territoire, par le ministère qui pourrait rapidement contre évaluer les rapports de caractérisation fournis par les promoteurs ou encore pour faire le suivi des activités compensatoires.

Il pourrait être pertinent de mettre à l’épreuve sur notre territoire certaines des méthodes d’évaluation rapide développées aux États-Unis. Effectivement, il n’est pas certain que ces méthodes correspondent aux standards visés par la LCMHH ou encore qu’elles s’appliquent telles quelles sur notre territoire. Par exemple, une étude française a déjà testé six méthodes d’évaluation rapide sur son territoire. Bien que prometteuses, aucune d’entre elles ne pouvait être appliquée telle quelle. Un des problèmes rencontrés par les évaluateurs français est la manière dont était défini le MH ayant le plus de valeur. Aux États-Unis, les MH ayant le plus haut score étaient définis comme vierges tandis qu’en France la très grande majorité des MH d’intérêt biologique est le résultat de plusieurs siècles d’aménagement. (Gaucherand, Schwoertzig, Clement, Johnson et Quétier, 2015)

5.2.5 Synthèse

L’un des arguments supportant le nouveau modèle de conservation des MH au Québec repose sur l’idée que ces derniers ont un impact positif pour les Québécois de par les fonctions hydrologiques qu’ils remplissent (régulations des inondation, approvisionnement en eau potable, etc.)(MELCC, 2019b). Toutefois, bien que les fonctions de MH puissent être généralement considérées comme bénéfiques, certains MH peuvent avoir des fonctions non bénéfiques d’un point de vue de la gestion de l’eau (augmentation des inondations, prolongation des périodes d’étiage, etc.) (Bullock et Acreman, 2003; Wu et al., 2020). À la lumière de ces informations, il est primordial que le ministère se dote d’une méthode permettant de caractériser les fonctions d’un MH. De plus, la formule proposée par le ministère ne peut répondre à son ambition de compenser avec avantage, car elle n’offre pas de formule d’équivalence. Les méthodes de caractérisation rapide développées aux États-Unis semblent prometteuses à cet égard comme elles permettent de rapidement caractériser les fonctions d’un MH (Quétier et al., 2012). Le fait que ces méthodes nécessitent de faibles investissements de temps et d’argent le procure d’autres bénéfices telles une plus grande efficacité administrative et une plus grande uniformité des données recueillies.
5.3 La LCMHH devrait-elle fixer des seuils ou établir des lignes directrices?

Comme expliqué dans le sous-chapitre portant la stratégie ontarienne, la LCMHH ne fixe aucun seuil pour les MH. L’esprit de la LCMHH, et plus particulièrement des PRMHH, est de s’adapter au contexte propre à chaque région (Martel et al., 2019). C’est cette préoccupation qui a entre autres favorisé le choix des MRC plutôt que les OBV comme acteur principal des PRMHH. Dans le but de favoriser la rédaction de PRMHH reflétant au mieux la réalité propre à chaque MRC, il aurait été contre-productif de transposer les grands enjeux des PDE dans les PRMHH.

Toutefois, les lignes directrices présentées dans le tableau 4.1 auraient pu s’inscrire dans le guide dédié à la démarche d’élaboration des PRMHH sans pour autant imposer des priorités contraignantes. L’information aurait été d’autant plus pertinente pour les MRC, car il s’agit de connaissances très spécifiques aux enjeux de conservation des MH qui pourraient faciliter la gouvernance par les MRC. Rappelons que les MRC devront spécifier sur un plan les « MH pour la conservation », lesquels ne pourront pas être perdu. Les lignes directrices et les seuils qui sont présentés dans les sous-sections suivantes pourraient favoriser une meilleure gouvernance des MH et favoriser la réalisation de PRMHH s’appuyant sur la science.

5.3.1 L’importance de conserver un seuil minimal de milieux humides

La première ligne directrice présentée dans le tableau 4.1 s’intéresse au seuil minimal de MH théorique pour un BV donné. Il s’agit d’un seuil difficile à établir en raison des variations existantes dans le recouvrement historique de MH pour chaque BV (Environnement Canada, 2013). De plus, comme nous l’avons mentionné dans la mise en contexte, les connaissances concernant la proportion du territoire québécois constitué par des MH avant la colonisation est, au mieux, fragmentaires. Rappelons que pour les BTSL, on estime que 40 % à 80 % des MH ont disparu. (Pellerin et Poulin, 2013) Il est toutefois possible d’évaluer avec plus de précision le pourcentage actuel de MH pour l’ensemble du Québec. Considérant l’importance des pertes, il n’est pas étonnant que l’on remarque que ce pourcentage varie de 1,7 %
(province naturelle de l’estuaire du Saint-Laurent) à 58,3 % (basses-terres de la baie James).(Pellerin et Poulin, 2013)

Comme il existe une variation importante entre la prévalence des MH selon les territoires, le guide *Quand l’Habitat est-il suffisant?* établit un double critère, soit : 10 % de chaque grand BV ou 40 % de la couverture historique. Bien que les auteurs stipulent qu’il serait encore plus adéquat de viser la conservation des fonctions des MH, ils font remarquer que la connaissance actuelle ne permet pas d’agir efficacement sur ce front.(Environnement Canada, 2013) Prenons l’exemple du BV de la Yamaska. Dans le plan directeur de l’eau produit par cet OBV Yamaska, on apprend que 5 % de ce BV est constitué de MH (OBV Yamaska, 2014). Les pertes historiques n’y sont pas recensées. Si on fait la supposition qu’elles correspondent au maximum théorique pour la région qui est de 85 %, cela indiquerait un recouvrement historique se rapprochant de 9 % (Pellerin et Poulin, 2013). Dans ce contexte, selon les seuils présentés dans *Quand l’Habitat est-il suffisant?*, l’objectif de restauration des MH devrait être de rétablir le recouvrement historique.

En ce sens, la LCMHH n’est pas suffisamment ambitieuse. En suivant la stratégie qu’elle met en place, le recouvrement futur ne dépassera jamais celui actuel. Aussi, les seuils auraient pu faciliter l’analyse des demandes d’autorisation. Une région dont la proportion de MH est sous les seuils aurait pu se servir de cette information pour analyser les projets. Ces seuils auraient pu servir d’argument pour demander une rélocalisation (hors des MH, ou dans un autre BV) ou encore exiger des compensations plus importantes.

5.3.2 L’importance du positionnement des milieux humides dans le bassin versant

La deuxième ligne directrice du guide se penche sur l’emplacement stratégique des MH dans le BV. Le guide recense les résultats de quelques études qui démontrent les différentes fonctions écologiques que peut jouer un MH selon son emplacement, sa taille ou son type. Par exemple, dans l’une de ces études, on apprend que les petits MH (0,2 ha) sont très efficaces pour réduire la quantité des sédiments, que ceux de moyenne taille (moins de 10 ha) peuvent filtrer des quantités importantes de phosphore tandis que les grands MH peuvent tamponner le débit des cours d’eau (Cohen et Brown, 2007). Sachant que les fonctions des MH diffèrent selon leur taille, il est possible de prioriser un certain format de MH à une position particulière dans le BV en fonction des problématiques qu’on y rencontre. De plus, des fonctions particulières peuvent être directement tributaires du positionnement dans le BV. Par exemple, les MH situés en tête de BV ont tendance à favoriser la recharge des nappes phréatiques (Environnement Canada, 2013). Au Québec, il aurait été aisé d’intégrer ce type de lignes directrices dans le document portant sur
la démarche d’élaboration des PRMHH. Force est de constater qu’il comporte peu d’informations sur l’impact du positionnement des MH dans les BV.

