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Abstract

The interest in brain-like computation has led to the design of a plethora
of innovative neuromorphic systems. Individually, spiking neural networks
(SNNs), event-driven simulation and digital hardware neuromorphic systems
get a lot of attention. Despite the popularity of event-driven SNNs in soft-
ware, very few digital hardware architectures are found. This is because
existing hardware solutions for event management scale badly with the num-
ber of events. This paper introduces the structured heap queue, a pipelined
digital hardware data structure, and demonstrates its suitability for event
management. The structured heap queue scales gracefully with the number
of events, allowing the efficient implementation of large scale digital hardware
event-driven SNNs. The scaling is linear for memory, logarithmic for logic
resources and constant for processing time. The use of the structured heap
queue is demonstrated on field-programmable gate array (FPGA) with an
image segmentation experiment and a SNN of 65 536 neurons and 513 184
synapses. Events can be processed at the rate of 1 every 7 clock cycles and
a 406×158 pixel image is segmented in 200 ms.
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1. Introduction

Neuromorphic systems attempt to mimic the way the brain processes in-
formation and are the test benches of new theories of the neural paradigm,
exploration tools for connectionists and very intriguing computation plat-
forms. Neuromorphic systems can take many forms. They have been im-
plemented on graphical processing units (GPU) (Nageswaran et al., 2009),
digital signal processors (DSP) (Plana et al., 2007), analog very-large-scale
integration (aVLSI) circuits (Basu et al., 2010), digital VLSI (dVLSI) circuits
(Seo et al., 2011), field-programmable gate arrays (FPGA) (Schrauwen et al.,
2008; Thomas & Luk, 2009; Caron et al., 2011), mixed-signal VLSI circuits
(Cawley et al., 2011; Moradi & Indiveri, 2011) and as software-hardware co-
processors (Ros et al., 2006). Ultimately, the choice of the implementation
platform depends on the application and the designer’s specific needs. This
paper focuses on digital hardware (dVLSI circuits and FPGAs) and aims at
laying the ground for the design of large-scale embedded event-driven spiking
neural networks.

Spiking neurons, the third generation of artificial neurons, are more com-
putationally powerful than the previous generations (Maass, 1997). A spik-
ing neural network (SNN) is a collection of dynamical systems, the neurons,
that affect each other through point-to-point links called synaptic connec-
tions. Spiking neurons are characterized by one or several state variables.
The state of a spiking neuron changes over time and when it meets a certain
condition, it emits a spike. Spikes are delivered to other neurons through
the synaptic connections and are scaled by a factor, the synaptic weight.
The neuron model specifies the equations that govern the evolution of the
neuron’s state variables in time, the condition for emitting a spike and the
effect of receiving and emitting a spike. The network topology defines the
interconnection pattern of the neurons and the value of the synaptic weights.

A SNN implementation is the specific way in which time, the neuron
model and spikes, or events, are handled in order to calculate the network’s
state at a desired point in time. Two different implementations are widely
used and opposed: time-driven and event-driven. Both strategies are de-
scribed in algorithm 1 and algorithm 2. A fundamental difference between
both strategies lies in the time increment, at line 2. In a time-driven SNN,
time is increased by a constant amount. The update of the neurons’ state at
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Algorithm 1 Time-driven implementation

1: repeat
2: move one step forward in time
3: for each neuron in the network do
4: update state
5: end for
6: until desired time is reached

Algorithm 2 Event-driven implementation

1: repeat
2: move one event forward in time
3: for each neuron involved in the event do
4: update state
5: end for
6: find next event to happen
7: until desired time is reached

line 4 is straightforward, but the events occurring during a given time step
are processed as if they occurred at the same point in time, which might not
be exact. The choice of the time step is a compromise between processing
speed and temporal accuracy. In some cases, it is possible to use temporal
interpolation and restore a more accurate time of occurrence of the events
(Morrison et al., 2007). In the event-driven implementation, the time steps
fit the occurrence of events and optimal precision in time can be achieved.
The state update of line 4 is more mathematically involved as the step size
is variable. Also, progression in time can be slow if the average number of
events occurring in the network per unit of time is high. A second difference
is the number of neurons processed at each iteration of the for loop of line
3. In the time-driven algorithm, each neuron in the network is updated to
the current time step. The event-driven strategy avoids this costly update of
the whole population of neurons. It exploits the fact that if a neuron does
not receive or emit a spike, then its state is defined by the dynamical equa-
tions of the neuron model. In an event-driven SNN, the state of a neuron
is represented by the time at which it should spike next, as determined by
the neuron model and without consideration for possible interactions with
other neurons. This value, the predicted firing time, doesnt change as time
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passes, but only when a neuron is involved in an event. During an iteration
of the processing loop, only the neurons affected by the current event are
processed. Simple neuron models can be inverted in order to calculate the
predicted firing times (Morrison et al., 2005). With more complex neuron
models, it might be necessary to use iterative procedures (D’Haene et al.,
2009) or to approximate the time of occurrence of events. Lastly, the event-
driven algorithm involves one extra operation: identifying the next event to
happen (line 6). At every iteration of the main loop, an event is processed: it
is removed from the list of predicted events and the state of the involved neu-
rons is modified. As a result, some predicted events get delayed, anticipated
or cancelled, and new events are created. The event queue is the functional
block whose role is to keep the list of events up to date and identify which
one is the next to happen. It is a hybrid memory and sorting algorithm. In
an event-driven SNN, the event queue has to carry the following operations:
output the next event to happen, allow the insertion of new events, allow the
deletion of existing events and allow the modification of existing events. The
last operation, called an update, is optional since it can be replaced by the
deletion of the event to modify followed by the insertion of the same event
with the updated information. The main focus of this paper is to describe an
efficient way to implement the event queue in a digital hardware event-driven
SNN.

