ANALYSE DES PRATIQUES AGRICOLES PERMETTANT DE RÉDUIRE LES IMPACTS ENVIRONNEMENTAUX ET D’AMÉLIORER LE BILAN ENVIRONNEMENTAL DE L’AGRICULTURE AU QUÉBEC

Par
Jérémy Demers Poliquin

Essai présenté au Centre universitaire de formation en environnement et développement durable en vue de l’obtention du grade de maître en environnement (M. Env.)

Sous la direction de Monsieur Michel Perron

MAÎTRISE EN ENVIRONNEMENT
UNIVERSITÉ DE SHERBROOKE

Mai 2017
Au cours du dernier siècle, la modernisation de l’agriculture a permis de subvenir aux besoins alimentaires de la population croissante. Toutefois, les pratiques agricoles conventionnelles, souvent qualifiées d’intensives, engendrent des impacts importants sur l’environnement et menacent à long terme la pérennité de l’agriculture. Dans les dernières années, l’éveil de la conscience écologique chez certains exploitants agricoles québécois s’est reflété dans leurs choix de pratiques plus respectueux pour l’environnement. Ceci a permis d’amorcer un virage vers des pratiques agricoles plus durables. Cependant, la hiérarchie des pratiques agroenvironnementales à prioriser n’est toujours pas bien définie, menant ainsi à des efforts diffus de la part des producteurs agricoles.

Ainsi, l’objectif général de cet essai est de formuler des recommandations quant aux pratiques agricoles que devraient privilégier davantage les producteurs agricoles québécois afin d’améliorer le bilan environnemental de l’agriculture au Québec. Pour y arriver, trois objectifs spécifiques sont définis. Il s’agit d’identifier les principaux problèmes environnementaux liés à l’agriculture, de définir les principales pratiques agroenvironnementales et finalement d’analyser et de comparer l’efficacité de ces pratiques en termes de gains environnementaux.

L’analyse multicritère a permis d’établir et de comparer la performance environnementale de 25 pratiques alternatives regroupées selon six catégories. La catégorie des pratiques culturales de conservation affiche l’efficacité environnementale moyenne la plus élevée contrairement à celles de la gestion raisonnée des pesticides et des infrastructures et équipements durables qui détiennent les efficacités moyennes les plus faibles. Parmi les pratiques analysées, le pâturage extensif, le semis direct, la culture de couverture et la rotation des cultures sont les plus performantes sur le plan environnemental, alors que le désherbage mécanique, la culture en contre-pente et les chemins agricoles réfléchis sont celles qui présentent les plus faibles gains environnementaux. De ces résultats découlent plusieurs recommandations. Bien que les pratiques agricoles à prioriser soient celles détendant les efficacités environnementales les plus élevées, il est aussi important de tenir compte du contexte local et des principaux impacts environnementaux à amenuiser, en plus d’agir prioritairement sur les facteurs-clés affectant une grande variété de composantes environnementales. De plus, la réalisation d’une gestion intégrée des différentes pratiques durables, de même que la combinaison de celles-ci sont des façons de maximiser les gains environnementaux.

L’adoption de ces mesures par les agriculteurs est susceptible d’améliorer le bilan environnemental de l’agriculture au Québec.
REMERCIEMENTS

Pour la réalisation de cet essai, je tiens d’abord et avant tout à remercier mon directeur d’essai, Monsieur Michel Perron, pour son accompagnement et sa disponibilité. Je lui suis reconnaissant de m’avoir proposé un sujet d’essai qui me convenait et sur lequel j’ai eu beaucoup de plaisir à travailler. Ses conseils, sa flexibilité ainsi que sa rapidité à fournir ses rétroactions ont facilité grandement le déroulement de mon essai.

Ensuite, je souhaite adresser des mots de remerciements à ma famille, plus précisément à Stéphanie, Dorothée, Jean-Pierre et Christine. Merci pour le support incroyable que vous m’avez apporté tout au long de mes études ainsi que pour les nombreux encouragements lors de mon essai. Sans vous, ce parcours aurait été beaucoup plus ardu. Une pensée également à ma grand-mère, Yvette Mailhot.

Finalement, mes sincères remerciements à mes collègues de classe. Ce fut à la fois enrichissant et amusant de vous côtoyer. Je garde en mémoire plusieurs beaux moments passés avec vous!
TABLE DES MATIÈRES

INTRODUCTION ... 1

1. MISE EN CONTEXTE : IMPORTANCE DE L'AGRICULTURE AU QUÉBEC ... 3
 1.1 Portrait actuel ... 3
 1.2 Tendre vers des pratiques agricoles plus durables ... 7

2. PRINCIPAUX ENJEUX ENVIRONNEMENTAUX LIÉS À L'AGRICULTURE ... 9
 2.1 Qualité de l’air ... 9
 2.1.1 Émissions de GES .. 9
 2.1.2 Pollution atmosphérique ... 12
 2.1.3 Nuisances olfactives ... 13
 2.2 Qualité de l’eau .. 14
 2.2.1 Contamination des eaux de surface et souterraines .. 14
 2.2.2 Apport en sédiments .. 16
 2.3 Santé des sols ... 16
 2.3.1 Érosion ... 17
 2.3.2 Détérioration de la structure du sol ... 18
 2.3.3 Appauvrissement en MO ... 19
 2.4 Gestion de l’énergie ... 19
 2.4.1 Consommation énergétique ... 20
 2.4.2 Dépendance aux énergies fossiles .. 20
 2.5 Biodiversité .. 22
 2.5.1 Dégradation des habitats et des milieux naturels .. 22
 2.5.2 Déclin des insectes pollinisateurs .. 23

3. PRINCIPALES PRATIQUES AGRICOLES ATTÉNUANT LES IMPACTS ENVIRONNEMENTAUX 26
 3.1 Pratiques culturales de conservation ... 26
 3.1.1 Rotation des cultures .. 26
 3.1.2 Culture en contre-pente ... 28
 3.1.3 Culture sur billon .. 28
 3.1.4 Culture en bandes alternées ... 30
3.1.5 Culture de couverture ... 31
3.1.6 Travail réduit du sol ... 34
3.1.7 Semis direct ... 36

3.2 Saine gestion des matières fertilisantes .. 37
3.2.1 Structure d’entreposage des fumiers avec toiture 37
3.2.2 Optimisation de l’épandage des matières fertilisantes 38
3.2.3 Valorisation des déjections animales .. 39
3.2.4 Équipements d’épandage efficaces ... 40

3.3 Gestion raisonnée des pesticides .. 41
3.3.1 Lutte intégrée ... 41
3.3.2 Désherbage mécanique ... 42
3.3.3 Utilisation réduite des pesticides .. 44

3.4 Aménagements durables au champ .. 45
3.4.1 Voie d’eau engazonnée et avaloir ... 45
3.4.2 Terrasses ... 46
3.4.3 Bande riveraine large et diversifiée .. 47
3.4.4 Haie brise-vent ... 49

3.5 Gestion adaptée des animaux d’élevage .. 49
3.5.1 Stratégie d’alimentation .. 50
3.5.2 Pâturage extensif ... 52
3.5.3 Amélioration génétique .. 53

3.6 Infrastructures et équipements durables .. 54
3.6.1 Efficacité énergétique des bâtiments 54
3.6.2 Électrification de la machinerie et biocarburants 55
3.6.3 Chemins agricoles réfléchis .. 55

4. ANALYSE MULTICRITÈRE ... 57
4.1 Méthodologie .. 57
4.2 Sélection et description des critères .. 58
4.2.1 Critères de la qualité de l’air .. 58
LISTE DES FIGURES ET DES TABLEAUX

Figure 2.1 Évolution des émissions de GES au Québec et cibles de réduction, 1990 à 2050 10
Figure 2.2 Proportion des principales sources liées à la consommation directe d’énergies fossiles en milieu agricole.. 21
Figure 2.3 Production alimentaire et biodiversité végétale avec et sans la présence des abeilles 24
Figure 2.4 Culture de pommes de terre sur billon ... 29
Figure 2.5 Culture en bandes alternées .. 30
Figure 2.6 Relation entre la couverture de résidus et la réduction des pertes de sol 32
Figure 2.7 Pourcentages de couverture d’adventices selon les méthodes de labour et de travail réduit, dans huit champs, en 2011 ... 35
Figure 2.8 Voie d’eau engazonnée munie d’un avaloir ... 46
Figure 2.9 Chemin agricole avec bandes de roulement .. 56

Tableau 1.1 Répartition des recettes monétaires agricoles du Québec tirées du marché, selon les principaux types de production, en 2015 ... 4
Tableau 3.1 Comparaison entre le travail conventionnel, le travail réduit et le semis direct 36
Tableau 3.2 Réduction des émissions de CH₄ produites par les vaches laitières selon la modification alimentaire effectuée ... 51
Tableau 3.3 Détail de l’abattement des émissions de GES par l’optimisation de la gestion des prairies, en kg CO₂ équivalent par hectare, par année ... 53
Tableau 4.1 Dimensions et critères de l’analyse .. 58
Tableau 4.2 Pondération des dimensions et de leurs critères .. 62
Tableau 4.3 Analyse des pratiques agroenvironnementales selon des dimensions et critères environnementaux ... 64
Tableau 4.4 Efficacité environnementale de chaque pratique agroenvironnementale et de leur catégorie respective .. 72
Tableau 5.1 Pratiques agroenvironnementales à privilégier selon la dimension environnementale à améliorer ... 76
LISTE DES ACRONYMES, DES SYMBOLES ET DES SIGLES

<table>
<thead>
<tr>
<th>Acronyme</th>
<th>Signification</th>
</tr>
</thead>
<tbody>
<tr>
<td>%</td>
<td>Pour cent</td>
</tr>
<tr>
<td>AAC</td>
<td>Ministère de l’Agriculture et Agroalimentaire du Canada</td>
</tr>
<tr>
<td>ADEME</td>
<td>Agence de l’Environnement et de la Maîtrise de l’Énergie</td>
</tr>
<tr>
<td>AGIR pour la Diable</td>
<td>Alliance pour une Gestion Intégrée et Responsable du bassin versant de la rivière du Diable</td>
</tr>
<tr>
<td>CCAE</td>
<td>Clubs-conseils en agroenvironnement</td>
</tr>
<tr>
<td>CCSEEC</td>
<td>Centre de conservation des sols et de l’eau de l’est du Canada</td>
</tr>
<tr>
<td>CH₄</td>
<td>Méthane</td>
</tr>
<tr>
<td>CO</td>
<td>Monoxyde de carbone</td>
</tr>
<tr>
<td>COVs</td>
<td>Composés organiques volatils</td>
</tr>
<tr>
<td>CO₂</td>
<td>Dioxyde de carbone</td>
</tr>
<tr>
<td>CPVQ</td>
<td>Conseil des productions végétales du Québec</td>
</tr>
<tr>
<td>CRE</td>
<td>Conseil régional de l’environnement</td>
</tr>
<tr>
<td>ECCC</td>
<td>Ministère de l’Environnement et du Changement climatique du Canada</td>
</tr>
<tr>
<td>FAO</td>
<td>Organisation des Nations Unies pour l’alimentation et l’agriculture</td>
</tr>
<tr>
<td>FiBL</td>
<td>Institut de recherche de l’agriculture biologique</td>
</tr>
<tr>
<td>GES</td>
<td>Gaz à effet de serre</td>
</tr>
<tr>
<td>HNO₃</td>
<td>Acide nitrique</td>
</tr>
<tr>
<td>H₂S</td>
<td>Sulfure d’hydrogène</td>
</tr>
<tr>
<td>inc.</td>
<td>Incorporée</td>
</tr>
<tr>
<td>kg</td>
<td>Kilogramme</td>
</tr>
<tr>
<td>km²</td>
<td>Kilomètre carré</td>
</tr>
<tr>
<td>LQE</td>
<td>Loi sur la qualité de l’environnement</td>
</tr>
<tr>
<td>MAAARO</td>
<td>Ministère de l’Agriculture, de l’Alimentation et des Affaires rurales de l’Ontario</td>
</tr>
<tr>
<td>MAPAQ</td>
<td>Ministère de l’Agriculture, des Pêcheries et de l’Alimentation du Québec</td>
</tr>
<tr>
<td>MO</td>
<td>Matière organique</td>
</tr>
<tr>
<td>MDDELCC</td>
<td>Ministère du Développement durable, de l’Environnement et de la Lutte contre les changements climatiques</td>
</tr>
<tr>
<td>MERN</td>
<td>Ministère de l’Énergie et des Ressources naturelles</td>
</tr>
<tr>
<td>MFFP</td>
<td>Ministère des Forêts, de la Faune et des Parcs</td>
</tr>
<tr>
<td>Mt</td>
<td>Mégatonne</td>
</tr>
<tr>
<td>mg/l</td>
<td>Milligramme par litre</td>
</tr>
<tr>
<td>m³</td>
<td>Mètre cube</td>
</tr>
<tr>
<td>NH₃</td>
<td>Ammoniac</td>
</tr>
<tr>
<td>Acronyme</td>
<td>Exemple</td>
</tr>
<tr>
<td>----------</td>
<td>---------</td>
</tr>
<tr>
<td>NO<sub>x</sub></td>
<td>Oxydes d’azote</td>
</tr>
<tr>
<td>NO<sub>2</sub></td>
<td>Dioxyde d’azote</td>
</tr>
<tr>
<td>N<sub>2</sub>O</td>
<td>Protoxyde d’azote</td>
</tr>
<tr>
<td>OBV</td>
<td>Organisme de bassin versant</td>
</tr>
<tr>
<td>PAEF</td>
<td>Plan agroenvironnemental de fertilisation</td>
</tr>
<tr>
<td>PIB</td>
<td>Produit intérieur brut</td>
</tr>
<tr>
<td>P<sub>2.5</sub></td>
<td>Particules fines</td>
</tr>
<tr>
<td>REA</td>
<td>Règlement sur les exploitations agricoles</td>
</tr>
<tr>
<td>RNCan</td>
<td>Ressources naturelles Canada</td>
</tr>
<tr>
<td>RSCE</td>
<td>Règlement sur le captage des eaux souterraines</td>
</tr>
<tr>
<td>s. d.</td>
<td>Sans date</td>
</tr>
<tr>
<td>SO<sub>x</sub></td>
<td>Oxydes de soufre</td>
</tr>
<tr>
<td>StatCan</td>
<td>Statistique Canada</td>
</tr>
<tr>
<td>UPA</td>
<td>Union des producteurs agricoles</td>
</tr>
</tbody>
</table>
INTRODUCTION

Essentielle à la subsistance alimentaire, l'agriculture a beaucoup évolué au cours du dernier siècle. L'avancement des technologies combiné aux nouvelles méthodes de culture ont permis d'atteindre des niveaux de production sans précédent, permettant ainsi de répondre à la demande de la population croissante (Doucet, 2010). Toutefois, cet accroissement de la production agricole par l'utilisation accrue de fertilisants, de pesticides et d'énergies fossiles a engendré plusieurs répercussions néfastes sur l'environnement, notamment sur le plan des écosystèmes, des émissions de gaz à effet de serre (GES), de la consommation énergétique et de la biodiversité (Bouchard-Bastien, 2010; Nature Québec, 2011). Sachant que la demande alimentaire mondiale devrait augmenter de 60 % au cours de la période 2006 à 2050, il est indéniable que les techniques agricoles doivent être modifiées ou remplacées par des pratiques plus respectueuses de l'environnement afin de conserver l'intégrité des différentes composantes environnementales et d'assurer la pérennité de l'agriculture (Organisation des Nations Unies pour l'alimentation et l'agriculture [FAO], 2016).

Récemment, la hausse des considérations environnementales chez plusieurs exploitants agricoles québécois a amené plusieurs d'entre eux à revoir leurs méthodes afin de réduire leurs impacts environnementaux (Doucet, 2010). En effet, plusieurs initiatives et pratiques agroenvironnementales ont gagné en popularité comme l’indique le rapport de Suivi 2007 du Portrait agroenvironnemental des fermes du Québec (BPR-Infrastructure inc., 2008). Malgré la volonté de plusieurs producteurs agricoles à enclencher un virage vert, la hiérarchie des pratiques agricoles durables à prioriser n’est pas toujours bien définie, menant ainsi à des efforts diffus de leur part.

L’objectif général de cet essai est de formuler des recommandations quant aux pratiques agricoles que devraient privilégier davantage les agriculteurs québécois pour réduire leurs impacts sur l’environnement et ainsi améliorer le bilan environnemental de l’agriculture. Pour y parvenir, plusieurs objectifs spécifiques sont définis. L’identification des principaux problèmes environnementaux liés à l’agriculture constitue le premier objectif. Le deuxième est de définir les principales pratiques agroenvironnementales et d’expliquer de quelles façons et dans quelles mesures celles-ci contribuent à l’amélioration du bilan environnemental agricole. Le dernier objectif spécifique est d’analyser et de comparer l’efficacité de ces pratiques en termes de gains environnementaux.

Simple et efficace, la méthodologie employée constitue le cadre de l’essai et se décline en deux volets. La première étape consiste à réaliser une recherche d’informations prenant la forme d’une revue de littérature. Celle-ci vise à dresser le portrait actuel de l’agriculture au Québec, à identifier les principaux enjeux environnementaux qui y sont associés et à définir les principales pratiques agroenvironnementales. Les sources utilisées pour cette recherche d’informations respectent différents critères sélectionnés

L’analyse des pratiques agroenvironnementales au regard des enjeux environnementaux constitue la deuxième étape. Pour ce faire, une analyse multicritère est effectuée à partir des informations récoltées dans l’optique de mesurer et de comparer l’efficacité environnementale de chaque pratique agroenvironnementale. Ceci permettra de déterminer quelles sont les pratiques agricoles les plus performantes pour améliorer le bilan environnemental de l’agriculture.

Le présent essai est divisé en cinq chapitres distincts. La première partie expose l’importance de l’agriculture par une courte mise en contexte. Le portrait actuel de l’agriculture au Québec, ainsi que la tendance vers une agriculture plus durable sont les éléments qui sont mis de l’avant. Le deuxième chapitre décrit quant à lui les principaux enjeux environnementaux liés à l’agriculture, soit plus précisément ceux associés à la qualité de l’air, la qualité de l’eau, la santé des sols, la gestion de l’énergie et la biodiversité. Le troisième chapitre présente les principales pratiques agricoles atténuant les impacts environnementaux selon différents groupes. Les pratiques culturales de conservation, la saine gestion des matières fertilisantes, la gestion raisonnée des pesticides, les aménagements au champ, la gestion adaptée des animaux d’élevage et les infrastructures et équipements durables représentent les six catégories de pratiques retenues. L’analyse multicritère constitue la quatrième partie de l’essai. Dans un premier temps, la méthodologie, la sélection et la description des critères, de même que la pondération sont présentées. Dans un second temps, il est question de l’analyse, des résultats et des contraintes et limites. Finalement, le cinquième chapitre est réservé aux recommandations quant aux pratiques agroenvironnementales que devraient privilégier davantage les agriculteurs québécois.
1. MISE EN CONTEXTE : IMPORTANCE DE L'AGRICULTURE AU QUÉBEC

Au cœur de la culture québécoise, l'agriculture a été en mesure de s'adapter au fil du temps aux différents changements et besoins associés à chacune des époques. Plus influente que jamais, elle joue aujourd'hui un rôle de premier plan dans plusieurs facettes de la société. Le chapitre suivant présente, en premier lieu, un portrait général et actuel de l'agriculture au Québec, plus précisément sa répartition géographique, son ampleur et sa contribution à l'économie de la province. En deuxième lieu, le contexte entourant le retour des pratiques agricoles plus durables au Québec est expliqué.

1.1 Portrait actuel

Encore aujourd'hui, les paysages ruraux québécois sont façonnés et caractérisés par la présence de multiples activités liées à l'agriculture. Au nombre de 28 150 en 2015, les exploitations agricoles sont concentrées en grande partie au sud de la province, dans la vallée du Saint-Laurent, où l'on retrouve les conditions hydriques et thermiques nécessaires à la croissance adéquate des cultures (ministère de l'Agriculture, des Pêcheries et de l'Alimentation du Québec [MAPAQ], 2016a; Groupe AGÉCO, 2015). Certaines régions sont plus propices à l'agriculture comme c'est le cas pour les régions administratives (annexe 1) de Chaudière-Appalaches, de la Montérégie et du Centre-du-Québec. En effet, ces dernières regroupaient 54 % des exploitations agricoles du Québec en 2011, tandis que les régions périphériques telles que le Bas-Saint-Laurent, la Capitale-Nationale, la Mauricie, Lanaudière et les Laurentides possédaient près de 33 % de celles-ci (Groupe AGÉCO, 2015). Bien que la zone agricole du Québec s'étende sur près de 6,3 millions d'hectares, seulement 3,3 millions d'hectares sont véritablement utilisés à des fins d'agriculture, équivalent ainsi à 2 % de la superficie totale de la province (Statistique Canada [StatCan], 2016 et l'Union des producteurs agricoles [UPA], 2016). De ce nombre, 1,9 million d'hectares sont des terres en culture, alors que le reste correspond à des terrains humides ou boisés, des terres en jachère et à des pâturages (Groupe AGÉCO, 2015).

L'agriculture au Québec est en constante évolution. Les tendances générales observées au cours des dernières années indiquent une diminution globale du nombre d'exploitations agricoles. Effectivement, le nombre de fermes a chuté de 12,5 % entre 2001 et 2015 (MAPAQ, 2016a; StatCan, 2014), et ce principalement en raison de la relève précaire et du manque de capitaux (Bélair-Cirino, 2013). Toutefois, les tailles des exploitations agricoles sont quant à elles de plus en plus imposantes et celles-ci s'orientent davantage vers le domaine des grandes cultures. Comme le témoigne Statistique Canada (2016), le nombre de fermes de grande dimension, dont les revenus agricoles bruts étaient supérieurs 500 000 dollars, ont augmenté au cours de la période 2006 à 2011, alors que celles dont les revenus étaient inférieurs à ce même montant ont diminué. Bien que ces grandes exploitations ne représentent que 14 % de l'ensemble des exploitations agricoles, celles-ci s'approprient 65 % des revenus agricoles bruts du Québec (StatCan, 2016).
En termes d’activités, les producteurs agricoles du Québec œuvrent dans un large éventail de secteurs de production. Cette réalité se traduit par une diversité accrue de produits locaux offerts aux consommateurs sur les tablettes des supermarchés, que ce soit pour la viande, les produits céréaliers, les fruits et légumes, les produits de l’érable, etc. Néanmoins, l’industrie agricole québécoise se spécialise et se démarque dans deux créneaux spécifiques : la production laitière et l’élevage porcin (StatCan, 2016).

Plus mécanisée et productive que jamais, l’agriculture au Québec est sans contester un moteur économique important pour plusieurs régions. En 2015, les recettes monétaires agricoles issues du marché ont atteint 8 milliards de dollars, soit un léger recul par rapport à l’année précédente où 2 % supplémentaires avaient été récoltés (MAPAQ, 2016a). Celles-ci sont constituées des revenus provenant de la vente de cultures, de bétail et de produits de l’élevage (Groupe AGÉCO, 2015). Le tableau 1.1 ci-dessous présente la répartition de ces recettes monétaires, selon les différents types d’exploitations.

Tableau 1.1 Répartition des recettes monétaires agricoles du Québec tirées du marché, selon les principaux types de production, en 2015 (inspiré de : MAPAQ, 2016a)

<table>
<thead>
<tr>
<th>Type de production</th>
<th>Recettes monétaires (millions de dollars)</th>
<th>Proportion des recettes totales (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Productions animales</td>
<td>5 282</td>
<td>66</td>
</tr>
<tr>
<td>Produits laitiers</td>
<td>2 188</td>
<td>27</td>
</tr>
<tr>
<td>Porcs</td>
<td>1 322</td>
<td>17</td>
</tr>
<tr>
<td>Volailles et couvoirs</td>
<td>742</td>
<td>9</td>
</tr>
<tr>
<td>Bovins et veaux</td>
<td>742</td>
<td>9</td>
</tr>
<tr>
<td>Œufs</td>
<td>163</td>
<td>2</td>
</tr>
<tr>
<td>Autres bétails</td>
<td>125</td>
<td>2</td>
</tr>
<tr>
<td>Productions végétales</td>
<td>2 713</td>
<td>34</td>
</tr>
<tr>
<td>Autres cultures</td>
<td>776</td>
<td>10</td>
</tr>
<tr>
<td>Maïs</td>
<td>539</td>
<td>7</td>
</tr>
<tr>
<td>Légumes</td>
<td>530</td>
<td>7</td>
</tr>
</tbody>
</table>
Orienté davantage vers l’élevage, le secteur agricole québécois a généré 5,3 milliards de dollars par l’entremise de ses différentes filières de productions animales, équivalant aux deux tiers des recettes monétaires totales. C’est sans surprise que les industries laitières et porcines apparaissent en tête de liste avec des revenus respectifs de 2,2 et 1,3 milliard de dollars, accaparant ainsi 27 % et 17 % des recettes monétaires totales. Toujours sur le plan de la production animale, les exploitations de volailles, de même que celles des bovins et veaux ont également été lucratives avec des sommes générées de 742 millions de dollars chacune. En ce qui a trait aux productions végétales, elles ont engendré des revenus de 2,7 milliards de dollars en 2015, une hausse de 3 % comparativement à l’année antérieure. Les cultures du maïs, du soya et des légumes sont celles qui se sont le plus distinguées avec un chiffre d’affaires s’établissant entre 420 et 540 millions de dollars chacune. Pour ce qui est des autres cultures (foin, blé, orge, etc.), elles ont cumulé ensemble une proportion de 10 % des recettes monétaires totales. À noter que les recettes monétaires agricoles du Québec, comptant actuellement pour 15 % des recettes canadiennes, ont passablement augmenté au cours de la période 2001 à 2013, passant de 5,7 à 8,3 milliards de dollars (St-Amour, 2016; Groupe AGÉCO, 2015).

De ce fait, l’industrie agricole du Québec contribue considérablement à la création de richesses de la province, comme l’indique son apport de 3,6 milliards de dollars au produit intérieur brut (PIB) généré par le Québec au cours de l’année 2015 (MAPAQ, 2016b). Sa contribution annuelle moyenne au PIB québécois total a été quant à elle évaluée à 1,2 % entre 2001 et 2013 (Groupe AGÉCO, 2015). En outre, la production et la transformation agricoles génèrent chaque année des retombées économiques de grandes ampleurs pour les différents paliers gouvernementaux par le biais de la taxation. Ces revenus, chiffrés également à 3,6 milliards, sont acheminés directement dans les coffres de l’État. Mentionnons aussi que les agriculteurs québécois investissent collectivement plus de 6,2 millions de dollars par année en recherche afin de développer de nouvelles pratiques et technologies (UPA, 2016).

De surcroît, l’agriculture est essentielle à l’économie québécoise, sachant que sa production approvisionne en matières premières la gigantesque industrie bioalimentaire du Québec. Comptant plus de 66 500 entreprises dont les fournisseurs d’intrants, transformateurs alimentaires, grossistes et distributeurs en alimentation, restaurateurs, services-conseils et bien d’autres (MAPAQ, 2013; Groupe AGÉCO, 2015),
l’industrie bioalimentaire a atteint un PIB total de 23,7 milliards de dollars en 2015 (MAPAQ, 2016b). De plus, elle a réalisé 3 % des investissements du Québec, totalisant 2,3 milliards de dollars. Étant donné que 70 % de la production agricole est transformée au Québec (MAPAQ, 2013), l’industrie de la transformation alimentaire a généré 5,8 milliards de dollars en retombées directes et 3,2 milliards de dollars en retombées indirectes en 2013 (Groupe AGÉCO, 2015).

Sur un autre plan, le domaine de l’agriculture procure plusieurs milliers d’emplois en sols québécois. À titre d’exemple, en 2015, le nombre de travailleurs en agriculture s’est élevé à 54 400. D’ailleurs, pour le même montant d’investissement, l’agriculture génère davantage d’emplois que plusieurs autres secteurs économiques (UPA, 2016). Pour ce qui est du secteur de la transformation alimentaire, 1 133 emplois supplémentaires à l’année précédente ont été générés, pour un total de 63 700 emplois. Si on ajoute à cela l’industrie bioalimentaire du Québec dont l’agriculture est le principal pilier, ce sont 488 000 emplois qui ont été occupés, soit approximativement 12 % des emplois du Québec. Une proportion importante de ceux-ci ont été engendrés par les établissements de restauration et les débits de boissons avec 211 000 emplois. (MAPAQ, 2016c)

Par conséquent, dans l’optique de préserver les écosystèmes, mais également d’assurer la pérennité de l’agriculture au Québec et de conserver une sécurité alimentaire, il est fondamental de se tourner vers des technologies et des pratiques agricoles plus durables. Que ce soit à l’aide de programmes
gouvernementaux, d’organismes spécialisés comme les Clubs-conseils en agroenvironnement (CCAE), d’experts ou encore par l’entremise d’initiatives personnelles, plusieurs producteurs agricoles ont déjà mis en œuvre plusieurs pratiques agricoles vertes. En revanche, l’efficacité propre à chacune d’entre elles, en matière de gains environnementaux, n’est pas toujours bien définie.

1.2 Tendre vers des pratiques agricoles plus durables

Dans un Québec lointain, l’agriculture traditionnelle de subsistance utilisait des pratiques agricoles peu dommageables pour l’environnement. Elle aurait même pu être qualifiée de viable étant donné qu’elle répondait majoritairement aux différents critères du concept d’agriculture durable :

« Une agriculture respectueuse de l’environnement, qui produit de façon sécuritaire, des aliments sains et nutritifs tout en maintenant le secteur économiquement viable, concurrentiel et en harmonie avec les industries et les secteurs connexes ». (Ordre des agronomes du Québec, 2005)

Ce type d’agriculture ainsi que ses pratiques ont néanmoins disparu au détriment de l’agriculture intensive au milieu du XXe siècle. Cette dernière, beaucoup plus axée sur la profitabilité, s’est mise à exploiter d’importants cheptels et d’immenses superficies de culture, l’obligeant par le fait même à utiliser de grandes quantités de fertilisants et d’énergies fossiles. Encore considérée comme le modèle dominant aujourd’hui, l’agriculture intensive produit plusieurs externalités négatives vis-à-vis l’environnement. (Bouchard-Bastien, 2010)

Ce n’est qu’en 1972 que les balbutiements entourant le retour de pratiques durables au Québec ont été entendus avec l’arrivée du Mouvement pour l’Agriculture Biologique au Québec. Composés de producteurs et de consommateurs préoccupés par une alimentation saine et par l’environnement, le Mouvement pour l’Agriculture Biologique au Québec a permis de promouvoir et de donner une visibilité au concept d’agriculture durable. (Bergeron, 2012)

Vers le début des années 2000, plusieurs mesures réglementaires visant l’agriculture ont été mises en place par le gouvernement québécois afin de protéger l’environnement et la santé publique. Ces normes ont obligé les producteurs agricoles à se conformer à des exigences plus strictes qu’auparavant en matière environnementale et également à revoir certaines de leurs pratiques (Groupe AGÉCO, 2015).

Dans un premier temps, le Règlement sur les exploitations agricoles (REA), entré en vigueur en 2002, a constitué le fer-de-lance d’une agriculture plus durable. Son objectif premier étant de protéger l’eau et les sols, le REA s’est attardé aux pratiques agricoles associées aux élevages d’animaux et à leurs installations, aux ouvrages de stockage des déjections et à l’épandage de celles-ci. De plus, ce règlement, issu de la Loi sur la qualité de l’environnement (LQE), s’est appliqué également aux parcelles de sols utilisées pour la

L’arrivée de ces nouvelles réglementations a eu l’impact direct souhaité, soit de diminuer certaines pressions agricoles sur l’environnement en agissant sur les pratiques. En outre, avec le recul, l’instauration de ces normes a également eu des effets indirects positifs sur l’environnement comme la sensibilisation de plusieurs producteurs agricoles à l’importance de préserver celui-ci. Cela s’explique par le fait que les nouvelles exigences du ministre ont permis de promouvoir les services-conseils en agroenvironnement aux agriculteurs qui nécessitaient un accompagnement pour se conformer à celles-ci. La preuve, c’est qu’entre 1998 et 2004, l’utilisation de ces organismes a augmenté de 210 % (Groupe AGÉCO, 2015). Depuis, nombreux sont les exploitants agricoles qui ont continué de collaborer avec ces services-conseils en agroenvironnement, comme le démontrent les 8 900 membres actuels des CCAE. Ces services-conseils permettent d’accompagner leurs membres dans la mise en œuvre de pratiques agricoles durables et de les conscientiser à cet égard (Clubs-conseils en agroenvironnement [CCAE], s. d.).

Quinze ans plus tard, force est d’admettre que ces mesures réglementaires ont permis d’amorcer un léger mouvement des producteurs vers une agriculture plus verte au Québec. Malgré que celles-ci ne considèrent peut-être pas tous les aspects environnementaux et ne soient pas assez strictes à certains sujets, il va sans dire qu’elles ont tout de même guidé l’agriculture québécoise vers la bonne direction. Dans un monde où l’agriculture intensive prône toujours, plusieurs efforts seront encore nécessaires si l’on veut un jour pouvoir qualifier l’agriculture québécoise de durable.
2. PRINCIPAUX ENJEUX ENVIRONNEMENTAUX LIÉS À L’AGRICULTURE

Le bilan environnemental que l’on dresse aujourd’hui de l’agriculture au Québec est encore sombre. Bien que les façons de faire commencent tranquillement à changer, certaines pratiques, dont celles reliées aux monocultures, continuent à impacter considérablement l’environnement. Des progrès sont toutefois observés dans le cas de plusieurs enjeux, ce qui laisse présumer que le bilan environnemental de l’agriculture s’améliore.