5.3.3 L’importance de la zone tampon des milieux humides

La troisième ligne directrice se penche sur la quantité de végétation naturelle adjacente au milieu humide, en d’autres mots une zone tampon naturelle ou semi-naturelle (Environnement Canada, 2013). Contrairement à la protection dont jouissent les milieux hydriques du Québec, aucune loi n’accorde un statut particulier aux zones tampons des MH. Rappelons que, depuis l’adoption de la PPRLPI, la province protège la bande riveraine (zone tampon) de l’ensemble de ces milieux hydriques (MELCC, 2015). Toutefois, la délimitation des MH ne prend pas en compte une zone tampon (Bazoge et al., 2015). Il est toutefois démontré que cette dernière est essentielle aux fonctions des MH. Par exemple, dans le document intitulé : « Les milieux humides et l’autorisation environnementale » publié en 2012 par le gouvernement du Québec, on décrit ainsi le rôle des zones tampons de MH :

« Une zone tampon correspond à la partie des terres hautes adjacentes supportant une végétation naturelle limitrophe à un milieu humide. Elle assure l’alimentation en eau minimale et la préservation du milieu humide face aux menaces extérieures telles que les contaminants, les espèces invasives ou les interventions humaines. » (MELCC, 2012).

De plus, les informations relatives à l’importance de la zone tampon que l’on retrouve dans la littérature scientifique sont précises et permettent de définir quelle est la largeur de la bande tampon adéquate selon les fonctions du MH que l’on désire conserver. Comme l’illustre la figure 5.1, le contrôle des paramètres physico-chimiques nécessite une zone tampon de 4 m à 30 m selon le paramètre ciblé. La dimension de la bande tampon nécessaire à la conservation d’habitats peut être beaucoup plus grande et varier de 15 m à 1 500 m selon l’espèce que l’on désire protéger. (MELCC, 2012) Bien entendu, la zone tampon de 1 500 m n’est pas pertinente pour tous les MH, mais elle peut s’avérer essentielle si l’objectif est de préserver la biodiversité d’un site d’intérêt. Par exemple, sachant que la majorité des tortues ne pondent pas directement dans le MH, la bande tampon nécessaire à leur protection varie de quelques mètres pour la tortue molle à épines (Apalone spinifera) à 600 m pour la tortue des bois (Glyptemys insculpta) (MELCC, 2012). Considérant que la conservation de la biodiversité et celle des fonctions écosystémiques des écosystèmes sont les deux principaux sous-objectifs de la LCMHH, il est étonnant de constater qu’une zone tampon, pourtant essentielle à la conservation de ces deux éléments, ne soit pas exigée par LCMHH.
Pour l’instant, le seul élément extérieur à un MH qui peut moduler les exigences que le ministère aura relativement aux activités compensatoires est le drainage du site adjacent. Effectivement, comme l’illustre la figure 5.2, bien que seule la superficie affectée soit comptabilisée, l’impact du drainage à l’extérieur du milieu directement affecté est pris en considération sur une bande de 30 m. Par exemple, bien que le nouveau tronçon de route projeté sur la figure ci-dessous n’impacte que marginalement le MH, il est demandé (dans le document détaillant les lignes directrices sur les contributions financières) de considérer l’impact de drainage. Si l’on prévoit que le tronçon de route impactera le MH sur l’ensemble des 30 m, l’impact hydrologique sera élevé (voir annexe 3) ce qui aurait comme effet de ne pas influencer à la baisse le montant de la compensation.
5.3.4 L’importance de réfléchir les activités compensatoires en fonction du type de milieu humide

Le guide *Quand l’Habitat est-il suffisant?* pose un regard critique sur les activités compensatoires en fonction de la typologie des MH. Comme indiqué dans le tableau 4.1, certains types de MH sont plus difficiles à compenser. Bien que la restauration des marais et, dans une moindre mesure, des marécages soit appuyée par une littérature scientifique abondante, les auteurs de *Quand l’Habitat est-il suffisant?* rappellent qu’il s’agit toujours d’une activité comprenant une part de risque. (Environnement Canada, 2013) Comme démontré dans le chapitre 3, le taux de succès des projets de restauration chez nos voisins du sud reste peu enviable (Kettlewell et al., 2008; Sheldon et al., 2005). Les auteurs du guide se positionnent contre la restauration ou création de tourbières. Ils rappellent que le manque de connaissance et le peu d’exemples de restauration réussis doivent inciter à la précaution. En ce sens, ils proposent que les projets impactant ces milieux ne soient pas autorisés. (Environnement Canada, 2013) Au Québec, la LCMHH et les documents qui en découlent ne font en aucun lieu mention
d’un traitement différentiel des projets de compensation en fonction de la typologie des sites impactés. Rappelons que dans notre province, le MH le plus commun est la tourbière. Au Québec, le « groupe de recherche en écologie des tourbières » s’intéresse tout particulièrement à la restauration des tourbières qui ont été exploitées pour la mousse de tourbe. Comme en témoignent les nombreuses restaurations réussies, ainsi que le guide détaillant les protocoles de restauration, nos connaissances sur le sujet permettent aujourd’hui d’assurer la restauration des anciens sites exploités pour la mousse de tourbe (Quinty et Rochefort, 2003). Toutefois, dans le cadre de restauration en vertu de la LQE, les conditions ne seront pas nécessairement les mêmes. Il serait effectivement possible qu’en vertu de la LCMHH, on tente de créer une tourbière sur un site qui historiquement n’était pas une tourbière. Ce type de restauration n’est pas supporté par la science (Environnement Canada, 2013). En ce sens, le document supportant la démarche d’élaboration des PRMHH pourrait mieux orienter les décideurs vers les projets de restauration ayant une meilleure chance de succès. Par exemple, suite à des pertes de tourbière, le MELCC pourrait exiger que les projets soient toujours des restaurations et jamais des créations.

5.3.4 L’importance du couvert forestier pour les milieux humides

Un autre élément fort intéressant du guide Quand l’Habitat est-il suffisant? est qu’il tisse des liens entre différents types d’écosystèmes. Le guide présente trois seuils de couvert forestier et leur capacité à préserver des écosystèmes sains à l’échelle d’un BV. On y apprend notamment que tous les MH d’un BV dont le couvert forestier aurait été réduit à moins de 30 % se verraient compromis. De manière à supporter des écosystèmes aquatiques en santé, le guide recommande de conserver un minimum de 50 % du couvert forestier à l’échelle du BV (Environnement Canada, 2013).

Bien qu’il semble évident que la santé des écosystèmes aquatiques et des MH est en partie tributaire du couvert forestier à l’échelle du BV, la LCMHH et les outils qui en découlent n’orientent pas les efforts de conservation dans cette direction. Ce type de considération pourrait faire partie des éléments à considérer lors de l’élaboration des PRMHH. Encore aurait-il fallu que cette information soit mise de l’avant. Qui plus est, l’agriculture demeure l’une des pressions les plus importantes qui sont exercées sur les MH, particulièrement dans les BTSL (Pellerin et Poulin, 2013). Bien évidemment, l’agriculture rime généralement avec absence de couvert forestier.

