INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6" x 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order.

ProQuest Information and Learning
300 North Zeeb Road, Ann Arbor, MI 48106-1346 USA
800-521-0600

UMI®
ÉTUDE EXPÉRIMENTALE DE L’ADHÉRENCE DES BARRES D’ARMATURE EN POLYMÈRES RENFORCÉS DE FIBRES (PRF) NOYÉES DANS LE BÉTON

Mémoire de maîtrise es sciences appliquées
Spécialité : génie civil

Isabelle LORD

Sherbrooke (Québec), Canada Février 2001
The author has granted a non-exclusive licence allowing the National Library of Canada to reproduce, loan, distribute or sell copies of this thesis in microform, paper or electronic formats.

L’auteur a accordé une licence non exclusive permettant à la Bibliothèque nationale du Canada de reproduire, prêter, distribuer ou vendre des copies de cette thèse sous la forme de microfiche/film, de reproduction sur papier ou sur format électronique.

The author retains ownership of the copyright in this thesis. Neither the thesis nor substantial extracts from it may be printed or otherwise reproduced without the author’s permission.

L’auteur conserve la propriété du droit d’auteur qui protège cette thèse. Ni la thèse ni des extraits substantiels de celle-ci ne doivent être imprimés ou autrement reproduits sans son autorisation.

0-612-67307-3
RÉSUMÉ

La nouvelle génération des barres d’armature en matériaux composites Isorod produites par Pultrall inc, Thetford Mines (Québec) diffère de l’ancienne génération par le nouveau revêtement de surface et le pourcentage de résine. Ces paramètres ayant été modifiés, une nouvelle série d’essais devient donc nécessaire.

Les travaux de recherche de ce mémoire, réalisés dans le cadre de recherche d’ISIS Canada et de la chaire industrielle CRSNG, portent sur l’étude de l’adhérence des barres en polymères renforcés de fibres (PRF) noyées dans le béton. Les étapes de ce projet de recherche sont les suivantes :

1. L’étude du comportement à l’adhérence, par l’entremise des travaux de recherche réalisés antérieurement;
2. L’étude, par des essais en laboratoire, de l’effet des diamètres des barres d’armature en polymères renforcés de fibres (PRF) sur la contrainte d’adhérence maximum;
3. L’étude, par des essais en laboratoire également, de l’effet de la longueur d’ancrage des barres d’armature en PRF sur la contrainte d’adhérence maximum;
4. L’évaluation de la longueur de développement de base de la nouvelle génération des barres d’armature ISOROD à base de fibres de verre ou de carbone;
5. L’évaluation de la contrainte d’adhérence maximum de ces mêmes barres.

Les objectifs de ces travaux de recherche sont d’investiguer les points suivants :

1. Les effets de la longueur d’ancrage et du diamètre de la barre d’armature sur la contrainte d’adhérence maximum;
2. La longueur de développement des différentes barres d’armature en PRF;
3. Une proposition d’équation pour la longueur de développement de base;
REMERCIEMENTS

J’aimerais exprimer toute ma reconnaissance aux personnes ayant contribué de près ou de loin à la réalisation de ce projet.

Tout d’abord, je tiens à remercier mon directeur de mémoire, M. Brahim Benmokrane, pour ses conseils et l’autonomie dont il m’a laissé profiter.

Je voudrais aussi remercier ISIS-Canada pour son soutien financier, ayant permis la bonne réalisation de ce projet de recherche tout au long des deux dernières années.

De plus, je remercie les membres de notre équipe de recherche en particulier Radhouane Masmoudi et Brahim Tighiouart pour leur assistance et partage de connaissances, Claude Dugal (technicien) et Paschal Racine (stagiaire) pour leur aide indispensable au laboratoire.

Ensuite, je désirerais exprimer ma gratitude envers ma famille qui m’a apporté support et encouragement dans la poursuite de mes objectifs.

Et pour terminer, j’aimerais grandement remercier mes amis avec qui j’ai pu passer des moments inoubliables et desquels je conserverai des souvenirs précieux.
TABLE DES MATIÈRES

1.0 INTRODUCTION ... 1
 1.1 ÉTAT DE LA QUESTION ... 1
 1.2 OBJECTIFS .. 2
 1.3 ORGANISATION DU MÉMOIRE .. 2

2.0 REVUE DE LITTÉRATURE .. 4
 2.1 MATÉRIAUX COMPOSITES À BASE DE POLYMÈRE RENFORCÉ DE FIBRES (PRF) 4
 2.1.1 Les composites .. 4
 2.1.2 Résines .. 5
 2.1.3 Renforts ... 8
 2.1.4 Interface fibres/résine .. 13
 2.1.5 Méthode de fabrication ... 15
 2.2 ADHÉRENCE ... 16
 2.2.1 Types de forces .. 16
 2.2.2 Modes de rupture ... 17
 2.2.3 Procédures d’essais .. 20
 2.2.4 Modèles théoriques .. 23
 2.3 RÉSULTATS DES RECHERCHES EXPÉRIMENTALES ANTÉRIEURES ... 26
 2.3.1 Effets du fini de la surface sur la contrainte d’adhérence maximum .. 26
 2.3.2 Effets du type de barres sur la contrainte d’adhérence maximum .. 31
 2.3.3 Effets de la longueur d’ancrage sur la contrainte d’adhérence maximum 33
 2.3.4 Effets du diamètre de la barre sur la contrainte d’adhérence maximum 35
 2.4 CONCLUSIONS ... 36

3.0 PROGRAMME EXPÉRIMENTAL .. 38
 3.1 MATÉRIAUX UTILISÉS ... 38
 3.1.1 Béton .. 38
 3.1.2 Barres d’armature ... 39
 3.2 MÉTHODE D’ÉVALUATION CHOISIE ... 41
 3.2.1 Type d’essai ... 41
 3.2.2 Description des échantillons .. 41

4.0 PRÉSENTATION, ANALYSE ET DISCUSSION DES RÉSULTATS ... 48
 4.1 RÉSULTATS OBTENUS .. 48
 4.1.1 Résultats des essais statiques ... 49
 4.1.2 Résultats des essais cycliques .. 57
 4.2 ANALYSE DES RÉSULTATS ... 59
 4.2.1 Essais statiques .. 59
 4.2.2 Analyses des résultats cycliques ... 65
 4.2.3 Effet de la longueur d’ancrage sur la contrainte d’adhérence maximum 65
 4.2.4 Effet du diamètre de la barre d’armature sur la contrainte d’adhérence maximum 66
 4.2.5 Effet de la rugosité de surface sur la contrainte d’adhérence maximum 67
4.2.6 Modèles théoriques ... 68
4.3 RECOMMANDATIONS ET DISCUSSIONS 71
CONCLUSIONS .. 72
ANNEXE A ... 75
BIBLIOGRAPHIE ... 84
LISTES DES TABLEAUX

TABLEAU 2.1 PRINCIPAUX AVANTAGES ET DÉSADVANTAGES DES RÉSINES ÉPOXYDIQUES [BENMOKRANE, 1999]... 7

TABLEAU 2.2 PRINCIPAUX AVANTAGES ET DÉSADVANTAGES DES RÉSINES VINYLESTERS [BENMOKRANE, 1999]... 7

TABLEAU 2.3 PROPRIÉTÉS LONGITUDINALES DES FIBRES DE VERRE [BENMOKRANE, 1999]... 9

TABLEAU 2.4 PRINCIPAUX AVANTAGES ET DÉSADVANTAGES DES FIBRES DE VERRE [BENMOKRANE, 1999]... 10

TABLEAU 2.5 PROPRIÉTÉS LONGITUDINALES DES FIBRES DE CARBONE [BENMOKRANE, 1999]... 12

TABLEAU 2.6 PRINCIPAUX AVANTAGES ET DÉSADVANTAGES DES FIBRES DE CARBONE [BENMOKRANE, 1999]... 12

TABLEAU 2.7 PROPRIÉTÉS LONGITUDINALES DES FIBRES D'ARAMIDES [BENMOKRANE, 1999]... 12

TABLEAU 2.8 PRINCIPAUX AVANTAGES ET DÉSADVANTAGES DES FIBRES D'ARAMIDE [BENMOKRANE, 1999]... 13

TABLEAU 2.9 RÉSULTATS DES ESSAIS D'ADHÉRENCE [MAKITANI ET AL., 1993] ... 30

TABLEAU 2.10 COMPARAISON DES CONTRAINTES D'ADHÉRENCE ET DU GLISSEMENT DES BARRES EN PRF ET DES BARRES CONVENTIONNELLES [LARRALDE ET AL., 1993] 32

TABLEAU 3.1 RÉSULTATS DES ESSAIS EN COMPRESSION DU BÉTON POUR LES ÉCHANTILLONS FAITS AVEC DES BARRES À BASE DE FIBRES DE CARBONE.. 38

TABLEAU 3.2 RÉSULTATS DES ESSAIS EN COMPRESSION DU BÉTON POUR LES ÉCHANTILLONS FAITS AVEC DES BARRES À BASE DE FIBRES DE VERRE.. 39

TABLEAU 3.3 RÉSULTATS DES ESSAIS DE TRACTION EFFECTUÉS SUR LES BARRES D'ARMATURE À BASE DE FIBRES DE CARBONE.... 41

TABLEAU 3.4 RÉSULTATS DES ESSAIS DE TRACTION EFFECTUÉS SUR LES BARRES D'ARMATURE À BASE DE FIBRES DE VERRE........ 41
TABLEAU 3.5 DÉTAILS DES LONGUEURS D’ANCRAJE POUR LA BARRE À BASE DE FIBRES DE VERRE ... 43

TABLEAU 3.6 DÉTAILS DES LONGUEURS D’ANCRAJE POUR LA BARRE À BASE DE FIBRES DE CARBONE .. 44

TABLEAU 3.7 NOMBRE DE CYCLES ET CHARGE AUXQUELLES LES ÉCHANTILLONS ONT ÉTÉ SOUMIS ... 47

TABLEAU 4.1 RÉSULTATS OBTENUS POUR LES BARRES D’ARMATURE À BASE DE FIBRES DE VERRE DE 9,525 mm DE DIAMÈTRE (a) La=50mm (b) La=100mm (c) La=150mm .. 49

TABLEAU 4.2 RÉSULTATS OBTENUS POUR LES BARRES D’ARMATURE À BASE DE FIBRES DE VERRE DE 12,7 mm DE DIAMÈTRE (a) La=60mm (b) La=120mm (c) La=180mm ... 50

TABLEAU 4.3 RÉSULTATS OBTENUS POUR LES BARRES D’ARMATURE À BASE DE FIBRES DE VERRE DE 15,875 mm DE DIAMÈTRE (a) La=75mm (b) La=150mm (c) La=225mm ... 51

TABLEAU 4.4 RÉSULTATS OBTENUS POUR LES BARRES D’ARMATURE À BASE DE FIBRES DE VERRE DE 19,05 mm DE DIAMÈTRE (a) La=100mm (b) La=200mm (c) La=300mm ... 52

TABLEAU 4.5 VALEURS DES CONTRAINTES D’ADHÉRENCE MAXIMALES POUR LES BARRES D’ARMATURE PRF À BASE DE FIBRES DE VERRE .. 53

TABLEAU 4.6 RÉSULTATS OBTENUS POUR LES BARRES D’ARMATURE À BASE DE FIBRES DE CARBONE DE 9,525 mm DE DIAMÈTRE (a) La=50mm (b) La=100mm (c) La=150mm (d) La=200mm 54

TABLEAU 4.7 VALEURS DES CONTRAINTES D’ADHÉRENCE MAXIMALES POUR LES BARRES D’ARMATURE PRF À BASE DE FIBRES DE CARBONE ... 55

TABLEAU 4.9 NOMBRE DE CYCLES DES ÉCHANTILLONS DE BARRES DE PRFV DE 9,525 mm DE DIAMÈTRE .. 57

TABLEAU 4.10 NOMBRE DE CYCLES DES ÉCHANTILLONS DE BARRES DE PRFV DE 12,7 mm DE DIAMÈTRE .. 57

TABLEAU 4.11 NOMBRE DE CYCLES DES ÉCHANTILLONS DE BARRES DE PRFV DE 15,875 mm DE DIAMÈTRE .. 58

TABLEAU 4.12 NOMBRE DE CYCLES DES ÉCHANTILLONS DE BARRES DE PRFV DE 19,05 mm DE DIAMÈTRE .. 58
TABLEAU 4.13 NOMBRE DE CYCLES DES ÉCHANTILLONS DE BARRES DE PRFC DE 9,525 mm DE DIAMÈTRE ... 58

TABLEAU 4.14 RÉSUMÉ DES LONGUEURS DE DÉVELOPPEMENT DE BASE . 64

TABLEAU 4.15 FACTEURS k EN FONCTION DU DIAMÈTRE ... 64

TABLEAU 4.16 VALEURS DES CONTRAINTES D’ADHÉRENCE [TIGHIOUART, 1996] ... 68

TABLEAU 4.17 VALEURS DES CONTRAINTES D’ADHÉRENCE MAXIMUM OBTENUES LORS DE CE PROJET .. 68

TABLEAU 4.18 PARAMÈTRES DE COURBE POUR LES BARRES D’ARMATURE EN PRF À BASE DE FIBRES DE VERRE .. 69

TABLEAU 4.19 PARAMÈTRES DE COURBE POUR LES BARRES D’ARMATURE EN PRF À BASE DE FIBRES DE CARBONE 69
<table>
<thead>
<tr>
<th>LISTES DES FIGURES</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIGURE 2.1</td>
</tr>
<tr>
<td>FIGURE 2.2</td>
</tr>
<tr>
<td>FIGURE 2.3</td>
</tr>
<tr>
<td>FIGURE 2.4</td>
</tr>
<tr>
<td>FIGURE 2.5</td>
</tr>
<tr>
<td>FIGURE 2.6</td>
</tr>
<tr>
<td>FIGURE 2.7</td>
</tr>
<tr>
<td>FIGURE 2.8</td>
</tr>
<tr>
<td>FIGURE 2.9</td>
</tr>
<tr>
<td>FIGURE 2.10</td>
</tr>
<tr>
<td>FIGURE 2.11</td>
</tr>
<tr>
<td>FIGURE 2.12</td>
</tr>
<tr>
<td>FIGURE 2.13</td>
</tr>
<tr>
<td>FIGURE 2.14</td>
</tr>
<tr>
<td>FIGURE 2.15</td>
</tr>
<tr>
<td>FIGURE 2.16</td>
</tr>
<tr>
<td>FIGURE 2.17</td>
</tr>
<tr>
<td>FIGURE 2.18</td>
</tr>
<tr>
<td>FIGURE 3.1</td>
</tr>
<tr>
<td>FIGURE 3.2</td>
</tr>
<tr>
<td>FIGURE 3.3</td>
</tr>
<tr>
<td>FIGURE 3.4</td>
</tr>
<tr>
<td>FIGURE 3.5</td>
</tr>
</tbody>
</table>
FIGURE 3.6 MONTAGE ET SYSTÈME D’ACQUISITION POUR LES ESSAIS ..45

FIGURE 4.1 COURBE TYPE CONTRAINTE D’ADHÉRENCE/GLISSEMENT POUR UNE BARRE PRFV DE 12,7 mm DE DIAMÈTRE ANCRÉE À 120mm. ..56

FIGURE 4.2 COURBE TYPE CONTRAINTE D’ADHÉRENCE/GLISSEMENT POUR UNE BARRE PRFC DE 9,525 mm DE DIAMÈTRE ANCRÉE À 50mm. ..57

FIGURE 4.3 COURBE DE LA CONTRAINTE MAXIMALE D’ADHÉRENCE EN FONCTION DE LA LONGUEUR D’ANCRAGE POUR UNE BARRE D’ARMATURE À BASE DE FIBRES DE VERRE DE 9,525 mm DE DIAMÈTRE...59

FIGURE 4.4 COURBE DE LA CONTRAINTE MAXIMALE D’ADHÉRENCE EN FONCTION DE LA LONGUEUR D’ANCRAGE POUR UNE BARRE D’ARMATURE À BASE DE FIBRES DE VERRE DE 12,7 mm DE DIAMÈTRE...60

FIGURE 4.5 COURBE DE LA CONTRAINTE MAXIMALE D’ADHÉRENCE EN FONCTION DE LA LONGUEUR D’ANCRAGE POUR UNE BARRE D’ARMATURE À BASE DE FIBRES DE VERRE DE 15,875 mm DE DIAMÈTRE...61

FIGURE 4.6 COURBE DE LA CONTRAINTE MAXIMALE D’ADHÉRENCE EN FONCTION DE LA LONGUEUR D’ANCRAGE POUR UNE BARRE D’ARMATURE À BASE DE FIBRES DE VERRE DE 19,05 mm DE DIAMÈTRE...62

FIGURE 4.7 COURBE DE LA CONTRAINTE MAXIMALE D’ADHÉRENCE EN FONCTION DE LA LONGUEUR D’ANCRAGE POUR UNE BARRE D’ARMATURE À BASE DE FIBRES DE CARBONE DE 9,525 mm DE DIAMÈTRE...63

FIGURE 4.8 EFFET DE LA LONGUEUR D’ANCRAGE SUR LA CONTRAINTE D’ADHÉRENCE POUR UNE BARRE À BASE DE FIBRES DE VERRE DE 9,525 mm DE DIAMÈTRE...66

FIGURE 4.9 EFFET DU DIAMÈTRE SUR LA CONTRAINTE D’ADHÉRENCE DE BARRES À BASE DE FIBRES DE VERRE ..67

FIGURE 4.10 COURBE DE CONCORDANCE ENTRE LA COURBE EXPÉRIMENTALE ET LA COURBE THÉORIQUE D’UNE BARRE À BASE DE FIBRES DE CARBONE, ANCRÉE À 150 mm (0 à 1 mm) ..70

FIGURE 4.11 COURBE DE CONCORDANCE ENTRE LA COURBE EXPÉRIMENTALE ET LA COURBE THÉORIQUE D’UNE BARRE À BASE DE FIBRES DE CARBONE, ANCRÉE À 150 mm (0 à 5 mm) ..70
1.0 INTRODUCTION

1.1 État de la question

Au cours des dernières années, il fut établi que la principale cause de détérioration des structures en béton armé est directement reliée à la corrosion de l'armature. En effet, la pénétration des ions chlore dans le béton armé corrode l'armature ce qui cause l'éclatement du béton dans les environnements agressifs tels que les structures marines et côtières, les usines chimiques, les usines de traitement des eaux et les ponts (spécialement lorsque des sels de déglaçage sont utilisés). Jusqu'à présent plusieurs solutions ont été envisagées pour tenter de remédier à ce problème, à savoir l'amélioration de la perméabilité du béton à l'aide d'ajout, l'augmentation du recouvrement de béton sur l'armature, l'utilisation des barres d'armature recouvertes d'époxy, etc. Une autre alternative semble de plus en plus intéressante : l'utilisation de barres d'armature en matériaux composites. Ces barres d'armature sont faites de fibres enrobées d'une résine polymérique, il s'agit donc d'un matériau non-métallique ayant une haute résistance à la corrosion. De plus, ce type de matériau a des propriétés mécaniques élevées ainsi qu'un poids relativement léger.