Le chapitre suivant expose les principaux enjeux environnementaux liés à l’agriculture au Québec. Il décrit plus précisément la façon dont les différents éléments de l’environnement sont touchés par les pratiques agricoles, en plus de présenter l’ampleur de ces impacts. Les problématiques abordées sont celles concernant les thèmes de la qualité de l’air, de la qualité de l’eau, de la santé des sols, de la gestion de l’énergie et de la biodiversité. Il est important de préciser qu’en tant qu’organisme, l’être humain a été considéré comme une composante bien réelle de l’environnement.

2.1 Qualité de l’air

2.1.1 Émissions de GES

Dans l’optique de lutter contre ces changements climatiques, 195 pays se sont mobilisés, dont le Canada, lors de la Conférence de Paris sur le climat en 2015. Ces derniers ont ratifié l’Accord de Paris visant à limiter l’augmentation des températures en dessous de 2 °C et même de tendre vers 1,5 °C. Pour atteindre cet objectif, les pays signataires ont la responsabilité d’agir sur leurs différentes sources de GES, notamment

Au Québec, les cibles de réduction d’émissions de GES sont ambitieuses. Comme le présente la figure 2.1, l’objectif d’ici 2030 est d’atteindre une diminution de 37,5 % des émissions de GES par rapport à celles de 1990, tandis que la cible pour 2050 est fixée au minimum à 80 % de réduction (MDDELCC, 2015a). Chiffrées à 88,8 Mt équivalent dioxyde de carbone (CO₂) en 1990, les émissions de GES au Québec totalisaient 81,2 Mt équivalent CO₂ en 2013, soit une amélioration de 8,6 % (MDDELCC, 2016a).

Figure 2.1 Évolution des émissions de GES au Québec et cibles de réduction, 1990 à 2050 (tiré de : Whitmore et Pineau, 2017, p. 33)

Pour parvenir à leurs fins, les Québécois devront s’attaquer à différents secteurs, dont celui de l’agriculture, puisque ce dernier contribue abondamment aux émissions de GES. En 2013, l’industrie agricole a produit 7,5 Mt équivalent CO₂, comptant pour 9,2 % des émissions totales de GES de la province. Celles-ci représentaient une augmentation de 4,2 % comparativement à celles enregistrées en 1990. La fermentation entérique, la gestion des sols agricoles et la gestion du fumier constituent année après année les trois principales sources d’émissions du milieu agricole au Québec. Quant aux activités liées au chaulage et à l’application d’urée et d’autres engrais azotés, elles génèrent une plus faible proportion des GES émis dans l’atmosphère. (MDDELCC, 2016a)
La fermentation entérique, qui est en fait le processus de digestion stomacale de la cellulose par les herbivores, représente la principale source avec 42,8 % des émissions globales de GES par le secteur agricole (MDDELCC, 2016a). Cela s’explique par le fait qu’une certaine quantité de méthane (CH₄) est produite par les ruminants lors de la dégradation des composés organiques par fermentation anaérobie dans leur rumen (Hassouna et Eglin, 2015). À titre d’exemple, une vache laitière en lactation émet en moyenne 400 grammes de CH₄ par jour (ministère de l’Agriculture et Agroalimentaire du Canada [AAC], 2012). Toutefois, cette production varie en fonction de différents facteurs tels l’espèce et l’âge de l’animal, de même que la quantité et le type d’aliment ingéré (MDDELCC, 2016a; Hassouna et Eglin, 2015). Le CH₄ est un puissant GES comme le démontre son potentiel de réchauffement global qui s’approche à 20 fois supérieur à celui du CO₂ (Hassouna et Eglin, 2015).

La deuxième source reliée à l’agriculture qui engendre le plus de GES au Québec est la gestion des sols agricoles avec une proportion de 28,1 % des émissions totales de ce secteur (MDDELCC, 2016a). Cela est dû principalement à la formation de protoxyde d’azote (N₂O) par réaction microbienne entre les engrais azotés et le sol, et ce, particulièrement lorsque ce dernier est mal drainé. Résultant de la nitrification et de la dénitrification de l’azote dans les sols par les microorganismes, ces émissions de N₂O sont stimulées par la présence d’un excès d’azote provenant de l’épandage d’engrais ou des résidus de culture dans un milieu pauvre en oxygène (Camirand et Gingras, 2011). Étant donné qu’il détient la capacité d’emprisonner la chaleur près de 300 fois plus efficacement que celle du CO₂, le N₂O accentue sans aucun doute la problématique des changements climatiques (AAC, 2016a). En outre, une gestion inadéquate des sols peut également mener à une émanation de CH₄, notamment lorsque le sol est humide et compact (Camirand et Gingras, 2011).

La troisième source est la gestion des fumiers représentant 25,2 % des émissions totales de GES pour l’agriculture québécoise (MDDELCC, 2016a). À ce sujet, les émanations de GES sont occasionnées à différentes étapes de la gestion des fumiers, surtout lors de l’entreposage, la manutention et la manipulation. Le problème se situe lors des réactions microbiennes entre le fumier solide et l’air libre qui produisent du N₂O, alors que l’entreposage de lisier en milieu anaérobie forme du CH₄ (MAPAQ, 2016d).

Un autre GES contribuant activement aux changements climatiques qui est généré par le milieu agricole est le CO₂. Celui-ci est notamment associé à l’application de la chaux agricole, d’urée et d’autres engrais azotés comptant ainsi pour 3,9 % des émanations totales de GES pour ce secteur (MDDELCC, 2016a). Cependant, le bilan de GES d’origine agricole ne considère pas les émissions de CO₂ liées à l’utilisation d’énergies fossiles, plus précisément à la machinerie et au transport sur la ferme, à la production d’engrais minéraux et au chauffage des bâtiments (Équiterre, 2013). En ajoutant cette composante évaluée en 2010 à 1,85 Mt d’émissions de GES (Équiterre, 2013), la proportion de GES émis par le milieu agricole par rapport aux autres secteurs grimpe de 9,2 % à 11,5 %, soit une augmentation significative de 2,3 %. Par ailleurs,
la décomposition de la matière organique (MO) du sol contribue également à la formation de CO$_2$ (MAPAQ, 2016d).

2.1.2 Pollution atmosphérique

La pollution atmosphérique est à l’origine de nombreux problèmes de santé humaine en plus d’altérer la qualité des milieux naturels. Bien qu’une diminution de la majorité des polluants atmosphériques ait été observée au Canada au cours de la période 1990 à 2014, leur situation est toujours préoccupante puisqu’une fois dans l’air, ceux-ci peuvent se disperser rapidement et sur de longues distances (ECCC, 2016a). L’agriculture contribue à cette dégradation de la qualité de l’air en émettant plusieurs polluants, entre autres, de l’ammoniac (NH$_3$), des composés organiques volatils (COVs), des oxydes d’azote (NO$_x$) et des particules en suspension (Hassouna et Eglin, 2015). Une brève description de ceux-ci et de leurs impacts respectifs sur l’environnement est présentée dans les paragraphes ci-dessous.

La deuxième problématique concerne les émissions de COVs provenant des activités agricoles. Au Québec, ce sont environ 8 % des émissions totales de ceux-ci qui sont imputées à l’agriculture (ECCC, 2016b). Issus en grande partie des exploitations d’élevage, les COVs engendrent des conséquences importantes sur la santé et l’environnement. Ils contribuent entre autres à la formation de matières particulières et d’ozone troposphérique menant à l’apparition du smog photochimique. En plus d’être néfaste pour le système respiratoire des êtres humains, ce surplus d’ozone ajoute à l’effet de serre et par conséquent au réchauffement climatique (Agence de l’Environnement et de la Maîtrise de l’Énergie [ADEME], 2014).
Troisièmement, la pollution de l’air par le milieu agricole est aussi causée par les particules en suspension. Composées d’un mélange de substances organiques et minérales, celles-ci proviennent majoritairement de la production de cultures, mais également de l’épandage d’engrais et de la production animale (ECCC, 2016b). Au sujet des impacts sur l’environnement, les particules fines (P$_{2.5}$) retiennent davantage l’attention. Une concentration élevée en P$_{2.5}$ dans l’atmosphère peut nuire grandement à la santé des végétaux, soit en diminuant l’apport en lumière ou en attaquant directement la structure des feuilles. La composition du sol peut également être affectée par les P$_{2.5}$. Concernant les risques pour la santé humaine, il est possible qu’une longue exposition aux P$_{2.5}$ entraîne des maladies respiratoires chroniques et des accidents cardiovasculaires (MDDELCC, s. d. a).

Quatrièmement, l’utilisation de combustibles fossiles à la ferme produit une quantité importante de NO$_x$. En 2014, celle-ci était estimée à 334 tonnes pour l’ensemble des activités agricoles du Québec (ECCC, 2016b). Une fois dans l’atmosphère, les NO$_x$ interagissent avec d’autres gaz, de même que des particules afin de former de nouveaux composés chimiques. Ces derniers peuvent être nocifs pour la population et leur environnement, comme c’est le cas pour l’acide nitrique (HNO$_3$) qui provoque l’acidification des écosystèmes aquatiques et terrestres (ECCC, 2013a). Néanmoins, il ne faut pas sous-estimer les effets du dioxyde d’azote (NO$_2$) à l’état brut. Celui-ci peut causer des problèmes respiratoires à la faune et aux humains, en plus d’endommager la végétation. De la même façon que les COVs, il est également responsable de la formation de l’ozone troposphérique et des conséquences qui y sont associées (ECCC, 2013a). À noter que d’autres gaz sont issus en quantité moindre de l’utilisation de combustibles fossiles comme le monoxyde de carbone (CO) et les oxydes de soufre (SO$_x$).

Finalement, l’usage de pesticides constitue une autre source de pollution de l’air. Lors de la pulvérisation au champ, des milliers de gouttelettes et vapeurs de pesticides sont transportées par voie aérienne hors de la zone ciblée. Ce phénomène communément appelé « dérive des pesticides » présente des risques pour la santé humaine, de même que pour l’environnement. Comme plusieurs des gaz décrits précédemment, l’inhalation de pesticides peut causer des problèmes aux voies respiratoires des humains. En ce qui a trait aux milieux terrestres et aquatiques, les pesticides peuvent s’avérer toxiques pour plusieurs organismes en plus d’altérer l’intégrité de ces milieux. Des dommages aux cultures avoisinantes sont également des risques associés à la pollution de l’atmosphère par l’emploi de pesticides. (Piché, 2008)

2.1.3 Nuisances olfactives

Les nuisances olfactives agricoles peuvent représenter un désagrément pour le voisinage des exploitations. Celles-ci sont souvent associées aux fermes d’élevage, particulièrement celles de porcs et de volailles étant donné que leur production de gaz odorants est élevée (StatCan, 2015). Ces odeurs nuisibles sont causées par les émanations de NH$_3$, de COVs ainsi que de sulfate d’hydrogène (H$_2$S) provenant en grande partie des lisiers et autres fumiers (Ni, Robarge, Xiao et Heber, 2012). Ainsi, pour une exploitation porcine,
l’épandage est responsable de 52 % des émissions d’odeurs, les bâtiments comptent pour 22 %, l’entreposage pour 17 %, la production d’aliments pour 8 % et la décomposition du lisier au champ pour 1 % du total des émissions d’odeurs (Pouliot, 2007). Spécifions que l’intensité et la durée des odeurs peuvent dépendre de la source. Par exemple, les nuisances olfactives liées à l’épandage sont habituellement intenses et épisodiques, tandis que celles provenant des bâtiments sont généralement moins intenses, mais d’une durée prolongée (Pouliot, 2007).

2.2 Qualité de l’eau

De par ses activités, l’agriculture impose de nombreuses pressions aux plans d’eau et milieux aquatiques avoisinants. L’altération de la qualité de l’eau qui en résulte provoque plusieurs répercussions sur le biote. La contamination des eaux de surface et souterraines, de même que les principaux impacts de la sédimentation des cours d’eau sont détaillés dans la présente section.

2.2.1 Contamination des eaux de surface et souterraines

L’agriculture est une activité pouvant affecter de manière considérable la qualité de l’eau. Les risques de contamination des eaux de surface et souterraines sont principalement dus à une pratique agraire largement répandue au Québec afin de maximiser la croissance des cultures, soit l’apport en éléments nutritifs au champ tels l’azote et le phosphore (MDDELCC, s. d.b).

Lors de l’épandage, il arrive parfois qu’une partie des engrais d’origine organique ou minérale ne soit pas complètement assimilée par les végétaux cultivés. Cela peut se produire pour de multiples raisons, par exemple une surrénalisation ou encore des conditions de sol inadéquates (MDDELCC, s. d.b). Par conséquent, ces substances nutritives non consommées migrent vers les plans d’eau environnants par l’entremise de différents modes de transport. Le lessivage et la diffusion des matières fertilisantes à travers le sol permettent à celles-ci de rejoindre les aquifères, alors que le ruissellement à la surface du sol achemine les éléments nutritifs vers les cours d’eau (Beaudin, 2006). Ainsi, ce phénomène entraîne une contamination diffuse des plans d’eau à grande échelle, pouvant même s’étendre jusqu’à l’ensemble d’un bassin versant. Mentionnons que la largeur des bandes riveraines, la forme de l’engrais ainsi que la période et le mode d’épandage des fertilisants peuvent également avoir une incidence sur la quantité d’éléments nutritifs dispersée hors champ (Beaudin, 2006).

Bien que le phosphore et l’azote sous leurs formes les plus courantes ne soient pas nocifs pour la santé humaine, une quantité excessive de ceux-ci dans les eaux de surface est susceptible d’engendrer d’importants impacts sur l’environnement. En effet, une augmentation de la concentration de ces nutriments dans un plan d’eau occasionne une croissance accélérée du phytoplancton et des algues (Beaudin, Michaud, Beaudet et Giroux, 2008). Cette prolifération de la végétation aquatique peut modifier l’habitat
faunique et entraîner à long terme l'eutrophisation des plans d'eau, caractérisée par une augmentation de la turbidité de l'eau et de la biomasse, une diminution générale de la qualité de l'eau et la disparition de certaines espèces aquatiques (Conseil régional de l'environnement [CRE] des Laurentides, 2009). En outre, le surplus de phosphore est également responsable de la formation et du maintien des fleurs d'eau de cyanobactéries, aussi connues sous le nom de « blooms ». Celles-ci peuvent s'avérer problématiques étant donné qu'elles dégagent des toxines potentiellement nocives pour la faune et l'Homme. Chez ce dernier, les principaux effets sur la santé sont l'irritation de la peau, l'atteinte du système nerveux et les troubles hépatiques (Groupe scientifique sur l'eau, 2017). Ceux-ci peuvent survenir à la suite d'un contact direct avec l'eau contaminée, par exemple lors d'une activité récréative, ou encore lorsqu'il y a contamination d'une source d'approvisionnement en eau potable (MDDELCC, s. d.c).

Au Québec, l'enrichissement des eaux par les éléments nutritifs est encore aujourd'hui une réalité bien présente comme le démontre le rapport du MDDELCC intitulé : Charges de phosphore, d'azote et de matières en suspension à l'embouchure des rivières du Québec — 2009 à 2012. Au cours de cette période, les charges estimées à l'embouchure d'une soixantaine de rivières ont totalisé annuellement 3 800 tonnes de phosphore et 63 000 tonnes d'azote. Pour 68 % des stations analysées, la quantité de phosphore a surpassé la charge tolérable basée sur le critère de l'eau de 0,03 mg/l. Pour l'azote, 42 % de l'ensemble des stations ont excédé la charge tolérable de 1 mg/l. En plus d'exposer l'ampleur de la situation, le rapport identifie les principaux secteurs responsables de ce surplus en nutriments dans les rivières du Québec méridional. C'est sans surprise que les sources diffuses anthropiques, majoritairement liées au secteur agricole, sont arrivées au premier rang. (Patoine, 2017)

Par ailleurs, la contamination bactériologique et la contamination par les pesticides constituent deux autres formes de dégradation de la qualité de l'eau. Pour ce qui est de la contamination bactériologique des cours d'eau, celle-ci peut avoir lieu suite à l'épandage de déjections animales sur les terres agricoles. Effectivement, un peu de la même façon que les éléments nutritifs, les contaminants bactériologiques, appelés coliformes fécaux, peuvent être acheminés dans les plans d'eau situés à proximité. Leur présence dans les lacs et rivières peut engendrer des risques pour la santé des usagers (MDDELCC, s. d.b). En ce qui a trait aux pesticides, ceux-ci peuvent atteindre les plans d'eau et la nappe souterraine par les phénomènes de ruissellement et de lessivage. En concentration élevée, les pesticides sont susceptibles d'affecter les différentes composantes de la chaîne trophique aquatique et d’alterer la qualité de l’eau destinée à l’approvisionnement en eau potable (MDDELCC, s. d.b). Cette problématique est encore d'actualité au Québec comme l’a démontré le suivi des pesticides réalisé par le MDDELCC. Au cours de la période 2011 à 2014, les résultats ont montré que les herbicides associés aux cultures de maïs et de soya étaient encore bien présents dans les bassins versants étudiés. Plus de 50 % des échantillons recueillis dans les rivières avoisinantes à ces secteurs agricoles ont révélé la présence de S-métolachlore, d’atrazine, de glyphosate, d’imazéthapyr, de bentazone, de mésotrione et de dicamba. En 2014, les quatre premiers
herbicides de l’énumération précédente ont affiché des taux de détection variant entre 85 % et 99 %, alors que plus de 20 autres herbicides ont aussi été détectés dans ces rivières (Giroux, 2015).

2.2.2 Apport en sédiments

L’apport excessif en sédiments dans les cours d’eau contribue fortement à la pollution de ceux-ci. Les sédiments sont en fait des particules de tailles et de composition variées, qui sont arrachées au sol lors du processus d’érosion. Lorsqu’ils rejoignent un cours d’eau, les sédiments les plus lourds vont s’accumuler au fond du lit, alors que certaines particules plus fines comme les argiles vont rester en suspension dans l’eau (Alliance pour une Gestion Intégrée et Responsable du bassin versant de la rivière du Diable [AGIR pour la Diable], s. d.).

Leur présence en trop grande quantité dans les lacs et rivières est attributable en grande partie aux activités anthropiques. En comparaison, l’érosion naturelle est responsable de la perte d’environ 490 kg de sol par hectare, par an, tandis que les activités de construction engendrent des pertes de sol estimées à 222 395 kg par hectare, par an. Le secteur agricole participe également de façon significative à ce phénomène puisque les grandes étendues de cultures et de pâturages sont sujettes à l’érosion. Elles sont respectivement responsables de pertes de sol évaluées à 28 417 et 7 413 kg par hectare, par année. (Vermont Department of Environmental Conservation, 2006)

Les impacts de la sédimentation des cours d’eau en milieu agricole sont variés. Il faut d’abord comprendre que les sédiments acheminés vers les plans d’eau transportent avec eux d’autres particules non désirées, comme de la MO, des éléments nutritifs, des pesticides et des métaux lourds. Ainsi des problèmes d’eutrophisation et de contamination de l’eau peuvent survenir suite à un apport important en sédiments (AGIR pour la Diable, s. d.). Par ailleurs, la réduction de la transparence de l’eau, l’augmentation de la température de celle-ci et la modification de la bathymétrie par l’apport en sédiments contribuent aussi à la dégradation de la qualité de l’eau et par conséquent à la détérioration des habitats des organismes aquatiques (AGIR pour la Diable, s. d.; ECCC, 2016c; Organisme des bassins versants [OBV] de la Capitale, 2015). Enfin, l’accumulation de sédiments dans les plans d’eau provoque également des risques d’inondation plus importants liés à la modification de la dynamique d’écoulement naturelle des eaux (AGIR pour la Diable, s. d.).

2.3 Santé des sols

Bien que la bonne condition des sols soit essentielle à la production de cultures, l’intensification de l’agriculture a contribué ironiquement et de façon importante à la détérioration de ceux-ci. La section suivante présente les impacts des activités agricoles sur les sols, plus particulièrement en ce qui a trait à l’érosion, à la détérioration de la structure du sol et à l’appauvrissement en MO.
2.3.1 Érosion

« la perte d’éléments nutritifs des végétaux, de la MO du sol, d’une réduction de la disponibilité d’eau pour la croissance des cultures et, en définitive, d’une limitation du volume de sol disponible pour la croissance des racines » (AAC, 2014a).

Chacune des formes d’érosion est détaillée dans les paragraphes suivants, ainsi que les impacts qu’elles engendrent sur l’environnement et plus particulièrement, sur les sols.

L’érosion hydrique, causée par le ruissellement de l’eau à la surface du sol, existe sous plusieurs formes, dont l’érosion en nappe, en rigoles, par ravinement et des berges (Vallée, 2009). De plus, différents degrés d’érosion peuvent être observés, allant du simple morcellement des agrégats jusqu’à l’enlèvement de couches entières de sols ou de MO. La modification ou les pertes plus importantes de sols engendrées par l’érosion hydrique peuvent altérer différentes caractéristiques des sols, notamment la structure, la stabilité et la texture. Une détérioration de la structure du sol peut réduire considérablement la capacité de rétention d’eau des sols (MAAARO, 2015). Par ailleurs, l’érosion hydrique en milieu agricole peut être responsable de plusieurs autres problèmes environnementaux mentionnés précédemment, comme l'eutrophisation, la sédimentation et la pollution des plans d’eau.

 Certaines pratiques agricoles accentuent le processus d’érosion hydrique dans les champs. C’est notamment le cas des pratiques aratoires et culturales qui contribuent à réduire l’érodabilité des sols en les compactant, en diminuant la qualité de leur structure ou en les appauvrissant en MO. Plus précisément, le nombre de passages de la machinerie, le moment des labours, le type d’instruments aratoires, la profondeur du travail du sol et le sens dans lequel celui-ci se fait sont tous des facteurs pouvant influencer l’érosion hydrique. De surcroît, un sol dénudé de végétation augmente aussi les risques d’érosion étant donné qu’il y a absence d’obstacle pour freiner l’écoulement de l’eau en surface. (MAAARO, 2015)

L’érosion éolienne se produit lorsque le vent, soufflant à la surface sur sol, déplace les particules de sols pour les amener plus loin. Ce mouvement des particules peut s’effectuer de trois façons distinctes
dépendamment de la taille de celles-ci et de la vitesse du vent, soit par suspension, saltation ou roulement. Mentionnons que les terres sableuses, de même que les terres noires sont susceptibles de subir davantage d’érosion éolienne que les autres types de sols. Le principal impact de l’érosion éolienne sur ces sols est la modification de leur texture. En effet, les rafales sont susceptibles de réduire la proportion de MO, de sable fin, de limon et d’argile dans le sol, menant ainsi à une baisse significative de la capacité de rétention d’eau de celui-ci. Pour ce qui est des autres impacts sur l’environnement, l’érosion éolienne peut déplacer à l’extérieur du milieu agricole des éléments nutritifs, des pesticides ou tout autre produit chimique fixé aux particules de sols. Cela contribue à la dégradation de la qualité de l’air et des sols non agricoles, ainsi qu’à la pollution de l’eau. (MAAARO, 2015)

Les deux principaux facteurs agricoles qui prédominent quant à l’intensification de l’érosion éolienne dans les champs sont le travail excessif du sol et l’absence de couvert végétal permanent. Le premier détruit la structure du sol facilitant ainsi le transport des particules, tandis que le second rend vulnérable le sol en l’exposant directement au vent. La raréfaction d’arbres, d’arbustes ou encore l’absence de haies brise-vent accentuent également le processus d’érosion. (MAAARO, 2015)

L’érosion liée directement au travail du sol est en fait le déplacement progressif du sol vers le bas des pentes par la machinerie et la gravité. Malgré le fait qu’elle soit généralement la moins dommageable des trois formes d’érosion exposées, l’érosion liée au travail du sol est tout de même un problème, notamment puisqu’elle augmente l’érosion hydrique. D’ailleurs, les facteurs agricoles contribuant à ce type d’érosion concernent les mêmes pratiques aratoires et culturales que celle-ci. (MAAARO, 2015)

2.3.2 Détérioration de la structure du sol

La structure du sol fait référence au mode d’organisation des différentes particules de sable, de limon et d’argile entre elles. Ces particules, une fois fixées par de l’argile, de l’humus et du calcium, forment des agrégats (MAAARO, 2009). Dans un sol bien structuré, les agrégats sont d’une bonne taille, permettant ainsi à l’eau et à l’air de circuler dans les interstices. De plus, ces pores permettent au système racinaire des végétaux de s’enfoncer dans le sol et de se développer adéquatement. Il y a plusieurs avantages reliés à la présence d’une bonne structure de sol, par exemple un drainage efficace, une bonne aération, une augmentation de la résistance à l’érosion et à la compaction et une bonne rétention d’eau et des éléments nutritifs (Espace pour la vie Montréal, s. d.).

L’endommagement de la structure du sol qui se traduit par le bris des agrégats peut être causé par certaines pratiques agricoles, particulièrement celles reliées aux monocultures. Une grande partie de cette dégradation résulte du compactage des sols, notamment par l’utilisation de la machinerie en sols humides. Le travail excessif du sol est aussi une raison pouvant expliquer la destruction de la structure du sol (Thibeault, 2000). D’une manière plus indirecte, les activités agricoles agissent sur le processus d’érosion
hydrique, qui lui altère la structure du sol en diminuant sa proportion de MO et d’argile. Ceci a pour effet de réduire la stabilité des agrégats et par conséquent de réduire sa capacité de rétention d’eau et d’éléments nutritifs, de même que tous les autres avantages reliés à une bonne structure de sol (M’seffar, 2009). Enfin, la surfertilisation des sols représente également un danger pour la structure. L’utilisation excessive d’engrais favorise l’acidification des sols, qui elle engendre le tassement et la diminution de l’aération de ceux-ci (M’seffar, 2009).

2.3.3 Appauvrissement en MO

Dépendamment des types de sols, la teneur optimale en MO varie généralement entre 2 % et 5 % (SEDE BENELUX, 2011; Conseil des productions végétales du Québec [CPVQ], 2000a). La MO présente dans les sols agricoles occupe des fonctions essentielles de toutes sortes. Elle sert notamment de réserve d’éléments nutritifs pour les plantes, en plus d’avoir une bonne capacité de rétention d’eau (Ménard, 2014). Elle permet également d’améliorer la structure du sol en stabilisant les agrégats par cimentation des particules minérales du sol. Ceci rend le sol moins compact et davantage perméable à l’eau et à l’air, ce qui est favorable au développement du système racinaire des plantes et propice à l’activité biologique du sol (CPVQ, 2000a). Une bonne stabilité des agrégats contribue aussi à la réduction de l’érosion étant donné que ceux-ci sont plus difficiles à déplacer par l’eau de ruissellement et par le vent (CPVQ, 2000a). Par ailleurs, la MO joue un rôle important en ce qui a trait aux changements climatiques puisqu’elle a la capacité de séquestrer des quantités étonnantes de carbone dans le sol. En effet, 1 500 milliards de tonnes de carbone sont stockées dans les sols du monde entier sous forme de MO. Ceci permet de retirer beaucoup de CO₂ de l’atmosphère, à un tel point où une augmentation du stockage de carbone dans les sols de 0,4 % par année pourrait permettre d’atteindre la neutralité carbone (AAC, 2016b; ministère de l’Agriculture, de l’Agroalimentaire et de la Forêt, 2015).

Toutefois, l’agriculture et ses pratiques peuvent contribuer à l’appauvrissement des sols en MO. La principale cause est l’érosion, s’expliquant par le fait que la MO se trouve majoritairement à la surface du sol. Le travail intensif lié à la pratique de la monoculture engendre aussi une perte importante de MO (Thibeault, 2000). Il contribue à l’accélération du processus de minéralisation de la MO en favorisant l’aération du sol et l’activité des microorganismes (CPVQ, 2000a).

2.4 Gestion de l’énergie

L’énergie constitue un maillon important de l’agriculture étant donné qu’elle est reliée à pratiquement tous les types d’activités agricoles. La section suivante traite dans un premier temps de la consommation énergétique de l’agriculture sous un angle général. Dans un deuxième temps, il est question plus particulièrement de la dépendance du milieu agricole aux énergies fossiles.
2.4.1 Consommation énergétique

2.4.2 Dépendance aux énergies fossiles

Issues de diverses formes d’hydrocarbures, les énergies fossiles sont largement utilisées dans le domaine de l’agriculture. D’entrée de jeu, il est possible de distinguer deux types de consommation d’énergies fossiles, soit la consommation directe et celle indirecte. La première englobe tous les usages agricoles reliés au chauffage des bâtiments, à la machinerie et au transport sur la ferme, tandis que la seconde fait référence aux intrants utilisés en agriculture qui requièrent une certaine quantité d’énergie. Elles représentent respectivement 65 % et 45 % de la consommation totale d’énergies fossiles en milieu agricole. (Équiterre, 2013)

Pour sa part, la consommation directe d’énergies fossiles est en progression depuis 1996 et comptait en 2010 pour 2,7 % de l’ensemble des énergies fossiles employées au Québec (Équiterre, 2013). Elle repose sur l’utilisation de plusieurs sources d’énergie présentées à la figure 2.2 et permet d’effectuer une grande diversité d’activités agricoles. Le carburant diesel constitue la principale source d’énergies fossiles en agriculture avec une proportion de 55 %. Celui-ci sert principalement à l’alimentation de la machinerie agricole et aux camions utilisés dans la chaîne de production (Groupe AGÉCO, 2006). Pour ce qui est de l’essence, son usage lié aux différents moyens de transport sur la ferme et au fonctionnement de divers équipements (Groupe AGÉCO, 2006) représente près du quart de la consommation directe totale d’énergies fossiles. Les trois sources restantes sont quant à elles utilisées pour le chauffage, que ce soit pour des bâtiments d’élevage, des serres, des séchoirs à grains ou pour le chauffage de l’eau (Dyer et
Desjardins, 2007; Groupe AGÉCO, 2006). C’est ainsi 21 % de la consommation directe d’énergies fossiles qui est attribué au gaz naturel, au propane et au mazout.

Concernant la consommation indirecte d’énergies fossiles, elle est liée à la fabrication et aux transports des intrants agricoles. Les sources les plus courantes sont le diesel, le gaz naturel ainsi que quelques autres produits pétroliers. Alors que le diesel sert au transport des intrants jusqu’à la ferme, le gaz naturel est quans à lui souvent combiné à d’autres produits pétroliers pour la confection de pesticides (Équiterre, 2013). Cependant, la consommation indirecte la plus imposante en termes de quantité d’énergies fossiles utilisées est sans aucun doute la production d’engrais minéraux, notamment celle associée aux engrais azotés (Martin, 2010). Par exemple, une tonne d’ammoniac demande 800 m³ de gaz naturel pour sa fabrication (Huang, 2007).

Le principal impact environnemental découlant de cette dépendance accrue aux produits pétroliers est celui des GES. Comme il a été mentionné précédemment, les énergies fossiles utilisées en milieu agricole sont responsables de 1,85 Mt d’émissions de GES. Ces émissions sont associées en grande partie à la consommation directe d’énergies fossiles puisque la consommation indirecte est pour la plupart du temps comptabilisée dans d’autres secteurs d’activité. De plus, comme la fabrication d’engrais s’effectue majoritairement à l’extérieur du Québec, les émanations de GES qui en découlent ne sont pas prises en considération dans le bilan provincial. Les conséquences qu’entraînent les GES sur l’environnement sont détaillées à la section 2.2.1. (Équiterre, 2013)

Sachant que les besoins énergétiques mondiaux pourraient augmenter de 45 % d’ici 2030 (EDF Énergies Nouvelles, 2013) et que les réserves mondiales de pétrole et de gaz naturel seront épuisées dans un peu plus d’une cinquantaine d’années (Fondation d’entreprise ALCEN, 2016), la dépendance aux énergies
fossiles de l’agriculture constitue une autre problématique. Face à l’épuisement de ces ressources naturelles non renouvelables, les exploitants agricoles n’auront d’autres choix que de se tourner vers des formes d’énergie plus durables (Équiterre, 2013).

2.5 Biodiversité

Définie comme étant « la variabilité des êtres vivants de toute origine y compris, entre autres, les écosystèmes terrestres et aquatiques et les complexes écologiques dont ils font partie […] » (Organisation des Nations Unies, 1992, p. 3), la biodiversité procure plusieurs services écosystémiques à l’être humain, d’où l’importance de s’en préoccuper. La section qui suit présente les impacts négatifs de l’agriculture sur les habitats et les milieux naturels, de même que sur les insectes pollinisateurs.

2.5.1 Dégradation des habitats et des milieux naturels

Avec ses 40 000 espèces sur le territoire, dont 75 % sont des espèces fauniques et 25 % des espèces végétales, le Québec présente une biodiversité intéressante (CRE de la Côte-Nord, s. d.). La plupart d’entre elles sont rassemblées dans le sud du Québec, à l’endroit même où se trouve la zone agricole la plus productive. Ce partage du territoire entre l’agriculture et les différentes espèces sauvages n’est pas sans conséquence. En effet, près de 58 % des espèces fauniques qui fréquentent le milieu agricole et qui sont désignées menacées ou vulnérables au Québec, ou susceptibles de l’être, doivent la précarité de leur statut aux activités agricoles (ministère des Forêts, de la Faune et des Parcs [MFFP], s. d.). Une carte, disponible à l’annexe 3, illustre bien la répartition méridionale de la richesse en espèces menacées ou vulnérables au Québec. Les pertes et les détériorations des habitats et des milieux naturels, attribuables notamment à l’intensification de l’agriculture, sont les principales causes de la disparition massive des espèces et par le fait même, de l’effritement de la biodiversité présente dans le sud Québec (MFFP, s. d.; CRE de la Côte-Nord, s. d.).