5.3.5 Synthèse

Le guide supportant la démarche d’élaboration des PRMHH offre l’opportunité d’encadrer les MRC à l’aide de ligne directrice et des seuils s’appuyant sur la littérature scientifique. Sans être contraignantes, ces
considérations pourraient faciliter la rédaction des PRMHH. Le guide *Quand l’Habitat est-il suffisant?* contient de nombreux éléments qui auraient supporté les MRC dans la rédaction de ces plans.

De manière à conserver les fonctions essentielles des MH dans un BV, il est nécessaire d’en conserver un seuil minimal, par exemple 10 % de chaque grand BV ou 40 % de la couverture historique (Environnement Canada, 2013). Considérant que les fonctions des MH peuvent être modulées selon leur positionnement dans les BV, il est important de le prendre en considération. Les efforts de conservation peuvent alors être modulés en fonction du contexte propre à chaque BV (Environnement Canada, 2013). Les bandeaux tampons sont essentielles au support de la biodiversité ainsi qu’aux fonctions écosystémiques des MH (Environnement Canada, 2013; MELCC, 2012). Considérant que la typologie des MH influence notre capacité à les restaurer (Environnement Canada, 2013), il serait intéressant de considérer cette information lors de l’élaboration des PRMHH. Finalement, de manière à conserver des MH sains et fonctionnels, il est nécessaire de conserver au moins 30% du couvert forestier à l’échelle d’un BV.

5.4 La LCMHH devrait-elle prendre en considération les incertitudes inhérentes aux activités de compensation?

L’étude de la littérature portant sur le modèle états-unien a mis en lumière l’importance de prendre en considération les incertitudes propres aux activités compensatoires. À la lumière des informations recueillies dans le chapitre 4, on peut distinguer plusieurs types d’incertitudes. Les quatre prochaines sous-sections s’intéressent à la problématique du délai existant entre les pertes et les gains de MH, à l’incertitude inhérente à tout projet de restauration, à l’incertitude spécifique aux programmes de restauration pour les pertes ayant eu lieu entre juin 2017 et décembre 2018 et aux différentes approches permettant de réduire les incertitudes. La dernière sous-section synthétise l’ensemble des éléments importants desquels découleront les recommandations présentées dans le chapitre 6.

5.4.1 La problématique du délai existant entre les pertes et les gains de milieux humides

L’impact d’un projet sur les fonctions écosystémiques est généralement immédiat tandis que, selon le modèle utilisé pour la compensation, les gains s’échelonnent sur une période de temps qui peut aller de quelques années à plusieurs décennies (Vesk et al., 2008). Deux paramètres importants sont à considérer pour analyser cette problématique. Premièrement, il peut y avoir un délai entre l’activité qui impacte le milieu et celle où les mesures de compensation seront mises en place. Deuxièmement, l’atteinte des résultats découlant des activités de compensation peut s’échelonner sur plusieurs années.
Bien que les programmes de restauration pour les pertes ayant eu lieu entre juin 2017 et décembre 2018 ne soient pas encore terminés, il est possible d’anticiper les délais qui leur sont inhérents. Le MELCC précise dans le document administratif supportant ce programme qu’il y aura trois appels d’offres et que le dernier aura lieu à l’automne 2021 (MELCC, 2020a). Il y est également stipulé que les projets devront être réalisés dans un délai de trois ans. On peut donc en conclure que le délai maximal pour ce programme est de sept ans. Il est possible que les impacts ayant eu lieu en 2017 puissent être compensés aussi tardivement qu’en 2024.

En plus des délais administratifs, il existe des délais inhérents aux activités compensatoires. La figure 5.3 illustre ces délais de manière théorique. L’axe des y représente les indicateurs. Ces derniers peuvent varier selon le milieu impacté. Il pourrait par exemple s’agir de la richesse végétale. Les deux lignes en pointillé illustrent la situation qui aurait prévalu en l’absence de perturbation ou de compensation. Les traits pleins illustrent la réponse du MH à l’impact sur le graphique de gauche et aux activités compensatoires sur le graphique de droite. Le double trait plein du graphique de droite illustre l’incertitude inhérente aux activités compensatoires. Comme il est possible de l’observer sur le graphique de droite, de nombreux travaux de compensation restaurent des habitats dégradés, qui, sans intervention humaine, auraient eu tendance à voir leur biodiversité se bonifier au cours des ans. En ce sens, il est nécessaire de choisir des projets de restauration sur des sites qui n’auraient pas pu se rétablir par eux même.

![Diagramme de pertes et gains](image)

Figure 5.3 Représentation schématique des pertes (P, à gauche) et des gains (G, à droite) au **cours du temps** (tiré de : Quétier et al., 2012, p. 5)
Le délai entre la perturbation et la compensation peut être de plusieurs années. Toutefois, le délai entre l’activité compensatoire et l’atteinte de gains attendus peut être encore beaucoup plus long. De plus, ce « deuxième » délai est difficilement quantifiable. Comme l’illustre la figure 5.3, la création ou la restauration d’un MH peut être réalisée en quelques années d’un point de vue de la gestion de projet, mais la nature devra suivre son cours durant de nombreuses décennies, voire plus d’un siècle, avant que certaines fonctions écologiques soient rétablies (ex. : dynamique du bois mort, arbres creux, etc.) (Vesk et al., 2008). Morris et ses collaborateurs (2006) vont jusqu’à affirmer que si le délai entre la restauration et les gains potentiels est trop important, le concept même de la compensation vacille. Selon eux, il serait peut-être plus judicieux de simplement éviter le projet ou encore trouver un modèle de compensation limitant le délai comme les banques d’habitats (Morris, Alonso, Jefferson et Kirby, 2006).

Un autre enjeu avec la séquence des activités compensatoires proposée pour le Québec est le risque qui lui est inhérent. Effectivement, ce ne sont pas tous les projets de compensation qui atteindront leurs cibles, ce qui peut engendrer une perte nette. Comme le succès d’un projet de compensation ne peut être évalué que plusieurs années après sa réalisation, cela soulève l’enjeu de la responsabilité. Effectivement, si l’on constate plusieurs décennies après la complétude des activités compensatoires que les cibles n’ont pas été atteintes, qui en sera responsable ?

5.4.2 Des pertes certaines, des gains incertains

Selon Maron et son équipe (2012), le manque de connaissances scientifiques, l’unicité de chaque projet et le contexte dans lequel il se réalisera sont tous des facteurs qui peuvent influencer le succès des activités compensatoires. Il est démontré que l’incertitude la plus faible est associée aux projets de restauration qui s’attaquent à un enjeu bien défini. Par exemple, des mesures prises contre une espèce exotique envahissante peuvent plus facilement rencontrer leurs cibles, car elles reposent sur des procédures précises et des connaissances scientifiques établies. Toutefois, l’incertitude est particulièrement élevée quand il s’agit de restaurer un écosystème significativement modifié. Il faut notamment considérer les autres pressions environnementales ou encore les changements climatiques qui peuvent avoir un impact négatif sur le projet. (Maron et al., 2012)

Les multiplicateurs sont l’outil le plus souvent utilisé pour intégrer l’incertitude dans la gestion de projets. Leur concept est simple et consiste à multiplier par un facteur plus grand que 1 les dimensions du site restauré de manière à compenser l’incertitude. Quelques états américains ont mis en place un tel système. Par exemple, la Floride internalise l’incertitude relative à un projet précis en lui attribuant un « facteur de
risque » allant de 1 à 3 (Quétier et Lavorel, 2011). Toutefois, ces derniers sont souvent basés de manière arbitraire sur la valeur, la rareté ou encore l’unicité de l’écosystème impacté. Il est en fait rare que les multiplicateurs se basent sur des informations réelles permettant d’estimer précisément l’incertitude (Maron et al., 2012).