Pour donner des chiffres, notons que mondialement, environ 900 milliards de dollars sont investis chaque année pour la réparation, la réfection ou encore la réhabilitation des infrastructures. La situation aux États-Unis est d'environ 78 milliards de dollars annuellement alors que celle au Canada est de 74 milliards de dollars. De plus, en Europe, le coût annuel de réparation dû à la corrosion est estimé à un milliard de livres sterling. En Angleterre, on rapporte qu'entre 1974 et 1978, la corrosion de l'armature d'acier a entraîné l'effondrement d'au moins huit structures dont une âgée d'à peine 2 ans [Benmokrane, 2000].

1.2 Objectifs

Les essais réalisés sur les barres d’armature ISOROD à base de fibres de verre de 9,6; 12,7; 15,9 et 19,1mm et sur les barres d’armature ISOROD à base de fibres de carbone de 9,6 mm et sur les barres d’armature conventionnelles de 11,3mm permettront d’atteindre les objectifs suivants :

- Évaluer la contrainte d’adhérence maximum des barres d’armature en matériaux composites à base de fibres pour un fini de surface sablé;
- Évaluer la longueur de développement maximale pour ces mêmes barres;
- Établir une relation entre les résultats obtenus expérimentalement et certains modèles théoriques existants.

1.3 Organisation du mémoire

Le présent document est composé de 5 chapitres :

- La problématique et la mise en situation du sujet de recherche, ainsi que les objectifs sont présentés au chapitre 1;
- Le chapitre 2 est une revue de littérature portant sur les caractéristiques physiques, mécaniques et chimiques des barres d’armature en matériaux composites et de leurs
constituants. Une revue bibliographique des études expérimentales et théoriques sur le comportement de l'adhérence des barres en PRF/béton est aussi présentée dans le chapitre 2;

- Le chapitre 3 présente le programme expérimental, les propriétés des matériaux utilisés, la méthode et la procédure des essais et les caractéristiques des échantillons;
- Les résultats expérimentaux, l'analyse et la discussion sont présentés au chapitre 4.
- Les conclusions des travaux de recherche réalisés dans le cadre de ce projet de recherche et les recommandations pour les travaux futurs sont présentés dans la dernière section de ce rapport.
2.0 REVUE DE LITTÉRATURE

L'utilisation des différents matériaux comme renforcement du béton donne lieu à de différents comportements relativement à leur adhérence, de part leur constitution, leur diamètre et leur revêtement externe. Cette revue de littérature résume les différents effets (effets du fini de surface, du diamètre et de la longueur d'ancrage de la barre d'armature en PRF) des différents paramètres des barres d'armature en PRF (types de fibres, types de résines, type de recouvrement de surface, etc.) noyées dans le béton concernant la question de l'adhérence. La première partie de ce chapitre sera consacrée à la description des matériaux composites et de leurs divers constituants. La deuxième partie portera sur les notions théoriques d'adhérence alors que la dernière partie portera sur les recherches expérimentales ayant déjà été faites sur le sujet.

2.1 Matériaux composites à base de polymères renforcés de fibres (PRF)

2.1.1 Les composites

Tout d'abord, un matériau composite est un matériau composé de deux ou plusieurs constituants de natures différentes, qui contrairement aux composés chimiques possèdent des zones distinctes laissant une interface ou une zone de transition entre les deux matériaux. Les polymères renforcés de fibres (PRF) sont pour leur part constitués de renforts fibreux protégés et supportés par une matrice. La figure 2.1 montre le comportement des différents composants d'un matériau composite du point de vue contrainte versus déformation.

![Figure 2.1 Comportement des différents composants d'un matériau composite](image)

Figure 2.1 Comportement des différents composants d'un matériau composite
2.1.2 Résines

Dans un matériau composite, plusieurs rôles sont tenus par la matrice, appelée plus communément résine. Tout d’abord, elle a comme rôle de maintenir les fibres en position afin de contrevenir au voilement de celles-ci en leur fournissant un support latéral. Elle a aussi comme rôle de transmettre les charges vers les fibres et enfin, de protéger ces dernières contre l’abrasion mécanique et les conditions environnementales. Il est important que la matrice imprègne complètement les fibres afin de pouvoir remplir parfaitement ces fonctions. Dans le cas contraire, les fibres pourraient être exposées aux agents environnementaux, ce qui provoquerait une rupture prématurée de celles-ci. Il est à noter que la résine ne joue pas un rôle majeur quant au support de la charge mais détermine souvent les températures d’utilisation et la résistance du milieu. Les résines sont divisées en deux grandes familles : les thermodynamiques (non remoulables après polymérisation) et les thermoplastiques (remoulables par application de chaleur).

Résines thermodynamiques

Les résines thermodynamiques sont de loin les matrices les plus utilisées dans les applications en génie civil. Parmi celles-ci, on retrouve les polyesters, les vinylesters et les époxydes qui sont les formes les plus répandues. Parmi les avantages des résines thermodynamiques, notons leur stabilité thermique et leur résistance chimique. Elles démontrent aussi moins de fluage et de relaxation que les résines thermoplastiques. Cependant, elles ont une durée d’entreposage limitée une fois mélangées aux agents de cure. Elles nécessitent aussi des moulages de longue durée. Et finalement, elles possèdent de faibles allongements à la rupture contribuant à une faible résistance aux impacts.

Polyesters non-saturés

Environ 85% de la production des composites aux États-Unis est basée sur la résine polyester non-saturée. Plusieurs types de polyesters sont disponibles sur le marché. On retrouve notamment les types ORTHO qui sont les moins coûteux mais aussi les moins performants. Leurs faibles propriétés les rendent impropres aux utilisations structurales. Plus coûteux et plus performants, les types ISO sont facilement applicables aux procédés de fabrication utilisant des fibres orientées tels que la
pultrusion. Finalement, les types bisphenol offrent des propriétés supérieures aux types ORTHO et ISO, alors que les types chlorendiques ont d'excellentes résistances chimiques en plus de pourvoir une résistance au feu [Benmokrane, 2000].

Points forts des polyesters non-saturés :
- Viscosité faible ;
- Polymérisation rapide ;
- Bonne stabilité dimensionnelle ;
- Bonne balance entre leurs résistances mécaniques et chimiques ;
- Coût faible.

Points faibles des polyesters non-saturés :
- Grand retrait volumétrique ;
- Sensibilité à certains solvants et produits chimiques (spécialement les produits alcalins et basiques)
- Absorption d'humidité.

Résines époxydiques

Ce type de résine peut être utilisé avec les fibres de verre, de carbone, d'aramide ainsi que les hybrides. Dans les domaines du génie civil, ces résines sont généralement utilisées dans les matériaux composites servant au renforcement externe, tels les feuilles et plaques à base de fibres. Le tableau 2.1 présente les principaux avantages et désavantages de ce type de résine.
TABLEAU 2.1 PRINCIPAUX AVANTAGES ET DÉSAVANTAGES DES RÉSINES ÉPOXYDIQUES [BENMOKRANE, 1999]

<table>
<thead>
<tr>
<th>Avantages</th>
<th>Désavantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Grande étendue des propriétés disponibles due à la diversité des matériaux utilisables;</td>
<td>• Coût élevé;</td>
</tr>
<tr>
<td>• Absence de matières volatiles durant la polymérisation et le traitement;</td>
<td>• Mûrissement lent;</td>
</tr>
<tr>
<td>• Faible retrait pendant la cure;</td>
<td>• Traitement soigné pour maintenir une résistance à l’humidité;</td>
</tr>
<tr>
<td>• Température de transition du verre élevée;</td>
<td>• Manipulation de la résine dommageable pour l’épiderme.</td>
</tr>
<tr>
<td>• Excellente résistance à la traction et au fluage;</td>
<td></td>
</tr>
<tr>
<td>• Excellente résistance aux solvants et aux produits chimiques;</td>
<td></td>
</tr>
<tr>
<td>• Excellente adhésion aux fillers, fibres et autres substrats.</td>
<td></td>
</tr>
</tbody>
</table>

Résines vinylesters

Toujours dans le domaine du génie civil, les résines vinylesters sont utilisées pour les PRF servant au renforcement interne des structures, telles que les barres d’armature et les tendons. Le tableau 2.2 montrent les avantages et les désavantages reliés aux résines vinylesters.

TABLEAU 2.2 PRINCIPAUX AVANTAGES ET INCONVÉNIENTS DES RÉSINES VINYLESTERS [BENMOKRANE, 1999]

<table>
<thead>
<tr>
<th>Avantages</th>
<th>Désavantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Excellente résistance en traction;</td>
<td>• Retrait volumétrique élevé;</td>
</tr>
<tr>
<td>• Flexion et résistance à la fissuration supérieures aux polyesters;</td>
<td>• Adhérence modérée au carbone et à l’aramide;</td>
</tr>
<tr>
<td>• Excellente résistance aux produits chimiques et aux alcalis;</td>
<td>• Coût plus élevé que le polyester.</td>
</tr>
<tr>
<td>• Résistances à la chaleur et à la résilience supérieures aux polyesters;</td>
<td></td>
</tr>
<tr>
<td>• Facile à manipuler pendant les traitements;</td>
<td></td>
</tr>
<tr>
<td>• Viscosité faible;</td>
<td></td>
</tr>
<tr>
<td>• Bonne adhésion aux fibres de verre;</td>
<td></td>
</tr>
<tr>
<td>• Polymérisation rapide.</td>
<td></td>
</tr>
</tbody>
</table>
Résines thermoplastiques

Contrairement aux résines thermodurcissables, les résines thermoplastiques sont très visqueuses et donc difficiles d'imprégnation. Parmi ces résines, on retrouve les nylons, certains polyesters, les polycarbonates et les polyacétals, tous utilisées avec des fibres discontinues alors que les polyamides, les polyesters, les polypropylènes, les polyéthylènes, les polystyrènes sont utilisés avec les fibres continues [Benmokrane, 2000].

Dans une résine thermoplastique, les molécules sont tenues en place par de faibles liens intermoléculaires (forces de Van Der Walls et liens hydrogène). Avec une application de chaleur et de pression, ces liens intermoléculaires peuvent être temporairement brisés. Les matrices thermoplastiques sont déjà polymérisées lorsque appliquées aux fibres. Lors du refroidissement, les molécules figent en une nouvelle position (durcissement), reconstituant les liens intermoléculaires. Les résines thermoplastiques peuvent ainsi être remoulées indéfiniment [ISIS Canada, 2000].

Les résines thermoplastiques ont une haute résistance aux impacts et aux bris, leur conférant une excellente tolérance aux dommages. La linéarité de leurs molécules leur donne une ductilité supérieure mais augmente aussi leur susceptibilité aux solvants. Elles ont un allongement à la rupture supérieur aux thermodurcissables (entre 30 et 100% comparativement à moins de 5%) et donc une meilleure résistance à la micro-fissuration. De plus, les thermoplastiques possèdent les avantages suivants: grande ténacité, durée d'entreposage illimitée à la température de la pièce favorisant son utilisation pour les pré-imprégnés, fabrication rapide, remoulage possible et facilité de réparation et de manipulation. Ils sont cependant dispendieux, exigent des températures de traitement élevées conduisant à des contraintes résiduelles, possèdent une faible résistance au fluage et leur grande viscosité les rendent difficilement imprégnables [ISIS Canada, 2000].

2.1.3 Renforts

Les renforts, appelés aussi fibres, portent la plus grande partie de la charge. Ce sont les constituants primaires dans les composites en PRF. Les propriétés des composites dépendent de l'orientation des fibres par rapport à la charge. Il est possible de retrouver sur le marché trois
principaux types de fibres : le verre, le carbone et l’aramide. Le verre, étant la fibre la moins onéreuse alors que le carbone et l’aramide sont les plus dispendieuses. D’autres fibres tels que le bore, le PVA, le carbure de silicium et l’oxyde d’aluminium sont aussi produites, mais en quantité limitée. Au Canada et aux États-Unis, les fibres les plus couramment utilisées sont les fibres de verre et de carbone. En Europe, ce sont les fibres de verre, de carbone et d’aramide alors qu’au Japon ce sont les fibres d’aramide et de carbone les plus couramment utilisées. Le choix des fibres pour la fabrication des PRF est très important. En effet, les fibres influencent les facteurs suivants : densité, résistances en compression et en traction, résistance aux impacts et à la fatigue, module d’élasticité, conductivités thermique et électrique, stabilité dimensionnelle, résistance aux conditions environnementales et bien évidemment, le coût des PRF. Les propriétés des PRF sont aussi influencées par l’orientation des fibres par rapport à la charge. Dans le cas des barres d’armature en PRF, les fibres sont en continues et orientées dans une seule direction.

Fibres de verre

La fibre de verre prédomine dans la majorité des applications due à son faible rapport résistance/coût élevé. Plusieurs types de fibres de verre tels le verre A, E et R ou S sont présentement disponibles sur le marché. Le verre A n’est pas utilisé dans les applications du génie civil alors que la fibre de verre E (E pour électrique) est la plus utilisée commercialement. Ce type de fibre possède une bonne résistance aux alcalis et aux acides. Les fibres de type R ou S (R pour résistance et S pour strength) sont plus dispendieuses que les fibres de type E. Le type R (S) est utilisé lorsqu’une très bonne résistance mécanique est nécessaire. Les tableaux 2.3 et 2.4 montrent les propriétés longitudinales des fibres de verre ainsi que leurs principaux avantages et inconvénients.

TABLEAU 2.3 PROPRIÉTÉS LONGITUDINALES DES FIBRES DE VERRE [BENMOKRANE, 1999]

<table>
<thead>
<tr>
<th>Propriétés</th>
<th>Intervalles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module d’élasticité (GPa)</td>
<td>70 – 90</td>
</tr>
<tr>
<td>Résistance en traction (MPa)</td>
<td>3000 – 4500</td>
</tr>
<tr>
<td>Déformation ultime (%)</td>
<td>4.8 – 5.5</td>
</tr>
</tbody>
</table>
TABLEAU 2.4 PRINCIPAUX AVANTAGES ET DÉSAVANTAGES DES FIBRES DE VERRE [BENMOKRANE, 1999]

<table>
<thead>
<tr>
<th>Avantages</th>
<th>Désavantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Coût relativement faible</td>
<td>• Densité élevée</td>
</tr>
<tr>
<td>• Haute résistance en traction</td>
<td>• Sensibilité à l'abrasion</td>
</tr>
<tr>
<td>• Haute résistance aux produits chimiques</td>
<td>• Faible module d'élasticité</td>
</tr>
<tr>
<td>• Excellent isolant</td>
<td>• Faible résistance à la fatigue</td>
</tr>
<tr>
<td>• Grande ténacité</td>
<td>• Grande dureté</td>
</tr>
<tr>
<td>• Excellente résistance aux impacts</td>
<td>• Faible résistance aux charges cycliques</td>
</tr>
<tr>
<td>• Faible module d’élasticité</td>
<td>• Vieillissement à l’humidité</td>
</tr>
<tr>
<td>• Bonne fiabilité</td>
<td></td>
</tr>
</tbody>
</table>

Fibres de carbone

Due à son coût plus élevé, la fibre de carbone est moins utilisée comparativement à la fibre de verre, cependant, les produits en fibres de carbone sont de plus en plus disponibles sur le marché pour des applications de génie civil, notamment dans les applications de précontrainte et d’ancrages injectés [Benmokrane, 2000].

Les fibres de carbone sont classées selon leur module d’élasticité (faible, intermédiaire, élevé et très élevé), qui elles dépendent de la nature du précurseur (pitch, pan et rayonne). Le premier type de fibres de carbone est la fibre de carbone très haut module (THM) et haut module (HM). L’autre type de fibres de carbone est la fibre très haute résistance (THR) et haute résistance (HR). Dans le domaine du génie civil, les fibres HM sont les fibres les plus couramment utilisées. Les tableaux 2.5 et 2.6 montrent les propriétés longitudinales des fibres de carbone ainsi que les principaux avantages et désavantages de ce type de fibres.

Le principe fondamental de fabrication des fibres de carbone consiste essentiellement dans les étapes suivantes [Benmokrane, 2000]:

1. Un traitement dit de stabilisation évitant la fusion des fibres durant les traitements thermiques à haute température.
2. Un traitement thermique appelé carbonisation permettant d’éliminer la majorité des éléments non carboniques.
3. Un traitement thermique optionnel appelé graphitisation pour améliorer les propriétés des fibres obtenues à l’étape 2.

La structure des fibres de carbone consiste en un mélange de carbone amorphe et de carbone graphiteux donnant au matériau une très haute rigidité. Ces fibres sont caractérisées par une anisotropie des propriétés physiques et mécaniques à cause de la disposition cristallographique parallèle des atomes de carbone. Les fibres de carbone sont produites principalement à partir de deux types de précurseurs: le polyacrylonitril (PAN) et le “pitch”. Les fibres PAN sont stabilisées à l’air à 250 °C pour éviter leur fusion durant le traitement thermique à haute température subséquent. Durant cette phase, les fibres sont étirées et maintenues sous tension afin de garder l’alignement du PAN lors de sa transformation en un polymère rigide à structure cyclique orientée ayant une température de transition vitreuse assez élevée de sorte qu’il n’est plus nécessaire de garder les fibres sous tension durant l’étape suivante (carbonisation). Après cette étape, les fibres contiennent une importante quantité d’azote et d’hydrogène. Ces derniers sont éliminés sous forme de gaz d’évaporation durant l’étape de carbonisation durant laquelle les fibres sont graduellement chauffées dans une atmosphère inertie à une température variant de 1000 °C à 1500 °C. Les fibres obtenues après ce traitement thermique sont caractérisées par une haute résistance mécanique et un module d’élasticité relativement faible. Ces fibres sont généralement désignées par HR (Haute Résistance ou HS en anglais pour High Strength). Pour obtenir des fibres de carbone avec un haut module d’élasticité, un dernier traitement thermique est nécessaire, la graphitisation. Ce traitement thermique consiste à tenir les fibres durant de très courtes durées à une température allant jusqu’à 3000 °C permettant d’améliorer la texture des fibres et par conséquent augmenter leur module élastique. Les propriétés mécaniques des fibres de carbone obtenues dépendent largement de la température de ce traitement.