En premier lieu, il est certain que la fragmentation et la destruction de plusieurs milieux naturels au détriment de l’agriculture entraînent des répercussions directes sur un grand nombre d’espèces. Les milieux humides et les forêts sont deux exemples où l’agrandissement des zones cultivées s’effectue régulièrement à leurs dépens (MFFP, s. d.). Concernant les milieux humides, ce sont 284 km² dans la région des basses-terres du Saint-Laurent qui ont été affectées par les activités agricoles au cours des années 1990 à 2011. Ceci représente 50 % des perturbations totales observées sur les milieux humides de ce territoire. Le remblayage, le creusage, le drainage et le déboisement sont les types de perturbations les plus dommageables pour ces milieux (Pellerin et Poulin, 2013). En plus de réduire à néant la riche biodiversité présente dans les milieux humides, les pressions agricoles de la sorte engendrent également une perte des fonctions essentielles de ceux-ci, dont la filtration et la rétention d’eau (Nature Québec, 2011). À propos des milieux forestiers, près de 12 000 hectares ont été déboisés au pays pour des fins agricoles en 2014,
soit plus que tout autre secteur industriel (Ressources naturelles Canada [RNCan], 2016). Malgré que cette superficie défrichée soit 72 % moindre qu’en 1990, il reste que la disparition de ces forêts provoque une perte de refuges pour les espèces fauniques et une diminution de la qualité des milieux naturels résiduels (RNCan, 2016; MFFP, s. d.). Il faut dire que les champs de monoculture intensive qui remplacent les parcelles boisées détruites ne sont pas très attrayants pour les espèces sauvages (MFFP, s. d.).

En second lieu, la biodiversité québécoise peut aussi être affectée de manière indirecte. En effet, les cours d’eau, l’air et les sols qui reçoivent des pesticides, polluants, éléments nutritifs, et autres extrants des activités agricoles mentionnées dans les sections précédentes, sont également des habitats pour la faune et la flore. Ces pressions exercées sur l’environnement peuvent donc toucher un milieu sensible et ainsi avoir un impact notable sur les organismes présents. Prenons l’exemple des frayères qui constituent des sites d’une importance cruciale pour plusieurs poissons. Ces sites de reproduction se déteriorant par l’apport en sédiments agricoles dans le fond des cours d’eau, ce qui modifie la composition des particules de ces sites (AGIR pour la Diable, s. d.). La dégradation de ces habitats aquatiques par ensevelissement engendre des répercussions de tailles pour les poissons qui les côtoient, comme la réduction du taux de reproduction, le déclin des populations et même la survie de certaines espèces.

Par ailleurs, les écosystèmes étant des systèmes complexes où l’ensemble du milieu et des espèces qui y vivent sont très interdépendants (Lazure, 2007), une pression affectant un seul maillon peut avoir un impact considérable sur l’ensemble de la biodiversité présente. Par exemple, les paramètres physico-chimiques de certains milieux aquatiques peuvent être modifiés par les activités agricoles environnantes. Cette détérioration de la qualité de l’eau a pour effet de réduire la diversité des organismes aquatiques benthiques, situés à la base du réseau trophique. Conséquemment, la diversité des organismes plus élevés dans la chaîne alimentaire peut en être affectée, comme pour les amphibiens, les poissons, les oiseaux et les mammifères (Hudon et al., 2011).

2.5.2 Déclin des insectes pollinisateurs

La pollinisation constitue un service écosystémique de grande importance pour les êtres humains, en plus de contribuer au maintien de la biodiversité. Ce service d’approvisionnement peut être effectué par une grande variété d’organismes, notamment par plusieurs espèces d’insectes comme les abeilles (Programme des Nations Unies pour l’environnement, 2010). Toutefois, une baisse considérable des populations d’insectes pollinisateurs a été observée au cours des dernières années. Une part de responsabilité importante dans ce déclin est infligée aux néonicotinoïdes, une famille d’insecticides, dont l’utilisation est très répandue aujourd’hui dans le monde agricole (Fondation David Suzuki, 2014). Au Québec, la quasi-totalité des semences de maïs-grain et plus de 75 % des semences de soja en sont enrobées, représentant plus de 650 000 hectares de cultures chaque année (Samson-Robert, 2014). Bien que leur but premier soit de protéger les cultures contre les insectes ravageurs, les néonicotinoïdes constituent une famille
d’insecticides à large spectre, faisant en sorte qu’ils agissent également de façon involontaire sur d’autres espèces d’insectes comme les pollinisateurs (Chapleau, 2013). De plus, ils sont persistants dans l’environnement et détiennent un potentiel élevé de lessivage, ce qui ajoute au danger qu’ils représentent (Chapleau, 2013; Fournier, s. d.).

Le Programme des Nations Unies pour l’environnement (2010) estime que les pertes de colonies d’abeilles domestiques ont été si importantes depuis 2004, que le nombre de pollinisateurs domestiques en Amérique du Nord est à ce jour au plus bas depuis les cinquante dernières années. Ce constat est inquiétant, sachant que sans ces insectes, des baisses de rendement pourraient être observées dans 75 % des récoltes (Greenpeace, 2013). La figure 2.3 illustre d’ailleurs les pertes que pourraient subir la production alimentaire ainsi que la biodiversité végétale advenant la disparition complète des abeilles.

Figure 2.3 Production alimentaire et biodiversité végétale avec et sans la présence des abeilles
(tiré de : Greenpeace, 2013, p. 15)

En outre, les impacts néfastes provenant de l’usage des néonicotinoïdes en agriculture ne s’arrêtent pas aux pollinisateurs. Plusieurs groupes peuvent être affectés par la contamination des eaux et des sols par
ce pesticide, notamment de petits invertébrés aux rôles écologiques importants comme c'est le cas pour les coccinelles et les vers de terre. Plusieurs espèces d'oiseaux sont également impactées par cet insecticide (Fondation David Suzuki, 2014).
3. PRINCIPALES PRATIQUES AGRICOLES ATTÉNUANT LES IMPACTS ENVIRONNEMENTAUX

En réponse aux nombreux enjeux décrits précédemment, plusieurs exploitants agricoles québécois ont adopté des approches plus respectueuses de l’environnement. Le chapitre suivant présente un aperçu des principales pratiques agricoles réduisant les impacts environnementaux de l’agriculture. Celles-ci sont abordées selon les six catégories suivantes : les pratiques culturales de conservation, la saine gestion des matières fertilisantes, la gestion raisonnée des pesticides, les aménagements durables au champ, la gestion adaptée des animaux d’élevage et les infrastructures et équipements durables. Pour chacune des pratiques alternatives, des explications sont fournies quant aux façons dont celles-ci peuvent améliorer le bilan environnemental de l’agriculture.

3.1 Pratiques culturales de conservation

Parmi l’ensemble des mesures agroenvironnementales existantes, les pratiques culturales de conservation sont probablement celles qui agissent sur le plus grand éventail de problèmes environnementaux. La section suivante présente ces principales méthodes de culture plus vertes ainsi que les gains environnementaux que celles-ci procurent.

3.1.1 Rotation des cultures

Cette pratique consiste à utiliser une succession de différentes cultures sur une même parcelle de terre. Selon une séquence planifiée, les espèces végétales sont alternées d’année en année afin d’en retirer divers bénéfices. Ceux-ci peuvent provenir directement de l’effet engendré par la succession des différentes cultures à un endroit donné ou encore des caractéristiques spécifiques de certaines espèces végétales qu’on y insère. D’ailleurs, la rotation des cultures se combine bien avec tous les autres pratiques culturales de conservation décrites dans la présente section. En plus d’augmenter les rendements, la rotation des cultures contribue à réduire les impacts de l’agriculture sur l’environnement de plusieurs façons. Celles-ci sont décrites ci-dessous. (MAPAQ, 2005)

L’introduction d’une espèce végétale de la famille des Fabacées dans la rotation peut avoir un impact notable sur la quantité d’azote disponible pour les cultures. Leur capacité à fixer l’azote de l’air constitue une source renouvelable de ce nutriment et permet de maintenir la fertilité azotée du sol (N’Dayegamiye, Tremblay, Deschênes et Drapeau, 2013). Par exemple, la contribution de la luzerne peut s’élèver entre 100 et 160 kg d’azote par hectare sur les 18 premiers mois. L’utilisation de légumineuses diminue ainsi la dépendance des exploitations agricoles aux engrais azotés, en plus d’améliorer les rendements et la structure du sol (ARVALIS - Institut du végétal, 2010). Aussi, comme l’azote atmosphérique fixé par les légumineuses est minéralisé sur une longue période, les surplus se retrouvent plus rarement dans les cours d’eau et les nappes souterraines comparativement aux engrais azotés conventionnels où l’azote, disponible
plus facilement, migre aisément par ruissellement et par lessivage. Environ 40 % à 75 % de l’azote total présent dans les cultures de légumineuses sont disponibles dans les sols pour les cultures subséquentes (Baldwin, 2006).

La rotation culturale est également bénéfique pour atténuer l’érosion des sols. D’une part, l’insertion d’une espèce végétale de couverture dans la rotation favorise l’infiltration de l’eau dans le sol, réduit le ruissellement, absorbe l’impact des gouttelettes de pluie au sol, en plus de restaurer le taux de MO du sol (Séguin, Lardon et Monestiez, 2004; CPVQ, 2000a) (plus de détails à la sous-section 3.1.5). D’autre part, le maintien d’un sol en santé par la rotation des cultures rend les sols moins vulnérables à l’érosion. En offrant au sol des profils racinaires différents à chacune des saisons, la rotation des cultures contribue au maintien d’une bonne structure de sol et à la stabilisation des agrégats. L’intégration de graminées permet d’améliorer les caractéristiques physiques à la surface du sol, tandis que les légumineuses stabilisent la structure en profondeur à l’aide de leur système racinaire plus développé (CPVQ, 1986). La comparaison entre une culture de maïs en continu et une rotation sur quatre années de maïs, avoine et luzerne illustre bien la différence en termes d’érosion. Le ruissellement observé en situation conventionnelle est plus de quatre fois plus élevé que celui en situation d’alternance des cultures. Concernant les pertes de sol, celles-ci sont plus importantes de 86 % dans une culture du maïs en continu que dans une rotation des cultures de maïs, avoine et luzerne sur quatre ans (CPVQ, 1986).

Sachant que plusieurs insectes ravageurs, maladies et adventices sont spécifiques à certaines cultures en plus d’avoir des cycles de développement particuliers, l’alternance des cultures permet d’interrompre leur cycle et ainsi réduire leur présence dans les champs. Une diminution de ces organismes nuisibles entraîne par conséquent une réduction de l’utilisation de produits phytosanitaires. Cela est favorable pour la biodiversité environnante étant donné que les habitats des différentes espèces en sont moins altérés. Par ailleurs, comme chaque culture possède généralement des ennemis différents, les traitements de pesticides pour les éliminer varient en fonction de l’espèce végétale cultivée. De ce fait, la rotation des cultures permet d’éviter l’apparition de résistance chez les organismes nuisibles. (Institut de l’Agriculture Durable, s. d.; ministère de l’Agriculture, de l’Agroalimentaire et de la Forêt, 2009)

Finalement, une rotation des cultures efficace permet de réduire considérablement les émissions de GES. En effet, l’augmentation du rendement des cultures et l’enrichissement du sol en MO qu’engendre cette pratique permettent de séquestrer une plus grande quantité de gaz carbonique dans les sols qu’en monoculture, tandis que l’intégration de cultures d’hiver allonge la période de captage du carbone (Robert, 2008; Centre de conservation des sols et de l’eau de l’est du Canada [CCSEEC], s. d.a). Par exemple, le maïs sur maïs produit 60 % plus de N₂O que le maïs sur blé d’automne (Robert, 2008). Par ailleurs, une amélioration de l’autoapprovisionnement alimentaire pour le bétail que procure une rotation des cultures planifiée résulte en une diminution des émissions de GES liées au transport des grains (Robert, 2008). La
diminution de la fréquence d'épandage de fertilisants azotés et de pesticides, toutes deux décrites plus tôt, se traduit par une baisse de l'utilisation de la machinerie et ainsi une diminution des GES.

3.1.2 Culture en contre-pente

La culture en contre-pente est une pratique relativement simple qui consiste à orienter les cultures perpendiculairement à la pente principale, lorsque dénivelé il y a. Elle permet de réduire considérablement l’érosion hydrique du sol (CPVQ, 2000b). En effet, la position stratégique des rangs et des sillons agit en tant qu’obstacle à l’eau dévalant la pente, ce qui a pour objet de limiter le ruissellement et favoriser l’infiltration de l’eau dans le sol (M’seffar, 2009). Efficace sur les pentes inférieures à 10 %, la culture en contre-pente peut diminuer les pertes de sol de 25 % selon plusieurs spécialistes (CPVQ, 1986; Stone et Hilborn, 2000). Le Comité atlantique du génie rural avance quant à lui des chiffres plus élevés à la hauteur de 30 % à 50 % (CPVQ, 2000b). Une méthode plus complexe de culture en contre-pente est de suivre les courbes de niveau. Comme cette technique tient compte des différentes variations de la pente des champs (CPVQ, 2000b), elle permet de réduire davantage les risques d’érosion hydrique, soit de 50 % (Stone et Hilborn, 2000).

Au Québec, la culture en contre-pente s’avère parfois difficile à exécuter à cause du type de division cadastrale et de la faible largeur des champs. Néanmoins, elle se combine bien avec d’autres pratiques agroenvironnementales comme la rotation des cultures, la culture en bandes alternées ou bien la culture sur billon. (CPVQ, 2000b)

3.1.3 Culture sur billon

La culture sur billon, présentée à la figure 3.1, est une méthode de semis consistant à cultiver des plantes annuelles sur des buttes permanentes. Cette pratique culturale s’applique surtout en grande culture comme le maïs et le soya, mais fonctionne également pour le maraîchage en sol lourd. La présence de billons permet au lit de semence de se réchauffer et de se drainer plus rapidement, ce qui est bénéfique pour les cultures. En plus d’augmenter les rendements de ces dernières en sol mal drainé, le billonnage a de nombreux avantages sur le plan environnemental. (Weil et Duval, 2009)

Considérée comme l’une des pratiques de travail réduit, la culture sur billon contribue à limiter les zones de passage de la machinerie hors de la zone d’enracinement des plantes étant donné que celle-ci circule uniquement dans les sillons créés par la surélévation des rangs (Brodeur, Crowley, Desmeules et Durox, 2008). Ainsi, cela permet de conserver une structure de sol de bonne qualité, de même que favoriser l’activité biologique du sol. La diminution de la compaction du sol à la base des plants est un autre aspect positif de la culture sur billon (Club Action Billon, 2005). En ce qui a trait à l’érosion, un billonnage réalisé adéquatement peut atténuer de façon significative les risques de pertes de sol. Les buttes, offrant une plus
grande surface d’infiltration au sol, réduisent le ruissellement de l’eau. De ce fait, la culture sur billon en courbe de niveau réduit de 30 % l’érosion pour les pentes de 1 % à 8 % par rapport au simple labour en courbe de niveau (Roose, 1994). Toutefois, il faut être prudent, car la présence de billons peut aussi avoir l’effet inverse et accroître l’érosion. Effectivement, ceux-ci augmentent la pente du terrain, ce qui diminue la cohésion du sol et concentre les eaux de ruissellement sur une même ligne de sol compacté par le passage répété de la machinerie entre les rangs (Roose, 1994).

Par ailleurs, la culture sur billon requiert une quantité d’énergies fossiles moindre comparativement au travail de sol conventionnel. La diminution du nombre de passages au champ et l’utilisation d’une machinerie de plus petite taille et moins énergivore expliquent cette différence (Club Action Billon, 2005). À titre d’exemple, l’économie de carburant pour les cultures du maïs-grain, du soya et des céréales à paille sur billon se chiffre approximativement de 18 litres par hectare à 20 litres par hectare de diesel, représentant 56 % à 65 % par rapport au travail de sol conventionnel (Brodeur, Crowley, Desmeules et Durox, 2008). Cette réduction dans la consommation de produits pétroliers se traduit par une meilleure qualité de l’air, notamment par la diminution des émissions des GES et des polluants atmosphériques.

Finalement, un dernier bienfait environnemental lié à cette pratique culturale de conservation est l’usage restreint des fertilisants chimiques et des pesticides. L’application en bande de ces produits limite grandement la quantité employée pour enrichir les plantes cultivées et détruire les organismes nuisibles. Plus concrètement, l’utilisation d’herbicides peut être réduite de 50 % en contexte de production conventionnelle grâce à cette technique d’application (Brodeur, Crowley, Desmeules et Durox, 2008). Les conditions des plans d’eau environnants, de même que celles de l’air en sont toutes deux améliorées.
3.1.4 Culture en bandes alternées

L’aménagement en bandes alternées est une forme de pratique culturale de conservation reliée à l’arrangement spatial de différentes cultures. Comme le montre la figure 3.2, il s’agit d’ensemencer en bandes longues et étroites divers types de cultures de façon à ce qu’elles s’altèrent. Pour être effective, cette pratique agricole doit être réalisée en contre-pente et demande une bonne planification des rotations. Généralement, des bandes de cultures fourragères sont jumelées à celles de cultures annuelles afin d’en retirer le maximum de bénéfices (CCSEEC, s. d). La largeur des bandes engazonnées, le type de culture annuelle et la méthode de récolte des différentes espèces végétales sont des éléments jouant sur l’efficacité de cette pratique. (M’seffar, 2009)

Figure 3.2 Culture en bandes alternées (tiré de : United States Department of Agriculture, s. d.)

En termes de gains environnementaux, la culture en bandes alternées sert principalement à diminuer l’érosion et les risques de maladies et de ravageurs. Dans le premier cas, la présence de certaines cultures comme les plantes graminées pérennes permet de compenser la vulnérabilité des plantes annuelles face à l’érosion (CCSEEC, s. d.b), notamment en réduisant la vitesse de ruissellement de l’eau et la surface de sol exposée et en augmentant la capacité de rétention d’eau (Comité de concertation et de valorisation du bassin de la rivière Richelieu, 2016; Klaïj, 1994). De plus, l’alternance de cultures de différentes hauteurs permet d’atténuer la vitesse du vent et ainsi limiter l’érosion éolienne (Ghaffarzadeh, 1999). Certains programmes de rotation des cultures en bandes alternées comme la rotation maïs, céréale, foin, foin peuvent atteindre une réduction de l’érosion de l’ordre de 50 % à 75 %, lorsqu’effectués en contre-pente, par rapport à une culture positionnée dans le sens de la pente (CPVQ, 1986). Les propos de Stone et Hilborn (2010) abondent dans le même sens puisque selon eux, une culture à bandes réalisée perpendiculairement à la pente engendre des pertes de sol 63 % moindre qu’une culture traditionnelle dans le sens de la pente. Si l’on ajoute la prise en compte des courbes de niveau à la culture à bandes alternées,
l'érosion peut atteindre une diminution de 75 %. En faisant abstraction de l'effet du sens de la culture par rapport à la pente, c'est tout de même une réduction nette de 38 % des pertes de sol que procure la pratique de culture en bandes alternées (Stone et Hilborn, 2000). Globalement, une baisse de l'érosion entraîne une diminution des pertes d'éléments nutritifs, de produits phytosanitaires et de MO (Li et al., 2001; Klaij, 1994). Par conséquent, l'application d'intrants chimiques peut être réduite, menant ainsi à une diminution de la compaction du sol et de la consommation de carburant dues à la diminution du nombre de passage au champ par la machinerie (CPVQ, 2000 c; ÉcoRessources inc., 2013).

Dans le second cas, la culture en bandes alternées permet le contrôle d'organismes nuisibles par l'augmentation des populations d'ennemis naturels et l'augmentation du taux de parasitisme (Ma, Hao, Zhao et Kang, 2007). Labrie, Estevez et Lucas l'ont d'ailleurs démontré dans une étude où l'aménagement de bandes alternées composées de blé, de maïs, de soya et de vesce avait permis de réduire de moitié l’abondance du puceron du soya par rapport aux parcelles composées uniquement de soya (Centre de référence en agriculture et agroalimentaire du Québec, Comité Céréales et Comité maïs et oléoprotéagineuses, 2010). Les résultats d'une autre recherche sont plus mitigés quant à l'efficacité de cette pratique étant donné que le contrôle de la cécidomyie orangée du blé n'avait guère fonctionné à court terme (Goyer, 2014). Néanmoins, l'étude insiste sur le fait que le système de bandes présente tout de même un potentiel intéressant pour lutter contre les insectes ravageurs par la présence de prédateurs naturels, notamment les coccinelles, les Platygastridae et les punaises Orius. Il faut toutefois que la culture à bandes alternées soit adaptée au contexte local et bien ciblée (Goyer, 2014). Somme toute, cette forme de contrôle biologique permet de réduire la quantité d'insecticides utilisée et par le fait même d'amenuiser les pressions de ces derniers sur l'environnement.

3.1.5 Culture de couverture

En terres agricoles, il est fréquent d’observer de grandes superficies de sols dénudés, notamment entre les rangs de grandes cultures comme celles du maïs à ensilage, du soya et des légumes (McRae, Smith et Gregoric, 2000). Il arrive également que les sols soient laissés à nu à la suite des récoltes, et ce, durant toute la saison hivernale. Cette absence de couvert végétal rend les sols vulnérables principalement à l'érosion ainsi qu’à la croissance de mauvaises herbes (Lefebvre, Eilers et Chunn, 2005). Pour pallier cette problématique, il est possible de mettre en place une culture de couverture visant à assurer la protection du sol face à ces menaces. Cette pratique agricole consiste à semer une plante ou un mélange de plantes autre que la culture principale afin de couvrir le sol (Action Semis Direct, 2011). Il existe différentes variantes à cette méthode, dont celles des engrais verts et de la culture intercalaire qui représentaient ensemble 6 % des superficies en cultures annuelles en 2007 (BPR-Infrastructure inc., 2008). Pour leur part, les engrais verts font référence à l'implantation d'une plante avant ou après la culture principale. Ils peuvent être récoltés à l'automne ou être laissés au champ pour la durée de l'hiver. Quant à la culture intercalaire, elle est semée entre les rangs de la culture principale, fournissant ainsi plusieurs services à cette dernière

Comme mentionné précédemment, la culture de couverture atténue considérablement les risques d’érosion hydrique et éolienne. Cela s’explique par le fait que la présence d’une culture de couverture assure une protection contre l’impact de la pluie et diminue le phénomène de ruissellement (Séguin et al, 2004). La partie aérienne des végétaux permet de freiner et limiter l’effet du vent sur le sol, tandis que l’emprise au sol par le système racinaire retient celui-ci afin d’éviter qu’il ne se déplace (MAAARO, 2012a). La culture de couverture sert ainsi de puit pour les éléments nutritifs en empêchant leurs pertes liées au ruissellement et au lessivage (AAC, 2000). De surcroît, l’amélioration des propriétés physiques et biologiques du sol par les engrais verts réduit également l’érosion et la compaction du sol (MAPAQ, 2005). Une étude a démontré que les pertes de sol observées dans une culture de maïs d’ensilage cultivé dans le sens de la pente pouvaient être diminuées de 76 % par l’ajout d’une telle couverture (McRae et al., 2000). Pour ce qui est des résidus de récolte laissés au sol, ceux-ci agissent également comme barrière physique afin de réduire l’érosion. En laissant une couverture de résidus au sol supérieure à 30 %, les risques d’érosion chutent de 65 % (CPVQ, 2000d). La figure ci-dessous illustre la diminution des pertes de sol en fonction du pourcentage de résidus de récolte laissés au sol.

![Figure 3.3 Relation entre la couverture de résidus et la réduction des pertes de sol](tiré de : CPVQ, 2000d, p. 2)

Par ailleurs, la culture de couverture est particulièrement efficace pour prévenir la prolifération de mauvaises herbes. Elle réduit le taux germination des mauvaises herbes et ralentit leur croissance en privant ces dernières de lumière et de chaleur. De plus, la présence d’un couvert végétal bloque l’accès au sol pour les graines de mauvaises herbes arrivant par voie aérienne. Cette diminution de mauvaises herbes dans les
champs est favorable pour l’environnement puisqu’elle contribue à réduire d’une façon importante l’utilisation d’herbicides. Dans le cadre du Programme de réduction des risques liés aux pesticides du gouvernement canadien, un projet portant sur les cultures de couverture pour la lutte à risque réduit contre les mauvaises herbes dans la production légumière dans l’est du pays a démontré des résultats concluants. Pour la production de courge spaghetti, l’utilisation du seigle comme culture de couverture a permis de contrôler efficacement les mauvaises herbes en plus d’augmenter le rendement de la culture principale. Effectivement, cette pratique a limité la superficie d’occupation du sol par les plantes adventices à moins de 10 %, ce qui est mieux que les pratiques de désherbage classiques laissant une couverture de mauvaises herbes de 12 % à 25 %. Comparativement à la parcelle témoin où aucune méthode de désherbage n’était effectuée, c’est une réduction de 65 % à 90 % de la couverture en mauvaises herbes qu’a permis la présence du seigle. (AAC, 2016c)

Plusieurs autres bénéfices environnementaux sont associés à la culture de couverture. Premièrement, celle-ci contribue à la bonne santé des sols par l’amélioration de leur structure et par l’entretien du taux de MO. Les systèmes racinaires permettent le décompactage du sol, ce qui permet de reformer les agrégats (Larose, 2015; Action Semis Direct, 2011). Bien que la biomasse apportée au sol par l’incorporation d’engrais verts contribue faiblement à la formation d’humus stable, elle apporte néanmoins une matière organique active importante pour le sol. Cela s’explique par le fait que les engrais verts sont généralement très fermentescibles et se dégradent rapidement (Leplatois Vedie, 2005). Les engrais verts jeunes produisent environ 350 kg de MO par hectare, alors que les engrais verts avancés fournissent un apport de 650 kg de MO par hectare (CPVQ, 2000a).

Deuxièmement, le recouvrement du sol par une ou plusieurs espèces végétales contribue à la fertilisation du sol ainsi qu’à la diminution de la perte en nutriments. Une fois incorporés au sol, les engrais verts vont remettre en circulation les nutriments qu’ils ont captés alors que leur persistance pendant l’hiver peut réduire de 40 % à 70 % le lessivage des éléments azotés comparativement à un sol nu. L’utilisation de légumineuses permet quant à elle de fixer l’azote et de la rendre disponible pour la culture principale (Vanasse, 2016). Par exemple, l’introduction de pois fourragers d’hiver permet de fixer approximativement 110 kg d’azote par hectare pour une année. De cette fertilisation naturelle résulte une réduction pouvant aller jusqu’à 50 % de la quantité d’engrais de synthèse utilisée (Bérubé, 2013) et par conséquent une économie d’énergie liée à la fabrication de ceux-ci (Sauriol, s. d.).

Troisièmement, une plus grande biodiversité est observée dans les champs où le sol est entièrement tapissé. En effet, les racines et exsudats appartenant à la culture de couverture permettent de fournir de la nourriture et un habitat à la faune, de même qu’à plusieurs microorganismes du sol (MAAARO, 2012b). Les vers de terre, agissant comme auxiliaires aux cultures, y sont également plus nombreux (Larose, 2015). Généralement, une couverture constituée de plusieurs espèces végétales est préférable pour accroître la
biodiversité (MAAARO, 2012b), alors qu’un couvert fleuri favorise le développement des insectes polinisateurs (ministère de l’Agriculture, de l’Agroalimentaire et de la Forêt, 2009). En outre, il est possible d’attirer des insectes prédateurs par le même principe que la culture en bandes alternées afin de lutter contre les ravageurs des cultures (Action Semis Direct, 2011).

Dans un quatrième temps, la culture en couverture permet de séquestrer plus facilement du carbone dans le sol, diminuant ainsi les teneurs en CO₂ dans l’atmosphère (Lefebvre et al. 2005). Aussi, en se nourrissant du surplus d’azote disponible dans le sol, les plantes de couverture permettent de réduire les émissions de N₂O. (CCSEEC, s. d.a; AAC, 2014b)

3.1.6 Travail réduit du sol

Le travail conventionnel du sol en agriculture comprend une vaste gamme d’opérations considérées parfois comme agressives pour les sols. Or, il est possible de réduire et d’adapter certaines de ces opérations, notamment lors de la préparation du lit de semence afin de protéger davantage les sols et même d’accroître la productivité des cultures après quelques années. C’est ce que l’on nomme travail réduit ou encore travail minimal du sol (MAPAQ, 2005). Mettant de côté le labour et par le fait même la charrue conventionnelle, cette pratique consiste à diminuer le nombre de passages de la machinerie et à employer des instruments aratoires moins dommageables pour le sol, par exemple le chisel, le pulvérisateur à disques lourd et la charrue modifiée. Cela contribue à l’amélioration des propriétés physiques du sol en réduisant, entre autres, la compaction (CPVQ, 2000e). De plus, le travail réduit permet une économie d’énergie globale significative pouvant atteindre 16,5 % par rapport au travail conventionnel selon l’Institut de recherche de l’agriculture biologique (FiBL) (2012). Seulement en termes d’énergies fossiles, c’est une réduction directe de 10 % que permet ce procédé. Le travail réduit permet donc une diminution de 13 % des émissions de GES en combinant le CO₂ libéré lors de la combustion du diesel et le N₂O émis par le sol (FiBL, 2012). Ceci dit, ces chiffres sont conservateurs si l’on considère que les économies de carburant peuvent s’élèver entre 25 % et 35 % en situation de travail minimal (MERN, 2012). L’annexe 4 présente la relation entre le système sans labour et les composantes de l’environnement, de même que la production.

De surcroît, le travail réduit favorise aussi la présence de résidus de culture à la surface du sol, ce qui permet de protéger le sol contre l’érosion en diminuant le ruissellement et en augmentant la capacité de rétention d’eau (MAPAQ, 2005). Comme le démontre la figure 3.3, une couverture d’au moins 30 % de débris végétaux doit être atteinte pour être effective et réduire les pertes de sol de 65 %. Cependant, comme toutes les autres pratiques anti-érosives favorisant l’infiltration de l’eau dans le sol, le travail réduit augmente les risques de lessivage des éléments nutritifs et des pesticides. Plus l’eau pénètre dans le sol, plus il y a de chance que celle-ci rejoigne l’eau de drainage souterrain ou la nappe phréatique (AAC, 2000). Outre la diminution de l’érosion, les résidus de récolte augmentent la teneur du sol en MO et, par conséquent, tous les bienfaits environnementaux qui y sont associés (MAPAQ, 2005). Variable selon le type de culture, c’est
entre 150 et 1200 kg d’humus par hectare que peut générer les résidus de récolte annuellement (SEDE BENELUX, 2011).

D’autres gains environnementaux peuvent être fournis par le travail minimal du sol, comme pour la biodiversité. L’augmentation en MO et le maintien d’une structure de sol peu compacte favorisent la biomasse et la diversité de la microflore et de la microfaune représentées notamment par les bactéries, champignons et autres microorganismes. Aussi, certains organismes comme les lombrics, les limaces, les carabes et les araignées sont davantage présents en situation de travail réduit. Se nourrissant de ces petits organismes, les vertébrés sont par le fait même favorisés, en plus de bénéficier d’une meilleure disponibilité et qualité en habitats de printemps et d’hiver. (Ministère de l’Agriculture, de l’Agroalimentaire et de la Forêt, 2009)

Néanmoins, l’absence du labour entraîne une présence plus importante des mauvaises herbes propagées par des semences. La figure 3.4 appuie ce fait en exposant les résultats d’une étude qui visait à comparer la couverture d’adventices en travail réduit du sol par rapport à celle en travail conventionnel.

![Figure 3.4 Pourcentages de couverture d’adventices selon les méthodes de labour et de travail réduit, dans huit champs, en 2011 (tiré de : FiBL, 2012, p. 10)](image)

Pour la totalité des huit champs utilisés aux fins de l’étude, les mauvaises herbes étaient présentes en plus grande quantité dans les parcelles où le travail réduit était prisé par rapport au labour. Cette différence en adventices variait considérablement, soit de quelques pour cent à plus de 30 %. Règle générale, une hausse des mauvaises herbes peut se traduire par une augmentation reliée à l’usage d’herbicides ou encore par le recours au désherbage mécanique (FiBL, 2012). Cette dernière pratique a toutefois le désavantage de détruire les nids de certaines espèces fauniques, affectant ainsi la biodiversité (ministère de l’Agriculture, de l’Agroalimentaire et de la Forêt, 2009).
Pour le bon fonctionnement du travail réduit, mais aussi pour augmenter les avantages au plan environnemental, il est préférable de jumeler d’autres pratiques agroenvironnementales à celle-ci. La rotation des cultures, la culture sur billon, le dépistage au champ et les mesures de lutte intégrée en sont des exemples (MAPAQ, 2005; Brodeur, Crowley, Desmeules et Durox, 2008). Le travail réduit est une pratique répandue au Québec, comme le démontre le fait que 34 % des cultures annuelles totales étaient cultivées de cette façon en 2007 (BPR-Infrastructure inc., 2008). En 2013, cette méthode sans labour était pratiquée sur 37 % des surfaces cultivées par les exploitations membres des CCAE (CCAE, 2013).

3.1.7 Semis direct

Que ce soit sur le plan fonctionnel ou sur celui-ci des gains environnementaux, la méthode culturale du semis direct s’apparente grandement à celle du travail réduit. Le principe du semis direct est simple : ensemencer une culture dans un champ sans aucun travail du sol ou opération effectué au préalable (MAPAQ, 2005). Se combinant bien à la rotation des cultures, cette pratique nécessite une bonne planification ainsi que de l’équipement spécialisé, notamment le semoir (CPVQ, 2000f). La tendance vis-à-vis cette pratique est à la hausse au Québec, comme l’indiquent les superficies cultivées en semis direct par les exploitations accompagnées par un CCAE qui ont passé de 8 % à 24 % au cours de la période 2004 à 2013. (CCAE, 2013).