Une étude a démontré de manière mathématique qu’un multiplicateur permettant de réduire l’incertitude à un niveau acceptable peut varier de deux à plusieurs centaines selon le contexte (Moilanen et al., 2009). C’est-à-dire que pour certains projets, l’incertitude est si grande qu’il serait nécessaire de restaurer plusieurs dizaines d’hectares d’habitat dans l’objectif que ces derniers correspondent à un seul hectare perdu. Les résultats de cette étude détonnent, car plutôt que de prendre en considération la valeur moyenne attendue de l’efficacité de la restauration, ils ont considéré la robustesse statistique de celle-ci. Une analyse classique aurait tendance à accorder un petit multiplicateur à un projet de restauration pour lequel on prévoit des retombées environnementales importantes. L’équipe de Moilanen (2009) argue plutôt que le multiplicateur devrait être élevé si le risque d’échouer est grand, et ce, peu importe les retombées. À la lumière de ces travaux, il paraît inconcevable, autant d’un point de vue économique que politique, d’exiger des travaux de compensation pour lesquels on appliquerait des multiplicateurs de cet ordre. Selon Moilanen et ses collaborateurs (2009), de manière à réduire au maximum l’incertitude, il est préférable de prioriser de nombreux petits sites éloignés physiquement plutôt qu’un très grand site homogène.

La gestion de la compensation au Québec ne facilite pas l’incorporation d’un facteur de risque. Effectivement, comme le promoteur paie sa contribution financière à un fond commun, il n’existe pas de liens directs entre le site impacté et le site de compensation. Sans ce lien, il est impossible d’appliquer un multiplicateur d’incertitudes qui modulerait la contribution. Chose certaine, à la lumière de la littérature scientifique portant sur l’incertitude intrinsèque aux activités de compensation, il serait pertinent que ce facteur soit pris en compte au Québec.

5.4.3 Les incertitudes du programme de restauration et de création de milieux humides et hydriques

Le programme de restauration et de création de milieux humides et hydriques cible les pertes qui ont eu lieu entre juin 2017 et le 31 décembre 2018. L’appel d’offres qui a eu lieu au début de l’année 2020 visait à restaurer 63 hectares ou l’équivalent en termes de fonctions écologiques (MELCC, 2020a). Les documents administratifs détaillant les pertes pour chaque MRC offrent peu d’informations sur les milieux perdus. Effectivement, comme les projets de restauration doivent avoir lieu dans la même MRC, le MELCC
a fourni une liste compilant les montants disponibles pour chacune d'entre elles. S'ajoute à cette information un tableau présentant le portrait des pertes de MHH en pourcentage de superficie en fonction du type de MH. Ce dernier permet de comprendre quelle proportion des pertes a eu lieu dans un marécage, un marais ou une tourbière (MELCC, 2020a).

Il est légitime de se questionner sur la représentativité des projets qui seront présentés au ministère. Effectivement, les informations découlant des études de caractérisation environnementale ayant eu lieu pour caractériser les MH ne semblent pas disponibles. On ne trouve pas d’informations sur la faune, la flore, la superficie, le lien social, les espèces rares, les fonctions écologiques que jouait le milieu impacté qui permettraient au demandeur de conceptualiser son projet de manière à compenser spécifiquement les pertes ayant eu lieu. Comme expliqué dans le chapitre 4, l’expérience états-unienne démontre que l’amélioration des permis, notamment par l’adoption de cibles de performance environnementale telles que le type de sol, l’hydrologie, les communautés animales et végétales, est nécessaire à une compensation adéquate (Kihlslinger, 2008). Dans ces conditions, de quelle manière les demandeurs de projets de compensation peuvent-ils s’assurer que le projet qu’ils proposent compense les pertes subies ?

Un autre aspect particulier du programme de restauration est le fait qu’une dizaine de MRC disposent d’un budget inférieur à 5 000 $ pour réaliser un projet de compensation (MELCC, 2020a). Bien que ces budgets modestes correspondent à des pertes modestes, est-il possible que ceux-ci n’aient pas le même attrait pour de potentiels demandeurs ? On peut effectivement supposer que ces budgets restreints freinent l’élan des instigateurs.

5.4.4 Comment réduire le délai et l’incertitude ?

Deux approches permettent de pallier les pertes attribuables au décalage temporel. L’une d’elles est les banques d’habitats, présentées ci-haut, dans la section portant sur la gestion états-unienne de MH. Dans ce modèle, des promoteurs restaurent de grands écosystèmes et vendent par la suite des parcelles de terrain à d’autres promoteurs qui ont impacté des MH. L’un des enjeux particuliers de ce modèle est le fait que les écosystèmes restaurés ne correspondent pas exactement à ceux impactés, comme ceux-ci ont été pensés avant que les pertes aient lieu. Pour que le système fonctionne adéquatement, une grande diversité d’écosystèmes doit être accessible (Bekessy et al., 2010). L’avantage des banques d’habitats est qu’elles annulent en partie le risque de perte transitoire.
C’est pour cette raison que les banques d’habitats sont citées par de nombreux auteurs comme étant le modèle le plus à même de mitiger les risques inhérents aux activités de compensation (Bekessy et al., 2010; Gardner et al., 2013; Quétier et Lavorel, 2011; Vesk et al., 2008). Comme l’illustre la figure 5.4, l’échange d’un habitat restauré contre un habitat impacté devrait avoir lieu seulement si l’équivalence en termes de fonctions écologiques est démontrée entre les deux sites et que des mesures de protection pérennisant les gains ont été mises en place. La figure de gauche illustre la séquence observée au Québec. L’activité qui impacte le MH et l’activité compensatoire ont lieu dans la même fenêtre temporelle. Les pertes d’habitats sont immédiates tandis que les gains progresseront dans le temps. Le risque est représenté par l’écart-type. La figure de droite représente la séquence que l’on observe lorsque des banques d’habitats sont en place. Les pertes sont toujours immédiates, mais surviennent seulement au moment où l’activité compensatoire a porté fruit. Bien que le risque soit toujours un paramètre à évaluer, un suivi adéquat des sites de compensation permet de définir précisément le moment où l’on obtient une équivalence entre les deux habitats.

Figure 5.4 Schématisation des pertes et des gains tributaires des activités compensatoires en deux temps (à gauche) ou à l’aide des banques d’habitats (à droite) (inspiré de : Bekessy et al., 2010, p. 152)

5.4.5 Synthèse

Le mode de compensation instauré par la LCMHH entraîne des délais temporels entre le moment où un MH est impacté et celui où il sera compensé. Ces délais peuvent être de quelques années à quelques
décennies (Vesk et al., 2008). De plus, les activités compensatoires comportent toujours une part d’incertitude et de risques attribuables aux techniques utilisées et au contexte. Il est possible de limiter cette incertitude à l’aide de multiplicateurs. (Moilanen et al., 2009) L’appel d’offres lancé en 2020 par le MELCC, par son manque de précision, soulève des doutes quant à l’atteinte de l’objectif d’aucune perte nette. Finalement, les banques d’habitats, telles que mises en place aux États-Unis, s’avèrent un moyen efficace de mitiger les pertes temporelles et de réduire l’incertitude (Bekessy et al., 2010; Gardner et al., 2013; Quétier et Lavorel, 2011; Vesk et al., 2008).