Les mêmes étapes d’oxydation, de carbonisation et de graphitisation sont nécessaires pour l’élaboration des fibres de carbone pitch. Durant la première étape, le précurseur pitch ayant une structure isotrope est chauffé jusqu’à une température de 350 °C afin d’arriver à une structure anisotrope dite “mésophase” caractérisée par un état hautement visqueux. Les filaments pitch sont obtenus par la fusion de la mésophase. Le reste du processus est similaire à celui suivi pour l’élaboration des filaments à base de précurseurs PAN.
TABLEAU 2.5 PROPRIÉTÉS LONGITUDINALES DES FIBRES DE CARBONE [BENMOKRANE, 1999]

<table>
<thead>
<tr>
<th>Propriétés</th>
<th>Intervalle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module d'élasticité (GPa)</td>
<td>290 – 400</td>
</tr>
<tr>
<td>Résistance en traction (MPa)</td>
<td>2400 – 5700</td>
</tr>
<tr>
<td>Déformation ultime (%)</td>
<td>0,3 – 1,8</td>
</tr>
</tbody>
</table>

TABLEAU 2.6 PRINCIPAUX AVANTAGES ET DÉSAVANTAGES DES FIBRES DE CARBONE [BENMOKRANE, 1999]

<table>
<thead>
<tr>
<th>Avantages</th>
<th>Désavantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Hautes résistances en traction en compression et à la fatigue</td>
<td>• Coût élevé</td>
</tr>
<tr>
<td>• Excellente tenue en haute température</td>
<td>• Difficilement imprégnable</td>
</tr>
<tr>
<td>• Excellente rigidité</td>
<td>• Faible ténacité</td>
</tr>
<tr>
<td>• Bonnes conductivités électrique et thermique</td>
<td>• Mauvais isolant</td>
</tr>
<tr>
<td>• Insensibilité à l'humidité et aux rayures</td>
<td>• Corrosion par pile galvanique avec les métaux</td>
</tr>
</tbody>
</table>

Fibres d'aramide

Les fibres d'aramide sont classées selon leur module. Il y a les fibres haut module (HM), les fibres intermédiaires (IM) et les fibres normales (NM). Elles peuvent être retrouvées sur le marché sous les noms suivants : Kevlar (Canada), Twaron (Hollande) et Technora (Japon). Les tableaux 2.7 et 2.8 montrent les propriétés longitudinales et les principaux avantages et désavantages des fibres d'aramides.

TABLEAU 2.7 PROPRIÉTÉS LONGITUDINALES DES FIBRES D'ARAMIDE [BENMOKRANE, 1999]

<table>
<thead>
<tr>
<th>Propriétés</th>
<th>Intervalle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module d'élasticité (GPa)</td>
<td>62 – 42</td>
</tr>
<tr>
<td>Résistance en traction (MPa)</td>
<td>2400 – 3200</td>
</tr>
<tr>
<td>Déformation ultime (%)</td>
<td>1,5 – 4,4</td>
</tr>
</tbody>
</table>
TABLEAU 2.8 PRINCIPAUX AVANTAGES ET DÉSAVANTAGES DES FIBRES D’ARAMIDE [BENMOKRANE, 1999]

<table>
<thead>
<tr>
<th>Avantages</th>
<th>Désavantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Haute résistance spécifique à la traction</td>
<td>• Faible résistance à la compression à la flexion et au flambage</td>
</tr>
<tr>
<td>• Faible masse volumique</td>
<td>• Imprégnation difficile</td>
</tr>
<tr>
<td>• Excellente résistance à l’impact et au choc</td>
<td>• Mauvaise résistance aux acides et bases fortes</td>
</tr>
<tr>
<td>• Isolant thermique électrique et magnétique</td>
<td>• Sensibilité aux rayons UV</td>
</tr>
<tr>
<td>• Bon amortisseur de vibrations</td>
<td>• Absorption d’humidité</td>
</tr>
<tr>
<td>• Haute stabilité thermique</td>
<td></td>
</tr>
<tr>
<td>• Haute rigidité</td>
<td></td>
</tr>
<tr>
<td>• Bonne résistance à l’usure</td>
<td></td>
</tr>
</tbody>
</table>

Hybrides

Afin d’accroître l’étendue des propriétés des PRF, il est possible de combiner deux ou plusieurs fibres sous une même matrice. Il s’agit d’un hybride. De cette façon, il est possible d’adapter les PRF aux utilisations nécessaires.

2.1.4 Interface fibres/résine

L’interface fibres/résine joue un rôle primordial dans la résistance mécanique des PRF. En effet, un certain degré de réaction est souhaitable entre la fibre et la matrice afin d’assurer une cohésion adéquate. Lors de grandes sollicitations, le comportement individuel de chaque constituant est important. Si l’un ou l’autre des constituants a un comportement fragile, cela aura un effet notable sur les propriétés du composite. L’adhésion entre la fibre et la matrice est assurée par les mécanismes suivants :

- Adsorption : les fibres doivent être mouillées de résine durant la mise en œuvre.
- Liaison chimique: une réaction chimique se produit entre la fibre, l’enrobage de la fibre et la résine durant la mise en œuvre.
- Adhésion mécanique: une adhérence est assurée mécaniquement grâce aux irrégularités de surface qui caractérisent certaines fibres organiques et les fibres de carbone.
- Interdiffusion : une liaison naît par la diffusion de molécules d’une surface à l’autre.
• Attraction électrostatique : l'adhésion entre la fibre et la résine est influencée par la différence entre les charges électrostatiques des deux matériaux.

Afin de donner une protection à la fibre durant la manutention et la mise en œuvre, sa surface doit être traitée. Bien que l'utilisation de certains matériaux organiques qui s'enlèvent facilement, tel que l'amidon, soit souhaitable, il est préférable d'utiliser des couches qui assurent en plus une protection mécanique, facilitent la mise en œuvre, protègent les fibres contre l'environnement et améliorent l'adhésion [Benmokrane, 2000].

Les fibres de verre sont traitées de silanes afin que leur surface soit hydrophobe. Le type de silane dépend de la résine utilisée. Les fibres de carbone ont une couche superficielle très faible qui doit être éliminée par oxydation. Généralement, les fibres de carbone sont couvertes d'une couche d'époxy donnant une protection et améliorant l'adhésion. Cette dernière peut être aussi améliorée par bombardement ionique. Les fibres d'aramide ont une très faible adhésion aux polymères d'où la faiblesse des composites à base de fibres d'aramide au cisaillement interlaminaire. Le bombardement ionique est la seule technique utilisée avec les fibres d'aramide pour améliorer leur adhérence à la résine [Benmokrane, 2000].

À la sortie de la filière, les fibres de verre présentent de nombreux sites actifs qui sont des points d'ancrage pouvant piéger des molécules d'eau ou des impuretés. Les surfaces des fibres sont par la suite traitées d'ensymes consistant en une pulvérisation de produits réactifs composés de plusieurs agents (collants, pontage, lubrifiants, antistatiques, etc.). Ce traitement facilite le travail du verre et assure la protection des fibres et leur compatibilité avec la résine [Benmokrane, 2000].

Les performances mécaniques d'un matériau composite dépendent de la résistance et du module d'élasticité de ses constituants, les fibres et la résine, ainsi que de l'efficacité de la liaison fibre-résine de transférer les contraintes à travers le matériau. Le module d'élasticité d'un composite chargé en traction statique est dominé par celui des fibres dans la direction de la sollicitation. Au fur et à mesure que la contrainte appliquée augmente, l'interface entre la fibre et la résine (les fibres ayant un module d'élasticité très élevé comparativement à la résine) devient la région la plus sollicitée du composite, d'où l'influence de la qualité de l'interface sur la résistance et la
déformation ultime des composites unidirectionnels même lorsque chargés en tension dans la direction des fibres [Benmokrane, 2000].

2.1.5 Méthode de fabrication

Il existe différents modes de fabrication des matériaux composites dépendamment du type de matériaux servant pour l'utilisation. Cette section contient quelques méthodes de fabrication des matériaux composites utilisées dans le domaine du génie civil.

Les barres d’armature, les tendons de précontrainte les poutres en I, L et en C, les tubes et les plaques sont fabriqués selon la méthode de moulage par pultrusion. Tout d’abord, les fibres, provenant de bobines, sont dirigées dans une série de guides où on leur donne l’orientation désirée. Ensuite, elles sont immergées dans un bain de résine thermodurcissable afin qu’elles soient bien imprégnées. Par la suite, les fibres passent dans une filière de préformation et ensuite dans une filière chauffante. À la fin du procédé, le matériau est formé et refroidi à l’air ou à l’eau. Il est ensuite coupé à la longueur désirée à l’aide d’une scie. La figure 2.2 montre le procédé de fabrication des PRF pultrudés.

![Figure 2.2 Procédé de fabrication par pultrusion](image)

15
2.2 Adhérence

Le transfert des forces à travers l'interface béton/barre par des forces d'adhérence est d'une importance fondamentale pour le comportement des structures en béton armé. Les forces de compression sont reprises en grande partie par le béton alors que les forces de traction sont reprises par l'armature. Pour que ce phénomène existe, il doit y avoir un transfert de charge entre le béton et l'armature. C'est ce qui est plus communément appelé l'adhérence. Cette section décrit les types de forces rencontrées lors du processus de transfert de charge. Il est expliqué aussi comment les échantillons peuvent se comporter (quels modes de rupture peuvent être rencontrés). De plus, afin d'évaluer l'adhérence d'une barre d'armature dans le béton, il y a quelques procédures expérimentales, elles sont donc présentées. Et enfin, quelques modèles théoriques ont été développés au cours des dernières années. Ils sont rapportés dans cette section et sont brièvement expliqués.

2.2.1 Types de force

L'adhérence est un lien qui permet le transfert de charge de l'armature au béton et ce mécanisme est divisé en trois parties. Il y a l'adhésion chimique, le frottement et l'imbrication mécanique. L'adhésion apparente (figure 2.3) tire ces contributions des liens chimiques entre le béton et de l'effet des contraintes de retrait qui se développent durant la cure. La rupture de cette interaction est caractérisée par l'initiation et la propagation d'une fissure à l'interface. L'imbrication mécanique (figure 2.4), lorsque la force dans la barre est augmentée, domine le transfert de contraintes, laquelle est maintenant concentrée près des déformations de la surface de la barre [J.V. Cox, 1997]. En retour, ces forces donnent lieu à des forces de frottement (figure 2.6) le long de l'interface béton/barre. En fait, le frottement est le résultat de faibles échancrures et de la rugosité de la surface de la barre. La force la plus influente sur l'adhérence d'une barre d'armature dans le béton est l'imbrication mécanique (Vb), elle est suivie des forces d'adhésion (Va) et enfin les forces de frottement (Vf) sont les moins influentes.
2.2.2 Modes de rupture

Lorsque des essais d'adhérence sont effectués, différents modes de rupture sont observés. Les trois principaux sont : la rupture en traction de la barre, la rupture par arrachement et la rupture par éclatement du béton.

Rupture en traction

Ce mode de rupture survient lorsque la longueur d'ancrage de la barre est suffisamment grande pour contrevenir au glissement et que le recouvrement du béton est adéquat. La résistance ultime
de la barre est donc atteinte et celle-ci se rupture.

Rupture par arrachement

La rupture par arrachement survient, dans le cas du béton armé de barres d’acier, lorsque les barres d’armature cisaillement le béton localisé entre les crénelures (voir figure 2.6).

![Plan de rupture](image)

Figure 2.6 Rupture par arrachement de la barre [ACI 408.2R-92]

Cependant, dans le cas du béton armé de barres d’armature en PRF, il y a rupture par arrachement lorsqu’il y a cisaillement entre le béton et le recouvrement de la barre d’armature dans la zone ancrée. Ce mode de rupture est associé à de faibles longueurs d’ancrage.

Rupture par éclatement du béton

Ce mode de rupture survient lorsque la barre d’armature exerce une trop grande pression sur le béton ou bien encore lorsque le recouvrement de béton est trop mince (figure 2.7). Le béton éclate alors autour de la barre d’armature et celle-ci, glisse relativement au béton. Ce mode de rupture peut être évité en augmentant le recouvrement ou bien encore en ajoutant des armatures transversales. Ces ruptures doivent être évitées pour assurer une bonne ductilité des éléments.
armés.

Figure 2.7 Rupture par éclatement du béton [ACI 408.2R-92]

Selon Achillides (1997), la figure 2.8 décrit les étapes théoriques de l'adhérence d'une barre d'armature en PRF en fonction du glissement de celle-ci relativement au béton.

Figure 2.8 Modèle théorique [Achillides, 1997]

Dans le segment AB, l'efficacité de l'adhérence est contrôlée par l'adhésion chimique entre la barre et le béton. Aucun déplacement significatif n'a lieu à cette étape. Après le point B, l'adhésion chimique se rompt et le comportement de l'adhérence est contrôlé par les forces
mécaniques. Il est cru que les micro-fissures proviennent de l'extrémité des déformations de la barre et cela permet à l'extrémité chargée de la barre de commencer à glisser. La pente du segment BC et le point de l'intersection avec l'axe des y seraient comme étant une fonction du diamètre de la barre, de la longueur d'ancrage et de la résistance en compression du béton. Si le confinement du béton est présent (telle que l'armature transversale, ou bien la compression du recouvrement du béton), le mode de rupture par éclatement sera prévenu et le développement de l'adhérence atteindra le point C où l'extrémité non chargée de la barre commencera à glisser. Après ce point, une augmentation du taux de glissement de la barre est observé du au cisaillement progressif des déformations de la barre. La barre atteint sa résistance à l'adhérence au point D. Après le point D, la rupture a lieu progressivement à la surface de la barre par cisaillement d'une partie de la couche de surface.

2.2.3 Procédures d'essais

Plusieurs méthodes existent pour étudier l'adhérence entre les barres d'armature et le béton. Cette section décrit deux types d'essais. Il y a l'essai d'arrachement et l'essai sur poutre.

Essai d'arrachement

Ce type d'essai est très facile à réaliser et permet de comparer des matériaux sur la base de l'adhérence. Cependant, lors de ce type d'essai, le béton se retrouve en compression ce qui ne représente pas l'état de contrainte normale d'une poutre chargée. Cet état de compression à comme effet de confiner le béton, ce qui empêche la propagation normale des fissures. L'empêchement de la propagation permet d'obtenir des contraintes d'adhérence supérieures aux contraintes normales développées dans une poutre. Des essais réalisés par Achillides (1997) ont démontré que pour les essais d'arrachement direct, les barres d'armature en PRFV développait une résistance à l'adhérence correspondant à 80% de la résistance obtenue par les barres d'acier alors que les résultats sur poutre permettaient d'obtenir seulement 60 à 65% de la résistance. Ces différences nécessitent donc une étude des conditions utilisées pour l'évaluation du comportement de l'adhérence pour les barres en PRF. Il s'agit donc d'un essai comparatif. La figure 2.9 montre le montage d'un essai d'arrachement.
Figure 2.9 Montage - Essai d'arrachement [Nanni et al., 1995]

Ce type d'utilisation nécessite un ancrage mécanique. En fait, l'ancrage mécanique permettant l'application de la force sur la barre d'armature provoque une concentration de contraintes lors de l'application de cette force. La réalisation de ce type d'essai peut donc amener une rupture de la barre au niveau de l'ancrage mécanique. La figure 2.10 montre un autre montage pour l'essai d'arrachement. L'avantage de ce montage ne nécessite pas l'utilisation d'un ancrage spécial pour la barre: étant donné que la barre d'armature est complètement ancrée dans le béton d'un côté et que de l'autre côté elle est ancrée à la longueur désirée, l'essai n'est pas interrompu par une rupture précoce de la barre d'armature.
Figure 2.10 Montage - Essai arrachement [Benmokrane et al.]

Essai sur poutre

Ce type d'essai sur poutre est le plus représentatif des essais d'adhérence. Cependant, ce type d'essai ne donne pas d'information sur l'éclatement du béton qui entoure la barre d'armature. Cet aspect est très important car plusieurs ruptures d'adhérence sont causées par l'éclatement du béton. La figure 2.11 montre un montage de l'essai sur poutre.
2.2.4 Modèles théoriques

L'utilisation des modèles sur l'adhérence développés pour les barres d'armature conventionnelles ne peut pas offrir une solution optimale puisque les PRF et l'acier ont des propriétés différentes et des modes de rupture différents. C'est pour cette raison qu'il y a un besoin de développer des modèles analytiques d'adhérence basés sur les propriétés spécifiques et les modes de rupture des barres en PRF.

Modèle proposé par Malvar (1994)

Le modèle proposé par Malvar (1994), est probablement le plus complexe des modèles décrits dans cette section puisqu'il contient 7 constantes pouvant varier d'un échantillon à l'autre. De plus, il tient compte de la résistance en traction du béton.

\[
\frac{\tau}{\tau_m} = \frac{\left[F\left(\frac{\sigma}{S_m} \right) + (G-1)\left(\frac{\sigma}{S_m} \right)^2 \right]}{\left[1 + (F-2)\left(\frac{\sigma}{S_m} \right) + G\left(\frac{\sigma}{S_m} \right)^2 \right]}
\]

(2-1)
avec
\[\frac{\tau}{\tau_m} = A + B*(1 - e^{-c\frac{s}{s_m}}) \] \hspace{1cm} (2-2)

\[s_m = D + E*\sigma \] \hspace{1cm} (2-3)

où
\(\tau_m \) = contrainte d'adhérence maximale
\(s_m \) = glissement à la contrainte d'adhérence maximale
\(\sigma \) = glissement
\(f_0 \) = résistance à la traction du béton
\(A, B, C, D \) et \(E \) = constantes empiriques déterminées pour chaque type de barre
\(F \) et \(G \) = paramètres de courbe
\(\sigma \) = pression radiale de confinement

Modèle EBP proposé par Eligehausen, Popov et Bertero (1983)

Le modèle EBP, proposé pour des barres d'acier déformées, a été appliqué avec succès sur des barres en PRF. Ce modèle est applicable sur la partie ascendante de la courbe adhérence/glissement.

\[\frac{\tau}{\tau_m} = (\frac{s}{s_m}) \] \hspace{1cm} (2-4)

où
\(\tau_m \) = contrainte d'adhérence maximale
\(s_m \) = glissement à la contrainte d'adhérence maximale
\(\alpha \) = paramètre de courbe
Consenza et al. (1996) ont proposé une alternative au modèle analytique lequel a été obtenu en modifiant le modèle EBP. En fait, dans le cas des barres d’armature en PRF, la comparaison entre la courbe expérimentale et la courbe analytique obtenue en appliquant le modèle original a montré qu’une partie de la seconde branche n’est pas considérée. Alors, en modifiant le modèle EBP, en présentant la même courbe ascendante, une courbe flexible ayant comme pente \(p \cdot \tau_1/s_1 \) donnée par:

\[
\frac{\tau}{\tau_m} = 1 - p^*(\frac{s}{s_m} - 1)
\]

où

\(\tau_m \) = contrainte d’adhérence maximale
\(s_m \) = glissement à la contrainte d’adhérence maximale
\(p \) = paramètre de la courbe

Modèle CMR proposé par Consenza, Manfredi et Realfonzo (1995)

Un autre modèle a été proposé pour la partie ascendante de la courbe. Ce modèle représente une alternative au modèle EBP et est défini par l’expression suivante :

\[
\frac{\tau}{\tau_m} = (1 - \exp\left[\frac{s}{s_\gamma}\right])^\beta
\]

où

\(\tau_m \) = contrainte d’adhérence maximale
\(s \) = glissement
\(s_\gamma \) et \(\beta \) = paramètres de la courbe
2.3 Résultats des recherches expérimentales antérieures

2.3.1 Effets du fini de la surface sur la contrainte d'adhérence maximum

Cette section a pour but de démontrer les principaux effets des différents finis de surface des barres en PRF sur la contrainte d'adhérence. En effet, pour améliorer l'adhérence des barres d'armature en PRF au béton, plusieurs procédés ont été développés. Ces procédés peuvent être classés en deux principales catégories [Cosenza et al., 1997] :

- les déformations de la surface extérieure de la barre ;
- le traitement de surface.

Les déformations de la surface extérieure de la barre consistent à donner différentes géométries à la barre à l'aide de différents matériaux (résines et fibres). Ces types de déformations sont qualifiés de spirales, tordues, dentelées, tressées et nervures collées. Évidemment, toutes ces différences introduisent de nombreux aspects aléatoires pouvant justifier les différences pour les valeurs des contraintes d'adhérence.