The literature on software SNNs abounds in event-driven systems (Pratt,
1990; Watts, 1994; Grassmann & Anlauf, 1999; Mattia & Del Giudice, 2000;
Lee & Farhat, 2001; Delorme & Thorpe, 2003; Mouraud & Puzenat, 2009).
In addition to implementing different neuron models and network topologies,
each software SNN has its own way of managing the event queue. Pratt
(1990) and Watts (1994) use a sorted list to implement it. Grassmann &
Anlauf (1999) do not specify how the event queue is managed. Mattia &
Del Giudice (2000) use an array of FIFOs, Lee & Farhat (2001) use two heap
queues, Delorme & Thorpe (2003) use a pseudo-sorting algorithm by regular
sampling and Mouraud & Puzenat (2009) use a variation of the calendar
queue. On the hardware side, most architectures rely on a fixed time step
approach to compute the neural dynamics and do not predict future events
(Bako, 2009; Cawley et al., 2011; Cassidy et al., 2011; Seo et al., 2011; Cheung
et al., 2012). Mehrtash et al. (2003) and Schoenauer et al. (2002) use a
variable step size for neuron state update, but only predict spikes occurring
during the next time step. To our knowledge, only Aǵıs et al. (2007) follow
a pattern similar to algorithm 2 and truly benefits from the advantages of
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the event-driven strategy in a digital hardware SNN.
The fact that existing software event-driven SNNs use such a wide vari-

ety of algorithms to implement the event queue suggests that it plays a very
important role and must be carefully designed. We postulate that the reason
why so few hardware event-driven SNNs exist is because no digital hardware
algorithm can efficiently fill the role of the event queue. The solution chosen
by Aǵıs et al., is to use an unsorted list, i.e. to store each event in mem-
ory to a designated place. By accessing the right address in this memory,
any event can be read, inserted, deleted and modified. The identification of
the next event to happen is done on demand by scanning the whole event
queue and using a pipelined comparator tree to find the one with smallest
time of occurrence. This strategy results in a O(N) complexity in memory
and O(N) complexity in logic, where N is the capacity of the queue (max-
imum number of events). Read, insert, delete and update operations have
a O(1) complexity in time, and the search for the next event to happen has
O(log(N)) complexity in time. That is, as the capacity of the event queue
is increased, it takes more and more clock cycles to find the smallest time of
occurrence in the list of events.

This performance degradation as the network size increases can be avoided.
In this paper, we introduce the Structured Heap Queue (SHQ) data structure
as a candidate to implement the event queue in a large scale digital hardware
event-driven SNN. The SHQ has a O(N) complexity in memory, O(log(N))
complexity in logic and O(1) complexity in time. The O(1) complexity in
time holds for all important operations on the queue and means that the
number of clock cycles required for managing the event queue is independent
of its size. We demonstrate the use of the SHQ in a FPGA SNN implemen-
tation and an image segmentation task. We show the result of a pixel-based
image segmentation realized with the described system to illustrate the full
design process of a digital event-driven SNN using the SHQ, from the neuron
model to the application. The SHQ is an event management algorithm and
can be coupled to any digital event-driven SNN. It is not restricted to the
SNN implementation described in this paper.

In section 2, the SHQ data structure is introduced. The design of the
queue, the operations it supports, and the way to pipeline them in a digital
hardware implementation are described. A memory-optimized version of the
SHQ is also detailed in section 2.3. The SNN we use to demonstrate the
SHQ is presented in section 3. The hardware implementation of the SNN is
described in section 3.3. The performance and resource usage of the system
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are presented in section 4. Section 5 discusses the performance of the SHQ
and its use as an event queue and section 6 concludes the paper.

2. The Structured Heap Queue

The structured heap queue (SHQ) is an implicit data structure derived
from the binary heap queue (Gonnet & Rogers, 1975). Because we focus
on hardware SNNs, we describe and evaluate the SHQ in this section by
comparing it to the pipelined heap queue (PHQ) (Ioannou & Katevenis,
2007), a hardware implementation of the heap queue (see also (Bhagwan &
Lin, 2000)). In a PHQ, a set of elements is partially sorted in order to find the
one with lowest (or highest) value. To facilitate the link with the event queue
of an event-driven SNN, assume an element consists of two fields: a unique
identification number (ID) and a value. In the explanations of section 3.3.3,
an element’s ID is a neuron number and its value is the neuron’s predicted
firing time. A PHQ takes the form of a binary memory tree with one 2-
input comparator per level of the tree and some extra logic and registers
for control. The PHQ supports two operations: insert a new element and
delete the element in the root node. These operations are designed such
that their execution maintains the heap property, that is, the guarantee that
any node in the tree contains an element of smaller value than that of its 2
children nodes. The operations also keep the binary tree balanced, meaning
that the elements spread in the tree over as few levels as possible. These
two properties ensure that reading the root node will yield the element with
lowest value, and that the tree is as compact as possible. The PHQ has
O(N) complexity in memory and O(log(N)) complexity in logic, with N
the number of elements. It supports three operations, insert, delete element
with lowest value and read element with lowest value, which all have O(1)
complexity in time. To use the PHQ as an event queue, it must be possible to
delete an element with a given ID from the tree, even if it is not the element
with lowest value. In the PHQ, one option is to scan the entire memory tree
to find the element with corresponding ID in order to delete it, an operation
with O(N) complexity in time.

The capability of finding arbitrary elements in the tree is required in all
important operations of an event queue. The linear complexity in time of this
operation in a PHQ would lead to catastrophic performance in a large scale
SNN. However, the compactness of the tree, i.e. minimal memory usage, is
not of the utmost importance for an event queue. The balanced property of
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the PHQ can be dropped to gain a degree of freedom in the placement of
the elements in the tree. In a SHQ, this extra degree of freedom is used such
that the search for an arbitrary element becomes a O(1) complexity in time
operation.