5.5 Les enjeux relatifs à l’application de la hiérarchie d’atténuation

5.5.1 Renforcer l’évitement

Tant le guide ontarien Quand l’Habitat est-il suffisant? que la politique de l’UICN sont formels sur cet aspect : la hiérarchie d’atténuation n’est efficace que si l’étape d’évitement est appliquée avec rigueur (Environnement Canada, 2013; IUCN, 2016b). Au Québec, bien que la séquence d’atténuation soit inscrite dans la LQE, les projets touchant des MH sont rarement refusés (Poulin et al., 2016). L’étude de Poulin s’intéresse aux années suivant l’adoption, en 2006, de la séquence d’atténuation dans la législation québécoise. Cette étude démontre que les problèmes relatifs à la séquence d’atténuation affectaient les trois étapes. Plus spécifiquement, l’étude relève un taux de refus de projet de 0 %. C’est-à-dire que tous les projets présentés au MELCC ont été acceptés (Poulin et al., 2016).

Comme il a été démontré dans cet essai, la LCMHH a grandement bonifié la compensation en structurant la manière dont les contributions monétaires sont dorénavant calculées, en limitant les cas de figure où elle peut être effectuée par le demandeur et en créant les PRMHH. Toutefois, peu de ces changements affectent directement la première étape, l’évitement, qui est pourtant la plus importante. Lors de la réalisation des PRMHH, certains MH seront étiquetés comme « MH pour la conservation » (voir figure 3.2). Ceux-ci seront de facto mieux protégés, favorisant ainsi l’évitement. De plus, comme nous l’avons présenté
dans le chapitre 4, les compensations peuvent, selon la région, être coûteuses. On peut supposer que l’aspect monétaire favorisera l’évitement des sites ayant le plus de valeur.

Toutefois, une grande partie de la responsabilité d’appliquer l’évitement revient aux analystes du ministère qui analysent à la pièce chaque demande d’autorisation environnementale. À cet effet, la LCMHH n’offre pas de nouveaux outils ou de nouveaux arguments pour refuser un projet. Comme il a été démontré dans le reportage de la Semaine verte, le frein principal pour les agriculteurs désirant mettre en culture un MH est monétaire (Vaillancourt, 2020). Effectivement, ce reportage présente quelques agriculteurs qui se voient dans l’impossibilité de payer la facture associée à la compensation des MH. Bien que l’évitement fonctionne, les sommes étant trop importantes pour que les agriculteurs puissent les payer, il semble inadéquat de faire reposer la décision sur cet aspect.

Cet exemple démontre que la hiérarchie d’atténuation n’est toujours pas appliquée de manière adéquate au Québec. Ce qui décidera de l’avenir d’un projet impactant un MH ne devrait pas être la somme d’argent dont le demandeur dispose, mais bien la valeur du MH pour la société québécoise. Pouvons-nous nous permettre que tous les producteurs agricoles de la Montérégie mettent en culture les MH qu’ils possèdent ? Qu’en est-il des industries plus fortunées comme l’industrie pétrochimique? Considérant le fait que les BTSL ont accusé d’importantes pertes historiques, et que, comme nous l’avons démontré dans la discussion sur les seuils, la proportion de MH a atteint des niveaux non viables, il semble inapproprié que le coût exigé pour les compensations soit le frein principal à la destruction des MH.

Aux États-Unis, certains états comme la Californie et le Maine ont établi une liste de contextes où l’évitement était la seule option (Lavallée, 2013). Le Québec a fait preuve d’innovation avec ces PRMHH et renforce d’autant l’étape cruciale d’évitement, mais il semble que cela ne soit pas suffisant pour tous les contextes. À ce jour, considérant l’absence d’exemples selon lesquels le ministère a refusé une autorisation environnementale, il semble évident qu’il est nécessaire de renforcer l’étape d’évitement pour les MH qui ne seront pas ciblés par les PRMHH. Le Québec pourrait trouver un moyen de s’éloigner de la « séquence d’atténuation », où l’on passe sans embûche d’une étape à l’autre, à la « hiérarchie d’atténuation » où l’évitement prendra sa vraie valeur.

5.5.2 **Le double message du calcul du montant de compensation**

La formule servant à calculer la compensation financière est ambiguë. Effectivement, comme nous le démontrerons, la décision de choisir un facteur de modulation régionale (facteur R) pouvant être plus petit

L’enjeu avec ce facteur est qu’il peut être plus petit que 1. C’est donc dire que dans certaines municipalités du Québec, le « coût de base » pour un MH est modulé vers le bas. L’analyse logique de ce fait peut signifier deux choses. La première possibilité est qu’il coûte moins cher de compenser un MH dans les municipalités moins développées. Toutefois, cette possibilité est improbable d’autant plus que la formule, à l’aide du facteur vt (voir annexe 1), considère déjà les différences inhérentes au coût des terrains qui varient d’une région à l’autre. La deuxième possibilité est que la perte de MH est considérée comme moins importante dans les municipalités moins développées. Par souci de cohérence, le facteur R devrait uniquement être modulé par des facteurs plus grands que 1. Le signal transmis par un facteur inférieur à 1 est que, dans certaines régions, les MH sont moins importants et qu’il est plus légitime de les détruire. Ce message est en contradiction directe avec l’objectif d’aucune perte nette de la LCMHH.

5.5.3 L’enjeu foncier est-il un verrou opérationnel ?

Pour compenser, il est, dans la plupart des cas, nécessaire de faire l’acquisition d’un terrain. Ce dernier doit offrir un potentiel de compensation intéressant et conserver une proximité géographique avec le site impacté. Toutefois, pour une région donnée, il existe une quantité finie de terrains. De plus, chaque région est caractérisée par une dynamique de marché qui lui est propre et qui influencera la dynamique d’acquisition. C’est cette double contrainte qui pousserait Berté (2020) à affirmer que l’acquisition en France d’un site propre à la compensation se confrontera à un problème qui est à la fois théorique et opérationnel.

Cependant, il est légitime de croire que la problématique foncière ne s’articulera pas de la même manière au Québec. Effectivement, le territoire québécois est moins densément développé. En France, pour chaque kilomètre carré, nous comptons presque 118 habitants tandis qu’au Québec, la même superficie est peuplée par six habitants (Institut de la statistique du Québec, 2012). Malgré cette différence, il paraît évident que l’enjeu foncier pourrait afféter les travaux de compensation dans certaines régions du Québec. On peut supposer que la majorité des travaux de compensation se feront à l’échelle des MRC, dont certaines sont caractérisées par une plus grande densité, et donc une moins grande disponibilité des terrains.
Rappelons que la formule permettant de calculer le montant des compensations prend en compte la valeur des terrains sur lesquels aura lieu ladite compensation. Comme nous l’avons vu précédemment, le RCAMHH nous apprend que la valeur du terrain est : « ... calculée selon la valeur moyenne des terrains vagues sur le territoire de la MRC... » (RCAMHH). L’annexe 5 du même règlement nous apprend que la valeur établie pour 1 m² d’un terrain vague varie de 0,01 $ pour la MRC de la Vallée-de-l’or en Abitibi à 136,64 $ pour l’agglomération de Montréal. Tenant compte de la valeur élevée des terrains vagues pour les agglomérations et villes ayant des responsabilités de MRC et considérant que cette valeur soit en relation avec la rareté de ces derniers, il est légitime de penser que l’enjeu foncier pourrait s’y concrétiser.