Généralement, le semis direct permet de réduire davantage les impacts environnementaux de l’agriculture que le travail réduit, principalement en raison de la présence encore plus restreinte de la machinerie au champ. Le tableau 3.1 présente une comparaison entre le travail conventionnel, le travail réduit et le semis direct.

Tableau 3.1 Comparaison entre le travail conventionnel, le travail réduit et le semis direct (inspiré de : Mrabet, 2001, p.4)

<table>
<thead>
<tr>
<th>Critères</th>
<th>Travail conventionnel</th>
<th>Travail réduit</th>
<th>Semis direct</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contrôle de l’érosion</td>
<td>Faible</td>
<td>Modéré</td>
<td>Élevé</td>
</tr>
<tr>
<td>Conservation de l’eau</td>
<td>Modérée</td>
<td>Élevée</td>
<td>Très élevée</td>
</tr>
<tr>
<td>Problème de fertilité</td>
<td>Non</td>
<td>Non</td>
<td>Non/Oui</td>
</tr>
<tr>
<td>Consommation énergétique</td>
<td>Élevée</td>
<td>Modérée</td>
<td>Faible</td>
</tr>
<tr>
<td>Réduction des attaques d’insectes et parasites</td>
<td>Élevée</td>
<td>Modérée</td>
<td>Modérée</td>
</tr>
<tr>
<td>Dépendance aux herbicides</td>
<td>Faible</td>
<td>Moyenne</td>
<td>Élevée</td>
</tr>
<tr>
<td>Besoins en fertilisants</td>
<td>Élevés</td>
<td>Modérés</td>
<td>Faibles</td>
</tr>
</tbody>
</table>

Étant donné que l’ensemencement s’effectue lors d’une seule et même intervention, une quantité maximale de résidus de récolte est conservée au sol (CPVQ, 2000f). Ceci permet donc un meilleur contrôle de l’érosion pouvant atteindre jusqu’à 92 % de réduction (OBV de la Yamaska, 2001), de même qu’une très

En ce qui a trait à la consommation d’énergie, l’utilisation restreinte de la machinerie diminue de façon significative les dépenses énergétiques. En effet, des réductions de carburant de l’ordre de 70 % à 75 % peuvent être observées en semis direct par rapport au travail conventionnel (MERN, 2012). Par ailleurs, le nombre de passages très limité de la machinerie engendre peu de compaction, alors que l’absence totale d’outil aratoire favorise une bonne structure de sol. De la même façon que le travail réduit, le semis direct améliore aussi la teneur en MO et la capacité portante des sols, en plus d’augmenter la biodiversité et de réduire les émissions de GES (CPVQ, 2000f).

Comme c’est le cas pour le travail réduit, le semis direct est plus vulnérable à la présence de mauvaises herbes que le travail conventionnel en raison de l’absence de labour (figure 3.4). Cependant, les moyens mécaniques parfois utilisés en travail réduit dans le but de réguler les adventices ne peuvent être employés en situation de semis direct. Ainsi, les exploitants agricoles n’ont souvent d’autres choix que de se tourner vers la solution des herbicides comme le glyphosate (AAC, 2014c), susceptibles d’affecter la biodiversité présente aux alentours (FiBL, 2012; Isenring, 2010). Une étude québécoise a toutefois démontré que le semis direct pouvait réduire jusqu’à 90 % le ruissellement des pesticides, limitant ainsi les dommages sur les milieux aquatiques (AAC, 2000). En semis direct sous régie biologique, l’implantation d’un engrais vert peut aider à combattre le surplus de mauvaises herbes (Giguère, 2004).

3.2 Saine gestion des matières fertilisantes

La gestion intégrée des matières fertilisantes peut avoir un impact positif sur l’environnement, et ce, de multiples façons. Des mesures touchant à l’entreposage des fumiers, à l’optimisation de l’épandage, à la valorisation des déjections animales et aux équipements sont exposées à la présente section.

3.2.1 Structure d’entreposage des fumiers avec toiture

L’entreposage des déjections animales et des matières absorbantes permettant la conservation de celles-ci jusqu’à leur épandage est une nécessité pour les producteurs agricoles du Québec. Celui-ci s’effectue à l’aide d’ouvrages de stockage pouvant accueillir également l’eau contaminée par les déjections ainsi que l’eau de lavage des laiteries. Ces structures ont un rôle important à jouer puisqu’elles permettent de réduire les risques de contamination de l’eau et du sol en éliminant les pertes d’éléments nutritifs par ruissellement
et par infiltration. De plus, elles peuvent limiter les émanations de GES, de polluants atmosphériques et des odeurs provenant des déjections animales. (MAPAQ, 2005)

À l’heure actuelle, les installations d’entreposage des fumiers solides et liquides sont encadrées par le REA. Ce dernier insiste notamment sur l’étanchéité et la capacité de stockage de celles-ci afin d’assurer un maximum d’efficacité. Les amas au champ de fumiers solides, régis également par ce règlement, constituent les seules exceptions possibles à l’exigence du stockage étanche. Des conditions strictes concernant entre autres le volume de déjections, la localisation du site, la période de stockage et l’atténuation des risques environnementaux doivent être respectées. (MDDELCC, 2016b)

Bien que les pratiques d’entreposage obligatoires tiennent déjà compte de considérations environnementales, il est possible pour les exploitants d’en faire plus. Au Québec, seulement 13 % des structures d’entreposage étanches étaient équipées d’une toiture en 2007 (BPR-Infrastructure, 2008). L’ajout d’une toiture aux structures d’entreposage du fumier solide ou liquide peut s’avérer positif pour l’environnement puisque celle-ci permet de limiter le contact entre les déjections et l’atmosphère. En plus de réduire les nuisances olfactives de 50 % à 100 % (Pouliot, 2002a), une structure d’entreposage couverte peut permettre d’intercepter une quantité considérable de CH₄ et entre 30 % et 90 % de NH₃ (Rochette, 2005; Pouliot, 2002a; Debarge et Tenaud, 2015a). En conservant 5 % à 10 % d’azote total supplémentaire comparativement au stockage standard, le recouvrement d’une structure d’entreposage permet de réduire l’utilisation d’engrais azotés de synthèse (Pouliot, 2002a). Elle empêche également la pluie et la neige d’atteindre les fumiers, ce qui diminue les volumes à épandre d’environ 15 % à 30 % (MAPAQ, 2009; Pouliot, 2007). Néanmoins, il faut être vigilant puisque la présence d’un toit peut augmenter les risques pour la santé humaine en concentrant plusieurs gaz nocifs à l’intérieur de la fosse (Pouliot, 2002a). Certains affirment aussi que les émissions d’odeurs du lisier ne sont pas éliminées par la toiture, mais simplement déplacées à l’épandage (Ricard et Turcotte, 2016).

3.2.2 Optimisation de l’épandage des matières fertilisantes

Une planification réfléchie de l’épandage des matières fertilisantes sur les terres en culture mène généralement à une agriculture plus respectueuse de l’environnement. Cette planification, visant à améliorer le système de production tout en employant le moins d’intrants possible et en minimisant les impacts environnementaux, peut s’établir sous la forme d’un programme de fertilisation. Divers aspects peuvent être considérés, tels les ressources à protéger, les modes et la période d’épandage, le fractionnement des applications et le réglage des équipements d’épandage. Les bénéfices environnementaux de l’optimisation de l’épandage des matières fertilisantes sont nombreux et touchent toutes les composantes environnementales. (MAPAQ, 2005)
Les activités liées à la fertilisation des champs font déjà l'objet de nombreuses dispositions dans le REA, dont plusieurs visent à atténuer les impacts de celles-ci sur l'environnement. L'obligation d'épandre les matières fertilisantes sur un sol non gelé et non enneigé, l'interdiction d'épandre dans certains espaces comme les cours d'eau, ainsi que la distance minimale à respecter par rapport à certains éléments sensibles en sont des exemples. Par ailleurs, la majorité des exploitations agricoles doivent se munir d'un plan agroenvironnemental de fertilisation (PAEF) signé par un agronome, dont le but principal est de déterminer la culture pratiquée et la limitation de l'épandage de matières fertilisantes pour chaque parcelle de terre. Ce plan doit également contenir un bilan de phosphore, ainsi que les informations reliées à l'application des engrais organiques et minéraux comme les doses d'apports en fertilisants, le mode et la période d'épandage (Ordre des agronomes du Québec, 2011). Au cours de la période 2003 à 2007, près de 90 % des producteurs agricoles du Québec ont eu recours à un PAEF, représentant une augmentation de 48 % par rapport à 1998 (BPR-Infrastructure inc., 2008). Pour ce qui est des exploitations membres d'un CCAE, ce chiffre s'élève à 99 % pour l’année 2012-2013 (CCAE, 2013). Bref, l'optimisation de l'épandage des matières fertilisantes est une pratique de plus en plus généralisée chez les exploitants agricoles depuis l’entrée en vigueur du REA et du PAEF en 2002 (Beaulieu, 2003).

3.2.3 Valorisation des déjections animales

La valorisation des déjections constitue une avenue intéressante pour gérer les surplus de fumiers ou tout simplement pour en retirer certains bénéfices précis. Le compostage et la biométhanisation sont deux techniques de valorisation permettant de mieux fertiliser et de produire de l’énergie (Debarge et Tenaud, 2015a).

Le compostage des effluents d’élevage est le processus de décomposition biologique de la matière organique contenue dans les fumiers par des microorganismes en présence d’oxygène. L’objectif est d’obtenir un amendement organique relativement stable, appelé compost, qui possède des propriétés plus intéressantes que le produit original. Ce processus de fermentation comprend de grandes étapes, soit la mise en andain, les retournements mécaniques du fumier accompagnés du recouvrement de celui-ci et finalement l’épandage du compost. (Agrobio 47, 2013)

Le concept de biométhanisation consiste également à la dégradation naturelle de la matière organique des effluents d’élevage par des microorganismes vivants, mais cette fois sans la présence d’oxygène. Cette réaction produite à l’aide d’un bioréacteur génère deux coproduits, soit le biogaz et le digestat (Brodeur, Crowley, Desmeules, Pigeon et St-Arnaud, 2008). Composé majoritairement de CH₄ et de CO₂, le biogaz peut être valorisé de différentes façons, dont la valorisation thermique, la production d’électricité et l’utilisation comme carburant. À la ferme, il est souvent employé pour chauffer les bâtiments ou pour faire fonctionner de petites génératrices afin de produire de l’électricité (Brodeur, Crowley, Desmeules, Pigeon et St-Arnaud, 2008). Pour sa part, le digestat peut être utilisé comme amendement au champ au même titre que les fumiers. Bien que la charge en fertilisants du digestat soit la même que celle du lisier brut, ses éléments nutritifs sont plus facilement assimilables par les plantes lors de l’épandage, permettant ainsi de diminuer l’apport total en fertilisants. Les odeurs émanant de l’effluent traité ainsi que le nombre d’agents pathogènes qu’on y retrouve sont également réduits. Le taux de MO du digestat est quant à lui 80 % plus faible que celui du fumier non traité, ce qui peut s’avérer négatif pour la qualité du sol, mais avantageux pour les cours d’eau (Brodeur, Crowley, Desmeules, Pigeon et St-Arnaud, 2008). Finalement, la biométhanisation présente un bilan énergétique positif, en plus de réduire significativement les émissions de GES. Cette réduction est attribuée au captage du CH₄ et du CO₂ produits dans les bioréacteurs et à la meilleure gestion de l’azote résultant de la plus grande efficacité fertilisante qui permet de réduire les émissions de N₂O. Aussi, la valorisation du biogaz en énergie et en chaleur contribue à cette réduction des GES en diminuant les besoins en combustibles fossiles (La Fédération des producteurs de porcs du Québec, 2009). À titre d’exemple, une réduction de 20 % à 30 % des émissions de la filière de la production porcine pourrait être possible grâce à la biométhanisation (Pelletier, Godbout, Pigeon et Drolet, 2005).

3.2.4 Équipements d’épandage efficaces

Bien qu’ils soient réglementés par le REA, les équipements utilisés pour l’épandage des déjections animales présentent tous des performances différentes sur le plan environnemental. Dans l’optique de maximiser les gains environnementaux, certains types d’épandeurs doivent être privilégiés davantage que d’autres.

Concernant l’épandage des fumiers liquides, l’utilisation d’un épandeur à rampe avec incorporation au sol constitue un choix éclairé. L’aspect qui distingue cet équipement des autres de sa catégorie est sa capacité à enfouir directement le fumier liquide dans le sol (Pigeon, 2005). En le comparant à l’épandeur à aspersion basse pouvant servir pour les lisiers des élevages de porcs et de bovins, plusieurs avantages peuvent être soulevés. Pour commencer, l’épandeur avec incorporation simultanée au sol permet de réduire de 70 % les odeurs, en plus d’augmenter l’efficacité de l’azote de 40 %. Ces deux points positifs s’expliquent par le fait que cet équipement permet de réduire les pertes de NH₃ par volatilisation (Pigeon, 2005). Une meilleure efficacité fertilisante de l’azote permet ainsi de réduire l’utilisation d’engrais minéraux azotés, ce qui est appréciable sur le plan des GES (Gasser, Martel, Perron et Dufour-L’Arrivée, 2014). Un autre bénéfice relié à son dispositif d’incorporation est le contrôle minimal des mauvaises herbes. En creusant des sillons pour
y déposer le lisier, il favorise un léger travail du sol pouvant réduire les adventices (Pigeon, 2005). Bien qu’il nécessite un surplus d’énergie par rapport à l’épandeur à aspersion basse (Laguë, 2005), cet appareil réduit également les risques de ruissellement des fertilisants vers les plans d’eau et ceux liés à la dérive par le vent. Tous ses points le distinguent aussi de l’épandeur à rampe sans incorporation au sol, mais dans des proportions moins élevées (Pigeon, 2005). Mentionnons cependant que l’épandeur avec incorporation au sol peut rendre le sol légèrement plus vulnérable à l’érosion hydrique et éolienne et qu’il n’est pas compatible avec le travail réduit et le semis direct (Laguë, 2005). En 2007, 71 % des volumes de lisses, dont 96 % des lisses de porcs avaient été épandus à l’aide d’une rampe au Québec (BPR-Infrastructure inc., 2008).

En ce qui a trait aux épandeurs à fumiers solides, ceux-ci ont peu évolué au cours des dernières décennies comparativement aux épandeurs à fumiers liquides. Néanmoins, quelques améliorations ont permis notamment d’épandre les charges fertilisantes plus uniformément, évitant ainsi les surdoses (ministère de l’Agriculture, de l’Aquaculture et des Pêches du Nouveau-Brunswick, s. d.b). Aussi, des injecteurs adaptés aux fumiers solides et semi-solides ont été développés (Laguë, 2005). Malgré cela, aucun type d’épandeur à fumiers solides ne se distingue vraiment sur le plan environnemental. L’important est de choisir un équipement permettant précision et uniformité. Les épandeurs à décharge latérale peuvent être considérés comme un bon choix étant donné qu’ils permettent d’optimiser facilement le taux d’application comparativement aux épandeurs à décharge arrière (MAPAQ, s. d.a).

Le réglage des équipements d’épandage est un aspect important à ne pas négliger pour assurer la qualité des épandages. Il permet entre autres de réduire les risques environnementaux et d’appliquer les doses adéquates, soit celles spécifiées par le programme de fertilisation (Lamarre, 2004). Pour un dosage précis et une uniformisation de la charge épandue sur l’ensemble de la parcelle à fertiliser, les systèmes de dosages automatisés peuvent être une option (Lamarre, s. d.).

3.3 Gestion raisonnée des pesticides

La présence accrue des pesticides dans l’agriculture moderne constitue un problème majeur étant donné que ceux-ci affectent négativement plusieurs composantes de l’environnement. La section suivante expose des pratiques agricoles pouvant aider à réduire cette consommation de produits chimiques, soit la lutte intégrée, le désherbage mécanique et l’utilisation réduite des pesticides.

3.3.1 Lutte intégrée

Fondée sur l’expérimentation et l’observation, la lutte intégrée va au-delà d’une simple pratique agroenvironnementale. Elle est une « méthode décisionnelle qui a recours à toutes les techniques nécessaires pour réduire les populations d’organismes nuisibles de façon efficace et économique, tout en
respectant l’environnement (MAPAQ, 1998). Cette approche, utilisée par 51 % des entreprises agricoles en 2007 (BPR-Infrastructure inc., 2008), a pour principal but de réduire l’emploi des pesticides et les risques qui y sont associés. Flexible et laissant place à la créativité, la gestion intégrée des ennemis des cultures repose sur des principes pouvant prendre la forme d’une démarche (MAPAQ, 2005).

Tout d’abord, il faut différencier les organismes utiles qui habitent les écosystèmes agricoles, de ceux indésirables. En lutte intégrée, une importance est accordée à l’identification des ennemis des cultures afin de pouvoir adapter adéquatement les moyens de lutter contre ceux-ci, sans affecter tous les autres organismes vivants aux alentours. Aussi, cela permet d’adapter l’écosystème aux besoins des organismes alliés plutôt que ceux ennemis. Ensuite, les pratiques de dépistage et l’évaluation de la situation fournissent de précieux renseignements permettant une prise de position raisonnée quant à la gestion des organismes nuisibles. L’abondance de ceux-ci, l’état de santé des cultures et leur stade de développement constituent notamment des éléments à prendre en compte. Puis, il est important d’utiliser des seuils d’intervention basés sur le degré de risque que représente chaque espèce indésirable. Ceci permet de maximiser l’efficacité des traitements en les effectuant au moment propice, en plus de réduire les interventions non justifiées. Enfin, la combinaison de méthodes de luttes diversifiées permet de réduire plus efficacement et d’une façon plus durable les organismes nuisibles. Bien qu’elle n’exclue pas totalement l’utilisation des pesticides chimiques, la lutte intégrée privilégie les pratiques biologiques, culturales, mécaniques et génétiques. Le suivi de l’ensemble de ces principes permet d’améliorer graduellement l’efficacité de la lutte intégrée. (MAPAQ, 2005)

En ce qui concerne les avantages environnementaux que procure une telle gestion des ennemis des cultures, il est évident que la réduction des impacts des pesticides sur l’environnement biotique et abiotique constitue le bénéfice le plus notable. Cette diminution d’usage des produits chimiques est toutefois très variable, passant de faible à absolu, selon les pratiques agroenvironnementales employées, le niveau d’implication et d’efforts déployés ainsi que le type de culture. Les programmes de lutte intégrée peuvent entraîner une panoplie d’autres gains environnementaux par l’entremise des méthodes de luttes préventives et curatives utilisées (Organisation de Coopération et de Développement Économiques, 2016). Par exemple, la rotation des cultures aide à contrôler les organismes nuisibles en plus de jouer un rôle sur le plan de l’érosion, des émissions de GES, de la structure du sol, de la disponibilité en nutriments, etc. Étant donné que la lutte intégrée réfère essentiellement à un processus décisionnel plutôt qu’à une série définie de pratiques, il est difficile d’associer fermement certains bénéfices ou inconvénients environnementaux à celle-ci.

3.3.2 Désherbage mécanique

Le désherbage mécanique est une pratique alternative à l’usage des herbicides permettant de lutter contre les adventices. Ce procédé physique consiste à employer des outils comme la herse rotative, la houe
rotative et le sarclier à rangs afin de prévenir et de détruire les mauvaises herbes (Chambre d’agriculture de région du Nord, 2013). Utilisé dans une proportion de 11 % des superficies traitées de façon alternative au traitement de pesticides plein champ du Québec, en 2007 (BPR-Infrastructure inc., 2008), le désherbage mécanique présente une efficacité variant généralement de 20 % à 85 % comparativement aux stratégies chimiques plus stables où l’efficacité moyenne se situe entre 85 % à 95 % (Bonin et Metais, 2017). L’efficacité des différents outils en désherbage mécanique varie selon le type et le stade de développement de la culture, mais aussi selon ceux de l’adventice. Le type de sol, la pente et les conditions climatiques sont également des aspects pouvant affecter l’efficacité de cette pratique (FREDON Lorraine, 2013). Pour assurer le contrôle des mauvaises herbes, il est préférable de jumeler le désherbage mécanique à des moyens agronomiques, tels l’introduction de cultures étouffantes, la multiplication des faux-sémiss et le retardement de la date de semis (Chambre d’agriculture de l’Yonne, 2016). Il n’est pas rare de voir cette pratique s’insérer dans un programme de lutte intégrée ou en combinaison avec d’autres méthodes visant la réduction des pesticides.

Bien que le désherbage mécanique contribue à limiter le ruissellement par la destruction de la croûte de battance, ceci ne contrebalance pas totalement les risques d’érosion provoqués par les perturbations excessives de la couche arable et des pertes de débris végétaux à la surface du sol qu’engendre le passage répété de la machinerie (Chambre d’agriculture de région du Nord, 2013; AAC, 2015a). En plus d’accroître les risques d’érosion par le vent et l’eau, le désherbage mécanique peut mener à d’autres inconvénients environnementaux comme la compaction du sol et les émissions de GES. Effectivement, le nombre de passages plus élevé par le tracteur comparativement à la répression chimique contribue à compacter davantage le sol et exige une plus grande consommation de carburant (Kouwenhoven, 1997; Boschetto, 2013). Pour ce qui est de la structure du sol, l’impact du désherbage mécanique sur celle-ci est mitigé. D’un côté, certains auteurs affirment que cette pratique peut endommager la structure du sol (Ascard et Mattsson, 1994), alors que de l’autre, certains soutiennent le contraire (Briar, Grewal, Somasekkhar, Stinner et Miller, 2007).
3.3.3 Utilisation réduite des pesticides

Comme il en a été question précédemment, l’utilisation des pesticides peut être réduite considérablement par la lutte intégrée. Pour ceux et celles qui ne désirent pas s’investir dans une pratique agroenvironnementale d’une telle ampleur, il est également possible de diminuer sa consommation de pesticides en favorisant tout simplement une gestion plus efficiente de ceux-ci. En effet, une étude récente, réalisée en collaboration avec 948 exploitations agricoles françaises, a démontré que l’utilisation des pesticides pouvait être réduite de 30 % sans perte de rentabilité (Sciama, 2017, 9 mars). Ce chiffre pourrait même s’élèver à 42 % pour la majorité des entreprises agricoles, plus précisément à 37 % pour les herbicides, 47 % pour les fongicides et 60 % pour les insecticides. Pour y arriver, il suffirait de gérer plus efficacement les traitements et de privilégier la diversification des cultures (Sciama, 2017, 9 mars).

Les techniques d’application des pesticides sont l’une des principales avenues pour optimiser leur utilisation. L’application en bande constitue notamment une solution intéressante puisqu’elle peut mener à une réduction des herbicides de 50 % à 66 % (Douville, 2010). Cette pratique consiste à pulvériser l’herbicide d’une façon plus localisée, soit directement sur le rang plutôt que sur l’ensemble de la surface. Le sarclage mécanique entre les rangées est cependant recommandé afin d’obtenir un résultat satisfaisant (Tessier et Leroux, 2003). Ce mode d’application était utilisé dans 5 % des superficies traitées de façon alternative au traitement de pesticides plein champ au Québec, en 2007 (BPR-Infrastructure inc., 2008). Une expérimentation portant sur l’utilisation réduite d’herbicides pour la lutte contre les dicotylédones dans les cultures de pommes de terre avait d’ailleurs montré des résultats convaincants à l’aide de cette technique d’application avec une réduction d’herbicides de 50 % (AAC, 2015b). Une autre possibilité est l’emploi de doses réduites dont le principe est d’appliquer une dose inférieure à la plus petite dose recommandée par le fabricant. Cette technique peut permettre de diminuer jusqu’à 50 % l’utilisation d’herbicides dans certaines conditions (Douville, 2010). Au Québec, en 2007, elle était utilisée dans 19 % des superficies gérées avec des stratégies autres que le traitement conventionnel de pesticides (BPR-Infrastructure, 2008).

Par ailleurs, l’utilisation raisonnée des pesticides peut s’exprimer par une réduction de la fréquence des traitements ou encore par une diminution des pertes lors de l’application. Le réglage adéquat des pulvérisateurs, le choix de pesticides à faible impact, le respect des conditions d’efficacité du traitement sont également d’autres options qui permettent généralement de réduire les impacts sur l’environnement (MAPAQ, 2005; Aubertot et al., 2005). La réduction de la dérive des pesticides passe quant à elle par la considération des conditions météorologiques et par l’acquisition d’équipements adaptés. Concernant ces derniers, une grande variété d’équipements est disponible pour les producteurs agricoles, permettant de réduire le phénomène de 25 % à 85 % à eux seuls (Piché, 2008).
3.4 Aménagements durables au champ

Les aménagements au champ constituent la plupart du temps des mesures anti-érosives efficaces. Néanmoins, leur emploi favorise également plusieurs autres types de bénéfices non négligeables pour l’environnement. La section suivante présente les principaux intérêts reliés à la voie d’eau engazonnée, aux terrasses, à la bande riveraine large et diversifiée et à la haie brise-vent.

3.4.1 Voie d’eau engazonnée et avaloir

La voie d’eau engazonnée est une dépression naturelle ou artificielle du sol conçue pour réduire l’érosion hydrique en interceptant les eaux de ruissellement et en les évacuant vers un bassin de captage ou directement à un cours d’eau. Large et peu profond, ce canal à ciel ouvert permet une bonne répartition de l’écoulement. Sa surface est recouverte de plantes herbacées, ce qui contribue à limiter la vitesse de l’eau et à retenir les particules de sol (Guillou, 2008). Elle permet ainsi d’éviter le phénomène de ravinement au champ et la détérioration des berges, de même que d’évacuer le surplus d’eau provoqué notamment par la fonte des neiges et les pluies abondantes. De plus, la voie d’eau agit comme un filtre aidant à retenir une partie des éléments nutritifs et des pesticides transportés par l’eau (CPVQ, 2000b ; Canards Illimités Canada, 2013). Habituellement, il est recommandé d’installer un système de drainage à proximité de la voie engazonnée afin d’en assécher le lit, de favoriser le développement rigoureux de la végétation, d’améliorer la portance du sol et d’éviter la formation d’ornières (Guillou, 2008). Bien qu’optionnel, l’ajout d’un avaloir à cet aménagement permet d’assurer la protection du sol dans les zones plus sensibles à l’érosion. Cette structure verticale perforée sert à recueillir l’eau de ruissellement accumulée dans un bassin de captage et à la rediriger vers un système de canalisation souterraine dans le but de l’évacuer. La présence d’un réservoir aménagé et d’un avaloir favorise la diminution de la vitesse de l’eau de ruissellement, de même que la sédimentation des particules de sol transportées par celle-ci (CPVQ, 2000b). La figure 3.5 présente une voie d’eau engazonnée munie d’un avaloir.

Effective sur les pentes supérieures à 2 % (MAPAQ, 2005), la voie d’eau engazonnée est généralement utilisée de concert avec d’autres mesures pouvant limiter l’érosion comme le travail réduit, les cultures de couverture, les bandes riveraines, etc. Ceci est préférable puisqu’en l’absence d’autres pratiques de conservation des sols, les sédiments ont tendance à s’accumuler plus rapidement au fond de la voie d’eau, augmentant ainsi les risques de débordement (Guillou, 2008).
Figure 3.5 Voie d’eau engazonnée munie d’un avaloir (tiré de : Guillou, 2008, p. 2)

3.4.2 Terrasses

Lorsque les pratiques et structures couramment utilisées ne suffisent pas à contrôler l’érosion dans les champs à pentes fortes et longues, l’aménagement de terrasses peut s’avérer la solution. Une terrasse est décrite comme étant « une structure consistant en l’aménagement en travers de la pente de paliers combinés à des risbermes » (CPVQ, 2000b).

Généralement accompagné d’un fossé de canalisation, cet aménagement permet d’intercepter l’eau qui dévale la pente et de la diriger vers une voie d’eau engazonnée ou toute autre sortie appropriée. En diminuant la longueur de la pente, elle favorise une réduction de la vitesse de ruissellement à la surface et
ainsi une diminution des risques potentiels d’érosion hydrique (CPVQ, 2000b). L’efficacité des terrasses à réduire l’érosion est évaluée à 85 %, ce qui est excellent dans une optique de réduction des pressions sur le sol et sur l’eau. Pour augmenter davantage cette efficacité, il est possible de combiner cet aménagement à des pratiques culturales de conservation comme les cultures de couverture ou les cultures en bandes alternées (CPVQ, 1986). Par ailleurs, les terrasses atténuent la teneur en sédiments de l’eau de ruissellement, améliorant par le fait même la qualité de l’eau (ministère de l’Agriculture, de l’Aquaculture et des Pêches du Nouveau-Brunswick, s. d.c). À noter que la largeur des terrasses varie selon différents paramètres, par exemple le type de sol, la valeur de la pente, l’intensité des pluies et le niveau d’érodabilité du sol (CPVQ, 1986).

3.4.3 Bande riveraine large et diversifiée

Située à la jonction d’un champ et d’un cours d’eau, la bande riveraine est une zone tampon végétalisée qui joue un rôle essentiel dans la protection des écosystèmes aquatiques. Composée d’espèces herbacées, elle agit en tant que filtre naturel, bloquant plusieurs substances agricoles susceptibles d’être acheminées vers les plans d’eau adjacents. Elle permet notamment de capter une portion considérable de sédiments, de pesticides et de nutriments déplacés majoritairement par ruissellement ou lessivage (CPVQ, 2000b). La présence d’une telle bande végétale en bordure de champ favorise aussi le maintien d’une bonne qualité de l’eau par la diminution des pertes de sol liées à l’érosion hydrique et par la prévention du réchauffement excessif de l’eau en tant qu’écran protecteur (MAFAQ, 2005; Canards Illimités Canada, 2013).

Actuellement, plus de 80 % des bandes riveraines situées dans les basses-terres du Saint-Laurent sont constituées uniquement d’herbacées. Or, il est préférable écologiquement qu’une bande riveraine soit composée d’espèces diversifiées, dont une certaine proportion d’espèces arbustives et arborescentes. L’importance d’une bande riveraine riche en espèces végétales réside entre autres dans le fait qu’elle présente une plus longue saison de croissance comparativement à une bande riveraine pauvre en espèces, ce qui fait en sorte que ces bienfaits environnementaux sont prolongés sur une plus grande période de temps (Proulx, 2014). Parlant de bénéfices pour l’environnement, les rives végétalisées représentent des refuges fauniques et floristiques d’importance pour plusieurs espèces, contribuant au maintien de la biodiversité. En effet, elles servent d’abris, d’alimentation et de corridors de déplacement de prédilection pour la faune. Aussi, elles attirent un nombre important de pollinisateurs, en plus de favoriser la présence d’ennemis naturels des ravageurs de cultures (Canards Illimités Canada, 2013; Prime-Vert, s. d.). Ces diverses fonctions sont toutes amplifiées par une bande riveraine plus diversifiée en espèces (Proulx, 2014).

De surcroît, la végétation présente sur la rive et le talus permet de stabiliser le sol, réduisant ainsi les risques d’érosion des berges. Une bande riveraine diversifiée comprenant des arbustes et des arbres améliore ce pouvoir de stabilisation grâce à leurs systèmes racinaires plus développés et plus solides. La présence d’espèces arbustives et arborescentes agit également comme brise-vent, contribuant à limiter l’érosion
éolienne. Enfin, le prolongement de la saison de croissance d’une bande riveraine diversifiée permet le captage d’une quantité plus importante de carbone chaque saison comparativement à une bande riveraine standard. Ce gain net est évalué à 12 kg de carbone par hectare. (Proulx, 2014)

Au Québec, la Politique de protection des rives, du littoral et des plaines inondables régit les bandes riveraines en milieu agricole. Il est notamment obligatoire de maintenir une bande végétale de protection minimale de trois mètres de largeur à partir de la ligne des hautes eaux. En outre, si un talus est situé à moins de trois mètres de cette même ligne, la largeur de la bande riveraine doit inclure un minimum d’un mètre sur le replat du terrain (MDDELCC, 2015b). Cependant, il faut être conscient que ces largeurs représentent un minimum et que celles-ci peuvent être augmentées par les municipalités régionales de comté et les municipalités (MDDELCC, 2015b).

Comme c’est le cas pour la diversité des bandes riveraines, plus la largeur de celles-ci est élevée, plus les gains environnementaux sont importants. Par conséquent, une largeur supplémentaire contribue davantage à maintenir les écosystèmes agricoles en santé, de même qu’à conserver les équilibres naturels bénéfiques à l’agriculture (AAC, 2000; Club-conseil Gestrie-Sol, 2014). À titre d’exemple, l’efficacité de captage de sédiments est de 90 % pour une bande riveraine de neuf mètres comparativement à 50 % pour une qui fait un mètre (AAC, 2000). Pour ce qui est des pertes d’azote total et de nitrates, une zone tampon de 9,1 mètres permet de réduire respectivement celles-ci de 76 % et 57 %, alors qu’une bande végétale de 4,6 mètres diminue ces pertes de 63 % et 27 %. En situation identique, la réduction des pertes d’herbicides s’élève à 55 % pour la bande riveraine la plus large, contre 32 % pour la plus mince (AAC, 2000). Toutefois, un projet de recherche initié par l’Institut de recherche et de développement en agroenvironnement a démontré des résultats différents. Selon cette étude, l’efficacité filtrante des bandes riveraines de six mètres et neuf mètres ne présentait aucune différence significative par rapport à celles de trois mètres pour ce qui est de la diminution des charges polluantes. Ces dernières ont présenté une efficacité surprenante en réduisant de 48 % le ruissellement, de 90 % les charges de matières en suspension, de 69 % les charges d’azote total et de 86 % celles du phosphore (Duchemin et Majdoub, 2004).