The SHQ is an unbalanced PHQ in which any given element is constrained
to be placed in a specific part of the tree, determined by the element’s ID.
The region of the tree assigned to an element is called a path, as it starts
at the root node and ends at one of the leaf nodes. An element’s path is
found by scanning its ID from left to right, and progressing down the tree
by branching either left or right depending on the value of the individual
bits. This defines a unique path for each element and, when searching for an
element with a given ID, one single node per level has to be checked. Figure
1 shows a schematic representation of the binary memory tree and highlights
the path of element #3. This modification comes with two disadvantages.
Operations take more clock cycles to execute in the SHQ, but the complexity
in time remains O(1). The SHQ has higher memory requirements than the
PHQ, but maintains a O(N) complexity in memory.
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Figure 1: Schematic representation of the binary memory tree in a structured heap queue.
Each element moves down the tree following a unique path from the root node to one
of the leaf nodes. The path an element can follow is determined by its identification
number (ID). The numbers in a node indicate which elements can possibly occupy this
node. Any element can be stored in the root node, but each leaf node is specific to only
one element ID. The path associated with an element is found by branching either left
or right depending on the binary representation of the element’s ID, starting with the
left-most bit when branching from the root node. The path associated to element #3 is
shown in bold.
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2.1. Operations in the Structured Heap Queue

The SHQ supports 3 operations: insert new element, delete element with
given ID and read element with given ID. An update operation, used to
change the value of an existing element in the queue, can be executed by
issuing a delete followed by an insert operation. All operations in a structured
heap queue start at the root node and progress down the tree, one level at
a time. An operation follows the path of the element it is executed on
and, on each level of the tree, either promotes (move up) or demotes (move
down) one element in order to maintain the heap property. Promoting and
demoting elements require three steps: reading the content of one or two
nodes, comparing two elements, and writing back the appropriate values to
memory. A description of the delete, read and insert operations follows.

2.1.1. Delete and read operations

The delete operation is divided into two phases: locate and promote.
During the locate phase, only a read step needs to be executed on each level
as the operation progresses down the tree. Once the node containing the
element to delete is found, the promote phase starts. The two elements in
the children nodes of the deleted node are read (read step) and their value
is compared (compare step). The element with smallest value is promoted
and replaces the deleted element (write step). The same procedure repeats
on each remaining level down the tree, selecting one children node to fill the
empty node created by the last promotion. An example of a delete operation
can be seen in figure 2. Read operations only consist of a locate phase.

2.1.2. Insert operation

When an element is inserted, a certain number of elements have to be
demoted to make room for it. On each level, a node is read (read step)
and its value is compared with the inserted element’s value (compare step).
Whichever has the lowest value is written back in the node (write step) and
the other one is demoted. This demoted element defines the path followed by
the insert operation is it progresses down the tree. An example of an insert
operation is shown in figure 3.

2.2. Design of the structured heap queue

As in the PHQ (Ioannou & Katevenis, 2007), operations in the SHQ
are pipelined. Each level of the tree is a pipeline stage. As soon as an
operation is passed to a lower stage of the pipeline, another one can be
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Figure 2: Delete operation in the structured heap queue. The pair of numbers in a
node indicates the identification number (ID) and, inside parentheses, the value of the
element. The operation consists in the deletion of the element #3. The operation’s steps
are indicated on the arrows along with their order in parentheses. Top left Initial state
of the queue and first steps of the delete operation. Element #3 is in the root node and
thus the locate phase does not take place. The nodes containing elements #2 and #5 are
read and their value is compared. Element #5 is promoted to replace element #3. Top
right Last steps of the delete operation. The nodes containing elements #4 and #6 are
read and their value is compared. Element #6 is promoted. Bottom Final state of the
queue after the delete operation.

serviced at the current level. The heap property is always satisfied and the
lowest value element occupies the root node at all times, even if operations
are still going on in lower levels of the tree. The stages of the pipeline are
identical and consist of some hardware resources. As depicted in section 2.1,
all operations in the SHQ execute the same three steps: read, compare and
write-back. Each stage of the pipeline thus has a read and a write port to
its corresponding level of the memory tree and a 2-input comparator. Insert
operations need to pass the element to insert down the tree, and a register is
required for this purpose. Delete operations deal with data on two levels of
the tree, 1 node and its 2 children nodes, and so require access to the read
port from one level below. Figure 4 show a simple block diagram of the SHQ.

2.2.1. Consecutive operations

The operations in the structured heap queue can be cascaded, just like
in the PHQ. Figure 5 shows how several delete and insert operations can
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Figure 3: Insert operation in the structured heap queue. The pair of numbers in a node
indicates the identification number (ID) and, inside parentheses, the value of the element.
The operation consists in the insertion of the element #7 with value 4. The operation’s
steps are indicated on the arrows along with their order in parentheses. Top left Initial
state of the queue and first steps of the insert operation. The node containing element #3
is read and its value is compared with that of element #7. Element #7 is demoted. Top
right Intermediate steps of the insert operation. The node containing element #5 is read
and its value is compared with that of element #7. Element #7 is demoted. Bottom left
Last steps of the delete-insert operation. The node containing element #6 is read and its
value is compared with that of element #7. Element #7 is written back in the node to
replace element #6 this one is demoted. Bottom right Final state of the queue after the
insert operation.

be issued back to back if reads, comparisons and write-backs each take one
clock cycle to execute. Refer to figures 2 and 3 for detailed description of
the steps involved in the delete and insert operations. Delete operations take
longer to execute than insert operations because they deal with data on two
levels of the tree. Interleaved delete and insert operations are also shown in
figure 5. Figure 6 shows an example of a delete-insert operation in a 4-level
memory-optimized structured heap queue introduced in the next section.