Le traitement de surface consiste, pour sa part, en un procédé externe qui ne fournit pas de déformations à la barre. Le recouvrement de sable en surface, par exemple, est un traitement de surface.

Avant de discuter des effets des différents paramètres des barres d'armature en polymères renforcés de fibres (PRF) sur l'adhérence des barres d'armature en PRF avec le béton, il est important de mentionner le type de fibres, de résine et le fini de surface de ces barres ainsi que de la méthode avec laquelle les essais ont été réalisés.

Katz (1999) a réalisé des essais d'adhérence en utilisant comme méthode d'essai, l'essai d'arrachement direct. Les essais ont été réalisés sur des barres d'armature en PRF à base de fibres de verre ou de carbone ayant un diamètre de 12mm et 12,7mm. La longueur d'ancrage retenue pour les essais était de 60mm. Les différentes barres utilisées pour ces essais sont montrées à la figure 2.12 de la présente section. Les barres R1, R2, R4 et R5 sont faites avec de la résine vinylester alors que la barre R3 est faite avec une résine polyester. La barre R6 est une barre d'acier conventionnelle. Des grains de sable de 0,1 à 0,4 mm recouvrent l'enroulement
hélicoïdal de la barre R1 alors que ceux recouvrant la barre édentée et l'enroulement hélicoïdal de la barre R3 sont plus gros (0,5 à 1,0 mm) ce qui procure un recouvrement plus épais à celle-ci. La barre R2 est finie d'un enroulement hélicoïdal et d'une déformation de la résine alors que la barre R4 n'a qu'un recouvrement moulé. La barre R5 est lisse et la barre d'acier est déformée.

![Images des différents finis de surface](image)

Figure 2.12 Photos des différents finis de surface étudiés par Katz (1999)

![Diagramme de contrainte d'adhérence](image)

Figure 2.13 Résultats obtenus par Katz (1999)
La principale conclusion tirée de ces essais est la suivante :

- Quand le revêtement de la barre d'armature en PRF était épais (1,0 à 1,5 mm d'épaisseur afin de noyer complètement les particules de sable de 0,5 à 1,0 mm de diamètre) et fait de différents polymères avec de faibles propriétés mécaniques, alors de faibles valeurs d'adhérence ont été obtenues. Cette couche se cisailait à de faibles charges donc l'utilisation de moyens supplémentaires pour améliorer l'adhérence tel l'enroulement hélicoïdal n'était pas utile.

Suite aux essais réalisés par Makitani et al. (1995), voici la principale conclusion relativement aux différents finis de surface des barres d'armature en PRF :

- la contrainte d'adhérence augmente si la surface des barres est de type spiral et recouverte de sable. Le comportement à l'adhérence pourrait être amélioré quand la surface de la barre est recouverte de grains de sable;
<table>
<thead>
<tr>
<th>Fibre</th>
<th>Forme des surfaces et sections transversales des barres FRP</th>
<th>Constitution des barres de PRF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbone</td>
<td>Fibres de carbone enroulées autour de la barre</td>
<td>Saupoudré de sable</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Constituée de plusieurs brins</td>
</tr>
<tr>
<td></td>
<td></td>
<td>tordus</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tressée et saupoudrée de sable</td>
</tr>
<tr>
<td>Aramide</td>
<td>Fibres d’aramide enroulées de la barre</td>
<td>Tressée et saupoudrée de sable</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tressée</td>
</tr>
<tr>
<td>Verre</td>
<td>Fibres de verre enroulées autour de la barre</td>
<td></td>
</tr>
<tr>
<td>Vinylon</td>
<td>Fibres de verre enroulées de façon transversale autour de</td>
<td></td>
</tr>
<tr>
<td></td>
<td>la barre</td>
<td></td>
</tr>
<tr>
<td>Acier</td>
<td>Déformée</td>
<td></td>
</tr>
</tbody>
</table>

Figure 2.14 Schémas des finis de surface étudiés par Makitani et al. (1998)
TABLEAU 2.9 RÉSULTATS DES ESSAIS D'ADHÉRENCE [MAKITANI ET AL., 1993]

<table>
<thead>
<tr>
<th>Longueur d'ancrage (cm)</th>
<th>Fibre</th>
<th>Échantillons</th>
<th>Résistance en compression du béton (MPa)</th>
<th>Force de traction maximum (kN)</th>
<th>Contrainte de traction (MPa)</th>
<th>Contrainte d'adhérence</th>
<th>Mode de rupture</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Carbone</td>
<td>C1</td>
<td>26,0</td>
<td>134</td>
<td>1490</td>
<td>-</td>
<td>Rupture</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C2</td>
<td>33,7</td>
<td>127</td>
<td>1150</td>
<td>-</td>
<td>Rupture</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C3</td>
<td>29,4</td>
<td>67</td>
<td>-</td>
<td>5,1</td>
<td>Rupture</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C4</td>
<td>34,7</td>
<td>136</td>
<td>1090</td>
<td>-</td>
<td>Rupture</td>
</tr>
<tr>
<td></td>
<td>Aramide</td>
<td>A1</td>
<td>28,9</td>
<td>112</td>
<td>1400</td>
<td>-</td>
<td>Rupture</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A2</td>
<td>30,1</td>
<td>122</td>
<td>1020</td>
<td>-</td>
<td>Rupture</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A3</td>
<td>27,3</td>
<td>94</td>
<td>-</td>
<td>7,0</td>
<td>Arrachement</td>
</tr>
<tr>
<td></td>
<td>Verre</td>
<td>G1</td>
<td>30,9</td>
<td>97</td>
<td>881</td>
<td>-</td>
<td>Rupture</td>
</tr>
<tr>
<td></td>
<td>Vinylon</td>
<td>V1</td>
<td>27,1</td>
<td>48</td>
<td>505</td>
<td>-</td>
<td>Rupture</td>
</tr>
<tr>
<td></td>
<td>Acier</td>
<td>D10</td>
<td>28,8</td>
<td>40</td>
<td>562</td>
<td>-</td>
<td>Rupture</td>
</tr>
<tr>
<td></td>
<td>Carbone</td>
<td>C1</td>
<td>26,6</td>
<td>77</td>
<td>-</td>
<td>11,4</td>
<td>Arrachement</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C2</td>
<td>28,9</td>
<td>79</td>
<td>-</td>
<td>10,6</td>
<td>Arrachement</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C3</td>
<td>27,9</td>
<td>37</td>
<td>-</td>
<td>5,6</td>
<td>Arrachement</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C4</td>
<td>33,2</td>
<td>84</td>
<td>-</td>
<td>10,6</td>
<td>Arrachement</td>
</tr>
<tr>
<td></td>
<td>Aramide</td>
<td>A1</td>
<td>31,3</td>
<td>60</td>
<td>-</td>
<td>9,4</td>
<td>Arrachement</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A2</td>
<td>31,8</td>
<td>96</td>
<td>-</td>
<td>12,3</td>
<td>Arrachement</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A3</td>
<td>30,1</td>
<td>60</td>
<td>-</td>
<td>9,0</td>
<td>Arrachement</td>
</tr>
<tr>
<td></td>
<td>Verre</td>
<td>G1</td>
<td>26,0</td>
<td>85</td>
<td>770</td>
<td>-</td>
<td>Rupture</td>
</tr>
<tr>
<td></td>
<td>Vinylon</td>
<td>V1</td>
<td>28,3</td>
<td>48</td>
<td>-</td>
<td>7,0</td>
<td>Arrachement</td>
</tr>
<tr>
<td></td>
<td>Acier</td>
<td>D10</td>
<td>28,8</td>
<td>40</td>
<td>562</td>
<td>-</td>
<td>Rupture</td>
</tr>
<tr>
<td></td>
<td>Carbone</td>
<td>C1</td>
<td>28,8</td>
<td>45</td>
<td>-</td>
<td>13,4</td>
<td>Arrachement</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C2</td>
<td>26,6</td>
<td>51</td>
<td>-</td>
<td>13,6</td>
<td>Arrachement</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C3</td>
<td>26,9</td>
<td>13</td>
<td>-</td>
<td>4,1</td>
<td>Arrachement</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C4</td>
<td>30,0</td>
<td>63</td>
<td>-</td>
<td>15,9</td>
<td>Arrachement</td>
</tr>
<tr>
<td></td>
<td>Aramide</td>
<td>A1</td>
<td>25,1</td>
<td>51</td>
<td>-</td>
<td>16,0</td>
<td>Arrachement</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A2</td>
<td>29,3</td>
<td>72</td>
<td>-</td>
<td>18,7</td>
<td>Arrachement</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A3</td>
<td>29,1</td>
<td>40</td>
<td>-</td>
<td>11,9</td>
<td>Arrachement</td>
</tr>
<tr>
<td></td>
<td>Verre</td>
<td>G1</td>
<td>29,5</td>
<td>56</td>
<td>-</td>
<td>15,0</td>
<td>Arrachement</td>
</tr>
<tr>
<td></td>
<td>Vinylon</td>
<td>V1</td>
<td>29,5</td>
<td>31</td>
<td>-</td>
<td>8,8</td>
<td>Arrachement</td>
</tr>
<tr>
<td></td>
<td>Acier</td>
<td>D10</td>
<td>27,1</td>
<td>12</td>
<td>539</td>
<td>-</td>
<td>Rupture</td>
</tr>
</tbody>
</table>

Afin de connaître l'effet du fini de surface sur la contrainte d'adhérence, Nanni et al. (1995) ont machiné des barres d'armature selon les dimensions montrées à la figure 2.15. Les barres d'armature sont faites de carbone/époxy (CE), verre/vinylester (GV) et de carbone/vinylester (CV). Des essais d'arrachement ont ensuite été effectués. Plusieurs conclusions ont pu être tirées suite à ces essais dont :

- la contrainte d'adhérence d'une tige lisse est faible;
- la finition et la composition de la résine en surface d'une barre en PRF affectent le développement de l'adhérence du à l'adhésion et au frottement;
• pour les barres d’armature machinées, le mécanisme de rupture est contrôlé par la résine plutôt que par la hauteur des anneaux;
• les barres d’acier développent des contraintes d’adhérence supérieures aux barres d’armature en PRF disponibles commercialement mais pas supérieures aux barres d’armature en carbone/époxy (supérieures à 20 MPa).

Figure 2.15 Schéma de la barre d'armature machinée [Nanni et al., 1995]

2.3.2 Effets du type de barres sur la contrainte d’adhérence maximum

Les valeurs de la contrainte d’adhérence des barres d’armature en PRF varient d’un type de barre à l’autre et varient aussi de celles de l’acier. Les valeurs de contrainte d’adhérence obtenues par Larralde et al. (1993) démontrent que pour une même longueur d’ancrage, le rapport des contraintes d’adhérence PRF/acier varie de 0,73 à 0,96 selon les longueurs d’ancrage. La valeur de la contrainte d’adhérence entre la barre d’acier et le béton est donc supérieure à celle entre la barre d’armature en PRF et le béton. Les valeurs obtenues par Larralde et al. (1993) ainsi que certains détails des barres d’armature sont montrés au tableau 2.10 de la présente section.
TABLEAU 2.10 COMPARAISON DES CONTRAINTES D'ADHÉRENCE ET DU GLISSEMENT DES BARRES EN PRF ET DES BARRES CONVENTIONNELLES [LARRALDE ET AL., 1993]

<table>
<thead>
<tr>
<th>Type de barre</th>
<th>Diamètre (mm)</th>
<th>Longueur d'ancrage (mm)</th>
<th>Moyenne de la contrainte normale (MPa)</th>
<th>Moyenne de la contrainte d'adhérence (kPa)</th>
<th>Glissement (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRP</td>
<td>9.5</td>
<td>76.2</td>
<td>318.6</td>
<td>9.956</td>
<td>4.24</td>
</tr>
<tr>
<td>Acier</td>
<td>9.5</td>
<td>76.2</td>
<td>372.7</td>
<td>11.610</td>
<td>0.81</td>
</tr>
<tr>
<td>FRP/Acier</td>
<td>--</td>
<td>--</td>
<td>0.85</td>
<td>0.86</td>
<td>--</td>
</tr>
<tr>
<td>FRP</td>
<td>9.5</td>
<td>152.4</td>
<td>595.8</td>
<td>9.308</td>
<td>7.92</td>
</tr>
<tr>
<td>Acier</td>
<td>9.5</td>
<td>152.4</td>
<td>622.6</td>
<td>9.687</td>
<td>1.78</td>
</tr>
<tr>
<td>FRP/Acier</td>
<td>--</td>
<td>--</td>
<td>0.96</td>
<td>0.96</td>
<td>--</td>
</tr>
<tr>
<td>FRP</td>
<td>15.9</td>
<td>76.2</td>
<td>128.3</td>
<td>6.683</td>
<td>1.75</td>
</tr>
<tr>
<td>Acier</td>
<td>15.9</td>
<td>76.2</td>
<td>138.1</td>
<td>8.599</td>
<td>0.69</td>
</tr>
<tr>
<td>FRP/Acier</td>
<td>--</td>
<td>--</td>
<td>0.93</td>
<td>0.78</td>
<td>--</td>
</tr>
<tr>
<td>FRP</td>
<td>15.9</td>
<td>152.4</td>
<td>226.8</td>
<td>5.905</td>
<td>2.54</td>
</tr>
<tr>
<td>Acier</td>
<td>15.9</td>
<td>152.4</td>
<td>258.8</td>
<td>8.054</td>
<td>0.84</td>
</tr>
<tr>
<td>FRP/Acier</td>
<td>--</td>
<td>--</td>
<td>0.88</td>
<td>0.73</td>
<td>--</td>
</tr>
</tbody>
</table>

Ce même type de comparaison a été effectué par Tighiouart (1996) avec comme type d’essai, l’essai sur poutre. Les barres d’armature conventionnelles en acier ainsi que deux différentes barres d’armature en PRF/V ont été comparées. Les résultats obtenus sont montrés à la figure 2.16. Il est possible d’y remarquer que les valeurs des contraintes d’adhérence pour les deux barres d’armature à base de fibres de verre (Kodiak et Isorod) sont inférieures à celles obtenues pour les barres d’armature conventionnelles.

Figure 2.16 Valeurs des contraintes d'adhérence obtenues pour les différents types de barres [Tighiouart, 1996]

2.3.3 Effets de la longueur d'ancrage sur la contrainte d'adhérence maximum

Avant de discuter des conclusions tirées des différentes études, il est important de citer l'équation utilisée pour le calcul de la contrainte d'adhérence. L'équation est la suivante :

$$\tau = \frac{P_{\text{max}}}{\pi \cdot d_b \cdot l_a}$$

(2-7)

où

- P_{max} = charge maximale appliquée (N)
- d_b = diamètre de la barre (mm)
- l_a = longueur d'ancrage de la barre (mm)

L'effet de la longueur d'ancrage a été étudié par Nanni et al. (1995) sur des barres verre/vinylester de 12,7 mm de diamètre ayant comme longueur d'ancrage 5 et 10 fois le diamètre de la barre. La principale conclusion tirée de cette étude est la suivante:
- Les échantillons ayant des longueurs d'ancrage plus courtes développent des contraintes d'adhérence supérieures aux échantillons ayant de plus grandes longueurs d'ancrage.

Cet effet a aussi été étudié par Tighiouart (1996). Trois différents diamètres soient 12,7; 19,1; 25,4 mm et trois longueurs d'ancrage différentes : 6, 10 et 16d_b. La figure 2.17 montre les résultats obtenus.

![Gráfico mostrando resistência à aderência](image)

Figure 2.17 Effet de la longueur d’ancrage de la barre d’armature sur la contrainte d’adhérence [Tighiouart, 1996]

Équation proposée par ACI (pour l’acier) (1994)

\[l_{db} = 0.040 \times A_b \times \frac{f_y}{\sqrt{f'_c}} \] \hspace{1cm} (2-8)

Équation proposée par Tighiouart (1996)

\[l_{db} = 0.064 \times A_b \times \frac{f_y}{\sqrt{f'_c}} \] \hspace{1cm} (2-9)
Équation proposée par Faza (1990) \[l_{db} = 0.060 \times A_b \times \frac{f_y}{\sqrt{f'_{c}}} \] (2-10)

Équation proposée par Ehsani (1994) \[l_{db} = 0.047 \times A_b \times \frac{f_y}{\sqrt{f'_{c}}} \] (2-11)

Plus récemment, une étude réalisée par Shield et al. (1999) a permis de déterminer deux valeurs de K pour différents matériaux (M1 et M2).

\[
\begin{align*}
l_{db} &= 0.059 \times A_b \times \frac{f_y}{\sqrt{f'_{c}}} \quad \text{pour M1} & (2-12) \\
l_{db} &= 0.057 \times A_b \times \frac{f_y}{\sqrt{f'_{c}}} \quad \text{pour M2} & (2-13)
\end{align*}
\]

où M1 est une barre No. 5 de Marshall Industries et M2 une barre No. 6 de Hughes Brothers.

Pour toutes ces équations, les unités sont les suivantes :
- \(l_{db} \): mm
- \(A_b \): mm\(^2\)
- \(f_y \): MPa
- \(f'_{c} \): MPa

2.3.4 Effets du diamètre de la barre sur la contrainte d’adhérence maximum

En observant les résultats obtenus par Larralde et al. (1993), il est possible de constater que pour les mêmes longueurs d’ancrage, la contrainte d’adhérence est supérieure pour de faibles diamètres (pour une \(l_a = 76.2 \) mm, \(\tau_{9.5} = 9.956 \) MPa et \(\tau_{15.9} = 6.683 \) MPa).

Nanni et al. (1995) ont obtenu des résultats similaires pour l’effet du diamètre des barres d’armature. Les barres étudiées avaient des diamètres de 12.7 mm et 6.3 mm ainsi qu’une
longueur d’ancrage de 63 mm. Différents matériaux ont été étudiés dont des barres carbone/vinylester, carbone/époxy et verre/vinylester. Suite à ces essais, la principale conclusion (sur l’effet du diamètre de la barre d’armature) est que pour des valeurs moyennes des contraintes d’adhérence des barres en PRF plus élevées, les diamètres des barres d’armature en PRF sont plus petits.

Les résultats obtenus par Tighiouart (1996) confirment les découvertes précédentes. Les diamètres des barres Isorod étant de 12,7; 15,9; 19,1 et 25,4 mm, les valeurs de contraintes d’adhérence sont respectivement de 10,64; 7,27; 6,60 et 6,36 MPa. La figure 2.18 montre l’effet du diamètre sur la contrainte d’adhérence.