Pour garantir l’efficacité de la bande riveraine, il est recommandé d’assurer un bon entretien de celle-ci. Un ou deux fauchages par année combinés à l’ensemencement de graines diversifiées pour accroître la densité et combler les espaces vides suffisent à garder une bande riveraine en bonne santé. Des précautions peuvent également être prises afin que l’épandage d’herbicides n’affecte pas la bande végétale (CPVQ, 2000b, Proulx, 2014). Finalement, il est préférable que les bandes riveraines soient complémentaires à d’autres pratiques de conservation afin d’augmenter leur efficacité (Duchemin et Majdoub, 2004). Au Québec, seulement 13 % des entreprises agricoles aménagent leurs bandes ou y sèment des végétaux. Par contre, 94 % des exploitations agricoles déclarant un cours d’eau à proximité ont confirmé la présence...
d'une bande riveraine d'un mètre, alors que 61 % de celles-ci ont déclaré la présence d'une bande riveraine de trois mètres (BPR-Infrastructure inc., 2008).

3.4.4 Haie brise-vent

La haie brise-vent est une rangée d’arbres ou d’arbustes, dont le but principal est d’atténuer les effets néfastes du vent. Selon la fonction désirée, celle-ci peut être implantée à proximité des champs en culture, des cours d’eau, des bâtiments agricoles et d’élevage et des structures d’entreposage des fumiers et lisiers (Canards Illimités Canada, 2013).

La fonction première de la haie brise-vent est de réduire les pertes de sol engendrées par l’érosion éolienne. En moyenne, 50 % de cette érosion peut être réduite grâce à la capacité du brise-vent à diminuer les pertes d’eau par évaporation et à atténuer la vitesse du vent (Vézina, 2001). D’ailleurs, lorsqu’orientée perpendiculairement aux vents dominants, la haie peut ralentir leur vitesse sur une distance horizontale de 10 à 20 fois sa hauteur (MAPAQ, 2005). Ceci permet également d’atténuer les odeurs agricoles et de diminuer la propagation des poussières en suspension de 30 %. Sur le plan énergétique, la présence d’un brise-vent naturel bien positionné favorise une réduction des coûts de chauffage des bâtiments de l’ordre de 10 à 15 % (Canards Illimités Canada, 2013).

3.5 Gestion adaptée des animaux d’élevage

Il existe une large gamme de techniques liées à la gestion des animaux d’élevage permettant d’atténuer les impacts de l’agriculture sur l’environnement. Cette section en présente quelques-unes qui sont associées à la stratégie d’alimentation et à l’amélioration génétique.
3.5.1 Stratégie d'alimentation

Une stratégie d'alimentation pour les animaux d'élevage consiste à utiliser différentes approches sur le plan alimentaire dans le but d'obtenir la modification de certains éléments spécifiques. Cette stratégie peut prendre la forme d'un plan d'action ou d'un bilan alimentaire et doit être préférentiellement réalisée sous la supervision d'un spécialiste (Turgeon, 2002).

En contexte environnemental, la maîtrise de l'alimentation vise d'abord la réduction de la teneur des fumiers en azote et en phosphore. Cela permet d'éviter la sur fertilisation des terres et par conséquent, tous les dommages sur l'environnement qui y sont associés comme la détérioration de la qualité de l'eau et de l'air (MAPAQ, 2005). Plus spécifiquement pour la qualité de l'air, une saine gestion de l'alimentation vise à réduire les émissions de N₂O et de NH₃. Plusieurs pratiques alimentaires peuvent être combinées afin de maximiser les bénéfices. Parmi les plus populaires, il y a l'amélioration de la conversion alimentaire, définie comme étant la « quantité d'aliments nécessaire pour obtenir un kilogramme de gain de poids » (Turgeon, 2002). Pour chaque amélioration de 0,1 du taux de conversion, une réduction des rejets d'azote et de phosphore d'environ 5 % est observée chez les porcs. C'est donc dire qu'un taux de conversion passant de 3 à 2,6 pourrait permettre une diminution des rejets d'éléments nutritifs de 20 % (Turgeon, 2002). Une autre méthode consiste à améliorer la disponibilité des nutriments dans l'optique de réduire la protéine brute des rations sans nuire aux besoins spécifiques et aux performances de l'animal. Le choix et la qualité des ingrédients, la mouture des grains, le traitement thermique des moulées et l'ajout d'enzymes spécifiques sont tous des facteurs ayant une incidence sur la disponibilité en nutriments (Turgeon, 2002). Par exemple, l'incorporation d'additifs alimentaires comme les acides aminés peuvent diminuer de 10 % les rejets azotés alors que l'ajout de l'enzyme phytase à la moulée peut réduire les rejets phosphorés de 25 % (MAPAQ, 2005). La phytase était utilisée dans une proportion de 89 % du cheptel porcin au Québec, en 2007, tandis que pour les volailles ce nombre s'élevait à 58 % (BPR-Infrastructure inc., 2008).

La prise en compte du stade physiologique de l'animal ainsi que son âge dans le choix d'aliments constitue une autre solution pour réduire la concentration de nutriments dans les déjections. Cette pratique, consistant à adapter l'alimentation en fonction des besoins de l'animal, se nomme alimentation multiphase. Ainsi, pour un seul élevage, différentes quantités et types de moulée doivent être employés selon le stade de développement de l'animal afin de ne pas fournir les éléments nutritifs à des niveaux excédant ses besoins, sachant que ces surplus sont excrétés (Turgeon, 2002). L'efficacité de l'alimentation en phases se situe aux alentours de 5 % à 15 % concernant la réduction des rejets en azote et phosphore (MAPAQ, 2005) et à 17 % pour la réduction des émissions de NH₃ (Roch, 2004). En 2007, cette technique d'alimentation était utilisée à la hauteur de 78 % des élevages de porcs de la province (BPR-Infrastructure inc., 2008). Enfin, une autre option est d'opter pour le mode d'alimentation par trémie qui permet de diminuer les rejets de nutriments azotés et phosphorés de 6 à 14 % (MAPAQ, 2005). Dans les élevages porcins, cette pratique
peut réduire jusqu’à 50 % les volumes de lisier à gérer (Pouliot, 2002b). Précisons que la plupart de ces méthodes peuvent également contribuer à la réduction d’odeurs (Roch, 2004).

Une stratégie d’alimentation adéquate permet également de réduire les émanations de CH₄ issues de la fermentation entérique des animaux d’élevage, particulièrement des ruminants. Le secret réside principalement dans le choix et la qualité des fourrages (Nature Québec, 2010a). Une première pratique consiste à augmenter la teneur en matières grasses dans l’alimentation du bétail en ajoutant par exemple des oléagineuses ou des graines de coton. Cette approche favorise la réduction des émissions de CH₄ de multiples façons, notamment en réduisant l’efficacité des bactéries dégradant la cellulose, en diminuant la digestibilité des aliments et en réduisant les besoins en glucides fermentescibles (Beauchemin, Mcallister et Mcginn, 2009). Une deuxième alternative à l’alimentation traditionnelle est d’offrir un régime à plus forte teneur en amidon, en privilégiant les grains de maïs et d’orge. L’une des raisons expliquant l’efficacité de cette mesure est reliée à la meilleure digestibilité de l’amidon comparativement aux fibres de cellulosiques (Nature Québec, 2010a). Le remplacement des graminées par des légumineuses constitue également une solution, car ces dernières sont moins riches en fibres, passant donc plus rapidement dans le rumen et augmentant la prise alimentaire (Beauchemin, Kreuzer, O’Mara et Mcallister, 2008). Une dernière pratique concerne le remplacement du foin par l’ensilage de maïs. Lors de la conservation par ensilage, une partie des sucres du fourrage est solubilisée, ce qui contribue à la diminution de la quantité de fibres et par le fait même des émissions de CH₄ (Moss, Jouany et Newbold, 2000). L’efficacité de réduction des émissions de CH₄ propre à chacune de ces méthodes en élevage laitier est présentée au tableau 3.2. Comparativement aux stratégies alimentaires visant à réduire les rejets azotés et phosphorés des porcs, les réductions de CH₄ par la modification alimentaire des élevages laitiers ne sont pas cumulatives. À noter que l’amélioration de la conversion alimentaire décrite plus tôt peut également être efficace à ce chapitre, étant donné que la production de gaz est proportionnelle à la quantité d’aliments ingérée par l’animal (AAC, 2012).

<table>
<thead>
<tr>
<th>Modification alimentaire</th>
<th>Réduction des émissions de CH₄</th>
</tr>
</thead>
<tbody>
<tr>
<td>↑ teneur en matières grasses</td>
<td>5 à 20 %</td>
</tr>
<tr>
<td>↑ teneur en amidon</td>
<td>5 à 10 %</td>
</tr>
<tr>
<td>↑ légumineuses</td>
<td>5 à 15 %</td>
</tr>
<tr>
<td>↑ ensilage de maïs</td>
<td>5 à 10 %</td>
</tr>
</tbody>
</table>

Tableau 3.2 Réduction des émissions de CH₄ produites par les vaches laitières selon la modification alimentaire effectuée (inspiré de : AAC, 2012)
3.5.2 Pâturage extensif

Le pâturage consiste à placer le bétail à l'extérieur, généralement dans une prairie destinée au pâturage, afin que celui-ci puisse s'alimenter directement au champ. Habituellement, le pâturage s'insère bien dans un programme de rotation des cultures (Debarge et Tenaud, 2015b). Cette pratique est de moins en moins répandue au Québec comme en témoigne la diminution de 24 % des superficies réservées à cet usage pour la période 2003 à 2007 (BPR-Infrastructure inc., 2008). Les troupeaux de plus grande taille, la mécanisation et les nouveaux modes d'alimentation expliquent en partie cette perte de popularité (Brisson, 2003). Pourtant, laisser paître les animaux au champ dans un environnement plus naturel, où les actions humaines sont réduites, permet de valoriser les parcelles moins productives en plus de réduire plusieurs pressions de l'agriculture sur le milieu (Nature Québec, 2010a).

En ce qui a trait aux pesticides, l’introduction d’une prairie diminue significativement leur utilisation. Elle permet de réduire l’abondance des adventices dans le stock semencier aussi efficacement qu’une rotation de cultures annuelles désérbées à l’aide de produits chimiques. Il n’est donc pas rare que les prairies soient exemptées de produits phytosanitaires. (Debarge et Tenaud, 2015b)

Le pâturage extensif contribue aussi à l’amélioration de la qualité de l’air en diminuant les émissions de plusieurs gaz. La volatilisation du NH₃ peut être réduit de 25 % par l’infiltration rapide de l’urine au sol (Nature Québec, 2010a), alors que les émanations de NO₂ et de P₂₅ sont aussi plus faibles dues à la diminution de l’utilisation de combustibles fossiles (Debarge et Tenaud, 2015b). Une gestion adéquate des prairies permet également de stocker du carbone dans le sol et de réduire 14 % des émissions de GES totaux (Nature Québec, 2010a). Le tableau 3.3 présente les données associées au stockage de carbone et aux diminutions des émissions de GES par l’adoption de différentes mesures liées à l’optimisation de la gestion des prairies.
Tableau 3.3 Détail de l’abattement des émissions de GES par l’optimisation de la gestion des prairies, en kg CO₂ équivalent par hectare, par année (inspiré de : Pellerin et al., 2013)

<table>
<thead>
<tr>
<th>Mesures</th>
<th>Stockage de carbone</th>
<th>N₂O (engrais, sols, effluents)</th>
<th>CH₄ (effluents, fermentation entérique)</th>
<th>CO₂ (Carburant)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allonger la durée de pâturage</td>
<td></td>
<td>520</td>
<td>22</td>
<td>6</td>
</tr>
<tr>
<td>Accroître la durée des prairies temporaires</td>
<td></td>
<td>54</td>
<td>22</td>
<td>38</td>
</tr>
<tr>
<td>Réduire la fertilisation minérale azotée</td>
<td></td>
<td>52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Améliorer la valorisation des prairies permanentes</td>
<td>1416</td>
<td>-7</td>
<td>-22</td>
<td>-447</td>
</tr>
</tbody>
</table>

* Une valeur négative correspond à des émissions accrues; le stockage de carbone est calculé sur 20 ans.

Sur le plan énergétique, le pâturage extensif permet des économies importantes, notamment en raison des diminutions de carburant et d’engrais azotés de synthèse utilisés. La réduction des stocks de fourrages induit aussi une plus faible consommation d’énergie pour la récolte, la mise en stock et la distribution (Debarge et Tenaud, 2015b). Finalement, le pâturage favorise davantage la biodiversité que les cultures annuelles. En effet, les prairies fournissent des habitats à plusieurs espèces fauniques, dont certaines espèces d’oiseaux comme le goglu des prés et la pie-grièche migratrice de l’Est (MAPAQ, s. d.b). Les organismes du sol sont également plus nombreux, de même pour les espèces floristiques (Debarge et Tenaud, 2015b).

3.5.3 Amélioration génétique

En contexte agricole, l’amélioration génétique est une pratique visant à sélectionner et à reproduire les individus détenant les caractéristiques souhaitées afin de conserver et d’améliorer continuellement celles-ci (Wiener et Rouvier, 2009). Cette sélection génétique, s’effectuant aujourd’hui principalement par insémination artificielle, peut avoir des répercussions intéressantes sur l’environnement, notamment par la diminution des émissions de GES et des rejets chargés en éléments nutritifs.

Premièrement, l’amélioration génétique permet de réduire le nombre de têtes dans les exploitations d’élevage de bovins et dans les fermes laitières. Cela est possible en améliorant, par exemple, le rendement reproductif des vaches, ce qui permet de diminuer le nombre de génisses de remplacement (AAC, 2012). Aussi, en augmentant génétiquement la productivité des vaches laitières, il est possible de produire autant, sinon plus de lait avec un nombre plus faible d’individus. La preuve, c’est que malgré un nombre de vaches trois fois moins élevé aujourd’hui comparativement au début des années 1970, la production de lait est restée la même au Québec (Les producteurs de lait du Québec, s. d.). Une vache laitière produisait en moyenne 7000 litres de lait annuellement en 1996, alors qu’en 2015, cette production s’élève à 9000 litres.
de lait (Penven, 2016, 9 février). Cette gestion des troupeaux visant la réduction du nombre de têtes favorise une diminution des émissions de CH₄ de l’ordre de 5 % à 20 % (AAC, 2012).

Deuxièmement, la sélection génétique peut représenter des gains pour l’environnement par l’optimisation de l’efficacité de conversion des aliments. En sélectionnant des génotypes qui présentent une meilleure efficacité alimentaire, la quantité de CH₄ émise par les bovins peut être réduite de 10 % à 20 % (AAC, 2012). Pour ce qui est des porcs, le principal avantage lié à un taux de conversion des aliments plus performant et une vitesse de croissance plus élevée est la diminution des rejets azotés et phosphorés (Nature Québec, 2010a).

3.6 Infrastructures et équipements durables

L’optimisation des infrastructures agricoles et des équipements constitue une voie pertinente pour l’amélioration de différents aspects environnementaux à la ferme, dont la gestion de l’énergie. L’efficacité énergétique des bâtiments, l’électrification de la machinerie, les biocarburants et les chemins agricoles réfléchis sont les principaux sujets de cette section.

3.6.1 Efficacité énergétique des bâtiments

L’implantation de diverses mesures permet de diminuer les dépenses énergétiques liées aux bâtiments. Tout d’abord, il est possible d’améliorer l’efficacité énergétique des infrastructures en favorisant une meilleure isolation ainsi qu’une meilleure ventilation (IFIP - Institut du porc, 2007). Bien que ces modifications apportées aux bâtiments soient du cas par cas, les économies d’énergies fossiles peuvent s’élèver jusqu’à 45 % (Nature Québec, 2011). Plusieurs équipements peuvent également être utilisés pour réduire la consommation d’énergie. C’est le cas des récupérateurs de chaleur installés dans le système de ventilation et des murs solaires qui peuvent respectivement diminuer les besoins énergétiques de 50 % (Nature Québec, 2010b) et de 20 % à 50 % (Groupe AGÉCO, 2006).

Ensuite, la modification du système de chauffage constitue une autre possibilité pour atteindre une meilleure efficience des bâtiments. En remplaçant les systèmes de chauffage au mazout et au gaz naturel par des sources renouvelables d’énergie, il est possible de réduire considérablement ou même d’éliminer les besoins en énergies fossiles (Nature Québec, 2011). Bien que l’électricité soit l’option souvent choisie, le chauffage à la biomasse et par géothermie sont d’autres alternatives pour réduire les émissions de GES. Le potentiel de réduction de GES pour un système de chauffage par géothermie est évalué à plus de 100 tonnes équivalent CO₂ par ferme annuellement (Nature Québec, 2010b).

Enfin, certaines mesures associées à l’éclairage permettent de limiter la consommation énergétique des bâtiments. Favoriser l’éclairage par la lumière naturelle, installer des détecteurs de présence et utiliser des
tubes fluorescents avec ballasts écoénergétiques constituent des options intéressantes sur le plan énergétique. Les économies d'énergie liées à l'éclairage fluorescent varient généralement entre 15 % à 70 %. (IFIP - Institut du porc, 2007)

3.6.2 Électrification de la machinerie et biocarburants

Sachant que la machinerie agricole effectuant les activités au champ nécessite beaucoup de combustibles fossiles et émet des quantités considérables de GES, l'utilisation de technologies moins polluantes comme l'électrification de la machinerie et les biocarburants peut s'avérer une solution pour réduire les impacts sur l'environnement (Nature Québec, 2011).

Bien que certaines initiatives individuelles aient permis l'électrification complète de certains véhicules agricoles, la technologie actuelle est davantage orientée vers les appareils hybrides. En effet, les tracteurs semi-électrifiés basés sur la combinaison d'un moteur diesel et d'une génératrice électrique constituent la principale alternative à la machinerie traditionnelle (Nature Québec, 2011). En constant développement, cette avenue ne procure pas des performances environnementales aussi élevées que souhaité. Selon les modalités d'utilisation, la réduction de carburant utilisé varie entre 5 % et 14 % (Onnen, 2011).

Pour sa part, le remplacement des carburants fossiles par des biocarburants est une mesure peu réalisable pour le moment. Cette pratique, qui consiste à substituer l'essence à l'éthanol et le diesel au biodiesel dans l'optique de diminuer les émanations de GES, doit d'abord faire l'objet de questionnements et d'ajustements avant d'être perçue comme une alternative logistiquement possible et durable (Nature Québec, 2011). Permettant de réduire de 24 % à 91 % les émissions de GES selon la filière utilisée (Bio Intelligence Service, 2010), les biocarburants représentent un enjeu non négligeable sur le plan de la sécurité alimentaire par leur production. En outre, les détaillants commercialisant les biocarburants au Québec sont peu nombreux actuellement, ce qui peut constituer un problème d'approvisionnement pour les exploitants agricoles (Nature Québec, 2011).

Une façon plus simple de diminuer sa consommation de carburant est d'entretenir fréquemment la machinerie agricole. Cette mesure, combinée à la réduction de la puissance de la machinerie afin de l'adapter à chaque type de travaux, peut permettre une économie de 10 % de la consommation de diesel (Nature Québec, 2011).

3.6.3 Chemins agricoles réfléchis

Les chemins de ferme sont des composantes importantes puisqu'ils permettent de manœuvrer plus facilement entre les champs sans avoir à abîmer le sol et les cultures. Une répartition adéquate des chemins agricoles permet ainsi de réduire les risques de compaction des sols étant donné qu'ils diminuent le nombre
de passages de la machinerie. Une astuce est de favoriser les chemins en bout de champs afin d’avoir un accès permanent à ceux-ci. (Garon, 2014)

L’aménagement de chemins avec bandes de roulement constitue une façon simple d’atténuer certains impacts sur l’environnement. Cette pratique consiste à laisser une bande de verdure entre les deux bandes de roulement. Que le chemin soit fait de terre, de gravières ou de pavés, cette méthode fonctionne relativement bien. La bande verte centrale favorise l’infiltration des eaux de pluie et diminue le ruissellement de l’eau à la surface. Elle permet aussi de réduire le déplacement des poussières et de favoriser la biodiversité. En effet, la bande herbacée permet la création de nouveaux habitats pour les plantes et les petits animaux, en plus d’atténuer l’effet barrière que provoque le chemin. La présence de fleurs sauvages attire également les pollinisateurs. Toutefois, certaines situations sont moins propices à ce type de chemin, par exemple les chemins où la circulation est importante et ceux empruntés fréquemment par le bétail. Un exemple de chemin agricole avec bandes de roulement est présenté à la figure 3.6. (Béguin, 2008)

Figure 3.6 Chemin agricole avec bandes de roulement (tiré de : Daft Cmpagny, s. d.)
4. ANALYSE MULTICRITÈRE

Les pratiques agroenvironnementales présentées au chapitre précédent permettent toutes de réduire les impacts négatifs de l’agriculture sur l’environnement. Toutefois, elles agissent sur différents enjeux environnementaux et possèdent des efficacités distinctes. L’analyse suivante vise à établir la performance environnementale de chacune de ces pratiques alternatives afin de les comparer entre elles. Ceci permettra de distinguer les pratiques sur lesquelles les producteurs agricoles québécois doivent se concentrer pour améliorer leur bilan environnemental.

Le chapitre qui suit débute par la présentation générale de la méthodologie liée à cette analyse multicritère. Puis, le choix des critères, leur description ainsi que leur pondération respective sont exposés et justifiés. Ces étapes préliminaires mènent ensuite à l’attribution des notes pour chacun des critères, constituant le cœur de l’analyse. Finalement, les résultats de celle-ci sont présentés et interprétés.

4.1 Méthodologie

La méthode d’analyse retenue pour évaluer la performance environnementale des différentes pratiques agricoles est l’analyse multicritère. Cet outil d’aide à la décision permet l’agrégation et la structuration de données, favorisant la comparaison et le classement de différents éléments entre eux (André, Delisle et Revéret, 2010). Ainsi, cette méthode sert à identifier les pratiques agricoles les plus efficaces en termes de gains environnementaux, de même que celles qui performent moins bien. Comme l’analyse multicritère permet d’intégrer à la fois des données quantitatives et qualitatives (Caillet, 2003), elle se prête bien au contexte de cet essai.

Dans l’optique de rendre l’analyse pertinente et crédible, les critères ont été choisis et définis avec justesse pour mesurer adéquatement la réduction des impacts agricoles sur différentes dimensions environnementales, soit la qualité de l’air, la qualité de l’eau, la santé des sols, la gestion de l’énergie et la biodiversité. L’importance accordée à chacun des critères, mais également à chacune de ces dimensions, a été considérée par l’entremise d’un système de pondération. Ensuite, l’évaluation des critères pour chacune des pratiques agroenvironnementales a été effectuée selon une échelle de notation prédéfinie et a été présentée sous la forme d’une grille d’analyse.

4.2 Sélection et description des critères

Les critères choisis servent à évaluer les performances environnementales des pratiques agricoles ciblées au chapitre 3 selon différentes dimensions environnementales. Au nombre de cinq, ces dernières sont issues des enjeux environnementaux liés à l’agriculture qui sont exposés au deuxième chapitre, soit la qualité de l’air, la qualité de l’eau, la santé des sols, la gestion de l’énergie et la biodiversité. Le tableau 4.1 présente les dimensions ainsi que leurs critères respectifs.

Tableau 4.1 Dimensions et critères de l’analyse

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Critère</th>
</tr>
</thead>
<tbody>
<tr>
<td>Qualité de l’air</td>
<td>Émissions de GES</td>
</tr>
<tr>
<td></td>
<td>Pollution atmosphérique</td>
</tr>
<tr>
<td></td>
<td>Nuisances olfactives</td>
</tr>
<tr>
<td>Qualité de l’eau</td>
<td>Contamination des eaux de surface et souterraines</td>
</tr>
<tr>
<td></td>
<td>Apport en sédiments</td>
</tr>
<tr>
<td>Santé des sols</td>
<td>Pertes de sol</td>
</tr>
<tr>
<td></td>
<td>Structure du sol</td>
</tr>
<tr>
<td></td>
<td>MO</td>
</tr>
<tr>
<td>Gestion de l’énergie</td>
<td>Efficacité énergétique</td>
</tr>
<tr>
<td></td>
<td>Dépendance aux énergies fossiles</td>
</tr>
<tr>
<td>Biodiversité</td>
<td>Qualité des habitats et des milieux naturels</td>
</tr>
<tr>
<td></td>
<td>Insectes pollinisateurs</td>
</tr>
</tbody>
</table>

Chaque critère est évalué sur une échelle de notation variant de -5 à 5. Une note positive signifie que le critère est amélioré par la pratique agroenvironnementale par rapport aux méthodes conventionnelles, alors qu’une note négative témoigne d’une détérioration du critère. Plus la note est élevée, c’est-à-dire plus elle s’approche de 5, plus la pratique alternative est performante sur le plan du critère. À l’inverse, plus la note est près de -5, plus la pratique est dommageable pour l’aspect visé. Finalement, l’attribution d’une note de zéro indique que la pratique agricole n’a pas d’effet significatif sur le critère ou que les impacts de celle-ci s’annulent entre eux.

4.2.1 Critères de la qualité de l’air

- Émissions de GES

Au Québec, les émissions de GES reliés à l’agriculture sont considérables et représentaient 11,5 % des émissions totales de la province en 2013. Sachant que celles-ci contribuent fortement au phénomène des changements climatiques, leur prise en compte est importante pour l’analyse des pratiques agricoles. Le critère vise à évaluer la capacité de chaque pratique agricole à diminuer les émissions de GES. La note attribuée à celui-ci est influencée principalement par les émissions issues de la fermentation entérique.
(CH₄), de la gestion des sols (N₂O), de la gestion des fumiers (N₂O et CH₄), des combustibles fossiles (CO₂) et de la production d’engrais azotés (CO₂). Une note élevée se traduit donc par une réduction accrue des GES alors qu’une note négative indique une augmentation de ceux-ci.

- Pollution atmosphérique
La pollution atmosphérique liée aux activités agricoles est susceptible de causer des problèmes de santé humaine et d’altérer la qualité de plusieurs milieux naturels, d’où l’importance de considérer cet aspect dans l’évaluation de la qualité de l’air. Le critère a pour objet d’évaluer le potentiel de chacune des pratiques à diminuer les émissions de polluants dans l’atmosphère. Les principaux facteurs agissant sur le critère sont les engrais azotés et les fumiers (NH₃), les combustibles fossiles (NOₓ, CO, SOₓ), les COVs, les P₂₅ et les pesticides. L’attribution d’une notation élevée signifie que la pratique alternative réduit considérablement les émissions de polluants atmosphériques alors qu’une note sous la barre de zéro indique une augmentation de celles-ci.

- Nuisances olfactives
Des odeurs émanant des activités agricoles peuvent affecter la qualité de l’air et incommoder les résidents situés à proximité des exploitations. L’objectif du critère est de jauge l’habileté des différentes pratiques agricoles à réduire les émanations d’odeurs. Principaux responsables de ces nuisances olfactives, le NH₃, le H₂S et les COVs associées souvent aux fermes d’élevage sont les éléments qui influent sur le critère. Une note élevée témoigne d’une grande diminution des nuisances olfactives, tandis qu’une note négative signifie une augmentation de celles-ci par rapport aux pratiques conventionnelles.

4.2.2 Critères de la qualité de l’eau

- Contamination des eaux de surface et souterraines
Pouvant s’exprimer sous diverses formes, la contamination des plans d’eau par les activités agraires peut mener à d’importants impacts sur le milieu aquatique et sur les organismes qui s’y trouvent, notamment par l’eutrophisation de celui-ci. La contamination des eaux de surface et souterraines doit donc être considérée dans l’analyse, d’autant plus qu’elle peut aussi affecter la qualité des sources d’approvisionnement en eau potable. Le critère vise à évaluer la capacité des différentes pratiques agroenvironnementales à atténuer la contamination des plans d’eau. La note décernée au critère est basée majoritairement sur la proportion de fertilisants utilisés, l’usage de pesticides et la vulnérabilité à l’érosion hydrique et éolienne. L’attribution d’une note élevée se traduit par une forte diminution des risques de contamination des eaux de surface et souterraines. À l’inverse, une notation négative signifie une augmentation du potentiel de contamination.

- Apport en sédiments
La dégradation de la qualité de l’eau peut être causée par un apport excessif en sédiments. En suspension ou déposés sur le lit des cours d’eau, les sédiments modifient la bathymétrie de ceux-ci, de même que les
propriétés physico-chimiques de l'eau. Le critère a pour but de déterminer l'aptitude des pratiques agraires analysées à diminuer l'apport en sédiments dans les cours d'eau. La vulnérabilité au phénomène d'érosion est le principal facteur agissant sur le critère. Une note élevée lors de l'analyse indique une forte réduction de l'apport sédimentaire dans les cours d'eau, tandis qu'une note négative témoigne d'une augmentation de l'apport en sédiments comparativement aux pratiques conventionnelles.

4.2.3 Critères de la santé des sols

- Pertes de sol
Les pertes de sol liées à l'érosion contribuent directement à la détérioration de ceux-ci par la disparition irréversible de substrat. Celles-ci sont donc préféremment à éviter. Le critère visant à évaluer les pertes de sol associées à chacune des pratiques agricoles varie principalement en fonction de la capacité de celles-ci à réduire les risques d'érosion hydrique et éolienne. Une diminution importante des pertes de sol induit par la pratique agroenvironnementale se traduit par une note élevée, alors qu'une augmentation de celles-ci est représentée par une notation négative.

- Structure du sol
Une bonne structure des sols est essentielle au maintien de la santé de ceux-ci. La prise en compte de cet aspect dans l'analyse est importante puisqu'une dégradation de la structure affecte plusieurs fonctions du sol, dont les capacités de drainage et d'aération, la résistance à l'érosion et à la compaction et la rétention d'eau et des éléments nutritifs. Le critère a pour objectif de noter l'habileté des pratiques agricoles à réduire la détérioration de la structure du sol. La note attribuée à celui-ci dépend principalement du travail du sol effectué, du compactage, de l'apport en fertilisants et de la vulnérabilité à l'érosion. L'attribution d'une note élevée signifie une grande diminution de la détérioration de la structure, allant même jusqu'à l'amélioration de celle-ci. Au contraire, une notation négative indique une hausse de la dégradation de la structure comparativement aux pratiques conventionnelles.

- MO
La MO présente dans le sol a plusieurs bienfaits, notamment en agissant comme réserve d'éléments nutritifs et en permettant une bonne rétention d'eau. De plus, elle permet la stabilité des agrégats du sol et la séquestration du carbone dans le sol. Toutefois, certaines activités agricoles sont susceptibles d'appauvrir le sol en MO. Pour ces raisons, la MO est considérée dans l'évaluation des impacts des pratiques agricoles sur la santé des sols. Le critère vise à mesurer le potentiel de chacune des pratiques à réduire l'appauvrissement en MO. Celui-ci est influencé principalement par le travail du sol et le phénomène d'érosion. Une note élevée signifie une forte réduction des pertes de MO, pouvant même aller jusqu'à une augmentation de celle-ci. Une note négative indique quant à elle une augmentation de l'appauvrissement en MO par rapport aux méthodes conventionnelles.
4.2.4 Critères de la gestion de l’énergie

- Efficacité énergétique
Les activités agricoles québécoises consomment les ressources énergétiques en grande quantité, toutes formes confondues. En effet, leurs dépenses énergétiques totalisent 2 % de celles de la province. Une amélioration de l’efficacité énergétique serait souhaitable afin de diminuer cette consommation effrénée. Le critère a pour but d’évaluer la capacité de chacune des pratiques agricoles à améliorer l’efficacité énergétique. Celui-ci est influencé principalement par les techniques permettant de diminuer la consommation d’énergie. L’attribution d’une note élevée se traduit par une amélioration considérable de l’efficacité énergétique, tandis qu’une note sous la barre de zéro signifie une augmentation de la consommation énergétique comparativement aux pratiques conventionnelles.

- Dépendance aux énergies fossiles
Au Québec, entre 60 % et 80 % de l’énergie utilisée à la ferme provient de sources fossiles. Cette dépendance accrue à cette forme d’énergie non renouvelable est problématique sachant que les besoins énergétiques mondiaux pourraient augmenter de 45 % d’ici 2030 et que les réserves mondiales de pétrole et de gaz naturel seront épuisées dans un peu plus d’une cinquantaine d’années. Le critère vise à évaluer la capacité des pratiques agricoles à réduire l’usage d’énergies fossiles. Les facteurs agissant sur celui-ci sont l’usage de formes d’énergie renouvelable, l’utilisation de carburant pour la machinerie et le transport, de même que les combustibles fossiles associés au chauffage des bâtiments et à la fabrication d’engrais azotés. Une forte diminution de la dépendance aux énergies fossiles est représentée dans l’analyse par une note élevée. Au contraire, une augmentation de l’utilisation des produits pétroliers par rapport aux pratiques conventionnelles se traduit par une note négative.