2.3. Memory-optimized structured heap queue

Each element in a SHQ is assigned a unique path from the root node to
one of the leaf nodes. Thus, there can be as many elements in the queue
as there are nodes in the last layer of the tree. An L-level SHQ can store
up to 2L−1 elements for 2L nodes, as shown in figure 1. In the PHQ, the
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Figure 4: Simple block diagram of the structured heap queue. The same building block is
attached to each level “Li” of the binary memory tree. It consists of a read and a write port
to level “Li” of the memory tree, one read port to level “Li+1”, a comparator (“Comp”)
and two registers (“Param” and “Op”). These registers hold the current operation type
and parameters, for example the element to insert. This information is passed to the
next level as the operation progresses down the tree. A separate port exists to read the
information of the top node from outside the queue.

tree is balanced, resulting in a more compact binary tree and lower memory
requirement than in the SHQ. In comparison, an L-level PHQ can sort twice
as many elements using the same amount of memory.

Assuming elements inserted in the queue are given unique IDs, the amount
of memory required by the SHQ can be reduced. This is possible because
the elements will distribute over the branches of the tree as they are inserted
and will never fill the last level of the tree. A 3-level SHQ can store up to
4 elements and comprises 7 nodes. When an element is first inserted in this
tree, it settles in the root node on level L0, as the rest of the tree is empty.
A second inserted element will either push the first element down or will
itself end up in level L1. Whatever the case, the root node and one node
on level L1 will be occupied. Upon insertion of a 3rd element, two scenarios
are possible. In scenario 1, the insertion causes an element to end up in the
still free node of level L1. Before the insertion of the 4th element, the first
2 levels of the tree would be filled and the 3rd level would be empty. Upon
insertion of the last element, one element will be pushed down in a leaf node,
on level L2, and the other 3 leaf nodes will remain empty. In scenario 2, the

11



Clock cycle
1 2 3 4 5 6 7 8

1st Delete r(L2)×2 c(L1) w(L1) r(L3)×2 c(L2) w(L2) r(L4)×2 c(L3)
2nd Delete - - - - - - r(L2)×2 c(L1)
1st Insert r(L1) c(L1) w(L1) r(L2) c(L2) w(L2) r(L3) c(L3)
2nd Insert - - - r(L1) c(L1) w(L1) r(L2) c(L2)
1st Delete r(L2)×2 c(L1) w(L1) r(L3)×2 c(L2) w(L2) r(L4)×2 c(L3)
1st Insert - r(L1) c(L1) w(L1) r(L2) c(L2) w(L2) r(L3)
2nd Delete - - - - - - - r(L2)×2

Figure 5: Cascading delete operations (top), insert operations (center) and interleaved
delete and insert operations (bottom) in the structured heap queue. Operations consist
of a read (r), a compare (c) and a write (w) step. The “Li” inside parentheses indicates
the level of the tree where the read, compare or write takes place. The “×2” subscript
indicates that 2 simultaneous reads are performed (this happens in delete operations, as
the information of two children nodes is read). A “-” sign means the operation is not
started yet. A certain delay must be met before a second operation can start to ensure
it will not read data which might be overwritten by a previous operation (e.g. the first
delete operation writes information of L2 during clock cycle 6, the second delete cannot
be issued before clock cycle 7 because it needs to read of L2).

3rd insertion causes all three elements in the tree to lie on a single branch,
with one element on each level of the tree. These 3 elements will be located
in the same half of the tree, leaving the other half empty. Because element
IDs are unique, the 4th insertion will necessarily result in one element being
placed in the still empty node of level L1, again leaving 3 leaf nodes empty.

In a 3-level SHQ, only one leaf node can be occupied. Augmenting the
3-level queue to 4 levels is done by adding another 3-level queue next to the
first one and a new root node on top of them. The 4-level queue can now
sort up to 8 elements. Still, only one element can go all the way down each
of the 3-level queues. That is, only two of the 8 available leaf nodes are
actually useful. This reasoning holds true whatever the size of the queue.
The memory-optimized SHQ reduces the size of the last level of the memory
tree by 75%. It can store 2L−1 elements using 1.25× 2L−1 nodes, which only
represents a 25% increase in memory over the PHQ. An example of a 4-level
memory-optimized SHQ is shown in figure 7. The last level of a memory-
optimized SHQ has to be implemented differently than the other ones, since
each of its nodes has 2 parent nodes. Also, each path down the tree in a
memory-optimized SHQ is shared by 2 elements.
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Figure 6: Delete-insert operation in a memory-optimized structured heap queue. The pair
of numbers in a node indicates the identification number (ID) and, inside parentheses, the
value of the element. The operation consists in the deletion of the element #3 directly
followed with the insertion of the same element, changing its value. The operation’s steps
are indicated on the arrows along with their order in parentheses. Top left Initial state
of the queue and first steps of the delete-insert operation. The nodes containing elements
#1 and #5 are read and their value is compared. Element #5 is promoted to replace
element #3. At the same time, the inserted element #3 is compared with newly promoted
element #5 resulting in the demotion of element #3. Top right Intermediate steps of
the delete-insert operation. The nodes containing elements #4 and #6 are read and their
value is compared. Element #6 is promoted. At the same time, the node containing
element #1 is read and its value is compared with that of element #3. Element #3 is
demoted. Bottom left Last steps of the delete-insert operation. The delete part of the
operation is completed. The node containing element #2 is read and its value is compared
with that of element #3. Element #3 is written back in the node to replace element
#2 as this one is demoted. Bottom right Final state of the structured queue after the
delete-insert operation.