Il est également possible que la demande générée par les projets de compensation accentue la rareté des terrains propices à la compensation et par le fait même en fasse augmenter la valeur (Poulton, 2014). Il est également possible de contester l’impact des PRMHH sur la valeur foncière des terrains ayant un potentiel pour la compensation. Rappelons que les PRMHH devront indiquer sur un plan les terrains ciblés par la MRC comme étant propices à des activités de restauration. Quel sera l’impact de ces documents sur la valeur foncière ? Est-il possible que ces derniers fassent l’objet d’acquisition par des promoteurs désirant dégager une marge de profit de la nouvelle valeur ajoutée ? Il est vrai que les terrains désignés sur le plan ne seront plus de simples « terrains vagues », mais les seuls terrains d’un territoire donné où pourront avoir lieu des activités de compensation. Toutefois, ici comme ailleurs, cet aspect de la compensation n’a pas beaucoup été étudié (Berté, 2020). Chose certaine, cette problématique sera d’autant plus importante si le ministère n’applique pas avec rigueur l’étape d’évitement.

5.5.2 Synthèse

6. RECOMMANDATIONS

La mise en contexte, l’analyse des changements législatifs, le regard sur les pratiques hors Québec pour la conservation des milieux humides et la discussion ont permis de mettre en relief quelques points de vigie soulevés par le nouveau régime de conservation des MH. Ce chapitre recense et présente, lorsque possible, des recommandations qui permettraient d’améliorer le modèle québécois. Les recommandations sont classées en fonction des sous-objectifs de ce travail, soit l’application du principe d’aucune perte nette en fonction de la biodiversité, des fonctions écosystémiques, des seuils écosystémiques, des incertitudes liées aux activités compensatoires et de la hiérarchie d’atténuation.

6.1 Renforcer la conservation de la biodiversité

Avec l’adoption de la LCMHH, le ministère désire enrayer toute perte nette de biodiversité. C’est l’un des deux sous-objectifs principaux de cette loi. Toutefois, l’analyse effectuée dans cet essai met en relief quelques points de vigie. Tout d’abord, la littérature démontre que les MH non impactés sont uniques et qu’il est impossible de les compenser tels quels (Moreno-Mateos et al., 2015). Le ministère devrait donc se positionner en défaveur à tout projet impactant un MH non perturbé.

Bien que le ministère exige des caractérisations environnementales de site approfondies, la formule proposée pour calculer la compensation financière ne tient pas compte de la majorité des informations recueillies. Cette simplification entraîne une perte d’informations qui se traduira par des activités compensatoires qui ne compenseront pas directement la biodiversité perdue. De manière à compenser adéquatement les sites impactés, le ministère doit développer des cibles plus précises qui encadreront les projets de compensation.

Finalement, le choix du ministère de ne pas considérer les perturbations passées ayant impacté le MH à l’étude et d’uniquement considérer la dimension la plus impactée lors du calcul de la compensation peut camoufler une portion de la valeur d’un MH. Le ministère doit mettre en place un suivi rigoureux des sites de compensation dans le but de quantifier l’équivalence entre le site impacté et le site de compensation de manière à déterminer si cette simplification entraîne une perte de valeur.

Selon ces recommandations, il semble optimiste de croire que la compensation permettrait d’éviter des pertes nettes de biodiversité. De manière à atteindre son objectif d’aucune perte nette de biodiversité, la LCMHH doit réduire les délais existants entre les activités ayant des impacts sur les MH et les activités...
compensatoires. De plus, la hiérarchie d’atténuation doit être renforcée. Ces pistes de solution sont développées dans les sous-chapitre 6.4 et 6.5.

6.2 Renforcer la conservation des fonctions écosystémiques

L’autre objectif principal de la LCMHH est d’éviter toute perte nette au niveau des fonctions de MH. Comme il a été démontré dans la discussion, les fonctions des MH à l’échelle d’un BV sont toujours positives. Par contre, quand on analyse les fonctions des MH individuellement, la littérature nous dit que certaines d’entre elles peuvent avoir des effets indésirables (Bullock et Acreman, 2003; Wu et al., 2020). Actuellement, le manque d’outils permettant de définir les fonctions d’un MH donné laisse supposer qu’il soit possible que le Québec compense un MH qui a des fonctions positives par un MH ayant des fonctions indésirables. Cette situation serait particulièrement problématique dans les BV qui ont subi des pertes historiques importantes dont les fonctions essentielles sont déjà compromises. Pour cette raison, le ministère pourrait développer une méthodologie permettant de définir les fonctions d’un MH donné avant d’autoriser toute nouvelle atteinte à des MH, du moins dans les BV déjà fortement hypothéqués.

Le calcul de la compensation mis en place par la LCMHH ressemble en tout point à ce que Quétier nomme « la méthode de notation normalisée » (Quétier et Lavorel, 2011). Bien qu’adéquate pour des perturbations ciblées et récurrentes telle l’atteinte à des MH, cette dernière ne permet pas de s’adapter à des projets exceptionnels. Par exemple, des projets dont l’envergure ou encore le contexte sont hors normes pourraient bénéficier d’une méthodologie se rapprochant du « raisonnement circonstanciel » (Quétier et Lavorel, 2011). Le ministère pourrait développer une méthodologie permettant de saisir la complexité des impacts pour des projets d’exception affectant les MH.

Finalement, peu importe la méthodologie utilisée pour calculer l’équivalence entre deux MH, il serait pertinent pour le ministère de se doter d’une méthode de caractérisation rapide. Cette méthode permettrait d’éviter de commettre les mêmes erreurs que les experts ont relevées aux États-Unis (National Research Council, 2001). Rappelons que les données disponibles pour ce pays démontrent hors de tout doute que, malgré les activités compensatoires, il y a perte nette de MH, de biodiversité et de fonctions. Toutefois, la mauvaise qualité des données ne permet pas d’analyser ce qui a fonctionné et ce qui n’a pas fonctionné (National Research Council, 2001). Dans cette situation, il est difficile de bonifier le système. Effectivement, la méthode de caractérisation rapide permet d’assurer un suivi uniforme des sites impactés ce qui, à terme, permettra de mieux analyser l’impact de la LCMHH. Le ministère pourrait développer une méthode de caractérisation rapide qui permettrait d’assurer un suivi homogène du régime de
conservation des MH. De nombreux modèles pourraient servir d’inspiration au ministère, notamment la CRAM développée en Californie (California Wetlands Monitoring Workgroup, 2013).

6.3 Fixer des seuils s’adaptant à chaque bassin versant

La littérature scientifique nous apprend qu’en deçà d’un certain pourcentage de MH à l’échelle d’un BV, il y a une perte des fonctions essentielles (Environnement Canada, 2013). Sachant que les pertes historiques ont été particulièrement importantes dans les BTSL (Pellerin et Poulin, 2013) et qu’il est possible que le pourcentage de MH à l’échelle des BV soit déjà sous le seuil permettant d’assurer des fonctions essentielles, l’approche de compensation du ministère est incomplète. Effectivement, supposant que ce seuil a déjà été dépassé pour certains BV et sachant que les sites de compensation n’ont généralement pas les mêmes qualités que les MH d’origine, il est illogique d’autoriser de nouveaux impacts (Gardner et al., 2013). À la lumière de ces informations, le ministère devrait valider, à l’échelle du territoire du Québec, qu’elles sont le ou les seuils correspondant au pourcentage minimal de MH nécessaires pour conserver les fonctions essentielles. L’acquisition de cette connaissance aurait pu faire partie du mandat accordé aux MRC qui réalisent actuellement les PRMHH. Il serait également concevable que les OBV réfléchissent à cette question considérant que l’exercice doit se faire à l’échelle des BV.