4.2.5 Critères de la biodiversité

- Qualité des habitats et des milieux naturels
Les habitats et les milieux naturels sont essentiels à la survie de plusieurs organismes. La destruction et la dégradation de ceux-ci par les activités agricoles engendrent une réduction des espèces présentes et par conséquent une diminution de la biodiversité. Le critère sert à évaluer la capacité des pratiques agricoles à réduire les impacts sur les habitats et les milieux naturels. Parmi les nombreux facteurs influençant le critère, on compte l’usage des pesticides et des fertilisants, la vulnérabilité à l’érosion et les émissions de gaz polluants. Une note élevée indique une diminution importante de la dégradation des habitats et des milieux naturels, allant même jusqu’à une amélioration de ceux-ci. Une note négative signifie une détérioration de la qualité des habitats et des milieux naturels supérieure à celle observée pour les pratiques conventionnelles.
• Insectes pollinisateurs
Les insectes pollinisateurs fournissent un service écosystémique d’approvisionnement indispensable aux êtres humains, en plus de contribuer au maintien de la biodiversité. Leur déclin, causé entre autres par l’agriculture, serait catastrophique sachant que sans les abeilles domestiques, des baisses de rendement pourraient survenir dans 75 % des récoltes. L’objectif du critère est d’évaluer le potentiel de réduction des effets négatifs sur les insectes pollinisateurs pour chacune des pratiques agroenvironnementales. L’usage de pesticides et surtout d’insecticides constitue le principal élément qui influence le critère. L’attribution d’une note élevée indique une réduction importante des impacts sur les pollinisateurs, alors qu’une note négative signifie une augmentation des effets négatifs sur ceux-ci.

4.3 Pondération des critères et de leur dimension
Les critères identifiés et décrits précédemment permettront d’évaluer l’efficacité environnementale de chacune des pratiques agricoles alternatives par rapport à celles conventionnelles. Toutefois, les critères ne sont pas tous équivalents et n’ont pas tous la même importance en termes d’impact sur leur dimension respective. En ce qui a trait aux dimensions, certaines d’entre elles sont également plus influentes que d’autres sur l’environnement. Ces disparités sont considérées par l’entremise d’un système de pondération. Le tableau 4.2 exposé ci-dessous présente la pondération attribuée aux dimensions ainsi qu’aux critères.

Tableau 4.2 Pondération des dimensions et de leurs critères

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Pondération dimension (%)</th>
<th>Critère</th>
<th>Pondération critère (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Qualité de l’air</td>
<td>21,0</td>
<td>Émissions de GES</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pollution atmosphérique</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nuisances olfactives</td>
<td>20</td>
</tr>
<tr>
<td>Qualité de l’eau</td>
<td>21,0</td>
<td>Contamination des eaux de surface et souterraines</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Apport en sédiments</td>
<td>40</td>
</tr>
<tr>
<td>Santé des sols</td>
<td>21,0</td>
<td>Pertes de sol</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Structure du sol</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MO</td>
<td>30</td>
</tr>
<tr>
<td>Gestion de l’énergie</td>
<td>18,5</td>
<td>Efficacité énergétique</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dépendance aux énergies fossiles</td>
<td>55</td>
</tr>
<tr>
<td>Biodiversité</td>
<td>18,5</td>
<td>Qualité des habitats et des milieux naturels</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Insectes pollinisateurs</td>
<td>25</td>
</tr>
</tbody>
</table>
Concernant la pondération des dimensions, la qualité de l’air, la qualité de l’eau et la santé des sols obtiennent tous les trois la pondération la plus élevée, soit une pondération identique de 21,0 %. Cela s’explique par le fait qu’elles constituent les composantes principales de l’environnement. Les dimensions associées à la gestion de l’énergie et à la biodiversité se voient quant à elles attribuer chacune une pondération de 18,5 %, ce qui témoigne tout de même de leur grande importance sur le plan environnemental.

Pour ce qui est des critères, leur pondération est basée sur l’importance relative de ceux-ci à l’intérieur d’une même dimension. Les émissions de GES et la pollution atmosphérique obtiennent toutes les deux une pondération de 40 % étant donné leur forte influence sur la qualité de l’air. De moindre importance, les nuisances olfactives ont pour leur part une pondération de 20 %. Pour la qualité de l’eau, les impacts provenant de la contamination des eaux de surface et souterraines sont plus imposants que ceux associés à l’apport sédimentaire. Pour cette raison, ces critères sont pondérés respectivement à 60 % et 40 %.

Les critères relatifs à la santé des sols ont des pondérations semblables soit 40 % pour les pertes de sol, 30 % pour la structure du sol et 30 % pour la MO. La pondération quelque peu plus élevée pour les pertes de sol est due au caractère irréversible de ce critère comparativement aux deux autres qui sont réversibles. En ce qui a trait à la gestion de l’énergie, la dépendance aux énergies fossiles est pondérée à 55 % alors que l’efficacité énergétique obtient 45 %. Cette différence s’explique par le fait que l’efficacité énergétique comprend une proportion d’énergie renouvelable, donc moins dommageable pour l’environnement que la dépendance aux énergies fossiles où seulement les énergies non renouvelables sont considérées. Enfin, pour la dimension de la biodiversité, le critère portant sur la qualité des habitats et des milieux naturels obtient une pondération de 75 % contre 25 % pour les insectes pollinisateurs. Bien que ces derniers soient importants pour le maintien de la biodiversité, ils agissent sur certains organismes spécifiques, alors que les habitats et les milieux naturels concernent la totalité des espèces.

4.4 Analyse

Cette analyse multicritère vise à comparer l’efficacité des pratiques agricoles alternatives en termes de gains environnementaux. Pour y parvenir, il suffit d’évaluer les différents critères pour chacune des méthodes proposées à l’aide de l’échelle de notation de -5 à 5 présentée à la section 4.2. L’attribution des notes est basée sur les informations recueillies au chapitre 3. Les éléments qui influencent les critères sont quant à eux issus du deuxième chapitre et ont été sommairement réitérés lors de la description des critères. À noter que l’interdépendance des critères n’a pas été considérée afin de ne pas surévaluer certains d’entre eux et en raison de la complexité des interactions. Par exemple, l’appauvrissement de la teneur en MO du sol contribue habituellement à la détérioration de la structure de celui-ci. Toutefois, cette interaction n’a pas été prise en compte dans l’analyse. Le tableau 4.3 présente l’analyse multicritère, soit plus précisément les notes attribuées aux différents critères pour chaque pratique agroenvironnementale.
Tableau 4.3 Analyse des pratiques agroenvironnementales selon des dimensions et critères environnementaux

<table>
<thead>
<tr>
<th>Pratiques agroenvironnementales</th>
<th>Dimensions, critères et pondérations</th>
<th>Qualité de l’air</th>
<th>Qualité de l’eau</th>
<th>Santé des sols</th>
<th>Gestion de l’énergie</th>
<th>Biodiversité</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0,210</td>
<td>0,210</td>
<td>0,210</td>
<td>0,185</td>
<td>0,185</td>
<td></td>
</tr>
<tr>
<td>Émissions de GES</td>
<td>Pollution atmosphérique</td>
<td>0,40</td>
<td>0,40</td>
<td>0,20</td>
<td>0,60</td>
<td>0,40</td>
<td></td>
</tr>
<tr>
<td>Pratiques culturales de conservation</td>
<td>Nuisances optiques</td>
<td>0,40</td>
<td>0,40</td>
<td>0,20</td>
<td>0,60</td>
<td>0,40</td>
<td>2,24</td>
</tr>
<tr>
<td>Rotation des cultures</td>
<td>Contamination des eaux de surface et souterraines</td>
<td>0,40</td>
<td>0,40</td>
<td>0,40</td>
<td>0,30</td>
<td>0,30</td>
<td>0,45</td>
</tr>
<tr>
<td>Culture en contre-pente</td>
<td>Apport en sédiments</td>
<td>0,40</td>
<td>0,40</td>
<td>0,20</td>
<td>0,60</td>
<td>0,40</td>
<td>0,73</td>
</tr>
<tr>
<td>Culture sur bilon</td>
<td>Structure du sol</td>
<td>0,40</td>
<td>0,40</td>
<td>0,20</td>
<td>0,60</td>
<td>0,40</td>
<td>1,90</td>
</tr>
<tr>
<td>Culture en bandes alternées</td>
<td>MO</td>
<td>0,40</td>
<td>0,40</td>
<td>0,20</td>
<td>0,60</td>
<td>0,40</td>
<td>2,21</td>
</tr>
<tr>
<td>Culture de couverture</td>
<td>Efficacité énergétique</td>
<td>0,40</td>
<td>0,40</td>
<td>0,20</td>
<td>0,60</td>
<td>0,40</td>
<td>2,91</td>
</tr>
<tr>
<td>Travail réduit du sol</td>
<td>Dépendance aux énergies fossiles</td>
<td>0,40</td>
<td>0,40</td>
<td>0,20</td>
<td>0,60</td>
<td>0,40</td>
<td>2,22</td>
</tr>
<tr>
<td>Semis direct</td>
<td>Qualité des habitats et des milieux naturels</td>
<td>0,40</td>
<td>0,40</td>
<td>0,20</td>
<td>0,60</td>
<td>0,40</td>
<td>3,40</td>
</tr>
<tr>
<td>Saine gestion des matières fertilisantes</td>
<td>Insectes pollinisateurs</td>
<td>0,40</td>
<td>0,40</td>
<td>0,20</td>
<td>0,60</td>
<td>0,40</td>
<td></td>
</tr>
<tr>
<td>Structure d’entreposage des fumiers avec toiture</td>
<td>0,40</td>
<td>0,40</td>
<td>0,20</td>
<td>0,60</td>
<td>0,40</td>
<td>3,00</td>
<td>0,73</td>
</tr>
<tr>
<td>Optimisation de l’épandage des matières fertilisantes</td>
<td>0,40</td>
<td>0,40</td>
<td>0,20</td>
<td>0,60</td>
<td>0,40</td>
<td>3,00</td>
<td>0,73</td>
</tr>
<tr>
<td>Compostage (valorisation des déjections animales)</td>
<td>0,40</td>
<td>0,40</td>
<td>0,20</td>
<td>0,60</td>
<td>0,40</td>
<td>3,00</td>
<td>0,73</td>
</tr>
<tr>
<td>Biométhanisation (valorisation des déjections animales)</td>
<td>0,40</td>
<td>0,40</td>
<td>0,20</td>
<td>0,60</td>
<td>0,40</td>
<td>3,00</td>
<td>0,73</td>
</tr>
<tr>
<td>Épandeur avec incorporation simultanée au sol (équipement d’épandage efficace)</td>
<td>0,40</td>
<td>0,40</td>
<td>0,20</td>
<td>0,60</td>
<td>0,40</td>
<td>3,00</td>
<td>0,73</td>
</tr>
</tbody>
</table>
Tableau 4.3 Analyse des pratiques agroenvironnementales selon des dimensions et critères environnementaux (suite)

<table>
<thead>
<tr>
<th>Pratiques agroenvironnementales</th>
<th>Dimensions, critères et pondérations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Qualité de l’air</td>
</tr>
<tr>
<td></td>
<td>0,210</td>
</tr>
<tr>
<td>Émissions de GES</td>
<td>0,40</td>
</tr>
<tr>
<td>Pollution atmosphérique</td>
<td>0,40</td>
</tr>
<tr>
<td>Nuisances acoustiques</td>
<td>0,20</td>
</tr>
<tr>
<td>Contamination des eaux de surface et souterraines</td>
<td>0,40</td>
</tr>
<tr>
<td>Apport en sédiments</td>
<td>0,20</td>
</tr>
<tr>
<td>Pertes de sol</td>
<td>0,40</td>
</tr>
<tr>
<td>Structure du sol</td>
<td>0,20</td>
</tr>
<tr>
<td>MO</td>
<td>0,40</td>
</tr>
<tr>
<td>Efficacité énergétique</td>
<td>0,45</td>
</tr>
<tr>
<td>Dépendance aux énergies fossiles</td>
<td>0,25</td>
</tr>
<tr>
<td>Qualité des habitats et des milieux naturels</td>
<td>0,75</td>
</tr>
<tr>
<td>Insectes pollinisateurs</td>
<td>0,25</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gestion raisonnée des pesticides</th>
<th>Lutte intégrée</th>
<th>Désherbage mécanique</th>
<th>Utilisation réduite des pesticides</th>
<th>Voie d’eau engazonnée et avaloir</th>
<th>Terrasses</th>
<th>Bande riveraine large et diversifiée</th>
<th>Haie brise-vent</th>
<th>Stratégie d’alimentation</th>
<th>Pâturage extensif</th>
<th>Amélioration génétique</th>
<th>Efficacité énergétique des bâtiments</th>
<th>Électrification de la machinerie et biocarburants</th>
<th>Chemins agricoles réfléchis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>1,63</td>
<td>3</td>
<td>1</td>
<td>0,77</td>
</tr>
<tr>
<td>Désherbage mécanique</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>-2</td>
<td>-2</td>
<td>-1</td>
<td>0</td>
<td>1</td>
<td>1,45</td>
<td>2</td>
<td>0</td>
<td>0,40</td>
</tr>
<tr>
<td>Utilisation réduite des pesticides</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1,14</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Voie d’eau engazonnée et avaloir</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>1,45</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Terrasses</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1,33</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Bande riveraine large et diversifiée</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1,95</td>
<td>5</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Haie brise-vent</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1,68</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Stratégie d’alimentation</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1,18</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Pâturage extensif</td>
<td>5</td>
<td>4</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>3,46</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Amélioration génétique</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0,93</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Efficacité énergétique des bâtiments</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>1,30</td>
<td>4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Électrification de la machinerie et biocarburants</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1,13</td>
<td>4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Chemins agricoles réfléchis</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0,77</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
L’efficacité environnementale pour chaque pratique a été calculée de la façon suivante. D’abord, l’efficacité pour chacune des dimensions a été déterminée à l’aide de l’équation ci-dessous :

\[D_1 = (N_{c_1} \cdot P_{c_1} + N_{c_2} \cdot P_{c_2} + \ldots + N_{c_n} \cdot P_{c_n}) \cdot P_{D_1} \]

\[\text{D: dimension} \]
\[\text{N: note} \]
\[\text{C: critère associé à la dimension} \]
\[\text{P: pondération} \]

Ensuite, l’efficacité pour chaque dimension a été additionnée pour obtenir l’efficacité environnementale pour une pratique :

\[EE = D_1 + D_2 + D_3 + D_4 + D_5 \]

\[\text{EE: efficacité environnementale} \]
\[\text{D: dimension} \]

Voici un résumé des faits saillants entourant l’attribution des notes pour les critères de chaque pratique agricole alternative. Un tableau complet présentant plus en détail la justification des notes décernées est disponible à l’annexe 5.

- **Rotation des cultures**
Permettant la succession de différents types de plantes sur une même parcelle, la rotation des cultures obtient les notes de 3 et 4 pour plusieurs critères associés aux dimensions de la qualité de l’eau et de la santé des sols. Ceci est principalement dû à l’ajout d’une légumineuse et d’une culture de couverture dans la rotation. Celles-ci agissent respectivement sur la quantité de fertilisants employée et sur le phénomène d’érosion. La rotation des cultures brise aussi le cycle des ravageurs, des adventices et des maladies, ce qui permet de réduire les quantités de pesticides utilisées. Principalement pour cette raison, les deux critères appartenant à la biodiversité obtiennent une note de 3.

- **Culture en contre-pente**
Cette pratique agit presque uniquement sur le processus d’érosion. Pour cette raison, plusieurs critères obtiennent la note de zéro puisqu’ils ne sont pas touchés par celui-ci. Affectés directement par l’érosion, les pertes de sol et les apports en sédiments sont ceux qui méritent les meilleures notes (note de 2) pour la culture en contre-pente.
• Culture sur billon
Les émissions de GES et la pollution atmosphérique sont les deux critères qui obtiennent les notes les plus élevées pour cette pratique, soit la note de 3. Ceci est principalement dû à la diminution du nombre de passages par la machinerie au champ et à la réduction de fertilisants et pesticides utilisés par l’application en bande. L’utilisation d’une machinerie plus petite et moins énergivore explique quant à elle la notation de 2 au critère d’efficacité énergétique. Bien que la culture sur billon diminue généralement l’érosion, il est possible que cette pratique ait l’effet inverse et augmente celle-ci. Pour cette raison, les notes associées aux dimensions de la qualité de l’eau et de la santé des sols sont relativement faibles. Enfin, les habitats et les milieux naturels, de même que les insectes pollinisateurs bénéficient d’une réduction de pesticides et de fertilisants, ce qui explique leur note de 2.

• Culture en bandes alternées
La diminution des risques d’érosion et la diminution d’insecticides utilisés sont les deux principaux atouts à cette pratique alternative. Ainsi, les critères de la contamination des eaux de surface et souterraines, des pertes de sol et des insectes pollinisateurs sont ceux qui obtiennent les notes les plus élevées (note de 2).

• Culture de couverture
En agissant efficacement sur le processus d’érosion, la culture de couverture obtient des notes variant de 3 à 4 pour les dimensions de la qualité de l’eau et de la santé des sols. Le potentiel de réduction des fertilisants et des pesticides favorise quant à lui la dimension de la biodiversité. Ajoutant à cela la création d’habitats et d’un couvert fleuri, les critères de la qualité des habitats et des milieux naturels et des insectes pollinisateurs se méritent respectivement les notes de 4 et 3. Pour ce qui est des émissions de GES, une note de 3 est décernée, notamment en raison de la séquestration plus facile du carbone dans le sol.

• Travailler réduit du sol
Cette pratique obtient des notes satisfaisantes (2 et 3) pour neuf des onze critères. Ceci s’explique majoritairement par la diminution du nombre de passages par la machinerie au champ, la réduction du travail du sol et par la présence de résidus au sol. Toutefois, l’usage plus fréquent d’herbicides explique pourquoi les notes ne sont pas plus élevées en général, de même que la note de -1 attribuée au critère des insectes pollinisateurs.

• Semis direct
Plusieurs critères associés au semis direct se voient octroyer d’excellentes notes pour les mêmes raisons que le travail réduit. Une note de 5 est d’ailleurs allouée aux critères des émissions de GES, des pertes de sol et de la dépendance aux énergies fossiles. La structure du sol, l’apport en sédiments et la contamination des eaux de surface et souterraines obtiennent eux aussi des notes élevées de 4 pour la diminution de l’érosion et de l’utilisation de fertilisants. L’utilisation récurrente d’herbicides limite toutefois la note du critère
de la qualité des habitats et des milieux naturels à 2, alors que celle pour les insectes pollinisateurs se situe à -2.

- **Structure d’entreposage des fumiers avec toiture**
 En réduisant la quantité de N₂O et de CH₄ émis dans l’atmosphère, cette pratique obtient la note de 4 pour le critère des émissions de GES. Une notation de 3 est pour sa part accordée à la pollution atmosphérique et aux nuisances olfactives à cause de l’important diminution des émissions de NH₃ que procure l’ajout d’une toiture. Pour le reste, des notes de 1 sont décernées aux autres critères à l’exception des insectes pollinisateurs, principalement en raison de la réduction des volumes de fertilisants à épandre.

- **Optimisation de l’épandage des matières fertilisantes**
 Par la diminution des fertilisants utilisés, cette pratique permet de réduire la pollution atmosphérique, les nuisances olfactives et la contamination des eaux de surface et souterraines, d’où la note de 2 attribuée à ces critères. Un impact positif de moindre importance est aussi perçu sur la majorité des autres critères. Pour cette raison, la note de 1 est décernée à ceux-ci.

- **Compostage (valorisation des déjections animales)**
 Une note de 5 a été décernée au critère des nuisances olfactives puisque le compostage permet de réduire presque entièrement les odeurs liées aux fumiers. Améliorée grâce au compost, la MO obtient la deuxième note la plus élevée concernant cette pratique avec une note de 3. La diminution d’herbicides liée à la réduction importante du taux de germination des semences de plantes nuisibles par l’action du compostage et la diminution de fertilisants au champ favorisent quant à elles plusieurs critères, dont ceux appartenant à la dimension de la biodiversité ainsi que les critères de la contamination des eaux de surface et souterraines et de la pollution atmosphérique. Ceux-ci obtiennent tous la note de 2.

- **Biométhanisation (valorisation des déjections animales)**
 En captant une proportion importante du CH₄ du fumier et en réduisant les apports en fertilisants, la biométhanisation mérite une note de 5 concernant les émissions de GES. En valorisant le biogaz récupéré par ce mécanisme, elle permet de remplacer une partie des énergies fossiles par des ressources renouvelables. Pour cette raison, les critères de la dimension de la gestion de l’énergie obtiennent chacun la note de 4. Toutefois, la biométhanisation favorise des pertes importantes de MO, ce qui explique la note de -3 à ce critère.

- **Épandeur avec incorporation simultanée au sol (équipement d’épandage efficace)**
 Ce type d’épandeur permet l’incorporation directement au sol des matières fertilisantes, favorisant notamment la diminution du lessivage de celles-ci vers les cours d’eau, des odeurs et des polluants atmosphériques. Ainsi, les critères portant sur les nuisances olfactives et la pollution atmosphérique
obtiennent respectivement des notes de 4 et 3. Malgré cet aspect positif pour la contamination des eaux de surface et souterraines, ce type d’épandeur augmente légèrement les risques d’érosion, limitant par le fait même la note de ce critère à 2. Ceci affecte également l’apport en sédiments, de même que la dimension de la santé des sols qui obtiennent pour la plupart des notes légèrement négatives.

- **Lutte intégrée**
Le principal attrait de la lutte intégrée est la réduction considérable de la consommation de pesticides. La dimension de la biodiversité, fortement influencée par l’utilisation de ceux-ci, obtient les notes les plus élevées, soit la note de 3 pour la qualité des habitats et des milieux naturels et de 5 pour les insectes pollinisateurs. À noter que la pollution atmosphérique et la contamination des eaux de surface et souterraines sont aussi influencées positivement par cette pratique (note de 2).

- **Désérbage mécanique**
En pouvant réduire jusqu’à 100 % la consommation d’herbicides et diminuer aussi l’apport en fertilisants, le désérbage mécanique est bénéfique pour les dimensions de la qualité de l’air et de la biodiversité. Des notes variant entre 0 et 3 sont accordées pour les critères faisant partie de ces dimensions. Le travail du sol engendré par cette pratique peut cependant augmenter les besoins en énergie, en plus d’accroître les risques d’érosion, ce qui est négatif pour plusieurs critères.

- **Utilisation réduite des pesticides**
Cette pratique permet de réduire la quantité de pesticides chimiques utilisée, en plus de pouvoir diminuer le nombre de passages de la machinerie au champ. Les notes de 2 assignées aux critères des insectes pollinisateurs et de la qualité des habitats et des milieux naturels constituent les plus élevées pour l’utilisation réduite des pesticides. Les autres critères sont tous affectés de manière légèrement positive par cette pratique (note de 1), à l’exception des nuisances olfactives où il n’y a pas d’effet significatif.

- **Voie d’eau engazonnée et avaloir**
En tant que pratique anti-érosive, la voie d’eau engazonnée munie d’un avaloir favorise grandement la diminution des pertes de sol et des apports sédimentaires. Pour cette raison, ces critères obtiennent des notes identiques de 4. De plus, les critères de la contamination des eaux de surface et souterraines, de la structure du sol, de la MO et de la qualité des habitats et des milieux naturels profitent eux aussi de cette diminution des risques d’érosion, ce qui explique leurs notes de 4.

- **Terrasses**
Ayant sensiblement les mêmes fonctions que la voie d’eau engazonnée et une efficacité similaire en termes de réduction de l’érosion, ce type d’aménagement obtient des notes semblables à celle-ci. Les seules
différences se situent au niveau de la structure de sol et de la MO, en raison des travaux du sol plus importants que nécessitent initialement les terrasses comparativement à la voie d’eau engazonnée.

- **Bande riveraine large et diversifiée**
 L’aménagement d’une telle bande riveraine agit comme barrière filtrante et diminue les pertes de sol. Par conséquent, une note de 2 est allouée aux critères de la dimension de la qualité de l’eau et à celui des pertes de sols. Ces notes peuvent sembler basses, mais les gains environnementaux doivent être considérés par rapport aux bandes végétales obligatoires de 3 mètres aménagées en agriculture conventionnelle et non à l’absence de bande riveraine. Par ailleurs, une bande riveraine large et diversifiée sert de refuge et d’habitat à plusieurs espèces floristiques et fauniques, en plus d’attirer les insectes pollinisateurs. Pour ces raisons, le critère sur la qualité des habitats et des milieux naturels mérite une note de 5, tandis que celui des insectes pollinisateurs une note de 4.

- **Haie brise-vent**
 En freinant le vent, la haie brise-vent diminue considérablement l’érosion. Cet aspect se reflète dans plusieurs notes attribuées, notamment pour les dimensions de la qualité de l’eau et de la santé des sols. La haie brise-vent favorise également l’efficacité énergique et la diminution des GES en réduisant les besoins en chauffage des bâtiments, d’où la note identique de 2 pour ces critères. La capacité des arbres à séquestrer le carbone influe aussi positivement sur le critère des émissions de GES.

- **Stratégie d’alimentation**
 Une note de 3 est décernée au critère des émissions de GES à cause des diminutions de N₂O et de CH₄ que peut engendrer cette pratique. La pollution atmosphérique et les nuisances olfactives sont aussi affectées positivement par la stratégie d’alimentation, soit par la diminution des émissions de NH₃. Pour cela, ces critères obtiennent des notes respectives de 3 et 2. Par ailleurs, la diminution de rejets azotés et phosphorés favorise également le critère de la contamination des eaux de surface et souterraines, expliquant sa note de 2. Enfin, la réduction de tous ces polluants dans les différentes composantes du milieu favorise la qualité des habitats et des milieux naturels (note de 2).

- **Pâturage extensif**
 La diminution de l’érosion par les plantes de couverture, l’absence ou presque de la machinerie et la diminution significative des fertilisants et des pesticides sont les principales raisons pour lesquelles des notes élevées sont allouées à plusieurs critères de cette pratique. Pour ces raisons, mais aussi grâce à l’importante séquestration du carbone dans le sol et à la diminution des émissions de CH₄ par l’alimentation, le critère des émissions de GES obtient une note de 5. Celui de la pollution atmosphérique mérite quant à lui une note de 4, notamment grâce à la diminution de volatilisation du NH₃ que procure le pâturage.
diminution de la quantité de carburant utilisé, de même que la réduction de la fabrication d’engrais azotés favorisent le critère de la dépendance aux énergies fossiles (note de 4).

- Amélioration génétique
Les succès de cette pratique se situent surtout sur le plan de la qualité de l’air. La réduction des émissions de CH₄ et des rejets azotés et phosphorés justifie la note de 3 accordée au critère des émissions de GES. Concernant la pollution atmosphérique et les nuisances olfactives, celles-ci obtiennent des notes respectives de 2 et 1 en raison de la diminution des émissions de NH₃.

- Efficacité énergétique des bâtiments
Une note de 4 est attribuée au critère des émissions de GES puisque plusieurs technologies comme le système de chauffage par géothermie permettent de réduire significativement la quantité de CO₂ émise dans l’atmosphère. Sans grande surprise, cette pratique se démarque aussi dans le critère d’efficacité énergétique (note de 4) grâce aux grandes économies d’énergie possibles. Une réduction notable de la dépendance aux énergies fossiles est également envisageable par cette pratique, ce qui explique la note de 4 à ce critère.

- Électrification de la machinerie et biocarburants
La diminution de la quantité de carburant utilisée favorise les critères des émissions de GES (note de 3) et de la pollution atmosphérique (note de 2). Privilégiant les ressources renouvelables, une note de 4 a été attribuée au critère de la dépendance aux énergies fossiles. Finalement, le réglage adéquat des équipements peut permettre une réduction de la consommation d’énergie, d’où la note de 2 pour l’efficacité énergétique.

- Chemins agricoles réfléchis
En diminuant légèrement le compactage et l’érosion, les chemins agricoles réfléchis obtiennent une note de 2 pour le critère des pertes de sol et une note de 1 pour les critères appartenant aux dimensions de la qualité de l’eau et de la santé des sols. Une note de 1 est également attribuée aux insectes pollinisateurs et à la qualité des habitats et des milieux naturels étant donné que les chemins avec bandes de roulement peuvent représenter des habitats pour certaines espèces floristiques et fauniques, en plus de diminuer l’effet barrière.

4.5 Résultats
L’analyse multicritère a permis d’établir la performance environnementale de chacune des pratiques alternatives identifiées préalablement, favorisant ainsi leur comparaison. Le tableau 4.4 présente l’efficacité environnementale de celles-ci ainsi que l’efficacité de leur catégorie respective.
Tableau 4.4 Efficacité environnementale de chaque pratique agroenvironnementale et de leur catégorie respective

<table>
<thead>
<tr>
<th>Catégorie de pratiques agroenvironnementales</th>
<th>Efficacité environnementale moyenne par catégorie</th>
<th>Pratique agroenvironnementale</th>
<th>Efficacité environnementale par pratique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pratiques culturales de conservation</td>
<td>2,17</td>
<td>Rotation des cultures</td>
<td>2,84</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Culture en contre-pente</td>
<td>0,73</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Culture sur billon</td>
<td>1,90</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Culture en bandes alternées</td>
<td>1,21</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Culture de couverture</td>
<td>2,91</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Travail réduit du sol</td>
<td>2,22</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Semis direct</td>
<td>3,40</td>
</tr>
<tr>
<td>Saine gestion des matières fertilisantes</td>
<td>1,46</td>
<td>Structure d'entreposage des fumiers avec toiture</td>
<td>1,46</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Optimisation de l'épandage des matières fertilisantes</td>
<td>1,21</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Compostage (valorisation des déjections animales)</td>
<td>1,79</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Biométhanisation (valorisation des déjections animales)</td>
<td>1,89</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Épandeur avec incorporation simultanée au sol (équipement d'épandage efficace)</td>
<td>0,95</td>
</tr>
<tr>
<td>Gestion raisonnée des pesticides</td>
<td>1,07</td>
<td>Lutte intégrée</td>
<td>1,63</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Désherbage mécanique</td>
<td>0,40</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Utilisation réduite des pesticides</td>
<td>1,14</td>
</tr>
<tr>
<td>Aménagements durables au champ</td>
<td>1,60</td>
<td>Voie d’eau engazonnée et avaloir</td>
<td>1,45</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Terrasses</td>
<td>1,33</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bande riveraine large et diversifiée</td>
<td>1,95</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Haie brise-vent</td>
<td>1,68</td>
</tr>
<tr>
<td>Gestion adaptée des animaux d’élevage</td>
<td>1,86</td>
<td>Stratégie d’alimentation</td>
<td>1,18</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pâturage extensif</td>
<td>3,46</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Amélioration génétique</td>
<td>0,93</td>
</tr>
<tr>
<td>Infrastructures et équipements durables</td>
<td>1,07</td>
<td>Efficacité énergétique des bâtiments</td>
<td>1,30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Électrification de la machinerie et biocarburants</td>
<td>1,13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chemins agricoles réfléchis</td>
<td>0,77</td>
</tr>
</tbody>
</table>

Toutes les catégories de pratiques agroenvironnementales présentent une efficacité environnementale moyenne positive. Toutefois, certaines d’entre elles se démarquent davantage que d’autres.
Les pratiques culturales de conservation sont celles qui possèdent l’efficacité environnementale moyenne la plus élevée avec 2,17. La majorité de ses pratiques agissent sur l’ensemble des dimensions environnementales contrairement aux pratiques appartenant aux autres catégories, ce qui explique leurs performances environnementales plus importantes. Un autre facteur est l’impact positif des pratiques culturelles de conservation sur le processus d’érosion, agissant ainsi sur plusieurs composantes du milieu.

Avec une efficacité moyenne de 1,86, la catégorie de la gestion adaptée des animaux d’élevage se classe deuxième en termes de gains environnementaux. Elle se distingue notamment par la réduction des impacts sur la qualité de l’air et la diminution de la contamination des plans d’eau. Comme les animaux d’élevage engendrent des pressions considérables sur l’environnement, il va de soi que la gestion de ceux-ci procure des bénéfices environnementaux importants.

La catégorie de pratiques alternatives affichant la troisième meilleure efficacité environnementale moyenne est celle des aménagements durables au champ, avec 1,60. Les pratiques agroenvironnementales de cette catégorie amenuisent surtout les impacts sur la qualité de l’eau, la santé des sols et la biodiversité. Mentionnons que la performance environnementale moyenne de ces pratiques anti-érosives s’approche de celle associée à la gestion adaptée des animaux d’élevage.

Avec une efficacité de 1,46, la catégorie associée à la saine gestion des matières fertilisantes se place au quatrième rang. Celle-ci procure des gains environnementaux surtout en améliorant la qualité de l’air, en diminuant la contamination des eaux de surface et souterraines et en favorisant la qualité des habitats et des milieux naturels. En agissant majoritairement sur un élément spécifique, en l’occurrence les fertilisants, les pratiques de cette catégorie ne peuvent diminuer fortement les impacts de toutes les dimensions environnementales.

En dernière place, la gestion raisonnée des pesticides, de même que les infrastructures et équipements durables possèdent une efficacité environnementale moyenne identique de 1,07. La première catégorie fournie principalement des gains environnementaux sur les plans de la pollution atmosphérique, de la contamination des plans d’eau et de la biodiversité. Pour leur part, les aspects positifs de la deuxième catégorie se situent au niveau de la qualité de l’air et de la gestion de l’énergie. Néanmoins, la faible présence d’impacts positifs sur la qualité de l’eau et la santé des sols expliquent en partie la performance environnementale plus basse des infrastructures et équipements durables.

En ce qui a trait directement aux pratiques agroenvironnementales, celles-ci affichent des efficacités environnementales variant de 0,40 à 3,46. La pratique qui possède la meilleure performance sur le plan de l’environnement est le pâturage extensif. Cela s’explique par le fait qu’elle réduit considérablement les impacts de l’agriculture sur l’ensemble des dimensions environnementales. Seul bémol, cette pratique...
alternative ne peut être appliquée à toutes les terres cultivables, mais plutôt à petite échelle sur certaines parcelles. Son plein potentiel ne peut donc pas être atteint. Non loin derrière avec des efficacités respectives de 3,40 et 2,91, le semis direct et la culture de couverture occupent le deuxième et troisième rang. Mis à part les insectes pollinisateurs, le semis direct apporte des bénéfices environnementaux considérables à tous les niveaux. Pour sa part, la culture de couverture excelle sur les plans de la qualité de l’air, de la qualité de l’eau, de la santé des sols et de la biodiversité. Ces deux pratiques alternatives contrôlent efficacement l’érosion, expliquant aussi une part de leur succès.