3. The Structured Heap Queue as an event queue

In this section, we demonstrate the use of the SHQ in an event-driven
SNN implemented on FPGA. The SNN is based on the Oscillatory Dynamic
Link Matcher (ODLM) introduced by Pichevar et al. (2006). The hardware
architecture is inspired by preliminary work from D’Haene (2010). A very
different approach has already been used to port the SNN to hardware (Caron
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Figure 7: Memory-optimized structured heap queue. The numbers in a node indicate
which elements can possibly occupy this node. In the memory-optimized SHQ, paths are
shared by pairs of 2 elements and leaf nodes are shared by 4 elements. In the figure, the
path shown in bold is shared by elements #2 and #3. This 4-level memory-optimized
SHQ can handle 8 and contains 9 nodes. The last level of the tree uses 75% less memory
than in the naive implementation of the SHQ.

et al., 2011), using a large array of 1-bit wide processing units and a time-
driven strategy. This massively parallel implementation is efficient when
several synchronized neurons spike in the same time step but slows down in
periods of low activity. As it is a time-driven implementation, a comparison
with the present work is out of the scope of this paper.

The ODLM uses the synchronization of spikes in a network of spiking neu-
rons to accomplish binding (Milner, 1974; Von Der Malsburg, 1981). This
allows the ODLM to perform different signal processing tasks such as im-
age segmentation, image matching (Pichevar et al., 2006) and sound source
separation (Pichevar & Rouat, 2007). In the following section, we describe
the hardware implementation of the ODLM, present the resource usage and
performance of the design and show the results of an image segmentation
experiment.

3.1. The Oscillatory Dynamic Link Matcher

To facilitate the port to hardware, some of the features of the original
ODLM were not implemented on the FPGA. These features, namely global
inhibition and a dynamic normalization of synaptic weights, are not essential
to the basic operation of the system. The implemented model and the method
used to accomplish image segmentation on hardware are described here.
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3.1.1. The neuron model

A Leaky Integrate and Fire (LIF) neuron model (Gerstner & Kistler,
2002) is used to approximate the behavior of relaxation oscillators. The
membrane potential of an isolated neuron with initial potential zero follows

pi(t) =
I0
τ

(
1− e−t/τ

)
, (1)

where pi(t) is the membrane potential of neuron i at time t, and I0 (input
current) and τ (membrane time constant) are parameters. When the mem-
brane potential of a neuron reaches the threshold value pθ, it is reset and
a spike is emitted. A neuron is reset by subtracting the value pθ from its
membrane potential. A neuron defined by equation (1) fires periodically, if
pθ is smaller than I0

τ
, and acts like a relaxation oscillator.

When the membrane potential of neuron i reaches the threshold, the
neuron emits a spike. This spike will affect all post-synaptic neurons j to
which it is connected. The neurons j will have their membrane potential
instantly increased by an amount wij. This is shown in equation (2), where
tsi is the time at which neuron i spikes and wij is the synaptic weight between
pre-synaptic neuron i and post-synaptic neuron j.

pj(tsi)← pj(tsi) + wij (2)

Synapses are defined by a positive scalar weight computed using equation
(3), where wij is the synaptic weight connecting neuron i to neuron j, wMAX

is the maximum value for a weight, fi is a feature of the input associated
to neuron i, and α and δ are parameters which must be adapted to the
processing task.

wij = wMAX ×
(

1− 1

1 + e−α(|fi−fj |+δ)

)
(3)

3.1.2. Image segmentation using the ODLM

The topology of the network and the features used depend on the signal
processing task to accomplish. For image segmentation, a flat, 2-dimensional
nearest neighbor network, where each neuron is bidirectionally connected to
its 8 neighbors, is used. In this work, each pixel of the image is associated to
a neuron in the network and the gray level of the image’s pixels (an integer
number in the range 0 to 255) is used as the feature to compute synaptic
weights. The segmentation of a N -pixel image thus requires a network of
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N neurons and 8 × N synaptic connections. Once the weight values are
calculated, the membrane potential of the neurons is initialized randomly and
the network is run until convergence is reached. As they interact, neurons
connected by strong synaptic weights will tend to synchronize, firing at the
same instant. When the groups of synchronized neurons remain unchanged
for a number of neuron oscillations, the network is said to have reached
convergence. The final membrane potential value of the neurons is analyzed
to determine the image’s segmentation: neurons with similar final membrane
potential values are part of the same segment.

3.2. Event-driven ODLM

According to equation (1), the potential of an isolated neuron increases
continuously. Inverting this equation yields equation (4), where tp0→p is the
time it takes for a neuron with initial potential 0 to reach potential p.

tp0→p(p) = −τ ln

(
1− p τ

I0

)
(4)

Using equation (4), it is possible to calculate a neuron’s next firing time

ts = t+ tp(t)→p
θ

= t+ tp0→p
θ − tp0→p(t).

The state of the neurons is stored in memory as the predicted time of
their next spike. Processing an event involves modifying neuron potentials,
and not directly their predicted firing times. A neuron’s predicted firing time
must be translated into a membrane potential before equation (3) is applied.
A new membrane potential is obtained which is translated back into a new
predicted firing time and written in memory. Equations (1) and (4) define
the mapping between firing time and membrane potential. Each time the
SNN processes an event, the current time t is updated to this event’s time of
occurrence tsi .

When a spike is processed, the pre-synaptic neuron is reset and a synap-
tic weight is added to the membrane potential of each of the post-synaptic
neurons. These two operations are very similar, as they both consist in the
modification of the membrane potential of a neuron. Algorithm 3 is used to
apply the effect of an incoming spike on a post-synaptic neuron, that is, to
add a synaptic weight to its membrane potential.