![Graphique montrant l'effet du diamètre de la barre sur la contrainte d'adhérence](image)

Figure 2.18 Effet du diamètre de la barre [Tighiouart, 1996]

2.4 Conclusions

En conclusion, il est important de noter que quelque soient les barres utilisées, les résultats permettent de tirer les mêmes conclusions. Le fini de surface d’une barre d’armature en PRF est très important pour l’obtention de bonnes valeurs de contraintes d’adhérence. C’est ce qui, en
principe, pour une barre d’armature de même diamètre ayant la même longueur d’ancrage dans le béton, permet de développer des contraintes d’adhérence maximum élevées. Pour ce qui est de l’effet du type de barre d’armature, soit le matériau, l’acier semble fournir des valeurs de contraintes d’adhérence supérieures aux PRF. La longueur d’ancrage et le diamètre de la barre d’armature noyée dans le béton affecte aussi la contrainte d’adhérence maximum de la barre d’armature. Il est possible de constater l’effet de ces paramètres en observant l’équation 2-7. En fait, plus le diamètre ou bien encore la longueur d’ancrage sont élevés, plus la contrainte d’adhérence maximum est faible.
3.0 PROGRAMME EXPÉRIMENTAL

Dans cette section, les matériaux utilisés lors du projet de maîtrise, tels le béton et les barres d’armature en matériaux composites à base de fibres seront décrits. Par la suite, la description de la procédure expérimentale retenue sera faite et enfin, les détails des échantillons seront montrés.

3.1 Matériaux utilisés

3.1.1 Béton

Un seul type de béton a été utilisé pour ce programme expérimental, c’est à dire un béton conventionnel de rapport E/C = 0,50. Le béton a été fabriqué soit au laboratoire du département de génie civil de l’Université de Sherbrooke ou bien il a été fourni par une compagnie locale. Les granulats utilisés pour la fabrication du béton avaient un diamètre maximal de 14 mm. De plus, 130 ml de superplastifiant ont été ajoutés au mélange de béton afin de permettre à celui-ci de bien enrober la barre d’armature ainsi que l’armature transversale. Les résistances en compression obtenues lors des essais de compression (> 28 jours) pour les différents échantillons sont montrées dans le tableau 3.1 du présent chapitre pour les échantillons faits de barre d’armature à base de fibres de carbone et dans le tableau 3.2 pour les barres d’armature à base de fibres de verre. La composition du béton est présentée dans le tableau 3.3.

TABLEAU 3.1 RÉSULTATS DES ESSAIS EN COMPRESSION DU BÉTON POUR LES ÉCHANTILLONS FAITS AVEC DES BARRES À BASE DE FIBRES DE CARBONE

<table>
<thead>
<tr>
<th>Numéro de la gâchée de béton</th>
<th>Résistance à la compression * (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>55</td>
</tr>
<tr>
<td>2</td>
<td>53</td>
</tr>
<tr>
<td>3</td>
<td>54</td>
</tr>
<tr>
<td>4</td>
<td>48</td>
</tr>
<tr>
<td>Moyenne</td>
<td>52</td>
</tr>
</tbody>
</table>

* La résistance à la compression est une résistance moyenne basée sur trois essais
TABLEAU 3.2 RÉSULTATS DES ESSAIS EN COMPRESSION DU BÉTON POUR LES ÉCHANTILLONS FAITS AVEC DES BARRES À BASE DE FIBRES DE VERRE

<table>
<thead>
<tr>
<th>Numéro de la gâchée de béton</th>
<th>Résistance à la compression * (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>41</td>
</tr>
<tr>
<td>2</td>
<td>40</td>
</tr>
<tr>
<td>3</td>
<td>43</td>
</tr>
<tr>
<td>4</td>
<td>43</td>
</tr>
<tr>
<td>5</td>
<td>41</td>
</tr>
<tr>
<td>6</td>
<td>--</td>
</tr>
<tr>
<td>7</td>
<td>44</td>
</tr>
<tr>
<td>8</td>
<td>44</td>
</tr>
<tr>
<td>9</td>
<td>44</td>
</tr>
<tr>
<td>Moyenne</td>
<td>43</td>
</tr>
</tbody>
</table>

* La résistance à la compression est une résistance moyenne basée sur deux essais

TABLEAU 3.3 COMPOSITION ET CARACTÉRISTIQUES DU BÉTON

Eau (E), kg	170
Ciment (C), kg	340
E/C	0,5
Sable, kg	880
Pierre, kg	1040
Affaissement, mm	115
Air, %	2,0
Densité, kg/m3	2380
Résistance à la compression*, MPa	31

* La résistance à la compression est à 28 jours (basée sur deux essais)

3.1.2 Barres d'armature

Les barres d'armature utilisées pour la fabrication des échantillons ayant servi pour les essais d'arrachement sont des barres d'armature à base de fibres de verre (figure 3.1) et à base de fibres de carbone (figure 3.2) appelées ISOROD et fabriquées par Pultrall inc., Thetford Mines, Québec, Canada. Les barres d'armature contiennent 75% de fibres de verre ou de fibres de carbone selon le cas, et 25% de résine vinylester. Ces barres ont comme revêtement extérieur
(fini de surface) des grains de sable. D'autres essais ont aussi été réalisés sur des échantillons faits avec des barres d'acier à des fins de comparaisons. Des essais de traction uniaxiale ont déjà été effectués sur ces barres à l'Université de Sherbrooke et les résultats obtenus sont présentés dans les tableaux 3.4 et 3.5.

Figure 3.1 Barres d'armature ISOROD à base de fibres de verre

Figure 3.2 Barres d'armature ISOROD à base de fibres de carbone
TABLEAU 3.4 RÉSULTATS DES ESSAIS DE TRACTION EFFECTUÉS SUR LES BARRES D'ARMATURE À BASE DE FIBRES DE CARBONE

<table>
<thead>
<tr>
<th>Diamètre de la barre (mm)</th>
<th>Type de barre</th>
<th>Charge à la rupture en traction (kN)*</th>
<th>Contraince de traction maximale (MPa)*</th>
<th>Module élastique (GPa)*</th>
<th>Déformation longitudinale à l'ultime (%)*</th>
<th>Déformation transversale à l'ultime (%)*</th>
<th>Coefficient de Poisson*</th>
</tr>
</thead>
<tbody>
<tr>
<td>9,525</td>
<td>PRFC</td>
<td>102±6</td>
<td>1439±82</td>
<td>114±11</td>
<td>1,2±0,12</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
</tbody>
</table>

* La moyenne des essais est basée sur 5 essais.

TABLEAU 3.5 RÉSULTATS DES ESSAIS DE TRACTION EFFECTUÉS SUR LES BARRES D'ARMATURE À BASE DE FIBRES DE VERRE

<table>
<thead>
<tr>
<th>Diamètre de la barre (mm)</th>
<th>Type de barre</th>
<th>Charge à la rupture en traction (kN)*</th>
<th>Contraince de traction maximale (MPa)*</th>
<th>Module élastique (GPa)*</th>
<th>Déformation longitudinale à l'ultime (%)*</th>
<th>Déformation transversale à l'ultime (%)*</th>
<th>Coefficient de Poisson*</th>
</tr>
</thead>
<tbody>
<tr>
<td>9,525</td>
<td>PRFV</td>
<td>45±2</td>
<td>627±22</td>
<td>35±2</td>
<td>1,8±0,06</td>
<td>0,5±0,02</td>
<td>0,26±0,02</td>
</tr>
<tr>
<td>12,7</td>
<td>PRFV</td>
<td>78±2</td>
<td>617±16</td>
<td>40±1</td>
<td>1,5±0,06</td>
<td>0,4±0,01</td>
<td>0,27±0,01</td>
</tr>
<tr>
<td>15,875</td>
<td>PRFV</td>
<td>106±6</td>
<td>535±31</td>
<td>39±1</td>
<td>1,4±0,06</td>
<td>0,4±0,02</td>
<td>0,26±0,01</td>
</tr>
</tbody>
</table>

* La moyenne des essais est basée sur 5 essais.

3.2 MÉTHODE D'ÉVALUATION CHOISIE

3.2.1 Type d'essai

La méthode d'évaluation choisie dans ce programme expérimental est l'essai d'arrachement. Cependant, le montage de l'essai d'arrachement diffère de la méthode traditionnelle qui consiste à ancrer une barre d'armature dans un bloc de béton et d'appliquer une force sur la barre à l'aide d'un ancrage mécanique (figure 2.11 du chapitre 2). En effet, lors de ce projet, la méthode d'essai développée à l'Université de Sherbrooke a été utilisée. Dans ce cas-ci, la barre est ancrée aux deux extrémités dans des blocs de béton mesurant 150 mm x 150 mm x 500 mm. La figure 2.12 du chapitre 2 montre également le montage utilisé pour ce projet.
3.2.2 Description des échantillons

La précision, lors de la fabrication des échantillons est très importante. C’est pourquoi, lors de la fabrication des échantillons les longueurs d’ancrage désirées ont été mesurées et scellées avec des tubes en PVC ont été installés sur la barre d’armature à l’aide de silicone. La figure 3.3 montre une barre d’armature avec sa longueur d’ancrage.

![Figure 3.3 Barre d'armature avec une longueur d'ancrage désirée](image)

Les dimensions a, b et c varient selon le diamètre de la barre et la longueur d’ancrage. Toutes ces dimensions sont présentées dans les tableaux 3.6 et 3.7 de la présente section.

Par la suite, des cages d’armature ont été fabriquées avec des barres d’acier lisses d’un diamètre de 6,5 mm. Chaque cage était constituée de 5 étiriers et quatre barres horizontales pour retenir ces étiriers. Cette cage d’armature a été installée afin de confiner convenablement le béton pour ne pas obtenir de rupture par éclatement du béton. De plus, deux épaisseurs de styro mousse furent installées afin de laisser un espace entre les deux blocs de béton. L’échantillon sera, lors de l’essai, retenu à cet endroit. Il est possible de voir sur la figure 3.4 l’échantillon avant le bétonnage. Il est possible d’y voir l’armature transversale, les longueurs d’ancrage désirées ainsi que l’espacement au centre de l’échantillon. De plus, comme on peut le voir, chaque coffrage
permettait de fabriquer deux échantillons à la fois. L’étape suivante était la gâchée de béton. Afin de faciliter la mise en place du béton, une aiguille vibrante a été utilisée. Ainsi, 96 échantillons ont été fabriqués. Quatre échantillons par diamètre et par longueur d’ancrage pour les essais de chargement statique (total de 72 échantillons), deux échantillons par diamètre par longueur d’ancrage pour les barres à base de fibres de verre (total = 24) et un échantillon pour deux des longueurs d’ancrage pour les barres à base de fibres de carbone (2) pour les essais de chargement cyclique.

TABLEAU 3.6 DÉTAILS DES LONGUEURS D’ANCRA GE POUR LA BARRE À BASE DE FIBRES DE VERRE

<table>
<thead>
<tr>
<th>Diamètre de la barre (mm)</th>
<th>Longueur d’ancrage (mm)</th>
<th>a (mm)</th>
<th>b (mm)</th>
<th>c (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9,525</td>
<td>50</td>
<td>50</td>
<td>420</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>100</td>
<td>370</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>150</td>
<td>150</td>
<td>320</td>
<td>0</td>
</tr>
<tr>
<td>12,7</td>
<td>60</td>
<td>220</td>
<td>60</td>
<td>220</td>
</tr>
<tr>
<td></td>
<td>120</td>
<td>190</td>
<td>120</td>
<td>190</td>
</tr>
<tr>
<td></td>
<td>180</td>
<td>160</td>
<td>180</td>
<td>160</td>
</tr>
<tr>
<td>12,7</td>
<td>60</td>
<td>0</td>
<td>60</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td>120</td>
<td>0</td>
<td>120</td>
<td>180</td>
</tr>
<tr>
<td></td>
<td>180</td>
<td>0</td>
<td>180</td>
<td>120</td>
</tr>
<tr>
<td>15,875</td>
<td>75</td>
<td>212,5</td>
<td>75</td>
<td>212,5</td>
</tr>
<tr>
<td></td>
<td>150</td>
<td>175</td>
<td>150</td>
<td>175</td>
</tr>
<tr>
<td></td>
<td>225</td>
<td>137,5</td>
<td>225</td>
<td>137,5</td>
</tr>
<tr>
<td>19,05</td>
<td>100</td>
<td>200</td>
<td>100</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>150</td>
<td>200</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>300</td>
<td>100</td>
<td>300</td>
<td>100</td>
</tr>
</tbody>
</table>
TABLEAU 3.7 DÉTAILS DES LONGUEURS D'ANCRAGE POUR LA BARRE À BASE DE FIBRES DE CARBONE

<table>
<thead>
<tr>
<th>Diamètre de la barre (mm)</th>
<th>Longueur d'ancrage (mm)</th>
<th>a (mm)</th>
<th>b (mm)</th>
<th>c (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9,525</td>
<td>50</td>
<td>225</td>
<td>50</td>
<td>225</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>200</td>
<td>100</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td>150</td>
<td>175</td>
<td>150</td>
<td>175</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>150</td>
<td>200</td>
<td>150</td>
</tr>
</tbody>
</table>

Figure 3.4 : Photo montrant 2 échantillons d’essai avant le bétonnage
Figure 3.5 Photo montrant 2 échantillons d’essai après le bétonnage

Essais de chargement statique

Après un minimum de 28 jours de cure, les échantillons ont été testés. Tout d’abord, par des essais statiques. La figure 3.6 montre le montage avant l’essai d’arrachement. Il est possible de voir le système d’acquisition ayant servi lors de l’essai sur la même figure.
Figure 3.6: Montage et système d'acquisition utilisés pour les essais d'arrachement

Étant donné que l'application de la charge était faite manuellement, les essais de chargement statique ont été effectués en appliquant une charge à un taux variant entre 10 et 15 kN/min. L'échantillon était retenu à l'aide de tige d'acier. La partie supérieure était fixe, alors que la partie inférieure était tirée vers le bas à l'aide d'un vérin. Lors de ces essais, la contrainte maximale en traction pour chaque échantillon a été déterminée et utilisée pour les essais de chargement cyclique.

Essais de chargement cycliques

Pour ce qui est des essais cycliques, la charge variait entre 10% et 40% de la valeur de la contrainte maximale en traction obtenue lors des essais de chargement statique et ce, pendant
500 000 cycles seulement pour les échantillons 10M05D. La procédure a cependant été modifiée pour les autres échantillons, la charge appliquée variait alors de 10% à 50% de la contrainte de traction maximale obtenue lors des essais de chargement statique et ce pendant 1000 000 cycles. La fréquence des essais, autant pour les échantillons faits avec des barres d'armature à base de fibres de carbone que celle à base de fibres de verre était de 2 Hz en suivant une onde triangulaire, ce qui signifie que la charge était appliquée de façon linéaire et enlevée de façon linéaire aussi. Le tableau 3.8 montre l'intervalle des charges dans laquelle les échantillons ont été testés.

TABLEAU 3.8 NOMBRE DE CYCLES ET NIVEAUX DE CHARGES AUXQUELS LES ÉCHANTILLONS ONT ÉTÉ SOUMIS

<table>
<thead>
<tr>
<th>Échantillons</th>
<th>Nombre de cycles soumis</th>
<th>Charge appliquée (kN)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>10%</td>
</tr>
<tr>
<td>10M05D</td>
<td>500 000</td>
<td>2</td>
</tr>
<tr>
<td>10M10D</td>
<td>500 000</td>
<td>3</td>
</tr>
<tr>
<td>10M15D</td>
<td>1000 000</td>
<td>4</td>
</tr>
<tr>
<td>12M05D</td>
<td>1000 000</td>
<td>5</td>
</tr>
<tr>
<td>12M10D</td>
<td>1000 000</td>
<td>7</td>
</tr>
<tr>
<td>12M15D</td>
<td>1000 000</td>
<td>8</td>
</tr>
<tr>
<td>15M05D</td>
<td>1000 000</td>
<td>6</td>
</tr>
<tr>
<td>15M10D</td>
<td>1000 000</td>
<td>9</td>
</tr>
<tr>
<td>15M15D</td>
<td>1000 000</td>
<td>10</td>
</tr>
<tr>
<td>20M05D</td>
<td>1000 000</td>
<td>10</td>
</tr>
<tr>
<td>20M10D</td>
<td>1000 000</td>
<td>16</td>
</tr>
<tr>
<td>20M15D</td>
<td>1000 000</td>
<td>16</td>
</tr>
<tr>
<td>CAR05DB</td>
<td>1000 000</td>
<td>3</td>
</tr>
<tr>
<td>CAR10DB</td>
<td>1000 000</td>
<td>5</td>
</tr>
<tr>
<td>CAR15DB</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

Aucun essai cyclique n'a été effectué sur les échantillons faits avec des barres à base de fibres de carbone pour une longueur d'ancrage de 150 mm et 200 mm et il en est de même pour les échantillons faits avec des barres d'armature conventionnelles.
4.0 PRÉSENTATION, ANALYSE ET DISCUSSION DES RÉSULTATS

Puisque le programme expérimental s’est déroulé en trois parties, la notation des échantillons diffère d’une fois à l’autre. La première série d’essai a été réalisée sur les échantillons fabriqués avec des barres d’armature en PRFV à l’été 1999. La deuxième série d’essai a été réalisée sur les échantillons de barres d’armature en PRFC au printemps 2000. Enfin, la dernière série d’essai a été effectué sur des barres en PRFC pour de nouvelles longueurs d’ancrage et sur des barres d’acier pour compléter l’étude à l’été 2000. La notation des échantillons faits avec les barres en PRFV est la suivante :

Pour ce qui est des barres d’armature à base de fibres de verre :

- Le premier chiffre (10, 12, 15, 20) correspond au diamètre de la barre d’armature en métrique (M);
- Le deuxième chiffre (05, 10, 15) correspond à la longueur d’ancrage en fonction du diamètre (D);
- Le dernier chiffre correspond à la gâchée de béton à laquelle appartient l’échantillon.

Pour ce qui est des échantillons faits avec les barres d’armature en PRF à base de carbone et les les barres d’armature en acier, et étant donné qu’un seul diamètre a été étudié, la notation des échantillons est fonction de la longueur d’ancrage.

- CAR signifie carbone et AC signifie acier;
- Le premier chiffre (05, 10, 15) correspond à la longueur d’ancrage en fonction du diamètre de la barre (DB).
- Le dernier chiffre constitue le numéro de l’échantillon.

4.1 Résultats obtenus

La contrainte d’adhérence a été calculée à l’aide de l’équation suivante :

\[\tau = \frac{P}{\pi d_b l_a} \]

(4-1)
où \(\tau = \) contrainte d'adhérence maximum (MPa)
\(P = \) charge maximale appliquée (N)
\(d_b = \) diamètre de la barre (mm)
\(l_a = \) longueur d'ancrage de la barre (mm)

Les valeurs des contraintes d'adhérence maximum obtenues pour les barres d'armature en PRF à base de fibres de verre sont présentées dans les tableaux 4.1 à 4.4 alors que les valeurs moyennes de ces résultats sont compilées dans le tableau 4.5, alors que les valeurs moyennes des barres d'armature en PRF à base de fibres de carbone sont présentées dans le tableau 4.6. Une courbe type contrainte d'adhérence/glissement est présentée à la figure 4.1 pour ce qui à trait aux barres PRF à base de fibres de verre et à la figure 4.2 pour les barres d'armature à base de fibres de carbone. Les courbes des barres de différents diamètres et différentes longueurs d'ancrage sont présentées en annexe.