D’autres pratiques agroenvironnementales performent également très bien. C’est notamment le cas de la rotation des cultures avec une efficacité environnementale évaluée à 2,84. Celle-ci profite des bénéfices environnementaux associés aux cultures insérées dans la rotation, par exemple les légumineuses ou les plantes de couverture. La qualité de l’eau, la santé des sols et la biodiversité sont les trois dimensions dans lesquelles cette pratique alternative performe le mieux. Concernant la bande riveraine large et diversifiée, elle constitue la pratique la plus avantageuse pour la biodiversité, soit pour la qualité des habitats et des milieux naturels et pour les insectes pollinisateurs. Principalement pour cette raison, mais aussi pour sa capacité à améliorer la qualité de l’eau, cette pratique affiche une efficacité de 1,95. Quant au travail réduit du sol, il obtient une performance environnementale de 2,22 pour des raisons semblables au semis direct, mais dans des proportions moindres.

L’efficacité environnementale est cependant moins élevée pour certaines pratiques. Ces performances moins impressionnantes s’expliquent souvent par le nombre plus faible de composantes environnementales touchées par ces pratiques. Avec une efficacité de 0,40, le désherbage mécanique représente la pratique la moins efficace pour réduire les pressions de l’agriculture sur l’environnement. Ceci s’explique principalement par sa demande élevée en carburant, de même que par le travail du sol qu’elle induit. La culture en contre-pente constitue la deuxième pratique la moins effective au point de vue des gains environnementaux avec une efficacité de 0,73. Bien que son impact sur la santé des sols et sur la qualité de l’eau soit positif, elle ne permet pas d’améliorer la qualité de l’air et la gestion de l’énergie. L’efficacité environnementale des chemins agricoles réfléchis est également faible (0,77), tout simplement en raison de la faible capacité de cette pratique à réduire les pressions de l’agriculture. Pour ce qui est de l’épandeur avec incorporation simultanée au sol et de l’amélioration génétique, ceux-ci présentent des efficacités respectives de 0,95 et 0,93. La première pratique est particulièrement utile pour réduire les nuisances olfactives, mais diminue aussi la santé des sols et augmente les apports en sédiments dans les cours d’eau. La deuxième pratique est quant à elle bénéfique pour la qualité de l’air, mais présente peu d’avantages pour les autres aspects environnementaux.

Enfin, il est intéressant de souligner l’efficacité de certaines pratiques pour des aspects environnementaux précis. En termes de réduction des émissions de GES, les pratiques qui se distinguent le plus sont le semis
direct, la biométhanisation, le pâturage extensif, la structure d’entreposage des fumiers avec toiture et l’efficacité énergétique des bâtiments. Pour ce qui est du contrôle des odeurs, le compostage, l’épandeur avec incorporation simultanée au sol et la structure d’entreposage des fumiers avec toiture sont les trois méthodes les plus performantes.

Sur le plan combiné des pertes de sol et de l’apport en sédiments, les pratiques alternatives les plus efficaces sont le semis direct, la voie d’eau engazonnée et avaloir, les terrasses et le pâturage extensif. Celles qui permettent d’améliorer davantage la structure du sol et la teneur des sols en MO sont la rotation des cultures, la culture de couverture et le semis direct. Sur le plan énergétique, les meilleures pratiques sont le semis direct, la biométhanisation et l’efficacité énergétique des bâtiments, alors que sur le plan de la biodiversité, les pratiques qui se démarquent sont la culture de couverture, la lutte intégrée, la bande riveraine large et diversifiée et le pâturage extensif.

4.6 Contraintes et limites

Certaines limites et contraintes liées à l’analyse doivent toutefois être considérées. Dans un premier temps, certains aspects de l’analyse multicritère sont subjectifs, notamment la pondération accordée aux dimensions et aux critères, de même que l’attribution des notes. Néanmoins, cette subjectivité peut également être perçue comme un élément positif puisqu’elle permet la hiérarchisation des données en fonction de leur importance respective (Boschetto, 2013). Pour cela, il faut que cette subjectivité soit accompagnée de justifications adéquates.

Dans un second temps, l’attribution des notes a été réalisée à partir des informations disponibles aux chapitres 2 et 3. Il est possible que des informations pour certains critères soient manquantes, influençant par le fait même les notes attribuées. Cependant, la recherche littéraire a été effectuée avec minutie, diminuant ainsi ces risques.

Dans un troisième temps, les pratiques agroenvironnementales peuvent varier selon le contexte dans lequel elles sont employées. Il est donc possible que certaines données soient plus ou moins élevées dépendamment des conditions du milieu. Ceci pourrait ainsi faire varier quelque peu les résultats.

Dans un quatrième et dernier temps, les interactions entre les différents critères n’ont pas été considérées. En raison de la complexité des écosystèmes, mais également pour ne pas surévaluer certains critères, l’interdépendance entre les différentes composantes environnementales n’a pas été prise en compte.
5. RECOMMANDATIONS

Importante sur les plans économique et social du Québec, l’agriculture présente toutefois un bilan environnemental déficitaire pouvant compromettre à long terme sa pérennité ainsi que l’intégrité des milieux naturels. De plus en plus populaires, les pratiques agroenvironnementales engendrent plusieurs bénéfices, permettant d’améliorer ce lourd bilan causé par l’agriculture conventionnelle. Il faut toutefois que les agriculteurs concentrent leurs efforts sur les pratiques alternatives les plus efficaces en termes de réduction des impacts sur l’environnement. Le chapitre suivant présente des recommandations quant aux pratiques que les agriculteurs devraient privilégier pour diminuer les pressions sur l’environnement et ainsi améliorer le bilan agricole québécois.

- Déterminer les pratiques agroenvironnementales à favoriser en fonction des impacts agricoles et du contexte local.

Pour agir sur les problématiques locales et maximiser les gains environnementaux, il est préférable d’identifier au préalable les impacts agricoles les plus importants. Cela permet de choisir ensuite les pratiques agroenvironnementales les plus efficientes pour atténuer ces pressions sur l’environnement. Le tableau 5.1 présente les pratiques alternatives à privilégier pour chacune des dimensions environnementales.

Tableau 5.1 Pratiques agroenvironnementales à privilégier selon la dimension environnementale à améliorer

<table>
<thead>
<tr>
<th>Dimension environnementale</th>
<th>Pratiques agroenvironnementales</th>
</tr>
</thead>
<tbody>
<tr>
<td>Qualité de l’air</td>
<td>• Semis direct</td>
</tr>
<tr>
<td></td>
<td>• Pâturage extensif</td>
</tr>
<tr>
<td></td>
<td>• Structure d’entreposage des fumiers avec toiture</td>
</tr>
<tr>
<td></td>
<td>• Biométhanisation</td>
</tr>
<tr>
<td>Qualité de l’eau</td>
<td>• Semis direct</td>
</tr>
<tr>
<td></td>
<td>• Culture de couverture</td>
</tr>
<tr>
<td></td>
<td>• Rotation des cultures</td>
</tr>
<tr>
<td></td>
<td>• Pâturage extensif</td>
</tr>
<tr>
<td>Santé des sols</td>
<td>• Rotation des cultures</td>
</tr>
<tr>
<td></td>
<td>• Culture de couverture</td>
</tr>
<tr>
<td></td>
<td>• Semis direct</td>
</tr>
<tr>
<td>Gestion de l’énergie</td>
<td>• Biométhanisation</td>
</tr>
<tr>
<td></td>
<td>• Efficacité énergétique des bâtiments</td>
</tr>
<tr>
<td></td>
<td>• Semis direct</td>
</tr>
<tr>
<td></td>
<td>• Électrification de la machinerie et biocarburants</td>
</tr>
<tr>
<td>Biodiversité</td>
<td>• Bande riveraine large et diversifiée</td>
</tr>
<tr>
<td></td>
<td>• Lutte intégrée</td>
</tr>
<tr>
<td></td>
<td>• Pâturage extensif</td>
</tr>
<tr>
<td></td>
<td>• Culture de couverture</td>
</tr>
</tbody>
</table>
• Privilégier les pratiques agroenvironnementales affichant les meilleures efficacités environnementales. Certaines pratiques alternatives sont plus performantes que d’autres quant à la réduction des impacts de l’agriculture sur l’environnement. Il est donc suggéré d’opter pour les pratiques les plus efficaces, notamment les pratiques culturales de conservation puisqu’elles agissent sur l’ensemble des dimensions environnementales (air, eau, sol, énergie et biodiversité). La rotation des cultures, la culture de couverture, le travail réduit du sol, le semis direct et l’aménagement de bandes riveraines larges et diversifiées sont les mesures les plus prometteuses pour augmenter les gains environnementaux et doivent être par conséquent davantage utilisés. Pour connaître l’efficacité environnementale propre à chacune des pratiques afin de réaliser un choix éclairé, consultez le tableau 4.4.

• Convertir des parcelles en pâturage extensif. Dans la mesure du possible, il est recommandé de convertir certaines parcelles de terre en pâturage afin de bénéficier des nombreux avantages environnementaux de cette pratique. La qualité de l’air, la qualité de l’eau et la biodiversité sont particulièrement améliorées par celle-ci. Comme la popularité du pâturage a décliné au cours des dernières années, les gains potentiels de cette pratique pour améliorer le bilan environnemental de l’agriculture au Québec sont élevés.

• Réaliser une gestion intégrée des différentes pratiques agroenvironnementales. Pour maximiser les gains environnementaux, il est préférable d’intégrer les pratiques alternatives à chacune des sphères de la production agricole. Que ce soit au champ, dans les élevages ou concernant les multiples infrastructures et bâtiments, les pratiques agroenvironnementales doivent être priorisées par rapport aux pratiques conventionnelles. Cette gestion permet d’employer un plus grand nombre de pratiques et de couvrir tous les impacts de l’agriculture, tout en assurant l’harmonie et la compatibilité entre ces pratiques.

• Combiner ensemble plusieurs pratiques agroenvironnementales. Dans l’optique d’augmenter l’efficacité environnementale de plusieurs pratiques alternatives et d’obtenir des résultats encore plus satisfaisants, il est suggéré de les combiner ensemble. Certaines pratiques comme la rotation des cultures, la culture en contre-pente, la culture de couverture et la lutte intégrée se prêtent particulièrement bien à cela. D’autres pratiques agroenvironnementales comme la voie d’eau engazonnée munie d’un avaloir doivent presque obligatoirement être jumelées à d’autres pratiques. Concernant cette dernière, elle doit être accompagnée par d’autres mesures anti-érosives afin d’être efficace et de ne pas aggraver les risques d’érosion. Il faut toutefois se renseigner avant de jumeler plusieurs pratiques étant donné que certaines ne sont pas compatibles ensemble.
• Agir prioritairement sur les éléments qui affectent une plus grande variété de composantes environnementales.

Certains facteurs impactent davantage l’environnement que d’autres, par exemple le processus d’érosion, les fertilisants, les pesticides, le travail du sol et la consommation de carburant. Pour augmenter les gains environnementaux, il est important que les agriculteurs concentrent leurs efforts sur la réduction de ces éléments.
CONCLUSION

Les pratiques agricoles conventionnelles engendrent des impacts importants sur l'environnement et menacent à long terme la pérennité de l'agriculture. Néanmoins, l'éveil de la conscience écologique chez certains exploitants agricoles se reflète dans leurs choix de pratiques plus respectueux pour le milieu et pour les organismes qui y vivent.

L'objectif général de cet essai était de formuler des recommandations quant aux pratiques agricoles que devraient privilégier davantage les producteurs agricoles québécois afin d'améliorer le bilan environnemental de l'agriculture au Québec. Cet objectif a été atteint par l'entremise de la démarche suivante.

Tout d'abord, la mise en contexte a démontré l'importance de l'agriculture au Québec. Omniprésente au sud de la province, celle-ci contribue de façon significative à l'économie québécoise par ces multiples secteurs d'activités, en plus de fournir plusieurs milliers d'emplois. La tendance croissante vers des pratiques agricoles plus durables a également été soulevée afin de montrer le léger virage vert amorcé par les producteurs du Québec. Ensuite, le bilan environnemental agricole québécois a été exposé par la présentation des principaux enjeux environnementaux liés à l'agriculture. Les pressions constantes sur la qualité de l'air, la qualité de l'eau, la santé des sols, la gestion de l'énergie et la biodiversité ont permis de constater que le bilan environnemental de l'agriculture est encore aujourd'hui négatif, malgré de légères améliorations perçues pour certains enjeux. Puis, les principales pratiques permettant d'atténuer les impacts sur l'environnement ont été identifiées et décrites. Pour chacune de ces pratiques alternatives, il a été possible de jauger leurs gains environnementaux potentiels ainsi que l'ampleur de ceux-ci. Au nombre de 25, celles-ci ont été regroupées selon différents groupes, soit les pratiques culturales de conservation, la saine gestion des matières fertilisantes, la gestion raisonnée des pesticides, les aménagements au champ, la gestion adaptée des animaux d'élevage et les infrastructures et équipements durables. L'analyse multicritère réalisée par la suite a permis d'établir la performance environnementale de chacune de ces pratiques. En général, les pratiques culturales de conservation détiennent les efficacités environnementales les plus élevées, alors que celles associées à la gestion raisonnée des pesticides et aux infrastructures et équipements durables sont celles qui fournissent les gains environnementaux les plus faibles. Le pâturage extensif, le semis direct, la culture de couverture et la rotation des cultures sont les pratiques qui possèdent les meilleures efficacités, tandis que le désherbage mécanique, la culture en contre-pente et les chemins agricoles réfléchis sont celles qui présentent les plus faibles bénéfices. Enfin, des recommandations ont été émises dans le but d'orienter les agriculteurs québécois vers les pratiques agricoles à privilégier pour réduire les pressions sur l'environnement. Bien qu'il soit évident que les pratiques agricoles à prioriser soient celles détenant les efficacités environnementales les plus élevées, il est également préférable de tenir compte du contexte local et des principaux impacts environnementaux à réduire, en plus d'agir sur les
facteurs-clés affectant une plus grande variété de composantes environnementales. Aussi, la réalisation d’une gestion intégrée et la combinaison de plusieurs pratiques alternatives sont des façons de maximiser les gains environnementaux. La mise en œuvre de ces mesures permettrait de redresser tranquillement le bilan environnemental de l’agriculture du Québec.

La hausse des considérations environnementales chez les exploitants agricoles, la multiplication des initiatives vertes et la volonté de changement laissent présager un avenir positif pour l’agriculture québécoise, d’autant plus que les technologies et les nombreuses pratiques alternatives disponibles actuellement ont le potentiel de modifier rapidement le visage de celle-ci. Cet essai contribue au processus de changement d’une agriculture intensive vers une agriculture plus respectueuse de l’environnement en ciblant les pratiques agroenvironnementales les plus efficaces en termes de gains environnementaux. En privilégiant celles-ci, le bilan environnemental est ainsi susceptible de s’améliorer plus rapidement. Toutefois, pour inciter davantage les producteurs agricoles à favoriser ces pratiques agroenvironnementales, des actions provenant des différentes instances gouvernementales pourraient être nécessaires. D’ailleurs, il serait intéressant d’étudier plus en profondeur le rôle que devraient jouer les différents paliers gouvernementaux dans l’amélioration du bilan environnemental de l’agriculture au Québec, ainsi que les mesures à mettre en œuvre, notamment en ce qui concerne le cadre réglementaire et les mesures incitatives.
LISTE DES RÉFÉRENCES

Code de gestion des pesticides, LRQ, c. P-9.3, r. 1.

Conseil des productions végétales du Québec (CPVQ). (1986). La dégradation des sols agricoles au Québec : Causes, effets, prévention et correction. Québec, Québec : CPVQ

Institut de l’Agriculture Durable. (s. d.). Améliorer la rotation des cultures. Institut de l’Agriculture Durable, section Bonnes pratiques - La rotation des cultures. Repéré à http://agridurable.fr/fr/ameliorer-la-rotation-des-cultures

Nature Québec. (2010b). L’énergie à la ferme : Une question à réfléchir, des GES à réduire! *Bibliothèque et Archives nationales du Québec (BANQ).* Repéré à http://collections.banq.qc.ca/ark:/52327/bs2069554

Règlement sur le captage des eaux souterraines, LRQ, c. Q-2, r. 6.

Règlement sur les exploitations agricoles, LRQ, c. Q-2, r. 26.

97

donessols.pdf

BIBLIOGRAPHIE

Dulude-De Celles, L. (2016). L’émergence d’une agriculture durable au Québec (Essai de maîtrise, Université de Sherbrooke, Sherbrooke, Québec). Repéré à http://savoirs.usherbrooke.ca/bitstream/handle/11143/9598/Dulude_De_Celles_Laurent_MEnv_2016.pdf?sequence=1

ANNEXE 1 – RÉGIONS ADMINISTRATIVES DU QUÉBEC (tiré de : Développement économique Canada pour les régions du Québec, 2014)

Cartes des régions administratives du Québec.
ANNEXE 2 – ÉVOLUTION DES CONCENTRATIONS MONDIALES DE GES (tiré de : Groupe d’experts intergouvernemental sur l’évolution du climat, 2014, p. 3)

Moyenne mondiale des concentrations de GES.
ANNEXE 3 – ESPÈCES MENACÉES OU VULNÉRABLES AU QUÉBEC (tiré de : Tardif, Lavoie et Lachance, 2005, p. 33)

Répartition de la richesse en espèces menacées ou vulnérables au Québec.
ANNEXE 4 – AVANTAGES POUR L'ENVIRONNEMENT ET POUR LA PRODUCTIVITÉ D'UN SYSTÈME NON-LABOUR
(tiré de : Mrabet, 2001, p. 1)

Relations entre le système non-labour, les composantes de l’environnement et la production.
<table>
<thead>
<tr>
<th>Pratique</th>
<th>Rotation des cultures</th>
<th>Culture en contre-pente</th>
<th>Culture sur billon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Émissions de GES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ légumineuses fixent l’azote : ↓ fertilisants (↓ N₂O et CO₂)</td>
<td>non significatif</td>
<td>+ ↓ nb de passages : ↓ carburant (↓ CO₂)</td>
<td></td>
</tr>
<tr>
<td>Ex : légumineuses peuvent diminuer 50 % des fertilisants de synthèse</td>
<td></td>
<td>+ ↑ pesticides et ↓ fertilisants : ↑ nb de passages donc ↓ carburant (↓ CO₂)</td>
<td></td>
</tr>
<tr>
<td>+ ↑ pesticides et ↓ fertilisants : ↓ nb de passages donc ↓ carburant (↓ CO₂)</td>
<td></td>
<td>+ séquestration d’une plus grande quantité de carbone dans les sols</td>
<td></td>
</tr>
<tr>
<td>+ intégration de cultures d’hiver allonge la période de captage du carbone. Ex : maïs sur maïs produit 60 % plus de NO que le maïs sur blé d’automne</td>
<td></td>
<td>+ transport du grain</td>
<td></td>
</tr>
<tr>
<td>+ amélioration de l’autoapprovisionnement : ↓ transport du grain</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pollution atmosphérique</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ légumineuses fixent l’azote : ↓ fertilisants (↓ NH₃)</td>
<td>non significatif</td>
<td>+ ↓ nb de passages : ↓ carburant (↓ NOₓ, CO, SO₂)</td>
<td></td>
</tr>
<tr>
<td>+ brise le cycle des adventices, insectes et maladies : ↓ pesticides</td>
<td></td>
<td>+ ↑ pesticides et ↓ fertilisants par l’application en bande (↓ NH₃). Ex : herbicides peuvent être réduits de 50 %</td>
<td></td>
</tr>
<tr>
<td>+ ↓ pesticides et ↓ fertilisants : ↓ nb de passages donc ↓ carburant (↓ NOₓ, CO, SO₂)</td>
<td></td>
<td>+ machines plus petites et moins énergivores : ↓ carburant (↓ CO₂). Ex : économie de 18 à 20 litres par hectare de diesel, représentant 56 % à 65 % par rapport au travail de sol conventionnel</td>
<td></td>
</tr>
<tr>
<td>Nuisances olfactives</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ Légumineuses fixent l’azote : ↓ fertilisants (↓ NH₃, H₂S et COVs)</td>
<td>non significatif</td>
<td>+ ↑ fertilisants par l’application en bande (↓ NH₃, H₂S et COVs)</td>
<td></td>
</tr>
<tr>
<td>Contamination des eaux de surface et souterraines</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ les surplus d’azote se retrouvent plus rarement dans les cours d’eau et les nappes souterraines, car minéralisation sur une plus longue période par les légumineuses</td>
<td></td>
<td>+ ↓ érosion de 25 % à 50 % et de 50 % en courbes de niveau + ↓ ruissellement et ↑ infiltration de l’eau dans le sol</td>
<td>+ ↑ pesticides et ↓ fertilisants par l’application en bande (↓ NOₓ, CO, SO₂)</td>
</tr>
<tr>
<td>+ brise le cycle des adventices, insectes et maladies : ↓ pesticides</td>
<td></td>
<td>+ ↓ érosion de 30 %</td>
<td>+ ↑ pente et ↑ compaction entre les rangs</td>
</tr>
<tr>
<td>+ ↓ ruissellement et ↓ érosion. Ex : rotation des cultures de maïs, avoine et luzerne sur quatre ans ↓ ruissellement de 4 ans et ↓ érosion de 86 %</td>
<td></td>
<td>+ ↑ risque d’érosion par ↑ pente et ↑ compaction entre les rangs</td>
<td>+ ↑ ruissellement et ↑ infiltration de l’eau dans le sol</td>
</tr>
<tr>
<td>Apports en sédiments</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ ↓ ruissellement et ↓ érosion. Ex : rotation des cultures de maïs, avoine et luzerne sur quatre ans ↓ ruissellement de 4 ans et ↓ érosion de 86 %</td>
<td></td>
<td>+ ↓ érosion de 25 % à 50 % et de 50 % en courbes de niveau + ↓ ruissellement et ↑ infiltration de l’eau dans le sol</td>
<td>+ ↓ érosion de 30 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>+ ↑ risque d’érosion par ↑ pente et ↑ compaction entre les rangs</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>+ ↓ ruissellement et ↑ infiltration de l’eau dans le sol</td>
</tr>
</tbody>
</table>
ANNEXE 5 – JUSTIFICATION DES NOTES ATTRIBUÉES POUR L’ANALYSE MULTICRITÈRE (SUITE)

<table>
<thead>
<tr>
<th>Critère</th>
<th>Pratique</th>
<th>Rotation des cultures (suite)</th>
<th>Culture en contre-pente (suite)</th>
<th>Culture sur billion (suite)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pertes de sol</td>
<td>+ ruissellement et ↓ érosion. Ex : rotation des cultures de maïs, avoine et luzerne sur quatre ans ↓ ruissellement de 4 fois et ↓ érosion de 86 %</td>
<td>+ ↓ pertes de sol de 25 % à 50 % et de 50 % en courbes de niveau + ↓ ruissellement et ↑ infiltration de l’eau dans le sol</td>
<td>+ ↓ érosion de 30 % - ↑ risque d’érosion par ↑ pente et ↓ compaction entre les rangs + ↓ ruissellement et ↑ infiltration de l’eau dans le sol</td>
<td></td>
</tr>
<tr>
<td>Structure du sol</td>
<td>+ légumineuses améliorent la structure du sol en profondeur + graminées améliorent les caractéristiques physiques à la surface du sol + ↓ pesticides et ↓ fertilisants : ↓ nb de passages donc ↑ structure du sol + ↓ fertilisants : ↓ acidification du sol + ↓ érosion</td>
<td>+ ↓ érosion</td>
<td>± érosion + les rangs sont exempts de passages de la machinerie : moins de compaction donc ↑ structure du sol + ↓ pesticides et ↓ fertilisants : ↓ nb de passages donc ↑ structure du sol + ↓ fertilisants : ↓ acidification du sol</td>
<td></td>
</tr>
<tr>
<td>MO</td>
<td>+ restauration de la MO + ↓ pesticides et ↓ fertilisants : ↓ nb de passages donc ↓ pertes de MO + ↓ érosion</td>
<td>+ ↓ érosion</td>
<td>+ ↓ nb de passages : ↓ pertes de MO + ↓ érosion - ↑ risque d’érosion par ↑ pente et ↓ compaction entre les rangs</td>
<td></td>
</tr>
<tr>
<td>Efficacité énergétique</td>
<td>+ ↓ consommation de carburant</td>
<td>non significatif</td>
<td>+ machineries plus petites et moins énergivores</td>
<td></td>
</tr>
<tr>
<td>Dépendance aux énergies fossiles</td>
<td>+ légumineuses fixent l’azote : ↓ fertilisants donc ↓ fabrication d’engrais. Ex : légumineuses peut réduire de 50 % les fertilisants de synthèse + ↓ pesticides et ↓ fertilisants : ↓ nb de passages donc ↓ carburant</td>
<td>non significatif</td>
<td>non significatif + ↓ nb de passages : ↓ carburant + ↓ fertilisants par l’application en bande : ↓ fabrication d’engrais</td>
<td></td>
</tr>
<tr>
<td>Qualité des habitats et des milieux naturels</td>
<td>+ ↓ pesticides + ↓ érosion + ↓ N₂O et CO₂ + ↓ NOₓ, CO, SO₂ + ↓ fertilisants</td>
<td>+ ↓ érosion</td>
<td>non significatif + ↓ pesticides + ↓ N₂O et CO₂ + ↓ NOₓ, CO, SO₂ + ↓ fertilisants ± érosion</td>
<td></td>
</tr>
<tr>
<td>Insectes pollinisateurs</td>
<td>+ brise le cycle des adventices, insectes et maladies : ↓ pesticides</td>
<td>non significatif</td>
<td>non significatif + ↓ pesticides par l’application en bande. Ex. Herbicides peuvent être réduits de 50 %</td>
<td></td>
</tr>
<tr>
<td>Autres</td>
<td>+ autres avantages des plantes de couverture</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Critère</td>
<td>Culture en bandes alternées</td>
<td>Culture de couverture</td>
<td>Travail réduit du sol</td>
<td></td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Émissions de GES</td>
<td>+ ↓ insecticides par la présence d’ennemis naturels : ↓ nb de passages donc ↓ carburant (↓ CO₂) Ex : Légumineuses peuvent diminuer 50 % des fertilisants de synthèse en se nourrissant du surplus d’azote disponible dans le sol, les plantes de couverture permettent de ↓ N₂O
 + Séquestration plus facile du carbone dans le sol + ↓ pesticides et ↓ fertilisants : ↓ nb de passages donc ↓ carburant (↓ CO₂)</td>
<td>+ ↓ 13 % des émissions de GES (↓ N₂O, CO₂)
 + entre 25 % et 35 % d’économie de carburant (↓ CO₂)
 + ↓ fertilisants (↓ N₂O et CO₂)
 + ↓ nb de passages : ↓ carburant (↓ CO₂)
 - ↑ herbicides : ↑ nb de passages donc ↑ carburant (↑ CO₂)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pollution atmosphérique</td>
<td>+ ↓ insecticides par la présence d’ennemis naturels
 + ↓ insecticides : ↓ nb de passages donc ↓ carburant (↓ NOₓ, CO, SO₂)</td>
<td>+ puit en éléments nutritifs : ↓ fertilisants (↓ N₂O, CO₂)
 + ↓ prolifération de mauvaises herbes : ↓ herbicides. Ex : maintien les mauvaises herbes à 10 % comparativement à 12-25 % pour les méthodes conventionnelles
 + ↓ insecticides par la présence d’ennemis naturels
 + ↓ pesticides et fertilisants : ↓ nb de passages
 donc ↓ carburant (↓ NOₓ, CO, SO₂)</td>
<td>+ entre 25 % et 35 % d’économie de carburant (↓ NOₓ, CO, SO₂)
 + ↓ fertilisants (↓ NH₃)
 + ↓ fertilisants : ↓ nb de passages donc ↓ carburant (↓ NOₓ, CO, SO₂)
 - ↑ 30 % de mauvaises herbes : ↑ herbicides
 - ↑ herbicides : ↑ nb de passages donc ↑ carburant (↑ NOₓ, CO, SO₂)</td>
<td></td>
</tr>
<tr>
<td>Nuisances olfactives</td>
<td>non significatif</td>
<td>+ puit en éléments nutritifs : ↓ fertilisants (↓ NH₃, H₂S et COVs)
 ↓ fertilisants (↓ NH₃, H₂S et COVs)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contamination des eaux de surface et souterraines</td>
<td>+ ↓ pertes de sol de 38 % en bandes alternées
 + ↓ érosion de 50 % à 75 % en bandes alternées, en rotation et à contre-pente 50 % à 75 %
 + ↓ érosion de 75 % en bandes alternées, en rotation et en courbes de niveau
 + ↓ vitesse de ruissellement et ↑ rétention d’eau</td>
<td>+ ↓ érosion de 65 % avec une couverture de 30 %. Ex : maïs d’ensilage cultivé dans le sens de la pente peut diminuer les pertes de sol de 76 %
 + ↓ ruissellement et ↑ infiltration de l’eau
 + puit en éléments nutritifs : ↓ fertilisants
 + ↓ prolifération de mauvaises herbes : ↓ herbicides. Ex : maintien les mauvaises herbes à 10 % comparativement à 12-25 % pour les méthodes conventionnelles
 + ↓ insecticides par la présence d’ennemis naturels
 - en favorisant l’infiltration de l’eau dans le sol, les résidus augmentent les risques de lessivage des éléments nutritifs et des pesticides</td>
<td>+ ↓ fertilisants
 + ↓ travail du sol : ↓ risques d’érosion
 + ↓ compaction du sol : ↓ risques d’érosion
 + ↓ érosion de 65 % avec une couverture de 30 %
 + ↓ ruissellement et ↑ infiltration de l’eau
 - en favorisant l’infiltration de l’eau dans le sol, les résidus augmentent les risques de lessivage des éléments nutritifs et des pesticides
 - ↑ herbicides</td>
<td></td>
</tr>
</tbody>
</table>
ANNEXE 5 – JUSTIFICATION DES NOTES ATTRIBUÉES POUR L’ANALYSE MULTICRITÈRE (SUITE)

<table>
<thead>
<tr>
<th>Critère</th>
<th>Culture en bandes alternées (suite)</th>
<th>Culture de couverture (suite)</th>
<th>Travail réduit du sol (suite)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apports en sédiments</td>
<td>+ ↓ érosion de 38 % en bandes alternées</td>
<td>+ ↓ érosion de 65 % avec une couverture de 30 %. Ex : maïs d’ensilage cultivé dans le sens de la pente peut diminuer les pertes de sol de 76 % + ↓ ruissellement et ↑ infiltration de l’eau</td>
<td>+ ↓ travail du sol : ↓ risques d’érosion + ↓ compaction du sol : ↓ risques d’érosion + ↓ érosion de 65 % avec une couverture de 30 % + ↓ ruissellement et ↑ infiltration de l’eau</td>
</tr>
<tr>
<td></td>
<td>+ ↓ érosion de 50 % à 75 % en bandes alternées, en rotation et à contre-pente 50 % à 75 %</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ ↓ érosion de 75 % en bandes alternées, en rotation et en courbes de niveau</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ ↓ vitesse de ruissellement et ↑ rétention d’eau</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pertes de sol</td>
<td>+ ↓ pertes de sol de 38 % en bandes alternées</td>
<td>+ ↓ érosion de 65 % avec une couverture de 30 %. Ex : maïs d’ensilage cultivé dans le sens de la pente peut diminuer les pertes de sol de 76 % + ↓ ruissellement et ↑ infiltration de l’eau</td>
<td>+ ↓ travail du sol : ↓ risques d’érosion + ↓ compaction du sol : ↓ risques d’érosion + ↓ érosion de 65 % avec une couverture de 30 % + ↓ ruissellement et ↑ infiltration de l’eau</td>
</tr>
<tr>
<td></td>
<td>+ ↓ érosion de 50 % à 75 % en bandes alternées, en rotation et à contre-pente 50 % à 75 %</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ ↓ érosion de 75 % en bandes alternées, en rotation et en courbes de niveau</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ ↓ vitesse de ruissellement et ↑ rétention d’eau</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ ↓ érosion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MO</td>
<td>+ ↓ insecticides : ↓ nb de passages donc ↓ pertes de MO</td>
<td>+ restauration de la MO. Ex : Engrais verts jeunes produisent environ 350 kg de MO par hectare, alors que les engrais verts avancés fournissent un apport de 650 kg de MO par hectare + résidus de récolte augmentent la teneur du sol en MO. Ex. 150 à 1200 kg d’humus par hectare que peuvent générer les résidus de récolte annuellement + ↓ pesticides et ↓ fertilisants : ↓ nb de passages donc ↓ pertes de MO + ↓ érosion</td>
<td>+ ↓ travail du sol : ↓ pertes de MO + résidus de récolte augmentent la teneur du sol en MO. Ex. 150 à 1200 kg d’humus par hectare que peuvent générer les résidus de récolte annuellement + ↓ fertilisants : ↓ nb de passages donc ↓ pertes de MO + ↓ érosion - ↑ herbicides : ↓ nb de passages donc ↓ structure du sol</td>
</tr>
<tr>
<td></td>
<td>+ ↓ érosion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Efficacité énergétique</td>
<td>+ ↓ consommation de carburant</td>
<td>+ ↓ consommation de carburant</td>
<td>+ économie d’énergie globale significative pouvant atteindre 16,5 % par rapport au travail conventionnel</td>
</tr>
</tbody>
</table>
ANNEXE 5 – JUSTIFICATION DES NOTES ATTRIBUÉES POUR L’ANALYSE MULTICRITÈRE (SUITE)