The same algorithm can be used to reset the pre-synaptic neuron, with
a single difference: instead of adding a synaptic weight to the membrane
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Algorithm 3 Processing of a spike

1: Identify the post-synaptic neuron to process
2: Retrieve the neuron’s firing time and pixel value
3: Calculate the neuron’s current membrane potential
4: Calculate the synaptic weight
5: Calculate the neuron’s new membrane potential
6: Calculate the neuron’s new next firing time
7: Update the neuron’s information in memory

potential of the neuron, step 5 of algorithm 3 resets the membrane potential
(and discards the synaptic weight calculated in step 4). For the processing
of an event, algorithm 3 is executed N + 1 times, where N is the number of
post-synaptic neurons. During the extra execution, the pre-synaptic neuron
is reset.

3.3. Hardware implementation

The SNN is an implementation of algorithms 2 and 3 on a FPGA. It
consists of a controller, a processing element (PE), an event queue and a
merger. The PE implements algorithm 3 and can be duplicated to reduce
processing time. Figure 8 gives an overview of the resulting system and its
various components are detailed in the following sections.

3.3.1. Controller

The controller realizes step 4 of algorithm 2. It receives from the merger
the next event to be processed, then updates the simulation time and for-
wards the event for processing. If several PEs are implemented, the post-
synaptic neurons to be processed can be evenly distributed among them.
In the present work, all neurons are serially processed by a single PE, but
several PEs could very well be used. The controller also takes care of the
communications with the computer host.

3.3.2. Processing element

A PE instantiates step 4 of algorithm 2 as detailed in algorithm 3. An
overview of a PE is given in figure 9. PEs receive a synapse number, a pre-
synaptic neuron ID, a weight parameter and the simulation time from the
controller. A 5-stage pipeline processes the neurons involved in the event,
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TopNeuronNbr

TopFiringTime

TopPixelValue
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...

Figure 8: A high level view of the HSNN. The controller receives the next event’s
information from the merger and forwards it to the processing element (PE) along with
some control signals. The PE identifies the post-synaptic neurons, and computes the
required synaptic weights and the new state of the processed neurons. The new state of
the post-synaptic neurons is sent to the event queue for update and the queue is sorted
on-the-fly. The merger reads the event on top of the event queue and sends it to the
controller. If several PEs and event queues are used, the merger chooses the very next
event to happen and the controller distributes the processing load among the PEs.

computing their new state. In the first stage of the pipeline, step 1 of algo-
rithm 3 is executed. Stage 2 executes the 2nd step of the algorithm. Steps 3
and 4 are executed in the 3rd stage of the pipeline. The 4th stage implements
steps 5 and 6 and the last stage executes step 7 . Each stage of the pipeline
takes one clock cycle to execute. Most of the computations are performed
by memory look-up. To implement an equation by a look-up table1, one has
to pre-compute the output of the equation for several (or all) input values
and save the result in memory. To evaluate the equation, the input value for
which the equation has to be computed is used as the address of the mem-
ory to retrieve the output value of the equation. In the processing pipeline,
this technique is used for the weight calculation, the neuron model and the
inverse neuron model. A description of all the stages of the pipeline follows.

1In the paper, the term look-up table can refer to two different things. For clarity,
“look-up table” will designate the implementation of an equation by memory look-up
while the acronym LUT will be used for the FPGA resource (see section 4.1)
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Figure 9: A processing element of the hardware event-driven system. The inputs to
the pipeline are coming from the controller and the outputs are sent to the event queue.
The topology solver identifies the post-synaptic neurons associated with the event. The
neuron state memory stores the state of all neurons. It has one read and one write
interface, the latter being used for write-back in the last stage of the pipeline. The weight
calculator computes a synaptic weight based on the pixel value of the processed neurons.
The membrane model translates the firing time of a neuron into a membrane potential
value. The synapse model either adds a synaptic weight to the membrane potential of a
neuron or resets this neuron. The inverse membrane model translates the new membrane
model back into a firing time. Signals crossing dashed lines are delayed appropriately
(delay elements not shown).

Topology solver. The topology solver identifies the neurons involved in the
current event and outputs their ID. The block outputs the neuron IDs one
at a time and indicates with a flag if the current ID corresponds to the pre-
synaptic neuron or to one of the post-synaptic neurons (see section 3.2). A
functional view of the topology solver is shown in figure 10.

Neuron state memory. In the second stage of the pipeline, the post-synaptic
neuron’s information is retrieved from the neuron state memory. This mem-
ory stores the state variables and parameters of the neurons. For the image
segmentation experiment, a firing time and a pixel value are stored for each
neuron. Neuron IDs are used to address the neuron state memory.

Weight calculator. The weight calculator takes two pixel values and computes
the corresponding synaptic weight. The calculation of the weight depends
on the difference between the pre-synaptic neuron’s pixel value and the post-
synaptic neuron’s pixel value. A functional view of the weight calculator is
shown in figure 11.
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Figure 10: The topology solver is the 1st stage of the pipeline in a processing element.
The synapse number is used as the address to the topology look-up table which outputs
an offset to add to the pre-synaptic neuron ID. If the offset is 0, a flag is set, indicating
that the pre-synaptic and post-synaptic neuron IDs are equal.

WeightParamDiff
-

+PrePixelValue Weight LUT SynWeight

PostPixelValue

Figure 11: The weight calculator composes, with the membrane model, the 3rd stage
of the pipeline of a processing element. The pixel difference is used as the address to a
look-up table which outputs the synaptic weight.

Membrane model. The membrane model calculates the membrane potential
at the current simulation time given a firing time. A functional view of the
membrane model is shown in figure 12.