Comme démontré dans le chapitre 5, les seuils constituent un formidable outil de gouvernance. Qu’il s’agisse d’établir des ratios MH/positionnement dans le BV, la dimension des zones tampons, une proportion des types de MH ou encore du couvert forestier minimal à l’échelle d’un BV, l’élaboration de seuils ou de lignes directrices bonifie la gestion, car ils permettent de mieux s’adapter au contexte (Environnement Canada, 2013). Effectivement, les seuils présentés précédemment favoriseraient l’atteinte des objectifs de la LCMHH, car ils se basent sur des données scientifiques. La LCMHH joue un rôle essentiel, en ce sens qu’elle limite les pertes futures. Toutefois, dans sa forme actuelle, elle ne permettra pas de rétablir les fonctions perdues dans les BV déjà fortement hypothéqués. Pire encore, sans ligne directrice basée sur des seuils précis, on peut penser que même les BV qui sont aujourd’hui peu impactés et qui ont préservé la majorité de leurs fonctions se dégraderont dans le temps. Effectivement, si on restaure des MH sans prendre en compte les seuils, il est probable que soient perdues des fonctions. Pour ce faire, il est nécessaire d’analyser le contexte propre à chaque BV de manière à cibler les actions de compensation qui auront le plus d’impacts positifs. En ce sens, les guides expliquant la démarche d’élaboration des PRMHH produits par le ministère auraient dû contenir des lignes directrices aidant les MRC à incorporer ces informations essentielles.
De plus, les lignes directrices ainsi adaptées et définies pour chaque MRC faciliteraient l’application de la hiérarchie d’atténuation. Effectivement, il serait plus aisé de justifier l’évitement au regard de tel ou tel seuil. Par exemple, un projet impactant des MH en tête de BV pourrait être refusé si la proportion de BV dans ce secteur est déjà sous un certain seuil. Le système serait d’autant plus intelligible pour les demandeurs d’autorisations environnementales qui pourraient facilement comprendre les enjeux propres à leur territoire. Il est donc recommandé que des lignes directrices adaptées et définies pour chaque MRC soient développées afin que la hiérarchie d’atténuation soit véritablement applicable.

6.4 Évaluer l’impact des délais et des risques tributaires aux activités compensatoires

L’analyse a permis de mettre en relief les incertitudes tributaires aux activités compensatoires telles qu’actuellement définies par la LCMHH. Premièrement, il semble clair que d’importants délais existeront entre le moment où il y aura perte de MH et les gains permettant de combler ces pertes (Vesk et al., 2008). Il est nécessaire que le ministère se penche sur ces questions et se positionne sur l’impact de ces délais. Existe-t-il des situations où de tels délais ne seraient pas compatibles avec les objectifs de la LCMHH ? Existe-t-il des régions plus vulnérables où de tels délais pourraient avoir des impacts significatifs sur la biodiversité ou sur les fonctions écosystémiques des MH ?

Deuxièmement, il est nécessaire que le ministère précise la manière dont il entend gérer l’incertitude liée aux activités compensatoires. Si l’on se fie à l’expérience états-unienne, il semble qu’un très faible pourcentage des activités compensatoires ait atteint leurs cibles, que ce soit en termes de superficie, de biodiversité ou encore de fonctions (National Research Council, 2001). L’explication de ces ratés est multidimensionnelle, mais il est évident qu’une part de ces échecs est attribuable aux risques inhérents aux activités compensatoires. Parmi les solutions mises en place pour mitiger ce problème, le facteur de risque semble prometteur. Le ministère pourrait définir une méthodologie permettant d’estimer le risque intrinsèque à chaque projet et ajuster les contributions financières pour qu’elles reflètent ce risque.

Finalement, le ministère devrait envisager les banques d’habitats comme étant une solution adéquate pour minimiser l’incertitude temporelle et les risques tributaires aux activités compensatoires. Comme il a été démontré dans le chapitre 5, les banques d’habitats, par leur mode de fonctionnement, assurent que le site de compensation ait atteint ses cibles (superficie, fonctions, biodiversité) avant que tout impact ne soit autorisé (Bekessy et al., 2010; Gardner et al., 2013). Bien entendu, ce modèle demande un type de gestion plus proactif, car les pertes doivent être anticipées. Toutefois, il pourrait être tout à fait adéquat.
pour les BV qui ont subi des pertes historiques importantes et pour lesquels le seuil de recouvrement minimal a été franchi.

6.5 Renforcer la hiérarchie d’atténuation

À la lumière de l’analyse effectuée dans ce travail, il est clair que le concept même de la compensation de la biodiversité repose sur une application rigoureuse de la hiérarchie d’atténuation. L’importance de l’étape d’évitement est clairement établie par la politique de l’UCIN et par le guide *Quand l’Habitat est-il suffisant?* (Environnement Canada, 2013; IUCN, 2016b). Qui plus est, la littérature scientifique fait de cette étape la clef de voûte d’un système de compensation (Bull, Suttle, Gordon, Singh et Milner-Gulland, 2013; Gardner et al., 2013; Maron et al., 2012; Moilanen et al., 2009; Moreno-Mateos et al., 2015; Morris, Alonzo, Jefferson et Kirby, 2006; Quétier et al., 2012; Quétier et Lavorel, 2011). Au Québec, la LCMHH grâce à ces PRMHH, permettra l’évitement des MH d’exception à l’échelle des MRC. Une analyse rigoureuse des PRMHH sera donc nécessaire lors de leur publication en 2022 pour juger de leur qualité.

Toujours est-il qu’une portion des MH d’un territoire est toujours disponible pour le développement, car identifiée comme « autres MH » par les PRMHH. L’expérience passée nous apprend que l’évitement est peu appliqué par les directions régionales du MELCC (Pellerin et Poulin, 2013). La LCMHH n’a pas fourni d’outils aux analystes qui leur permettraient de favoriser l’évitement. Pour ce faire, une meilleure connaissance du territoire est nécessaire. Cette connaissance devra servir à établir des lignes directrices, telles que présentées dans la section 5.3, qui elles permettront de justifier l’évitement.
CONCLUSION

L’objectif de cet essai était d’analyser le nouveau mode de conservation des MH du Québec instauré par la LCMHH. Plus spécifiquement, l’analyse s’intéressait à l’adéquation entre les moyens mis en place et l’atteinte de l’objectif d’aucune perte nette mis de l’avant par cette loi. Les deux premiers aspects analysés ont été la conservation de la biodiversité et des fonctions écosystémiques. L’importance d’établir des seuils guidant les efforts de conservation, les enjeux relatifs à la temporalité des gains et des pertes de MH et les enjeux relatifs à l’application de la hiérarchie d’atténuation ont été également analysés.