4.1.1 Résultats des essais statiques

TABLEAU 4.1 RÉSULTATS OBTENUS POUR LES BARRES D'ARMATURE EN PRF À BASE DE FIBRES DE VERRE DE 9,525 mm DE DIAMÈTRE (a) La=50mm (b) La=100mm (c) La=150mm

a)

<table>
<thead>
<tr>
<th>Échantillon #</th>
<th>Longueur d'ancrage (mm)</th>
<th>Charge maximale (kN)</th>
<th>Contrainte d'adhérence maximum (MPa)</th>
<th>Mode de rupture</th>
</tr>
</thead>
<tbody>
<tr>
<td>10M05D5</td>
<td>50</td>
<td>27,68</td>
<td>18,50</td>
<td>Arrachement</td>
</tr>
<tr>
<td>10M05D5a</td>
<td>50</td>
<td>23,56</td>
<td>15,75</td>
<td>Arrachement</td>
</tr>
<tr>
<td>10M05D7</td>
<td>50</td>
<td>21,38</td>
<td>14,29</td>
<td>Arrachement</td>
</tr>
<tr>
<td>10M05D7a</td>
<td>50</td>
<td>--</td>
<td>--</td>
<td>Arrachement</td>
</tr>
<tr>
<td>Moyenne</td>
<td></td>
<td>24,21 ± 2,30</td>
<td>16,18 ± 1,41</td>
<td></td>
</tr>
</tbody>
</table>

b)

<table>
<thead>
<tr>
<th>Échantillon #</th>
<th>Longueur d'ancrage (mm)</th>
<th>Charge maximale (kN)</th>
<th>Contrainte d'adhérence maximum (MPa)</th>
<th>Mode de rupture</th>
</tr>
</thead>
<tbody>
<tr>
<td>10M10D5</td>
<td>100</td>
<td>30,17</td>
<td>10,08</td>
<td>Arrachement</td>
</tr>
<tr>
<td>10M10D5a</td>
<td>100</td>
<td>37,04</td>
<td>12,38</td>
<td>Arrachement</td>
</tr>
<tr>
<td>10M10D7</td>
<td>100</td>
<td>34,92</td>
<td>11,67</td>
<td>Arrachement</td>
</tr>
<tr>
<td>10M10D7a</td>
<td>100</td>
<td>40,23</td>
<td>13,44</td>
<td>Arrachement</td>
</tr>
<tr>
<td>Moyenne</td>
<td></td>
<td>35,59 ± 4,22</td>
<td>11,92 ± 1,41</td>
<td></td>
</tr>
</tbody>
</table>
c)

<table>
<thead>
<tr>
<th>Échantillon #</th>
<th>Longueur d'ancrage (mm)</th>
<th>Charge maximale (kN)</th>
<th>Contrainte d'adhérence maximum (MPa)</th>
<th>Mode de rupture</th>
</tr>
</thead>
<tbody>
<tr>
<td>10M15D5</td>
<td>150</td>
<td>43,38</td>
<td>9,66</td>
<td>Rupture de la barre</td>
</tr>
<tr>
<td>10M15D5a</td>
<td>150</td>
<td>38,93</td>
<td>8,67</td>
<td>Rupture de la barre</td>
</tr>
<tr>
<td>10M15D7</td>
<td>150</td>
<td>40,97</td>
<td>9,13</td>
<td>Rupture de la barre</td>
</tr>
<tr>
<td>10M15D7a</td>
<td>150</td>
<td>40,97</td>
<td>9,13</td>
<td>Rupture de la barre</td>
</tr>
<tr>
<td>Moyenne</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TABLEAU 4.2 RÉSULTATS OBTENUS POUR LES BARRES D'ARMATURE EN PRF À BASE DE FIBRES DE VERRE DE 12,7 mm DE DIAMÈTRE
(a) La=60mm
(b) La=120mm (c) La=180mm

a)

<table>
<thead>
<tr>
<th>Échantillon #</th>
<th>Longueur d'ancrage (mm)</th>
<th>Charge maximale (kN)</th>
<th>Contrainte d'adhérence maximum (MPa)</th>
<th>Mode de rupture</th>
</tr>
</thead>
<tbody>
<tr>
<td>12M05D1</td>
<td>60</td>
<td>**</td>
<td></td>
<td>Arrachement</td>
</tr>
<tr>
<td>12M05D2</td>
<td>60</td>
<td>49,84</td>
<td>20,82</td>
<td>Arrachement</td>
</tr>
<tr>
<td>12M05D3</td>
<td>60</td>
<td>**</td>
<td></td>
<td>Arrachement</td>
</tr>
<tr>
<td>12M05D3a</td>
<td>60</td>
<td>43,27</td>
<td>18,08</td>
<td>Arrachement</td>
</tr>
<tr>
<td>Moyenne</td>
<td></td>
<td>46,56 ± 4,65</td>
<td>19,45 ± 1,94</td>
<td></td>
</tr>
</tbody>
</table>

*aucune valeur n'a pu être enregistrée lors de ces essais

b)

<table>
<thead>
<tr>
<th>Échantillon #</th>
<th>Longueur d'ancrage (mm)</th>
<th>Charge maximale (kN)</th>
<th>Contrainte d'adhérence maximum (MPa)</th>
<th>Mode de rupture</th>
</tr>
</thead>
<tbody>
<tr>
<td>12M10D1</td>
<td>120</td>
<td>76,19</td>
<td>15,91</td>
<td>Arrachement</td>
</tr>
<tr>
<td>12M10D2</td>
<td>120</td>
<td>74,07</td>
<td>15,47</td>
<td>Arrachement</td>
</tr>
<tr>
<td>12M10D3</td>
<td>120</td>
<td>72,32</td>
<td>15,11</td>
<td>Arrachement</td>
</tr>
<tr>
<td>12M10D3a</td>
<td>120</td>
<td>**</td>
<td></td>
<td>Arrachement</td>
</tr>
<tr>
<td>Moyenne</td>
<td></td>
<td>74,19 ± 1,94</td>
<td>15,50 ± 0,4</td>
<td></td>
</tr>
</tbody>
</table>

*aucune valeur n'a pu être enregistrée lors de ces essais
c)

<table>
<thead>
<tr>
<th>Échantillon #</th>
<th>Longueur d'ancrage (mm)</th>
<th>Charge maximale (kN)</th>
<th>Contrainte d'adhérence maximum (MPa)</th>
<th>Mode de rupture</th>
</tr>
</thead>
<tbody>
<tr>
<td>12M15D1</td>
<td>180</td>
<td>*</td>
<td>10,90</td>
<td>Rupture de la barre</td>
</tr>
<tr>
<td>12M15D2</td>
<td>180</td>
<td>78,26</td>
<td>10,27</td>
<td>Rupture de la barre</td>
</tr>
<tr>
<td>12M15D3</td>
<td>180</td>
<td>73,78</td>
<td>10,27</td>
<td>Rupture de la barre</td>
</tr>
<tr>
<td>12M15D3a</td>
<td>180</td>
<td>83,45</td>
<td>11,62</td>
<td>Rupture de la barre</td>
</tr>
</tbody>
</table>

Moyenne / / /

* aucun valeur n'a pu être enregistrée lors de cet essai

TABLEAU 4.3 RÉSULTATS OBTENUS POUR LES BARRES D'ARMATURE EN PRF À BASE DE FIBRES DE VERRE DE 15.875 mm DE DIAMÈTRE (a) La=75mm (b) La=150mm (c) La=225mm

a)

<table>
<thead>
<tr>
<th>Échantillon #</th>
<th>Longueur d'ancrage (mm)</th>
<th>Charge maximale (kN)</th>
<th>Contrainte d'adhérence maximum (MPa)</th>
<th>Mode de rupture</th>
</tr>
</thead>
<tbody>
<tr>
<td>15M05D1</td>
<td>75</td>
<td>57,83</td>
<td>15,46</td>
<td>Arrachement</td>
</tr>
<tr>
<td>15M05D2</td>
<td>75</td>
<td>64,08</td>
<td>17,13</td>
<td>Arrachement</td>
</tr>
<tr>
<td>15M05D4</td>
<td>75</td>
<td>62,15</td>
<td>16,61</td>
<td>Arrachement</td>
</tr>
<tr>
<td>15M05D4a</td>
<td>75</td>
<td>66,11</td>
<td>17,67</td>
<td>Arrachement</td>
</tr>
</tbody>
</table>

Moyenne 62,54 ± 3,53 16,72 ± 0,94

b)

<table>
<thead>
<tr>
<th>Échantillon #</th>
<th>Longueur d'ancrage (mm)</th>
<th>Charge maximale (kN)</th>
<th>Contrainte d'adhérence maximum (MPa)</th>
<th>Mode de rupture</th>
</tr>
</thead>
<tbody>
<tr>
<td>15M10D1</td>
<td>150</td>
<td>97,61</td>
<td>13,05</td>
<td>Arrachement</td>
</tr>
<tr>
<td>15M10D2</td>
<td>150</td>
<td>90,14</td>
<td>12,05</td>
<td>Arrachement</td>
</tr>
<tr>
<td>15M10D4</td>
<td>150</td>
<td>94,50</td>
<td>12,63</td>
<td>Arrachement</td>
</tr>
<tr>
<td>15M10D4a</td>
<td>150</td>
<td>90,32</td>
<td>12,07</td>
<td>Arrachement</td>
</tr>
</tbody>
</table>

Moyenne 93,14 ± 3,60 12,45 ± 0,48

51
TABLEAU 4.4 RÉSULTATS OBTENUS POUR LES BARRES D'ARMATURE EN PRF À BASE DE FIBRES DE VERRE DE 19,05 mm DE DIAMÈTRE (a) La=100mm (b) La=200mm (c) La=300mm

<table>
<thead>
<tr>
<th>Échantillon #</th>
<th>Longueur d’ancrage (mm)</th>
<th>Charge maximale (kN)</th>
<th>Contrainte d’adhérence maximum (MPa)</th>
<th>Mode de rupture</th>
</tr>
</thead>
<tbody>
<tr>
<td>15M15D1</td>
<td>225</td>
<td>94,37</td>
<td>8,41</td>
<td>Rupture de la barre</td>
</tr>
<tr>
<td>15M15D2</td>
<td>225</td>
<td>84,22</td>
<td>7,51</td>
<td>Arrachement</td>
</tr>
<tr>
<td>15M15D4</td>
<td>225</td>
<td>97,65</td>
<td>8,70</td>
<td>Rupture de la barre</td>
</tr>
<tr>
<td>15M15D4a</td>
<td>225</td>
<td>115,52</td>
<td>10,29</td>
<td>Rupture de la barre</td>
</tr>
<tr>
<td>Moyenne</td>
<td></td>
<td>84,22 ± 0,00</td>
<td>7,51 ± 0,00</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Échantillon #</th>
<th>Longueur d’ancrage (mm)</th>
<th>Charge maximale (kN)</th>
<th>Contrainte d’adhérence maximum (MPa)</th>
<th>Mode de rupture</th>
</tr>
</thead>
<tbody>
<tr>
<td>20M05D10</td>
<td>100</td>
<td>100,76</td>
<td>16,84</td>
<td>Arrachement</td>
</tr>
<tr>
<td>20M05D10a</td>
<td>100</td>
<td>100,91</td>
<td>16,86</td>
<td>Arrachement</td>
</tr>
<tr>
<td>20M05D11</td>
<td>100</td>
<td>111,71</td>
<td>18,67</td>
<td>Arrachement</td>
</tr>
<tr>
<td>20M05D11a</td>
<td>100</td>
<td>99,38</td>
<td>16,61</td>
<td>Arrachement</td>
</tr>
<tr>
<td>Moyenne</td>
<td></td>
<td>103,19 ± 5,72</td>
<td>17,24 ± 0,96</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Échantillon #</th>
<th>Longueur d’ancrage (mm)</th>
<th>Charge maximale (kN)</th>
<th>Contrainte d’adhérence maximum (MPa)</th>
<th>Mode de rupture</th>
</tr>
</thead>
<tbody>
<tr>
<td>20M10D10</td>
<td>200</td>
<td>149,63</td>
<td>12,50</td>
<td>Rupture de la barre</td>
</tr>
<tr>
<td>20M10D10a</td>
<td>200</td>
<td>157,41</td>
<td>13,15</td>
<td>Rupture de la barre</td>
</tr>
<tr>
<td>20M10D11</td>
<td>200</td>
<td>165,96</td>
<td>13,87</td>
<td>Rupture de la barre</td>
</tr>
<tr>
<td>20M10D11a</td>
<td>200</td>
<td>154,35</td>
<td>12,90</td>
<td>Rupture de la barre</td>
</tr>
<tr>
<td>Moyenne</td>
<td></td>
<td>/</td>
<td>/</td>
<td></td>
</tr>
</tbody>
</table>
c)

<table>
<thead>
<tr>
<th>Échantillon #</th>
<th>Longueur d’ancrage (mm)</th>
<th>Charge maximale (kN)</th>
<th>Contrainte d’adhérence maximum (MPa)</th>
<th>Mode de rupture</th>
</tr>
</thead>
<tbody>
<tr>
<td>20M15D10</td>
<td>300</td>
<td>158,60</td>
<td>8,83</td>
<td>Rupture de la barre</td>
</tr>
<tr>
<td>20M15D10a</td>
<td>300</td>
<td>148,39</td>
<td>8,26</td>
<td>Rupture de la barre</td>
</tr>
<tr>
<td>20M15D11</td>
<td>300</td>
<td>162,14</td>
<td>9,03</td>
<td>Rupture de la barre</td>
</tr>
<tr>
<td>20M15D11a</td>
<td>300</td>
<td>159,03</td>
<td>8,86</td>
<td>Rupture de la barre</td>
</tr>
<tr>
<td>Moyenne</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td></td>
</tr>
</tbody>
</table>

TABLEAU 4.5 VALEURS DES CONTRAINTES D’ADHÉRENCE MAXIMALES POUR LES BARRES D’ARMATURE EN PRF À BASE DE FIBRES DE VERRE

<table>
<thead>
<tr>
<th>Diamètre de la barre d’armature</th>
<th>Longueur d’ancrage (mm)</th>
<th>Charge maximale (kN)</th>
<th>Contrainte d’adhérence maximum (MPa)</th>
<th>Mode de rupture</th>
</tr>
</thead>
<tbody>
<tr>
<td>9,525</td>
<td>50 (5d₀)</td>
<td>24,2 ± 3,2</td>
<td>16,2 ± 2,1</td>
<td>Arrachement</td>
</tr>
<tr>
<td></td>
<td>100 (10d₀)</td>
<td>35,6 ± 4,2</td>
<td>11,9 ± 1,4</td>
<td>Arrachement</td>
</tr>
<tr>
<td></td>
<td>150 (15d₀)</td>
<td>41,1 ± 1,8</td>
<td>9,15 ± 0,4</td>
<td>Rupture de la barre</td>
</tr>
<tr>
<td>12,7</td>
<td>60 (5d₀)</td>
<td>46,6 ± 4,6</td>
<td>19,45 ± 1,9</td>
<td>Arrachement</td>
</tr>
<tr>
<td></td>
<td>120 (10d₀)</td>
<td>74,1 ± 2,1</td>
<td>15,5 ± 0,4</td>
<td>Arrachement</td>
</tr>
<tr>
<td></td>
<td>180 (15d₀)</td>
<td>78,5 ± 4,8</td>
<td>10,30 ± 0,7</td>
<td>Rupture</td>
</tr>
<tr>
<td>15,875</td>
<td>75 (5d₀)</td>
<td>62,5 ± 3,5</td>
<td>17,70 ± 2,2</td>
<td>Arrachement</td>
</tr>
<tr>
<td></td>
<td>150 (10d₀)</td>
<td>93,1 ± 3,6</td>
<td>12,40 ± 0,5</td>
<td>Arrachement</td>
</tr>
<tr>
<td></td>
<td>225 (15d₀)</td>
<td>102,50 ± 11,4</td>
<td>8,60 ± 1,0</td>
<td>Rupture de la barre</td>
</tr>
<tr>
<td>19,05</td>
<td>100 (5d₀)</td>
<td>103,2 ± 5,7</td>
<td>17,24 ± 1,0</td>
<td>Arrachement</td>
</tr>
<tr>
<td></td>
<td>200 (10d₀)</td>
<td>156,8 ± 6,9</td>
<td>13,10 ± 0,6</td>
<td>Rupture de la barre</td>
</tr>
<tr>
<td></td>
<td>300 (15d₀)</td>
<td>157,0 ± 6,0</td>
<td>9,10 ± 0,4</td>
<td>Rupture de la barre</td>
</tr>
</tbody>
</table>

53
TABLEAU 4.6 RÉSULTATS OBTENUS POUR LES BARRES D'ARMATURE EN PRF À BASE DE FIBRES DE CARBONE DE 9,525 mm DE DIAMÈTRE (a)
La=50mm (b) La=100mm (c) La=150mm (d) La=200mm

a)

<table>
<thead>
<tr>
<th>Échantillon #</th>
<th>Longueur d'ancrage (mm)</th>
<th>Charge maximale (kN)</th>
<th>Contrainte d'adhérence maximum (MPa)</th>
<th>Mode de rupture</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAR05DB1</td>
<td>50</td>
<td>29,43</td>
<td>19,67</td>
<td>Arrachement</td>
</tr>
<tr>
<td>CAR05DB2</td>
<td>50</td>
<td>28,35</td>
<td>18,95</td>
<td>Arrachement</td>
</tr>
<tr>
<td>CAR05DB3</td>
<td>50</td>
<td>31,84</td>
<td>21,28</td>
<td>Arrachement</td>
</tr>
<tr>
<td>Moyenne</td>
<td></td>
<td>29,87 ± 1,79</td>
<td>19,97 ± 1,19</td>
<td></td>
</tr>
</tbody>
</table>

b)

<table>
<thead>
<tr>
<th>Échantillon #</th>
<th>Longueur d'ancrage (mm)</th>
<th>Charge maximale (kN)</th>
<th>Contrainte d'adhérence maximum (MPa)</th>
<th>Mode de rupture</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAR10DB1</td>
<td>100</td>
<td>50,67</td>
<td>16,93</td>
<td>Arrachement</td>
</tr>
<tr>
<td>CAR10DB2</td>
<td>100</td>
<td>54,99</td>
<td>18,38</td>
<td>Arrachement</td>
</tr>
<tr>
<td>CAR10DB3</td>
<td>100</td>
<td>50,76</td>
<td>16,96</td>
<td>Arrachement</td>
</tr>
<tr>
<td>CAR10DB4</td>
<td>100</td>
<td>57,76</td>
<td>19,30</td>
<td>Arrachement</td>
</tr>
<tr>
<td>Moyenne</td>
<td></td>
<td>53,54 ± 3,46</td>
<td>17,89 ± 1,15</td>
<td></td>
</tr>
</tbody>
</table>

c)