PostPhase
-

+PostFiringTime

SimulationTime

Membrane 

model LUT
PostPotential

Figure 12: The membrane model, along with the weight calculator, is part of the 3rd

pipeline stage in a processing element. The subtraction of the simulation time to the firing
time of a neuron results in a value which represents how far from the threshold the neuron
is. This value is used as the address of a look-up table to get the membrane potential of
the neuron.

Synapse model. The synapse model has a different role depending on the
value of the flag outputted by the topology solver. If the flag is 0, then the
post-synaptic neuron’s potential is added to the synaptic weight. Otherwise,
the processed neuron is the pre-synaptic neuron, and its potential is reset.
A functional view of the synapse model is shown in figure 13.
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Figure 13: The synapse model is combined with the inverse membrane model to form
the 4th stage of the pipeline in a processing element. The post-synaptic neurons’ membrane
potential is added to the synaptic weight if the input flag is 0. Otherwise, the value pθ is
subtracted from the potential to reset the pre-synaptic neuron.

Inverse membrane model. The inverse membrane model computes the new
firing time of a neuron based on its new membrane potential. A functional
view of the inverse membrane model is shown in figure 14.

SimulationTime

PostNewFiringTimePostNewPhase
+

+PostNewPotential

Inverse 

membrane 

model LUT

Figure 14: The inverse membrane model and the synapse model form the 4th stage of
the pipeline. The post-synaptic neuron’s membrane potential is the address to a look-up
table which outputs the amount of time left until the neuron fires. This value is added to
the simulation time to get the new neuron’s firing time.

State memory write back. Once the new firing time is calculated, it is written
back into the neuron state memory. This is done in the last stage of the
processing pipeline.

3.3.3. Event queue

The event queue is implemented by the structured heap queue described
in section 2. The interface between the PE and the event queue is very
simple. At initialization, insert operations are issued to populate the event
queue with the neurons’ initial predicted firing time. During the processing,
when the PE computes the new firing time of a neuron, the information in
the event queue must be updated. This is done by issuing a delete-insert
operation with the neuron ID and the new firing time. For every neuron
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Table 1: Resource usage for the whole system

RESOURCE USED AVAILABLE % USED
FFs 3 368 32 640 10%
LUTs 4 673 32 640 14%
Slices 2 855 8 160 35%
BRAMs 130 132 98%

involved in an event, a delete-insert operation must be serviced by the event
queue. The root node is then read to start the processing of the next event.

3.3.4. Merger

The merger is required when several PEs are used in parallel. It scans
the top nodes of all the event queues to determine the very next event to be
processed. In the present work, the merger simply passes the information of
the element in the root node of the single event queue to the controller.

4. Results

A network of 65 536 neurons is implemented on a Xilinx XC5VSX50T
FPGA clocked at 100 MHz. For the image segmentation experiment, each
neuron has 8 synapses for a total of 524 288 implemented synapses. The
next sections summarize the resource usage of the design and the result of
the image segmentation experiment.

4.1. Resource usage

The membrane potential and firing time values are 13-bit wide so the
membrane model and inverse membrane model look-up tables can each be
implemented an assembly of 3 BRAMs. The pixel values and synaptic weights
are respectively 8-bit and 9-bit wide. The resources usage in terms of flip-
flops (FFs), look-up tables (LUTs) and block RAMs (BRAMs) for the whole
system is given in table 1, and table 2 details these numbers for each func-
tional block of the design. Please note that in a Xilinx FPGA, a LUT is a
resource mainly used to implement logical operations. In the other sections
of this paper, the term look-up table designates the implementation of an
equation by memory look-up.
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Table 2: Resource usage for each functional block

FUNCTION FFs LUTs BRAMs
Controller 503 635 0
Processing element 19 73 50

Topology solver 16 26 0
Neuron memory 1 1 44
Weight calculator 0 8 0
Membrane model 1 14 3
Synapse model 0 10 0
Inverse membrane model 1 14 3

Event queue 2 846 3 965 80
Merger N/A N/A N/A

4.2. Image segmentation

The results of an image segmentation task using the event-driven SNN are
presented in this section. For this experiment, a host computer transfers the
pixel values of the image and random initial potential of the neurons into the
SNN. The host computer also populates the various look-up tables in the PE
as well as the event queue. The SNN is then run for a given time and the final
membrane potential values are sent back to the computer for visualization.
The parameters of equations (1) and (3), using the pixels’ level of gray as
features, are set to: I0 = 6.918, τ = 0.1447, vθ = 1, wmax = 0.0325, α = 100,
δ = 6. The network was run for 200 ms. The original and segmented images
are presented in figure 15. The same task on a general purpose computer
(Intel Core i5 @2.4GHz, 3GB RAM) executes in 1.9 seconds.

5. Discussion

An event-driven SNN using the SHQ presents three major advantages:
scalability, versatility and powerful resource sharing. These aspects are cov-
ered in the next sections. The main drawback of the SHQ is the memory
overhead of 25% compared to a PHQ and to Aǵıs et al.’s search algorithm.
This overhead only is a constant scaling factor and the SHQ has the same
O(N) complexity in memory as the two other algorithms.
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Figure 15: Image segmentation experiment. Top The original 406×158 pixel image. Bot-
tom The segmented image, where different colors represent different segments. The seg-
mentation is solely based on pixel values and the HSNN merges the lower part of the
image with the tires of the car. Also, the foliage in the background is segmented with
preservation of the texture.

5.1. Scalability

The scalability of a SNN defines the impact of increasing the number of
neurons on performance and hardware resources used. In an event-driven
SNN, this is greatly affected by the complexity of the event queue. Table 3
compares the complexity in time, logic resources and memory of the SHQ
and the pipelined search of Aǵıs et al. (2007). Operations on “top element”
refer to the next event to happen.