La LCMHH s’ancre dans un courant international qui promeut la compensation de la biodiversité comme une méthode efficace pour permettre un développement durable. Bien que l’idée de permettre le développement sans engendrer la moindre perte est alléchante, l’étude du modèle états-unien nous apprend qu’il s’est soldé par d’importantes pertes nettes. De plus, la majorité de la littérature scientifique consultée pour cet essai soulève de nombreux points de vigie sur la mise en place d’un système de compensation de la biodiversité.

Considérant que l’adoption de la LCMHH est encore récente, qu’elle ne sera complètement fonctionnelle qu’en 2022 lors de l’adoption de PRMHH et que le premier bilan officiel du ministère sur celle-ci est prévu pour 2027, il n’est pas possible de poser un jugement final sur l’atteinte de ces objectifs. Toutefois, il est possible d’affirmer que dans sa forme actuelle, il est peu probable que la LCMHH atteigne son objectif d’aucune perte nette. Effectivement, la simplification des enjeux relatifs à la compensation de la biodiversité, le manque de connaissances sur les fonctions hydrologiques des MH, les nombreuses incertitudes inhérentes aux activités compensatoires et le manque de rigueur dans l’application de la hiérarchie d’atténuation laissent croire que le Québec perdra encore des MH. Ceci étant dit, les changements qu’elle a mis en place sont positifs et il n’y a aucun doute que les MH sont mieux protégés que jamais. De plus, rappelons que des bilans portant sur les activités compensatoires auront lieu aux dix ans. Le caractère itératif de l’exercice laisse supposer que les défis que rencontrera le nouveau régime de conservation des MH au fil des ans seront autant d’occasions de l’améliorer. Il serait d’autant plus intéressant que les apprentissages qui seront faits puissent bénéficier à un plus grand nombre d’écosystèmes. Effectivement, il pourrait être pertinent d’appliquer le principe d’aucune perte nette à l’ensemble de la biodiversité québécoise comme cela se fait en France.
RÉFÉRENCES

Charte des droits et libertés de la personne, RLRQ, C-12.

Loi affirmant le caractère collectif des ressources en eaux et favorisant une meilleure gouvernance de l’eau et des milieux associés, RLRQ, c. C-6.2.
Loi concernant des mesures de compensation pour la réalisation de projet affectant un milieu humide ou hydrique, RLRQ, c. M-11.4.

Loi sur la conservation du patrimoine naturel, RLRQ, C-61.01.

Loi sur la qualité de l’environnement, RLRQ, Q-2.

Règlement sur la compensation pour l’atteinte aux milieux humides et hydriques, RLRQ, Q-2, r.36.

Vivre en ville. (2018). *Pour l’atteinte de la cible d’aucune perte nette de milieux humides et hydriques* :

ANNEXE 1 : CALCUL DE LA CONTRIBUTION FINANCIÈRE.

(tiré de : RCAMHH)

\[MC = (ct + vt) \times S \]

Où

- MC = montant de la contribution financière exigible à titre de compensation pour l’atteinte au milieu humide ou hydrique
- ct = coût, au mètre carré, de création ou de restauration d’un milieu humide ou hydrique, calculé selon la formule suivante :
 \[ct = cb \times \Delta I \times R \]
 Où
 - cb = coût de base de création ou de restauration d’un milieu humide ou hydrique
 - \(\Delta I \) = facteur représentant l’atteinte au milieu humide ou hydrique, calculé selon la formule suivante :
 \[\Delta I = I_{\text{FIN}} - I_{\text{INI}} \]
 Où
 - \(I_{\text{INI}} \) = facteur représentant l’état initial de la partie du milieu humide ou hydrique affectée par l’activité
 - \(I_{\text{FIN}} \) = facteur représentant l’état final de la partie du milieu humide ou hydrique affectée par l’activité, calculé selon la formule suivante :
 \[I_{\text{FIN}} = I_{\text{INI}} \times NI \]
 Où
 - NI = facteur représentant l’impact de l’activité sur la partie du milieu humide ou hydrique affectée par celle-ci

Dans le cas d’un milieu humide, le facteur \(\Delta I \) est déterminé conformément aux paramètres prévus à l’annexe II.

Dans le cas d’un milieu hydrique, ce facteur est déterminé conformément aux paramètres prévus à l’annexe III.

- R = facteur de modulation régionale, déterminé en fonction du lieu de réalisation de l’activité conformément à l’annexe IV

- vt = valeur du terrain, au mètre carré, calculée selon la valeur moyenne des terrains vagues sur le territoire de la municipalité régionale de comté concernée, ou de l’entité qui en tient lieu, telle qu’elle est déterminée à l’annexe IV, ou, dans le cas des terres du domaine de l’État, calculée à une valeur de 0,8307 \$ le mètre carré

- S = superficie, en mètres carrés, de la partie du milieu humide ou hydrique dans laquelle l’activité est réalisée, à l’exclusion de la superficie occupée par des ouvrages ou des constructions déjà existants.
ANNEXE 2 : SOMMAIRE DES MÉTHODES LES PLUS COMMUNES POUR CALCULER LES COMPENSATIONS ÉCOLOGIQUES

(tiré de : Fabien Quétier et Lavorel, 2011)

<table>
<thead>
<tr>
<th>A - Target components of biodiversity</th>
<th>B - Indicators</th>
<th>C - Temporal dynamics</th>
<th>D - Uncertainties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wetland mitigation methods (USA)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UMAM (USA)</td>
<td>Wetlands (area × score)</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>HEA/BEA (USA)</td>
<td>Wetlands (area × score)</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>Conservation (USA and Australia)</td>
<td>DSAVs</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Habitat Hexares (Australia)</td>
<td>Protected species (credits)</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Ausgleich (Germany)</td>
<td>Native vegetation</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>Biotopbewertfahren (Germany)</td>
<td>Protected species and habitats (area × habitat type)</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Natura 2000 (EU)</td>
<td>Undeveloped land (area × score)</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Offset ratios (France)</td>
<td>Integrity of the Natura 2000 network</td>
<td>N</td>
<td>N</td>
</tr>
</tbody>
</table>
ANNEXE 3 : CALCUL DE L’ÉTAT FINAL DE LA PARTIE DU MILIEU HUMIDE AFFECTÉE PAR L’ACTIVITÉ

(tiré de : RCAMHH, partie 2)

| Composantes | Négligeable
|NI = 0,9| Faible
|NI = 0,6| Elevé
|NI = 0,1| Très élevé
|NI = 0 |
|---|---|---|---|---|
|Végétation| Végétation non perturbée| Végétation perturbée ou détruite sur moins de 20 % de la partie affectée du milieu humide| Végétation perturbée ou détruite sur plus de 20 % de la partie affectée du milieu humide| N/A |
|Sol| Sol compacté ou soumis à l’ombrage sur moins de 5 % de la partie affectée du milieu humide| Sol compacté ou soumis à l’ombrage sur 5 % ou plus de la partie affectée du milieu humide| Sol retourné, labouré ou excavé OU Sol affecté par des travaux modifiant, dans toute la partie affectée du milieu humide, le sens de l’écoulement de l’eau| Sol retiré, recouvert ou imperméabilisé dans toute la partie affectée du milieu humide |
|Eau| Régime hydrologique non perturbé| Régime hydrologique perturbé sur moins de 8 % de la partie affectée du milieu humide| Régime hydrologique perturbé sur 5 % à 40 % de la partie affectée du milieu humide| Régime hydrologique perturbé sur plus de 40 % de la partie affectée du milieu humide|