<table>
<thead>
<tr>
<th>Échantillon #</th>
<th>Longueur d'ancrage (mm)</th>
<th>Charge maximale (kN)</th>
<th>Contrainte d'adhérence maximum (MPa)</th>
<th>Mode de rupture</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAR15DB1</td>
<td>150</td>
<td>71,91</td>
<td>16,02</td>
<td>Arrachement</td>
</tr>
<tr>
<td>CAR15DB2</td>
<td>150</td>
<td>70,74</td>
<td>15,76</td>
<td>Arrachement</td>
</tr>
<tr>
<td>CAR15DB3</td>
<td>150</td>
<td>80,12</td>
<td>17,85</td>
<td>Arrachement</td>
</tr>
<tr>
<td>CAR15DB4</td>
<td>150</td>
<td>79,52</td>
<td>17,72</td>
<td>Arrachement</td>
</tr>
<tr>
<td>Moyenne</td>
<td></td>
<td>75,57±4,93</td>
<td>16,84 ±1,10</td>
<td></td>
</tr>
</tbody>
</table>

d)
<table>
<thead>
<tr>
<th>Échantillon #</th>
<th>Longueur d'ancrage (mm)</th>
<th>Charge maximale (kN)</th>
<th>Contrainte d'adhérence maximum (MPa)</th>
<th>Mode de rupture</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAR20B1</td>
<td>200</td>
<td>*</td>
<td></td>
<td>Rupture de la barre</td>
</tr>
<tr>
<td>CAR20B2</td>
<td>200</td>
<td>111,60</td>
<td>18,65</td>
<td>Rupture de la barre</td>
</tr>
<tr>
<td>CAR20B3</td>
<td>200</td>
<td>111,96</td>
<td>18,71</td>
<td>Rupture de la barre</td>
</tr>
<tr>
<td>CAR20B4</td>
<td>200</td>
<td>108,86</td>
<td>18,19</td>
<td>Rupture de la barre</td>
</tr>
<tr>
<td>Moyenne</td>
<td>110,81 ± 1,70</td>
<td>18,51 ± 0,28</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* aucune valeur n’a pu être enregistrée lors de cet essai

TABLEAU 4.7 VALEURS DES CONTRAINTES D’ADHÉRENCE MAXIMALE POUR LES BARRES D’ARMATURE EN PRF À BASE DE FIBRES DE CARBONE

<table>
<thead>
<tr>
<th>Diamètre de la barre d’armature</th>
<th>Longueur d’ancrage (mm)</th>
<th>Charge maximale (kN)</th>
<th>Contrainte d’adhérence maximum (MPa)</th>
<th>Mode de rupture</th>
</tr>
</thead>
<tbody>
<tr>
<td>9,525</td>
<td>50 (5dₖₚ)</td>
<td>29,9</td>
<td>20,0</td>
<td>Arrachement</td>
</tr>
<tr>
<td></td>
<td>100 (10dₖₚ)</td>
<td>53,5</td>
<td>17,9</td>
<td>Arrachement</td>
</tr>
<tr>
<td></td>
<td>150 (15dₖₚ)</td>
<td>75,6</td>
<td>16,8</td>
<td>Arrachement</td>
</tr>
<tr>
<td></td>
<td>200 (20dₖₚ)</td>
<td>110,81</td>
<td>18,51</td>
<td>Rupture de la barre</td>
</tr>
</tbody>
</table>

TABLEAU 4.8 RÉSULTATS OBTENUS POUR LES BARRES D’ARMATURE D’ACIER DE 9,525mm DE DIAMÈTRE (a) La=50mm (b) La=100mm (c) La=150mm

<table>
<thead>
<tr>
<th>Échantillon #</th>
<th>Longueur d’ancrage (mm)</th>
<th>Charge maximale (kN)</th>
<th>Contrainte d’adhérence maximum (MPa)</th>
<th>Mode de rupture</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC5DB</td>
<td>50</td>
<td>40,21</td>
<td>26,87</td>
<td>Arrachement</td>
</tr>
<tr>
<td>AC5DB1</td>
<td>50</td>
<td>47,03</td>
<td>31,43</td>
<td>Arrachement</td>
</tr>
<tr>
<td>Moyenne</td>
<td>43,62 ± 4,82</td>
<td>29,15 ± 3,22</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
b)

<table>
<thead>
<tr>
<th>Échantillon #</th>
<th>Longueur d’ancrage (mm)</th>
<th>Charge maximale (kN)</th>
<th>Contrainte d’adhérence maximum (MPa)</th>
<th>Mode de rupture</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC10DB</td>
<td>100</td>
<td>55,04</td>
<td>18,77</td>
<td>Arrachement</td>
</tr>
<tr>
<td>AC10DB1</td>
<td>100</td>
<td>52,63</td>
<td>17,59</td>
<td>Arrachement</td>
</tr>
<tr>
<td>Moyenne</td>
<td></td>
<td>53,84 ± 1,70</td>
<td>18,18 ± 0,83</td>
<td>Arrachement</td>
</tr>
</tbody>
</table>

c)

<table>
<thead>
<tr>
<th>Échantillon #</th>
<th>Longueur d’ancrage (mm)</th>
<th>Charge maximale (kN)</th>
<th>Contrainte d’adhérence maximum (MPa)</th>
<th>Mode de rupture</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC15DB</td>
<td>150</td>
<td>58,01</td>
<td>12,47</td>
<td>Plastification</td>
</tr>
<tr>
<td>AC15DB1</td>
<td>150</td>
<td>51,62</td>
<td>11,50</td>
<td>Plastification</td>
</tr>
<tr>
<td>Moyenne</td>
<td></td>
<td>54,82 ± 4,52</td>
<td>11,98 ± 0,68</td>
<td>Plastification</td>
</tr>
</tbody>
</table>

Figure 4.1 Courbe type contrainte d’adhérence/glissement pour une barre en PRFV de 12,7 mm de diamètre ancrée à 120 mm
Figure 4.1 Courbe type contrainte d’adhérence/glissement pour une barre en PRFC de 9,525 mm de diamètre ancrée à 50mm

4.1.2 Résultats des essais cycliques

TABLEAU 4.9 NOMBRES DE CYCLES DES ÉCHANTILLONS DE BARRES EN PRFV DE 9,525 mm DE DIAMÈTRE

<table>
<thead>
<tr>
<th>Échantillons</th>
<th>Variation des charges</th>
<th>Nombre de cycles</th>
<th>Mode de rupture</th>
</tr>
</thead>
<tbody>
<tr>
<td>10M05D6</td>
<td>entre 2 et 10 kN</td>
<td>500 000</td>
<td>*</td>
</tr>
<tr>
<td>10M05D6a</td>
<td>entre 2 et 10 kN</td>
<td>500 000</td>
<td>*</td>
</tr>
<tr>
<td>10M10D6</td>
<td>entre 3 et 17 kN</td>
<td>500 000</td>
<td>*</td>
</tr>
<tr>
<td>10M10D6a</td>
<td>entre 3 et 17 kN</td>
<td>612 536</td>
<td>Arrachement</td>
</tr>
<tr>
<td>10M15D6</td>
<td>entre 4 et 21 kN</td>
<td>225 612</td>
<td>Arrachement</td>
</tr>
<tr>
<td>10M15D6a</td>
<td>entre 4 et 21 kN</td>
<td>715 351</td>
<td>Arrachement</td>
</tr>
</tbody>
</table>

* après 500 000, des essais de chargement statique ont été réalisés sur les échantillons

TABLEAU 4.10 NOMBRES DE CYCLES DES ÉCHANTILLONS DE BARRES EN PRFV DE 12,7 mm DE DIAMÈTRE

<table>
<thead>
<tr>
<th>Échantillons</th>
<th>Variation des charges</th>
<th>Nombre de cycles</th>
<th>Mode de rupture</th>
</tr>
</thead>
<tbody>
<tr>
<td>12M05D8</td>
<td>entre 5 et 23 kN</td>
<td>50 532</td>
<td>Arrachement</td>
</tr>
<tr>
<td>12M05D8a</td>
<td>entre 5 et 23 kN</td>
<td>169 789</td>
<td>Arrachement</td>
</tr>
<tr>
<td>12M10D8</td>
<td>entre 7 et 37 kN</td>
<td>18 908</td>
<td>Arrachement</td>
</tr>
<tr>
<td>12M10D8a</td>
<td>entre 7 et 37 kN</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>12M15D8</td>
<td>entre 8 et 39 kN</td>
<td>270 720</td>
<td>Arrachement</td>
</tr>
<tr>
<td>12M15D8a</td>
<td>entre 8 et 39 kN</td>
<td>623 210</td>
<td>Arrachement</td>
</tr>
</tbody>
</table>

L’échantillon a été brisé lors de son installation
TABLEAU 4.11 NOMBRES DE CYCLES DES ÉCHANTILLONS DE BARRES EN PRFV DE 15,875 mm DE DIAMÈTRE

<table>
<thead>
<tr>
<th>Échantillons</th>
<th>Variation des charges</th>
<th>Nombre de cycles</th>
<th>Mode de rupture</th>
</tr>
</thead>
<tbody>
<tr>
<td>15M05D9</td>
<td>entre 6 et 31 kN</td>
<td>10 732</td>
<td>Arrachement</td>
</tr>
<tr>
<td>15M05D9a</td>
<td>entre 6 et 31 kN</td>
<td>9 732</td>
<td>Arrachement</td>
</tr>
<tr>
<td>15M10D9</td>
<td>entre 9 et 47 kN</td>
<td>5 500</td>
<td>Arrachement</td>
</tr>
<tr>
<td>15M10D9a</td>
<td>entre 9 et 47 kN</td>
<td>153 767</td>
<td>Arrachement</td>
</tr>
<tr>
<td>15M15D9</td>
<td>entre 10 et 49 kN</td>
<td>103 826</td>
<td>Arrachement</td>
</tr>
<tr>
<td>15M15D9a</td>
<td>entre 10 et 49 kN</td>
<td>691 954</td>
<td>Arrachement</td>
</tr>
</tbody>
</table>

TABLEAU 4.12 NOMBRES DE CYCLES DES ÉCHANTILLONS DE BARRES EN PRFV DE 19,05 mm DE DIAMÈTRE

<table>
<thead>
<tr>
<th>Échantillons</th>
<th>Variation des charges</th>
<th>Nombre de cycles</th>
<th>Mode de rupture</th>
</tr>
</thead>
<tbody>
<tr>
<td>20M05D12</td>
<td>entre 10 et 52 kN</td>
<td>1 000 000</td>
<td>*</td>
</tr>
<tr>
<td>20M05D12</td>
<td>entre 10 et 52 kN</td>
<td>1 000 000</td>
<td>*</td>
</tr>
<tr>
<td>20M10D12</td>
<td>entre 16 et 78 kN</td>
<td>872 261</td>
<td>Arrachement</td>
</tr>
<tr>
<td>20M10D12</td>
<td>entre 16 et 78 kN</td>
<td>1 000 000</td>
<td>*</td>
</tr>
<tr>
<td>20M15D12</td>
<td>entre 16 et 78 kN</td>
<td>848 089</td>
<td>Arrachement</td>
</tr>
<tr>
<td>20M15D12</td>
<td>entre 16 et 78 kN</td>
<td>1 000 000</td>
<td>*</td>
</tr>
</tbody>
</table>

* après 1 000 000, des essais de chargement statique ont été réalisés sur les échantillons

TABLEAU 4.13 NOMBRES DE CYCLES DES ÉCHANTILLONS DE BARRES EN PRFC DE 9,525 mm DE DIAMÈTRE

<table>
<thead>
<tr>
<th>Échantillons</th>
<th>Variation des charges</th>
<th>Nombre de cycles</th>
<th>Mode de rupture</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAR05DB</td>
<td>entre 3 et 15 kN</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>CAR10DB</td>
<td>entre 5 et 27 kN</td>
<td>89 087</td>
<td>Arrachement</td>
</tr>
</tbody>
</table>

L'échantillon a été brisé lors de son installation
4.2 Analyse des résultats

4.2.1 Essais statiques

Barres d'armature à base de fibres de verre de 9,5 mm de diamètre

Les valeurs moyennes obtenues pour les barres d'armature à base de fibres de verre de 9,5 mm de diamètre sont montrées au tableau 4.1. Le mode de rupture obtenu pour les échantillons ayant 50 mm de longueur d'ancrage est la rupture par arrachement et il en est de même pour les échantillons dont la longueur d'ancrage était de 100 mm. Par contre, pour les échantillons de 150 mm de longueur d'ancrage, il y a eu rupture de la barre d'armature en traction dans la partie non-bétonnée. Selon ces résultats, il est possible de tirer comme conclusion que la longueur de développement de base d'une barre d'armature en PRF à base de fibres de verre de 9,5 mm de diamètre devrait se situer près de 15 fois le diamètre de la barre. En faisant une extrapolation des résultats obtenus lors des essais d'arrachement avec la contrainte ultime obtenue par essai de traction (627 kN), il est possible de déterminer une longueur de développement de base de 15,7 fois le diamètre de la barre, ce qui est légèrement supérieure à la plus grande longueur d'ancrage testée (voir figure 4.3).

![Diagram](image)

Figure 4.3 Courbe de la contrainte maximale en fonction de la longueur d'ancrage pour une barre d'armature en PRF à base de fibres de verre de 9,525 mm de diamètre
La valeurs obtenues lors des essais d'arrachement sur les barres d'armature en PRF à base de fibres de verre de 12,7 mm de diamètre sont montrées dans le tableau 4.2. La rupture par arrachement s'est aussi produite pour ce type de barre. Lorsque la barre était ancrée à environ 5 fois le diamètre de la barre (60mm), la barre a glissé relativement au béton jusqu'à l'arrachement de la barre et il en est de même pour la barre ancrée à environ 10 fois le diamètre de la barre (120mm). Cependant, pour une longueur d'ancrage de près 15 fois le diamètre de la barre (150mm), il y a eu rupture de la barre en traction dans la partie centrale de l'échantillon. En comparant la valeur moyenne de l'essai de traction ($f_u=617$ MPa) avec celle de l'essai d'arrachement (622 MPa), il est une fois de plus possible de conclure que la longueur de développement de base pour la barre de 12,7 mm de diamètre est de 10,2 fois le diamètre de la barre ($10,2d_b$). La figure 4.4 montre une courbe contrainte ultime en traction versus longueur d'ancrage de la barre d'armature à base de fibres de verre de 12,7 mm de diamètre.

![Diagram](image)

Figure 4.4 Courbe de la contrainte maximale en fonction de la longueur d'ancrage pour une barre d'armature à base de fibres de verre de 12,7 mm de diamètre
Barres d'armature à base de fibres de verre de 15,9 mm de diamètre

Le tableau 4.3 montre les valeurs de la résistance à l'adhérence des barres d'armature à base de fibres de verre de 15,9 mm de diamètre. Encore une fois, la rupture par arrachement se produit le cas de la barre à base de fibres de verre de 15,9 mm de diamètre. Ce type de rupture survient lorsque la barre est ancrée à environ 5 et 10 fois le diamètre de la barre soit 75 et 150 mm, et il y a rupture de la barre en traction lorsque celle-ci est ancrée à 225 mm de longueur soit 15 fois le diamètre de la barre. La contrainte en traction obtenue est de 495 MPa et lors de l'essai de traction elle était de 535 MPa. Cette différence peut s'expliquer soit par le phénomène de dispersion des résultats ou soit par la provenance des barres d'armature. La longueur de développement de base devrait donc être d'environ 15 fois le diamètre de la barre soit 11,6dₜ. La figure 4.5 montre les résultats obtenus lors de l'essai d'arrachement pour une barre de 15,9 mm de diamètre.

Figure 4.5 Courbe de la contrainte maximale en fonction de la longueur d'ancrage pour une barre d'armature en PRF à base de fibres de verre de 15,875 mm de diamètre
Barres d'armature à base de fibres de verre de 19,1 mm de diamètre

Les valeurs obtenues lors des essais d'arrachement réalisés sur les barres d'armature en PRF à base de fibres de verre de 19,1 mm de diamètre sont présentées au tableau 4.4. Dans le cas de cette barre, il y a eu glissement de la barre ancrée à environ 5 fois son diamètre, soit 100 mm. Cependant, contrairement au plus petit diamètre, la barre ancrée à environ 10 fois le diamètre (200 mm) a rupturé. Il est possible d'expliquer cette différence par l'amélioration du fini de surface. La longueur de développement de base devrait donc se situer entre 5 et 10 fois le diamètre de la barre. Aucun essai de caractérisation (essai de traction en particulier) a été réalisé jusqu'à présent sur la barre 20M à l'Université de Sherbrooke. Cependant, étant donné la constance des résultats obtenus sur la longueur d'ancrage à environ 10 fois et 15 fois le diamètre, il serait possible de croire que la longueur de développement de base de la barre de 19,05 mm de diamètre serait de 10,5 fois le diamètre de la barre, soit 200 mm.

![Figure 4.6 Courbe de la contrainte maximale en fonction de la longueur d'ancrage pour une barre d'armature en PRF à base de fibres de verre de 19,05 mm de diamètre](image)

Barres d'armature à base de fibres de carbone de 9,525 mm de diamètre

Dans le cas des barres d'armature en PRF à base de fibres de carbone, il a été impossible avec une longueur d'ancrage d'environ 15 fois le diamètre de la barre (150 mm) d'atteindre la pleine
capacité de la résistance de la barre d’armature. Des essais supplémentaires ont donc été effectués avec comme longueur de développement 20 fois le diamètre, ce qui a permis de trouver la longueur de développement de cette barre, c’est à dire 19,8 fois le diamètre de la barre.

Figure 4.7 Courbe de la contrainte maximale en fonction de la longueur d’ancrage pour une barre d’armature en PRF à base de fibres de carbone de 9,525 mm de diamètre

Conclusions

Une observation de la surface des barres montre des dommages à la surface des barres après l’arrachement. Une partie de la région de la barre recouverte de sable était dénudée de son recouvrement. Les grains de sable ayant bien adhéré au béton. Ce type de cisaillement est le même rapporté par [Katz, 1999]. Au lieu d’être en présence du cisaillement du béton entre les crénelures (phénomène observé avec les barres d’armature en acier), le recouvrement de la barre cisaille sous l’effort.
TABLEAU 4.14 RÉSUMÉ DES LONGUEURS DE DÉVELOPPEMENT DE BASE

<table>
<thead>
<tr>
<th>Type de barre</th>
<th>Diamètre (mm)</th>
<th>Longueur d’ancrage</th>
<th>Longueur de développement Théorique (l_{dthb}) (mm)</th>
<th>Longueur de développement Expérimentale (l_{dexp}) (mm)</th>
<th>l_{dthb}/l_{dexp}</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRFV</td>
<td>9,5</td>
<td>15,7 dB</td>
<td>322</td>
<td>149,5</td>
<td>2,16</td>
</tr>
<tr>
<td>PRFV</td>
<td>12,7</td>
<td>10,2 dB</td>
<td>424</td>
<td>129,5</td>
<td>3,27</td>
</tr>
<tr>
<td>PRFV</td>
<td>15,9</td>
<td>11,6 dB</td>
<td>460</td>
<td>184,2</td>
<td>2,49</td>
</tr>
<tr>
<td>PRFV</td>
<td>19,1</td>
<td>10,5 dB</td>
<td>483</td>
<td>200,0</td>
<td>2,82</td>
</tr>
<tr>
<td>PRFC</td>
<td>9,5</td>
<td>19,8 dB</td>
<td>744</td>
<td>188,6</td>
<td>3,92</td>
</tr>
</tbody>
</table>

La longueur de développement minimum pour une barre droite doit, selon le guide d’ISIS Canada, être supérieure à 20dB ou 380mm ou bien encore doit suivre l’équation suivante :

$$l_{prfd} = 0.054 db f_{prfu}$$ \hspace{1cm} (4-2)

pour une rupture par arrachement. Cette dernière limite est, selon les résultats obtenus lors de ce projet de recherche, conservatrice. En se basant sur la résistance ultime des matériaux et en appliquant aucun facteur de sécurité, il est possible de calculer différents facteur k. Les facteurs sont présentés au tableau 4.15 pour les diamètres étudiés.