The most important values are the complexity in logic, and the complexity
in time of the delete top element and the read operations. Aǵıs et al.’s
pipelined search uses a 4-level comparator tree. With this structure, it is
possible to trade logic resources for time, by dividing the set of elements into
subsets and processing each one serially. For example, N can be doubled
without increasing the amount of logic resources, but the search would take
twice the amount of time to execute. If the processing time is kept constant,
the number of comparators increases linearly with N . The SHQ, on the other
hand, uses a binary memory tree and requires one 2-input comparator per
level of the tree. This results in a much nicer logarithmic scaling of logic
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Table 3: Comparison of the complexity in logic, memory and time of the structured heap
queue (SHQ) and Aǵıs et al.’s search algorithm, with N the number of elements in the
queue

SHQ Aǵıs et al. (2007)
Complexity in logic O(log(N)) O(N)*
Complexity in memory O(N) O(N)
Complexity in time for

Delete top element O(1) O(log(N))*
Delete any element O(1) O(1)
Insert O(1) O(1)
Read top element O(1) O(log(N))*
Read any element O(log(N)) O(1)

*In (Aǵıs et al., 2007), logic can be traded for time, and
conversely, time for logic.

resources with the number of elements.
To delete or read the top element when using the pipelined search, the

smallest value element must first be identified. This requires logarithmic
time, with a radix depending on the exact structure of the comparator tree.
With the SHQ, deleting the top element is done by reading the root node
and issuing a delete operation with the correct ID. This operation requires
a certain amount of time to complete, but it is not necessary to wait for
it to be done before the queue is usable again. When the delete operation
executes on the top level of the tree, it selects one of the children node and
promotes it. The promoted node, readable in the root node as soon as the
delete operation is passed down to the second level of the queue, is the new
smallest value element of the queue. All operations, except for the read any
element, effectively execute in constant time with respect to the number of
elements. The read top element operation executes in 1 clock cycle, as a
special read port is provided for this purpose (see figure 4).

The pipelined search has a better complexity than the SHQ for the read
any element operation. Because they use an unsorted list, elements can be
read very simply. This is not the case with the SHQ, in which a read operation
might have to scan all the levels of the binary memory tree before it finds the
element it is looking for. This logarithmic complexity does not compare very
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well with the constant time of the pipelined search. Nevertheless, this is not
of much importance for the implementation of an event queue. As explained
in section 1, the read any node operation is not required in a SNN.

To show the benefits of the digital hardware SNN over an implementation
on CPU, experiments were done with a software version of the SNN described
in this paper. A software SNN of increasing size was run and the time re-
quired to process 250 000 spikes is reported in figure 16. The figure shows
the logarithmic scaling of processing time with the number of neurons of the
software implementation. To compare these results, the theoretical constant
time scaling of the FPGA implementation is also shown with the real perfor-
mance of the 65 536 neurons SNN as a baseline. Real experiments could not
be run on FPGA because of the network size involved. With smaller net-
works, the logarithmic scaling of the software implementation is much less
obvious.
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Figure 16: Comparison of the processing speed for a software and a FPGA implementation
of the SNN. For CPU, results show the amount of time required to process 250 000 spikes
with networks of various sizes. The values reported for FPGA are based on the theoretical
complexity given in section 5.1.

5.2. Resource sharing and performance

The SNN implementation shown in this paper illustrates the power of
resource sharing. A single PE is used, but a 65 536-neuron, 513 184-synapse
SNN is implemented. This is typical of digital hardware circuits: resource
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sharing, or time multiplexing, allows great flexibility with regard to the
amount of resources used. The implementation can be tailored to the spe-
cific needs of the designer and to the resources at his disposal. If resource
shortage limits the design to only one PE, a SNN of arbitrary size can still be
designed. If performance is an issue, spare resources can be used to duplicate
the PE and cut the processing time. In the presented SNN, a PE can process
one post-synaptic neuron every 7 clock cycles. It would be possible to modify
the system we presented and use 9 PEs (the number of neurons involved in
an event) with minimal added design effort. Each PE would process one of
the involved neurons, resulting in a processing speed of one event per 7 clock
cycles.

5.3. Versatility

As a last point, the SHQ can be used in virtually any digital hardware
event-driven SNN. In this paper, we chose to use LIF neurons, a regular net-
work topology, look-up tables computations, and so on. The SHQ is oblivious
to all of this. Irregular network topologies or dynamic synaptic weights could
be used. It does not matter if event times are exact or approximated. The
SHQ only brings constraints on timing: insert operations can only be serviced
every 3 clock cycles and delete-insert operations every 7 clock cycles.

6. Conclusion

In this paper, the structured heap queue (SHQ), was introduced as a good
candidate to implement the event queue of an event-driven digital hardware
spiking neural network. The use of the SHQ was demonstrated in the FPGA
implementation of a SNN and tested with an image segmentation task. With
the SHQ, it is possible to process one event every 7 clock cycles, no matter
the size of the SNN. The SHQ is very similar to the pipelined heap queue
(Ioannou & Katevenis, 2007; Bhagwan & Lin, 2000), but it is especially well
suited for the application. In the SHQ any existing element can be deleted
in constant time, a crucial feature for the implementation of an event queue.
An alternate solution to the SHQ is the pipelined search algorithm used in
(Aǵıs et al., 2007). The SHQ has a better complexity both in logic resources
and in time for the operations required in an event queue. With the SHQ,
doubling the number of events to manage results in double the amount of
memory and one more 2-input comparator. Processing time is not affected.
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The SHQ can be put to use in virtually any event-driven digital hardware
SNN.
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