TABLEAU 4.15 FACTEUR k EN FONCTION DU DIAMÈTRE

<table>
<thead>
<tr>
<th>Type de barre</th>
<th>Diamètre de la barre</th>
<th>Facteur k calculé</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRFV</td>
<td>9,525</td>
<td>0,025</td>
</tr>
<tr>
<td>PRFV</td>
<td>12,7</td>
<td>0,016</td>
</tr>
<tr>
<td>PRFV</td>
<td>15,875</td>
<td>0,022</td>
</tr>
<tr>
<td>PRFV</td>
<td>19,1</td>
<td>0,019</td>
</tr>
<tr>
<td>PRFC</td>
<td>9,525</td>
<td>0,011</td>
</tr>
</tbody>
</table>

64
4.2.2 Analyses des résultats cycliques

Aucun changement n'a pu être observé après 500 000 cycles, les échantillons ont donc été soumis à des essais statiques pour des fins de comparaison. La contrainte maximale obtenue pour l'échantillon 10M05D1 est de 28,76 kN alors que la contrainte d'adhérence maximale enregistrée est de 19,22 MPa, ce qui correspond, avec une marge d'erreur, aux résultats obtenus avant les chargements cycliques (24,2 kN, 16,2 MPa). Les essais de chargement cycliques de 500 000 cycles n'ont donc pas altérés l'adhérence entre la barre d'armature et le béton. L'adhérence de l'échantillon 10M10D n'a, tout comme l'adhérence de l'échantillon 10M05D, pas été altéré par les 500 000 cycles. La charge maximale enregistrée est de 38,86 kN et la contrainte d'adhérence est de 12,99 MPa alors que les résultats obtenus avant les chargements cycliques étaient de 34,0 kN et 11,9 MPa respectivement. La seule différence relevée est dans le glissement de la barre. Lorsque l'échantillon a été soumis à des chargements cycliques, le glissement enregistré était inférieur à 8 mm alors qu'après le glissement était entre 10 mm et 15 mm.

Conclusions

Étant donné le nombre d'échantillons insuffisants, il est très difficile de conclure à partir des résultats cycliques. Certains échantillons semblent s'être plutôt bien comportés contrairement aux autres. Par contre, ce qu'il est possible de conclure c'est que lorsque l'échantillon pouvait résister aux cycles, la résistance résiduelle en traction semblait être la même que la résistance en traction elle-même.

4.2.3 Effet de la longueur d'ancrage sur la contrainte d'adhérence maximum

Pour chaque diamètre de barre d'armature pris séparément, il est possible de constater que la longueur d'ancrage influence la contrainte d'adhérence. Tel que mentionné précédemment, lorsque la longueur d'ancrage augmente, la contrainte d'adhérence maximum diminue. En effet, les résultats obtenus lors de ce projet de recherche ont permis de tirer les mêmes conclusions. Pour la barre ayant un diamètre de 9,5 mm, plus la longueur d'ancrage est grande, plus la
contrainte d’adhérence diminue. La figure 4.8 montrent des résultats types relativement à la longueur d’ancrage. D’autres résultats sont montrés à l’annexe A.

Figure 4.8 Effet de la longueur d’ancrage sur la contrainte d’adhérence maximum pour une barre en PRF à base de fibres de verre de 9,525 mm de diamètre

4.2.4 Effet du diamètre de la barre d’armature sur la contrainte d’adhérence maximum

Il n’est pas aussi évident de remarquer l’effet du diamètre sur la contrainte d’adhérence des barres d’armature étudiées lors de ce projet. Tout d’abord, les barres d’armature de 19.1 mm de diamètre proviennent d’une coulée différente des barres en PRF pour lesquelles le procédé de fini de surface a été quelque peu modifié. À l’origine, les barres d’armature de 9,5, 12,7 et 15,9 mm devaient provenir de la même coulée. Cependant, il est probable que les barres de 9,5 mm de diamètre proviennent d’une coulée différente. En effet, les contraintes d’adhérence des barres d’armature de 9,5 mm de diamètre auraient dû être plus élevées comparativement aux contraintes d’adhérence des barres de 12,7 mm de diamètre. Cependant, il est possible de remarquer l’effet du diamètre de la barre d’armature si les résultats des barres d’armature de 12,7 mm de diamètre
sont comparés avec ceux des barres d’armature de 15,9 mm de diamètre. La figure 4.9 montre les résultats obtenus selon les différents diamètres des barres d’armature.

![Figure 4.9 Effet du diamètre sur la contrainte d'adhérence maximum](image)

4.2.5 **Effet de la rugosité de surface sur la contrainte d'adhérence maximum**

TABLEAU 4.16 VALEURS DES CONTRAINTES D'ADHÉRENCE MAXIMUM (Tighiouart 1996)

<table>
<thead>
<tr>
<th>Diamètre (mm)</th>
<th>Longueur d’ancrage</th>
<th>(\tau_{\text{max}}) (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>EDGG</td>
</tr>
<tr>
<td>15,9</td>
<td>75 (5db)</td>
<td>9,41</td>
</tr>
<tr>
<td></td>
<td>150 (10db)</td>
<td>8,06</td>
</tr>
<tr>
<td></td>
<td>250 (16db)</td>
<td>6,87</td>
</tr>
<tr>
<td>19,1</td>
<td>90 (5db)</td>
<td>7,40</td>
</tr>
<tr>
<td></td>
<td>180 (10db)</td>
<td>7,06</td>
</tr>
<tr>
<td></td>
<td>380 (20db)</td>
<td>5,03</td>
</tr>
</tbody>
</table>

TABLEAU 4.17 VALEURS DES CONTRAINTES D'ADHÉRENCE MAXIMUM OBTENUES LORS DE CE PROJET

<table>
<thead>
<tr>
<th>Diamètre (mm)</th>
<th>Longueur d’ancrage</th>
<th>(\tau_{\text{max}}) (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15,9</td>
<td>75 (5db)</td>
<td>16,72</td>
</tr>
<tr>
<td></td>
<td>150 (10db)</td>
<td>12,45</td>
</tr>
<tr>
<td></td>
<td>225 (15db)</td>
<td>8,73</td>
</tr>
<tr>
<td>19,1</td>
<td>100 (5db)</td>
<td>17,24</td>
</tr>
<tr>
<td></td>
<td>200 (10db)</td>
<td>13,10</td>
</tr>
<tr>
<td></td>
<td>300 (15db)</td>
<td>8,75</td>
</tr>
</tbody>
</table>

En comparant les résultats, il est possible de constater que les valeurs des contraintes d'adhérence maximum obtenues avec la nouvelle génération des barres Isorod sont supérieures que celles obtenues avec l'ancienne génération. Cette différence peut être attribuée au revêtement de surface qui a été modifié.

4.2.6 Modèles théoriques

Comme il a été mentionné à la fin du chapitre 2, plusieurs modèles ont été développés pour expliquer le phénomène de l'adhérence des barres d'armature en PRF noyées dans le béton. Tighiouart (1996) a vérifié la version du modèle de Eligehausen, Popov et Bertero (1983), modifiée par Cosenza et al (1996). Le même modèle a donc été retenu afin de pouvoir comparer les valeurs obtenues avec les barres ISOROD de 1996 et celles d'aujourd'hui. Il est important de noter que ce type d'analyse est faite pour des contraintes d'adhérence et des glissements...
inférieurs à la contrainte d’adhérence maximale, c’est-à-dire dans la branche ascendante de la courbe contrainte d’adhérence/glissement de la barre. Les paramètres de courbe, β et s_r, correspondant à la courbe expérimentale ont été déterminés. Il est tout aussi important de noter que, selon le montage utilisé lors de ce projet, les déplacements mesurés proviennent de l’extrémité chargée de l’échantillon (loaded end) et non pas à l’extrémité libre (free end).

À partir du modèle CMR (Cosenza, Manfredi et Realfonzo), des paramètres ont été définis pour le début de la courbe contrainte d’adhérence/glissement, et ce de 0 à 1mm de glissement. En comparant le glissement à court terme et à long terme, il est possible de constater, que le comportement n’est pas le même.

Les paramètres correspondant aux différentes courbes sont présentés dans les tableaux 4.18 et 4.19 de la présente section.

Il est important de noter que les paramètres différent d’un diamètre de la barre à l’autre. Les figures 4.10 et 4.11 montrent une courbe de concordance type entre les modèles théoriques et les résultats expérimentaux pour des déplacements de 0 à 1mm et pour l’essai complet. Les autres courbes sont montrées en annexe.

TABLEAU 4.18 PARAMÈTRES DE COURBE POUR LES BARRES D’ARMATURE EN PRF À BASE DE FIBRES DE VERRE

<table>
<thead>
<tr>
<th>Diamètre de la barre</th>
<th>Paramètres de courbe</th>
<th>β</th>
<th>s_r</th>
</tr>
</thead>
<tbody>
<tr>
<td>9,525</td>
<td>1,2 à 2</td>
<td>0,85 à 7</td>
<td></td>
</tr>
<tr>
<td>12,7</td>
<td>1,15 à 1,5</td>
<td>1 à 1,2</td>
<td></td>
</tr>
<tr>
<td>15,875</td>
<td>1</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>19,05</td>
<td>1,35</td>
<td>0,9</td>
<td></td>
</tr>
</tbody>
</table>

TABLEAU 4.19 PARAMÈTRES DE COURBE POUR LES BARRES D’ARMATURE EN PRF À BASE DE FIBRES DE CARBONE

<table>
<thead>
<tr>
<th>Diamètre de la barre</th>
<th>Paramètres de courbe</th>
<th>β</th>
<th>s_r</th>
</tr>
</thead>
<tbody>
<tr>
<td>9,525</td>
<td>1,25</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>
Mis à part, le paramètre s_r pour la barre d’armature en PRF à base de fibres de verre de 9,525 mm, tous les résultats obtenus semblent constants.

Figure 4.10 Courbe de concordance entre la courbe expérimentale et la courbe théorique d’une barre d’armature en PRF à base de fibres de carbone, ancrée à 150 mm (0 à 1 mm)

Figure 4.11 Courbe de concordance entre la courbe expérimentale et la courbe théorique d’une barre d’armature en PRF à base de fibres de carbone, ancrée à 150 mm (0 à 5 mm)
4.3 Recommandations et discussions

Tout au long des essais, certaines adaptations ont dû être réalisées afin de permettre le bon fonctionnement des essais. Premièrement, pour les essais de chargement statique, il y a eu une concentration de contraintes à l’extrémité chargée de la barre complètement ancrée dans le béton. Pour remédier à ce problème, un tube de PVC a dû être installé pour empêcher ces concentrations.

Lors de ces mêmes essais de chargement statique, il a été possible de constater que lorsque la longueur d’ancrage était suffisante pour atteindre la capacité ultime de la barre, l’essai d’arrachement se comportait comme un essai de traction. Dans les dernières années, le montage pour les essais de traction a nécessité plusieurs ajustements puisque les mâchoires ne pouvaient retenir la barre lors de l’essai. Le montage utilisé pourrait donc devenir le montage pour les essais de traction pour les barres de plus gros diamètres.

De plus, lors des essais de chargement cyclique, quelques difficultés ont été rencontrées. Il est primordial que la surface extrême des échantillons soit parfaitement lisse afin de permettre un chargement dans l’axe. De plus, l’intervalle de contrainte devrait être modifié. La limite inférieure (10%) semble logique, cependant, il faudrait diminuer la limite supérieure afin d’atteindre un nombre de cycles plus constant, donc plus significatif.
CONCLUSIONS ET DISCUSSIONS

Ce rapport de recherche a porté sur l'étude de l'adhérence des barres d'armatures en polymères renforcés de fibres (PRF) noyées dans un béton conventionnel. Cette étude, effectuée selon l'essai d'arrachement direct a permis d'atteindre les objectifs visés au début du projet soit de:

- Évaluer la contrainte d'adhérence maximum des barres d'armature en matériaux composites à base de fibres de verre et de carbone ayant un fini de surface recouvert de sable;
- Observer l'effet de certains paramètres sur l'adhérence des barres d'armature en PRF;
- Évaluer la longueur de développement de base pour ces mêmes barres;
- Établir une relation entre les résultats obtenus expérimentalement et certains modèles théoriques existants.

Les différentes conclusions pouvant être tirées suites à ces essais sont les suivantes :

- Pour des barres d'armature de types différents ayant un même diamètre et une même longueur d'ancrage (soit pour 5 fois le diamètre de la barre), la barre d'acier a une contrainte d'adhérence supérieure à celle de la barre en PRFV de 45% alors que la contrainte d'adhérence de la barre en PRFC est supérieure de 19% à la contrainte d'adhérence du PRFV. La contrainte d'adhérence de la barre d'acier est, pour sa part, supérieure à la contrainte d'adhérence de la barre en PRFC de 31% ;
- Les longueurs de développement de base sont reliées, indirectement, à la résistance ultime du matériaux. En fait, plus la résistance ultime de la barre est élevée, plus la longueur de développement de base devra être élevée et ce pour des barres de mêmes diamètres. C'est pour cette raison que la longueur de
développement de base d’une barre en PRFC (19,8 d₀) de 9,525 mm de diamètre est supérieure à celle d’une barre en PRFV (10,2 d₀);

- Le diamètre et la longueur d’ancrage ont un effet sur la contrainte d’adhérence des barres en matériaux composites à base de fibres noyées dans le béton. Cependant, lorsqu’il y a rupture d’adhérence, cela se produit au niveau du revêtement de surface et non au niveau du béton. Les résultats portent donc à croire que la résistance en compression du béton n’influence pas la contrainte d’adhérence des PRF dans le béton;

- Comparativement au résultats obtenus des barres ISOROD par Tighiouart (1996), la nouvelle génération des barres d’Armature ISOROD semble être supérieure du côté adhérence que la première génération. Le fini de surface recouvert de grains de sable fournit des meilleurs contraintes que l’enroulement simple et l’enroulement double de la génération précédente;

- En appliquant aucun facteur de sécurité en et utilisant la résistance ultime des matériaux, le facteur k de l’équation développée pour le calcul de la longueur de développement d’une barre en matériaux composites est transformé et l’équation pourrait devenir avec le facteur k le plus élevé obtenu à la suite de calcul

\[l_{prfa} = 0.025 d_0 f_{prfu} \]

pour les barres ISOROD à base de fibres de verre et de carbone. Pour ce qui est du modèle CMR développé par Cosenza, Manfredi et Realfonzo, il est difficile, voire presque impossible de développer une équation qui pourrait satisfaire tous les diamètres de barres et toutes les longueurs d’ancrage puisque le paramètres varient d’un échantillon à l’autre. Cependant, ce modèle s’applique constamment aux échantillons puisque les courbes tracées concordent avec les résultats obtenus.

Les essais réalisés ont aussi permis de tirés les conclusions suivantes :

- La méthode d’essai, étant encore assez récente, pourrait faire l’objet de modifications. Premièrement, en ce qui a trait au surface de contact avec l’appareillage, les surfaces des extrémités doivent être parfaitement planes afin de s’assurer que la charge appliquée soit bien répartie. Les surfaces de l’échantillon pourraient être sciées;
• De plus, afin de s’assurer qu’il n’y ait pas de concentration de contraintes aux extrémités des blocs de béton, des petits tuyaux de PVC doivent être installés;

• Pour ce qui est des essais cycliques, le nombre et l'intervalle des essais devraient être modifiés. Ainsi, les résultats seraient plus constants ce qui permettrait de tirer le maximum des résultats avant et après les cycles.

• Ce type d’essais se comporte, lorsque la longueur d’ancrage est suffisante, comme un essai de traction. Ce type d’essai pourrait donc très bien remplacer l’essai de traction normal.
Figure A-1 Courbe contrainte d'adhérence/glissement pour une barre de 9,525 mm de diamètre à base de fibres de verre ancrée sur 50 mm de longueur

Figure A-2 Courbe contrainte d'adhérence/glissement pour une barre de 9,525 mm de diamètre à base de fibres de verre ancrée sur 100 mm de longueur
Figure A-3 Courbe contrainte d'adhérence/glissement pour une barre de 12,7 mm de diamètre à base de fibres de verre ancrée sur 60 mm de longueur.

Figure A-4 Courbe contrainte d'adhérence / glissement pour une barre de 12,7 mm de diamètre à base de fibres de verre ancrée sur 120 mm de longueur.
Figure A-5 Courbe contrainte d’adhérence/glissement pour une barre de 15,875 mm de diamètre à base de fibres de verre ancrée sur 75 mm de longueur

Figure A-6 Courbe contrainte d’adhérence / glissement pour une barre de 15,875 mm de diamètre à base de fibres de verre ancrée sur 150 mm de longueur
Figure A-7 Courbe contrainte d'adhérence / glissement pour une barre de 19,1 mm de diamètre à base de fibres de verre ancrée sur 100 mm de longueur

Figure A-8 Histogramme des résultats moyens obtenus pour les barres à base de fibres de verre en fonction de leur diamètre et de leur longueur d'ancrage
Figure A-9 Courbe contrainte d'adhérence / glissement pour une barre de 9,525 mm de diamètre à base de fibres de carbone ancrée sur 50 mm de longueur

Figure A-10 Courbe contrainte d'adhérence / glissement pour une barre de 9,525 mm de diamètre à base de fibres de carbone ancrée sur 100 mm de longueur
Figure A-11 Courbe contrainte d'adhérence / glissement pour une barre de 9,525 mm de diamètre à base de fibres de carbone ancrée sur 150 mm de longueur.

Figure A-12 Modèle théorique versus résultats expérimentaux pour une barre 20M ancrée à 100 mm pour un glissement complet de la barre.
Figure A-13 Modèle théorique versus résultats expérimentaux pour une barre 15M ancrée à 150 mm pour un glissement complet de la barre

Figure A-14 Modèle théorique versus résultats expérimentaux pour une barre 15M ancrée à 75 mm pour un glissement complet de la barre
Figure A-15 Modèle théorique versus résultats expérimentaux pour une barre 12M ancrée à 60 mm pour un glissement complet de la barre

Figure A-16 Modèle théorique versus résultats expérimentaux pour une barre 12M ancrée à 120 mm pour un glissement complet de la barre
Figure A-17 Modèle théorique versus résultats expérimentaux pour une barre 10M ancrée à 50 mm pour un glissement de 0 à 20 mm.
RÉFÉRENCES

AMERICAN CONCRETE INSTITUTE State of the Art Report on Bond Under Cyclic Loads, reported by ACI Committee 408.

EHSANI M.R. et al. (1993) Bond of GFRP Rebars to ordinary-Strength Concrete, Fiber-Reinforced-Plastic Reinforcement for Concrete Structures International Symposium pp 333-345

ISIS Canada (Spring 2000), Reinforcing Concrete Structures with Fibre Reinforced Polymers, Draft.

MAKITANI E. et al. (1993) Investigation of Bond in Concrete Member with fiber reinforced plastics bars, Fiber-Reinforced-Plastic Reinforcement for Concrete Structures International Symposium pp 315-331