<table>
<thead>
<tr>
<th>Critère</th>
<th>Culture en bandes alternées (suite)</th>
<th>Culture de couverture (suite)</th>
<th>Travail réduit du sol (suite)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dépendance aux énergies fossiles</td>
<td>+ ↓ insecticides : ↓ nb de passages donc ↓ carburant</td>
<td>+ puit en éléments nutritifs : ↓ fertilisants donc ↓ fabrication d’engrais. Ex : légumineuses peut réduire de 50 % les fertilisants de synthèse + ↓ pesticides et ↓ fertilisants : ↓ nb de passages donc ↓ carburant</td>
<td>+ ↓ 10 % d’énergies fossiles (↓ carburant de 25 à 35 %) + ↓ fertilisants donc ↓ fabrication d’engrais</td>
</tr>
<tr>
<td>Qualité des habitats et des milieux naturels</td>
<td>+ ↓ insecticides + ↓ érosion + ↓ N₂O et CO₂ + ↓ NOₓ, CO, SO₂</td>
<td>+ ↓ insecticides + ↓ érosion + ↓ N₂O et CO₂ + ↓ NOₓ, CO, SO₂ + ↓ fertilisants + ↑ abris et nourriture pour la faune - ↑ risques de lessivage des éléments nutritifs et des pesticides</td>
<td>+ ↓ érosion + ↓ N₂O et CO₂ + ↓ NOₓ, CO, SO₂ + ↓ fertilisants - ↑ herbicides - ↑ risques de lessivage des éléments nutritifs et des pesticides</td>
</tr>
<tr>
<td>Insectes pollinisateurs</td>
<td>+ ↓ insecticides par la présence d’ennemis naturels. Ex. la culture en bandes alternées peut réduire de moitié l’abondance d’organismes nuisibles (certains résultats toutefois mitigés)</td>
<td>+ ↓ prolifération de mauvaises herbes : ↓ herbicides. Ex : maintien les mauvaises herbes à 10 % comparativement à 12-25 % pour les méthodes conventionnelles + ↓ insecticides par la présence d’ennemis naturels + couverts fleuris attirent les insectes pollinisateurs</td>
<td>- ↑ 30 % de mauvaises herbes : ↑ herbicides</td>
</tr>
<tr>
<td>Autres</td>
<td></td>
<td></td>
<td>± peut inclure le désherbage mécanique</td>
</tr>
</tbody>
</table>
ANNEXE 5 – JUSTIFICATION DES NOTES ATTRIBUÉES POUR L’ANALYSE MULTICRITÈRE (SUITE)

<table>
<thead>
<tr>
<th>Pratique</th>
<th>Semis direct</th>
<th>Structure d’entreposage des fumiers avec toiture</th>
<th>Optimisation de l’épandage des matières fertilisantes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Émissions de GES</td>
<td>+ entre 70 % et 75 % d’économie de carburant (↓ CO₂) + ↓ accrue des fertilisants (↓ N₂O et CO₂) + ↓ nb de passages : ↓ carburant (↓ CO₂) - ↑ herbicides : ↓ nb de passages donc ↑ carburant (↑ CO₂) - risque de stratification des éléments nutritifs</td>
<td>+ interception d’une quantité considérable de CH₄ + ↓ du contact entre les déjections animales et l’atmosphère (↓ N₂O) + ↓ volumes de fertilisants à épandre d’environ 15 % à 30 % (↓ N₂O et CO₂) + conserve 5 % à 10 % d’azote total supplémentaire : ↓ engrais de synthèse (↓ CO₂)</td>
<td>+ ↓ fertilisants (↓ N₂O et CO₂) + ↓ fertilisants : ↓ nb de passages donc ↓ carburant (↓ CO₂)</td>
</tr>
<tr>
<td>Pollution atmosphérique</td>
<td>+ entre 70 % et 75 % d’économie de carburant (↓ NOₓ, CO, SO₂) + ↓ accrue des fertilisants (↓ NH₃) + ↓ fertilisants : ↓ nb de passages donc ↓ carburant (↓ NOₓ, CO, SO₂) - ↑ mauvaises herbes : ↑ accrue des herbicides - ↑ herbicides : ↓ nb de passages donc ↓ carburant (↑ NOₓ, CO, SO₂) - risque de stratification des éléments nutritifs</td>
<td>+ interception entre 30 % et 90 % de NH₃ + ↓ volumes de fertilisants à épandre d’environ 15 % à 30 % (↓ NH₃) + ↓ nb de passages : ↓ carburant (↓ NOₓ, CO, SO₂)</td>
<td>+ ↓ fertilisants (↓ NH₃) + ↓ fertilisants : ↓ nb de passages donc ↓ carburant (↓ NOₓ, CO, SO₂)</td>
</tr>
<tr>
<td>Nuisances olfactives</td>
<td>+ ↓ accrue des fertilisants (↓ NH₃, H₂S et COVs)</td>
<td>+ ↓ 50 % à 100 % des nuisances olfactives liées à l’entreposage + ↓ volumes de fertilisants à épandre d’environ 15 % à 30 % (↓ NH₃) - odeurs seulement transférées au champ selon certains</td>
<td>+ ↓ fertilisants (↓NH₃, H₂S et COVs) + prend en compte la période d’épandage pour limiter la migration des fertilisants</td>
</tr>
<tr>
<td>Contamination des eaux de surface et souterraines</td>
<td>+ ↓ accrue des fertilisants + ↓ travail du sol (absence totale d’outils aratoires) : ↓ risques d’érosion + ↓ compaction du sol : ↓ risques d’érosion + ↓ érosion jusqu’à 92 % grâce aux résidus de récolte + ↓ ruissellement et ↑ infiltration de l’eau. Ex : réduit jusqu’à 90 % le ruissellement des pesticides - en favorisant l’infiltration de l’eau dans le sol, les résidus augmentent les risques de lessivage des éléments nutritifs et des pesticides - ↑ accrue des herbicides - risque de stratification des éléments nutritifs</td>
<td>+ ↓ volumes de fertilisants à épandre d’environ 15 % à 30 % + très faible ↓ érosion</td>
<td>+ ↓ fertilisants + très faible ↓ érosion + prend en compte la période d’épandage pour limiter la migration des fertilisants</td>
</tr>
</tbody>
</table>
ANNEXE 5 – JUSTIFICATION DES NOTES ATTRIBUÉES POUR L’ANALYSE MULTICRITÈRE (SUITE)

<table>
<thead>
<tr>
<th>Pratique</th>
<th>Semis direct (suite)</th>
<th>Structure d’entreposage des fumiers avec toiture (suite)</th>
<th>Optimisation de l’épandage des matières fertilisantes (suite)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apports en sédiments</td>
<td>+ ↓ érosion jusqu’à 92 % grâce aux résidus de récolte + ↓ travail du sol (absence totale d’outils aratoires) : ↓ risques d’érosion + ↓ compaction du sol : ↓ risques d’érosion + ↓ ruissellement et ↑ infiltration de l’eau</td>
<td>+ ↓ volumes de fertilisants à épandre d’environ 15 % à 30 % : ↓ nb de passages donc ↓ érosion</td>
<td>+ ↓ fertilisants : ↓ nb de passages donc ↓ érosion</td>
</tr>
<tr>
<td>Pertes de sol</td>
<td>+ ↓ érosion jusqu’à 92 % grâce aux résidus de récolte + ↓ travail du sol (absence totale d’outils aratoires) : ↓ risques d’érosion + ↓ compaction du sol : ↓ risques d’érosion + ↓ ruissellement et ↑ infiltration de l’eau</td>
<td>+ ↓ volumes de fertilisants à épandre d’environ 15 % à 30 % : ↓ nb de passages donc ↓ érosion</td>
<td>+ ↓ fertilisants : ↓ nb de passages donc ↓ érosion</td>
</tr>
<tr>
<td>MO</td>
<td>+ ↓ travail du sol (absence totale d’outils aratoires) : ↓ pertes de MO + résidus de récolte augmentent la teneur du sol en MO. Ex. 150 à 1200 kg d’humus par hectare que peuvent générer les résidus de récolte annuellement + ↓ fertilisants : ↓ nb de passages donc ↓ pertes de MO + ↓ érosion - ↑ herbicides : ↓ nb de passages donc ↓ structure du sol</td>
<td>+ ↓ fertilisants : ↓ nb de passages donc ↓ pertes de MO + très faible ↓ érosion</td>
<td>+ ↓ fertilisants : ↓ nb de passages donc ↓ pertes de MO + très faible ↓ érosion</td>
</tr>
<tr>
<td>Efficacité énergétique</td>
<td>+ l’utilisation restreinte de la machinerie diminue grandement les besoins énergétiques</td>
<td>+ ↓ consommation de carburant liée à l’épandage des matières fertilisantes</td>
<td>+ ↓ consommation de carburant liée à l’épandage des matières fertilisantes + optimisation du mode d’épandage pouvant diminuer la consommation énergétique</td>
</tr>
<tr>
<td>Dépendance aux énergies fossiles</td>
<td>+ ↓ carburant de 70 à 75 % + ↓ accrus des fertilisants donc ↓ fabrication d’engrais</td>
<td>+ conserve 5 % à 10 % d’azote total supplémentaire : ↓ engrais de synthèse + ↓ consommation de carburant liée à l’épandage des matières fertilisantes</td>
<td>+ ↓ consommation de carburant liée à l’épandage des matières fertilisantes</td>
</tr>
</tbody>
</table>
ANNEXE 5 – JUSTIFICATION DES NOTES ATTRIBUÉES POUR L’ANALYSE MULTICRITÈRE (SUITE)

<table>
<thead>
<tr>
<th>Pratique</th>
<th>Semis direct (suite)</th>
<th>Structure d’entreposage des fumiers avec toiture (suite)</th>
<th>Optimisation de l’épandage des matières fertilisantes (suite)</th>
</tr>
</thead>
</table>
| Qualité des habitats et des milieux naturels | + ↓ érosion
+ ↓ N₂O et CO₂
+ ↓ NOₓ, CO, SO₂
+ ↓ accroissement des fertilisants
- ↑ accroissement des herbicides
- ↑ risques de lessivage des éléments nutritifs et des pesticides | + très faible ↓ érosion
+ ↓ N₂O, CO₂ et CH₄
+ ↓ NOₓ, CO, SO₂
+ ↓ des fertilisants | + très faible ↓ érosion
+ ↓ N₂O, CO₂
+ ↓ NOₓ, CO, SO₂
+ ↓ des fertilisants |
| Insectes pollinisateurs | - utilisation accrue des herbicides | non significatif | non significatif |
| Autres | | | |
ANNEXE 5 – JUSTIFICATION DES NOTES ATTRIBUÉES POUR L’ANALYSE MULTICRITÈRE (SUITE)

<table>
<thead>
<tr>
<th>Critère</th>
<th>Pratique</th>
<th>Biométhanisation (valorisation des déjections animales)</th>
<th>Épandeur avec incorporation simultanée au sol (équipement d’épandage efficace)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Émissions de GES</td>
<td>+ ↓ herbicides et ↓ fertilisants : ↓ nb de passages donc ↓ carburant (↓ CO₂)</td>
<td>+ ↓ fertilisants : ↓ nb de passages donc ↓ carburant (↓ CO₂)</td>
<td>+ ↑ efficacité de l’azote de 40 % : ↓ fertilisants (↓ N₂O et CO₂)</td>
</tr>
<tr>
<td></td>
<td>+ ↓ pertes d’azote au champ : ↓ fertilisants (↓ N₂O et CO₂)</td>
<td>+ ↓ fertilisants (↓ N₂O et CO₂)</td>
<td>+ ↓ fertilisants : ↓ nb de passages donc ↓ carburant (↓ CO₂)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+ captage du CO₂ et du CH₄ par le processus de biométhanisation. Ex : ↓ 20 % à 30 % des émissions de GES de la filière porcine</td>
<td>+ ↓ du contact entre les déjections animales et l’atmosphère (↓ N₂O et CH₄)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- nécessite plus d’énergie (carburant) qu’un épandeur conventionnel (↑ CO₂)</td>
</tr>
<tr>
<td>Pollution atmosphérique</td>
<td>+ ↓ herbicides</td>
<td>+ ↓ fertilisants (↓ NH₃)</td>
<td>+ ↑ efficacité de l’azote de 40 % : ↓ fertilisants (↓ NH₃)</td>
</tr>
<tr>
<td></td>
<td>+ ↓ pertes d’azote au champ : ↓ fertilisants (↓ NH₃)</td>
<td>+ ↓ fertilisants : ↓ nb de passages donc ↓ carburant (↓ NOₓ, CO, SO₂)</td>
<td>+ ↓ fertilisants : ↓ nb de passages donc ↓ carburant (↓ NOₓ, CO, SO₂)</td>
</tr>
<tr>
<td></td>
<td>+ ↓ pesticides et ↓ fertilisants : ↓ nb de passages donc ↓ carburant (↓ NOₓ, CO, SO₂)</td>
<td>+ contrôle minimal des mauvaises herbes : faible ↓ herbicides</td>
<td>+ contrôle minimal des mauvaises herbes : faible ↓ herbicides</td>
</tr>
<tr>
<td>Nuisances olfactives</td>
<td>+ absence presque complète d’odeurs</td>
<td>+ ↓ odeurs</td>
<td>+ ↓ 70 % odeurs au champ</td>
</tr>
<tr>
<td>Contamination des eaux de surface et souterraines</td>
<td>+ ↓ pertes d’azote au champ : ↓ fertilisants</td>
<td>+ ↓ fertilisants dans les cours d’eau, car plus assimilables par les plantes</td>
<td>+ ↓ lissé de la vanille nutritifs en les enfouissant dans le sol</td>
</tr>
<tr>
<td></td>
<td>+ ↓ herbicides</td>
<td>+ ↓ teneur du sol en MO</td>
<td>+ ↑ efficacité de l’azote de 40 % : ↓ fertilisants (↓ N₂O et CO₂)</td>
</tr>
<tr>
<td></td>
<td>+ très faible ↓ érosion</td>
<td>+ + agents pathogènes</td>
<td>+ contrôle minimal des mauvaises herbes : faible ↓ herbicides</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+ très faible ↓ érosion</td>
<td>- ↑ travail du sol : ↑ légèrement érosion</td>
</tr>
<tr>
<td>Apports en sédiments</td>
<td>+ ↓ fertilisants : ↓ nb de passages donc ↓ érosion</td>
<td>+ ↓ fertilisants : ↓ nb de passages donc ↓ érosion</td>
<td>+ ↓ fertilisants : ↓ nb de passages donc ↓ érosion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- ↑ travail du sol : ↑ légèrement érosion</td>
</tr>
<tr>
<td>Pertes de sol</td>
<td>+ ↓ fertilisants : ↓ nb de passages donc ↓ érosion</td>
<td>+ ↓ fertilisants : ↓ nb de passages donc ↓ érosion</td>
<td>+ ↓ fertilisants : ↓ nb de passages donc ↓ érosion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- ↑ travail du sol : ↑ légèrement érosion</td>
</tr>
<tr>
<td></td>
<td>+ très faible ↓ érosion</td>
<td>+ très faible ↓ érosion</td>
<td>- ↑ travail du sol : ↑ légèrement érosion et ↓ structure du sol</td>
</tr>
</tbody>
</table>
ANNEXE 5 – JUSTIFICATION DES NOTES ATTRIBUÉES POUR L’ANALYSE MULTICRITÈRE (SUITE)

<table>
<thead>
<tr>
<th>Pratique</th>
<th>Compostage (valorisation des déjections animales) (suite)</th>
<th>Biométhanisation (valorisation des déjections animales) (suite)</th>
<th>Épandeur avec incorporation simultanée au sol (équipement d’épandage efficace) (suite)</th>
</tr>
</thead>
</table>
| **MO** | + ↑ teneur en MO par le compost
+ ↓ fertilisants et ↓ herbicides : ↓ nb de passages donc ↓ pertes de MO
+ très faible ↓ érosion | + ↓ fertilisants : ↓ nb de passages donc ↓ pertes de MO
+ très faible ↓ érosion
- ↓ 80 % MO | + ↓ fertilisants : ↓ nb de passages donc ↓ pertes de MO
- ↑ travail du sol : ↑ légèrement érosion et ↓ MO |
| **Efficacité énergétique** | + ↓ consommation de carburant | + ↓ consommation de carburant
+ production d’énergie à même la ferme (électricité, valorisation thermique, etc.) | + ↓ fertilisants : ↓ nb de passages donc ↓ consommation de carburant
- nécessite plus d’énergie d’un épandeur conventionnel |
| **Dépendance aux énergies fossiles** | + ↓ pertes d’azote au champ : ↓ fertilisants donc ↓ fabrication d’engrais
+ ↓ fertilisants et ↓ herbicides : ↓ nb de passages donc ↓ carburant | + ↓ fertilisants et + ↓ herbicides : ↓ nb de passages donc ↓ carburant
+ ↓ fertilisants donc ↓ fabrication d’engrais
+ valorisation du biogaz en carburant | + ↑ efficacité de l’azote de 40 % : ↓ fertilisants donc diminution de la fabrication d’engrais
+ ↓ fertilisants et + ↓ herbicides : ↓ nb de passages donc ↓ carburant
- nécessite plus de carburant qu’un épandeur conventionnel |
| **Qualité des habitats et des milieux naturels** | + très faible ↓ érosion
+ ↓ N₂O et CO₂
+ ↓ NOₓ, CO, SO₂
+ ↓ fertilisants
+ ↓ herbicides | + très faible ↓ érosion
+ ↓ N₂O et CO₂
+ ↓ CH₄
+ ↓ NOₓ, CO, SO₂
+ ↓ fertilisants
+ ↓ herbicides | + ↓ N₂O et CO₂
+ ↓ CH₄
+ ↓ NOₓ, CO, SO₂
+ ↓ fertilisants
+ ↓ lessivage des éléments nutritifs en les enfouissant dans le sol
- ↑ légèrement érosion |
| **Insectes pollinisateurs** | + ↓ herbicides | non significatif | + faible ↓ herbicides |
| **Autres** | | | |

113
ANNEXE 5 – JUSTIFICATION DES NOTES ATTRIBUÉES POUR L’ANALYSE MULTICRITÈRE (SUITE)

<table>
<thead>
<tr>
<th>Pratique</th>
<th>Lutte intégrée</th>
<th>Désherbage mécanique</th>
<th>Utilisation réduite des pesticides</th>
</tr>
</thead>
<tbody>
<tr>
<td>Émissions de GES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ ↓ pesticides : ↓ nb de passages donc ↓ carburant (↓ CO₂)</td>
<td></td>
<td></td>
<td>+ ↓ pesticides : ↓ nb de passages donc ↓ carburant (↓ CO₂)</td>
</tr>
<tr>
<td>+ redistribution des éléments nutritifs et ↑ teneur en azote minéral du sol : ↓ fertilisants (↓ N₂O et CO₂)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ ↓ herbicides et ↓ fertilisants : ↓ nb de passages donc ↑ carburant (↑ CO₂)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- nécessite plus de puissance de la machinerie donc ↑ carburant (↑ CO₂)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- ↑ nb de passages pour désherber donc ↑ carburant (↑ CO₂)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pollution atmosphérique</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ ↓ pesticides (possibilité de les réduire à 100 %)</td>
<td></td>
<td></td>
<td>+ ↓ pesticides. Ex : ↓ 50 à 66 % herbicides par l’application en bande ou par dose réduite</td>
</tr>
<tr>
<td>+ ↓ pesticides : ↓ nb de passages donc ↓ carburant (↓ NOₓ, CO, SO₂)</td>
<td></td>
<td></td>
<td>+ ↓ dérives des pesticides</td>
</tr>
<tr>
<td>+ redistribution des éléments nutritifs et ↑ teneur en azote minéral du sol : ↓ fertilisants (↓ NH₃)</td>
<td></td>
<td></td>
<td>+ ↓ pesticides : ↓ nb de passages donc ↓ carburant (↓ NOₓ, CO, SO₂)</td>
</tr>
<tr>
<td>+ ↓ herbicides et fertilisants : ↓ nb de passages donc ↓ carburant (↓ NOₓ, CO, SO₂)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- ↑ nb de passages pour désherber donc ↑ carburant (↑ NOₓ, CO, SO₂)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nuisances olfactives</td>
<td>non significatif</td>
<td></td>
<td>non significatif</td>
</tr>
<tr>
<td>+ ↑ teneur en azote minéral du sol : ↓ fertilisants (↓ NH₃, H₂S et COVs)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contamination des eaux de surface et souterraines</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ ↓ pesticides (possibilité de les réduire à 100 %)</td>
<td></td>
<td></td>
<td>+ ↓ pesticides. Ex : ↓ 50 à 66 % herbicides par l’application en bande ou par dose réduite</td>
</tr>
<tr>
<td>+ redistribution des éléments nutritifs et ↑ teneur en azote minéral du sol : ↓ fertilisants</td>
<td></td>
<td></td>
<td>+ ↓ dérives des pesticides</td>
</tr>
<tr>
<td>+ : brise la croûte de battance : ↑ ruissellement - travail du sol : ↑ érosion - pertes de débris végétaux à la surface du sol : ↑ érosion et ↑ ruissellement</td>
<td></td>
<td></td>
<td>+ très faible ↓ érosion</td>
</tr>
<tr>
<td>Apports en sédiments</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ ↓ pesticides : ↓ nb de passages donc ↓ érosion</td>
<td></td>
<td></td>
<td>+ ↓ pesticides : ↓ nb de passages donc ↓ érosion</td>
</tr>
<tr>
<td>+ brise la croûte de battance : ↑ ruissellement - travail du sol : ↑ érosion - pertes de débris végétaux à la surface du sol : ↑ érosion et ↑ ruissellement</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ANNEXE 5 – JUSTIFICATION DES NOTES ATTRIBUÉES POUR L’ANALYSE MULTICRITÈRE (SUITE)

<table>
<thead>
<tr>
<th>Pratique</th>
<th>Lutte intégrée (suite)</th>
<th>Désherbage mécanique (suite)</th>
<th>Utilisation réduite des pesticides (suite)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pertes de sol</td>
<td>+ ↓ pesticides : ↓ nb de passages donc ↓ érosion</td>
<td>+ brise la croûte de battance : ↓ ruissellement</td>
<td>+ ↓ pesticides : ↓ nb de passages donc ↓ érosion</td>
</tr>
<tr>
<td></td>
<td>- travail du sol : ↑ érosion</td>
<td>- pertes de débris végétaux à la surface du sol : ↑ érosion et ↓ ruissellement</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- brise la croûte de battance : ↓ ruissellement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Structure du sol</td>
<td>+ ↓ pesticides : ↓ nb de passages donc ↑ structure du sol</td>
<td>+ ↓ herbicides et ↓ fertilisants : ↓ nb de passages donc ↓ pertes de MO</td>
<td>+ très faible ↓ érosion</td>
</tr>
<tr>
<td></td>
<td>+ ↑ nb de passages pour désécherer et compaction : ↓ structure du sol</td>
<td>- ↑ nb de passages pour désécherer : ↑ pertes de MO</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- ↑ érosion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MO</td>
<td>+ ↓ pesticides : ↓ nb de passages donc ↓ pertes de MO</td>
<td>+ ↓ herbicides et ↓ fertilisants : ↓ nb de passages donc ↓ pertes de MO</td>
<td>+ très faible ↓ érosion</td>
</tr>
<tr>
<td></td>
<td>+ ↑ nb de passages pour désécherer donc ↑ carburant : ↑ pertes de MO</td>
<td>+ ↑ nb de passages pour désécherer : ↑ pertes de MO</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- ↑ érosion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Efficacité énergétique</td>
<td>+ certaines pratiques associées à la lutte intégrée permettent d’économiser de l’énergie</td>
<td>+ ↓ herbicides et ↓ fertilisants : ↓ nb de passages donc ↓ pertes de MO</td>
<td>+ ↓ consommation de carburant</td>
</tr>
<tr>
<td></td>
<td>+ ↑ nb de passages pour désécherer donc ↑ carburant : ↑ pertes de MO</td>
<td>+ ↑ nb de passages pour désécherer : ↑ pertes de MO</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- ↑ érosion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dépendance aux énergies fossiles</td>
<td>+ ↓ pesticides : ↓ nb de passages donc ↓ carburant</td>
<td>+ redistribution des éléments nutritifs : ↓ fertilisants donc ↓ fabrication d’engrais</td>
<td>+ ↓ pesticides : ↓ nb de passages donc ↓ carburant</td>
</tr>
<tr>
<td></td>
<td>+ ↑ nb de passages pour désécherer : ↑ carburant</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Qualité des habitats et des milieux naturels</td>
<td>+ ↓ pesticides (possibilité de les réduire à 100 %)</td>
<td>+ ↓ NO₂ et CO₂</td>
<td>+ ↓ NOₓ, CO, SO₂</td>
</tr>
<tr>
<td></td>
<td>+ ↓ NO₂, CO, SO₂</td>
<td>+ ↓ herbicides</td>
<td>+ ↓ pesticides</td>
</tr>
<tr>
<td></td>
<td>+ ↓ fertilisants</td>
<td>+ ↑ dérive des pesticides</td>
<td>+ ↓ très faible érosion</td>
</tr>
<tr>
<td></td>
<td>+ ↑ érosion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insectes pollinisateurs</td>
<td>+ ↓ pesticides (possibilité de les réduire à 100 %)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ ↓ herbicides (possibilité de les réduire à 100 %)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Autres</td>
<td></td>
<td></td>
<td>± peut inclure le désherbage mécanique</td>
</tr>
</tbody>
</table>

La lutte intégrée peut inclure différentes pratiques. Il est donc difficile d'associer des bénéfices ou inconvénients environnementaux précis à celle-ci.
ANNEXE 5 – JUSTIFICATION DES NOTES ATTRIBUÉES POUR L’ANALYSE MULTICRITÈRE (SUITE)

<table>
<thead>
<tr>
<th>Pratique</th>
<th>Voie d’eau engazonnée et avaloir</th>
<th>Terrasses</th>
<th>Bande riveraine large et diversifiée</th>
</tr>
</thead>
<tbody>
<tr>
<td>Émissions de GES</td>
<td>non significatif</td>
<td>non significatif</td>
<td>+ ↑ captation de carbone (12 kg par hectare par année) ([CO₂]) + ↓ insecticides par la présence d’ennemis naturels : ↓ nb de passages donc ↓ carburant ([CO₂])</td>
</tr>
<tr>
<td>Pollution atmosphérique</td>
<td>non significatif</td>
<td>non significatif</td>
<td>+ ↓ insecticides par la présence d’ennemis naturels + ↓ insecticides : ↓ nb de passages donc ↓ carburant ([NO₃, CO, SO₂])</td>
</tr>
<tr>
<td>Nuisances olfactives</td>
<td>non significatif</td>
<td>non significatif</td>
<td>non significatif</td>
</tr>
<tr>
<td>Contamination des eaux de surface et souterraines</td>
<td>+ ↓ 86 % d’érosion + ↓ ruissellement + retient une partie des éléments nutritifs et pesticides transportés par l’eau - risques d’érosion si non jumelée à une autre pratique anti-érosive - peut contaminer le cours d’eau lorsque l’aménagement rejette directement l’eau dans celui-ci</td>
<td>+ ↓ 85 % d’érosion + ↓ ruissellement</td>
<td>+ prévention du réchauffement excessif de l’eau + capte une portion des éléments nutritifs et pesticides (Ex : ↓ 55 % des pertes d’herbicides pour une bande plus large, contre 32 % pour une bande mince) + ↓ insecticides + ↓ érosion - certaines études affirment que l’efficacité filtrante est semblable pour les bandes de 3 mètres et plus</td>
</tr>
<tr>
<td>Apports en sédiments</td>
<td>+ ↓ 86 % érosion + ↓ érosion des berges + ↓ ruissellement + ↑ sédimentation au champ des particules de sol - risques d’érosion si non jumelée à une autre pratique anti-érosive</td>
<td>+ ↓ 85 % d’érosion + ↓ ruissellement + ↑ teneur en sédiments dans les eaux de ruissellement</td>
<td>+ ↓ pertes de sol liées à l’érosion hydrique + ↓ érosion des berges par la stabilisation de celles-ci + ↓ érosion éolienne par les arbres + retient plus de sédiments. Ex : une bande de 9 mètres retient 90 % des sédiments contre 50 % pour une bande de 3 mètres</td>
</tr>
<tr>
<td>Pertes de sol</td>
<td>+ ↓ 86 % pertes de sol + ↓ ruissellement + ↓ ravinement + ↓ érosion des berges + ↑ sédimentation au champ des particules de sol - risques d’érosion si non jumelée à une autre pratique anti-érosive</td>
<td>+ ↓ 85 % d’érosion + ↓ ruissellement + ↑ teneur en sédiments dans les eaux de ruissellement</td>
<td>+ ↓ pertes de sol liées à l’érosion hydrique + ↓ érosion des berges par la stabilisation de celles-ci + ↓ érosion éolienne par les arbres</td>
</tr>
</tbody>
</table>
ANNEXE 5 – JUSTIFICATION DES NOTES ATTRIBUÉES POUR L’ANALYSE MULTICRITÈRE (SUITE)

<table>
<thead>
<tr>
<th>Pratique</th>
<th>Voie d’eau engazonnée et avaloir (suite)</th>
<th>Terrasses (suite)</th>
<th>Bande riveraine large et diversifiée (suite)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Critère</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Structure du sol</td>
<td>+ ↓ érosion</td>
<td>+ ↓ érosion - travaux du sol lors de l’aménagement : ↓ structure du sol</td>
<td>+ ↓ érosion + ↓ insecticides : ↓ nb de passages donc ↑ structure du sol</td>
</tr>
<tr>
<td>MO</td>
<td>+ ↓ érosion</td>
<td>+ ↓ érosion - travaux du sol lors de l’aménagement : ↓ MO</td>
<td>+ ↓ érosion + ↓ insecticides : ↓ nb de passages donc ↓ pertes de MO</td>
</tr>
<tr>
<td>Efficacité énergétique</td>
<td>non significatif</td>
<td>non significatif</td>
<td>+ ↓ consommation de carburant</td>
</tr>
<tr>
<td>Dépendance aux énergies fossiles</td>
<td>non significatif</td>
<td>non significatif</td>
<td>+ ↓ insecticides : ↓ nb de passages donc ↓ carburant</td>
</tr>
<tr>
<td>Qualité des habitats et des milieux naturels</td>
<td>+ ↓ érosion + retient une partie des éléments nutritifs et pesticides transportés par l’eau - peut contaminer le cours d’eau lorsque l’aménagement rejette directement l’eau dans celui-ci</td>
<td>+ ↓ érosion + CO₂ + NOₓ, CO, SO₂ + ↓ insecticides + ↓ érosion + prévention du réchauffement excessif de l’eau + capte une portion des éléments nutritifs et pesticides + ↑ refuges fauniques et floristiques + ↑ corridors de déplacement et ↑ zones d’alimentation</td>
<td></td>
</tr>
<tr>
<td>Insectes pollinisateurs</td>
<td>non significatif</td>
<td>non significatif</td>
<td>+ attire les pollinisateurs + ↓ insecticides par la présence d’ennemis naturels</td>
</tr>
<tr>
<td>Autres</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

117
Pratique

<table>
<thead>
<tr>
<th>Critère</th>
<th>Haie brise-vent</th>
<th>Stratégie d’alimentation</th>
<th>Pâturage extensif</th>
</tr>
</thead>
</table>
| Émissions de GES | + ↑ captation de carbone (↓ CO₂)
+ ↓ besoins en chauffage de 10 à 15 % : ↓ propane, gaz naturel, mazout | + ↓ 5 % à 25 % rejets azotés dépendamment de la pratique (↓ N₂O) (les effets de ces pratiques sont cumulatifs jusqu’à un certain point)
+ ↓ 5 % à 20 % du CH₄ lié à la fermentation entérique des bovins (les effets de ces pratiques ne sont pas cumulatifs) | + fixe une plus grande quantité de nitrates : ↓ fertilisants (↓ N₂O et CO₂)
+ ↓ 14 % des émissions de GES par la séquestration du carbone dans le sol
+ ↓ significatives des fertilisants et pesticides : ↓ nb de passages donc ↓ carburant (↓ CO₂)
+ ↓ CH₄ par l’alimentation du bétail |
| Pollution atmosphérique | + ↓ 30 % poussières en suspension
+ ↓ besoins en chauffage de 10 à 15 % : ↓ propane, gaz naturel, mazout dérive des pesticides
+ ↓ dérive des pesticides | + ↓ 5 % à 25 % rejets azotés dépendamment de la pratique (↓ NH₃) (les effets de ces pratiques sont cumulatifs jusqu’à un certain point)
+ ↓ 17 % des émissions de NH₃ par la pratique d’alimentation multiphase | + fixe une plus grande quantité de nitrates : ↓ fertilisants (↓ NH₃)
+ ↓ 25 % volatilisation du NH₃ par infiltration rapide de l’urine dans le sol
+ ↓ significative des pesticides
+ ↓ P₂,5
+ ↓ significative des fertilisants et pesticides : ↓ nb de passages donc ↓ carburant (↓ NOₓ, CO, SO₂) |
| Nuisances olfactives | + ↓ odeurs | + ↓ rejets azotés (↓ NH₃, H₂S et COVs)
+ ↓ 17 % des émissions de NH₃ par la pratique d’alimentation multiphase
+ la plupart des pratiques diminuent les odeurs | + ↓ odeurs par l’alimentation du bétail
+ fixe une plus grande quantité de nitrates : ↓ fertilisants (↓ NH₃, H₂S et COVs)
+ ↓ 25 % volatilisation du NH₃ par infiltration rapide de l’urine dans le sol
- déjections directement au champ |
| Contamination des eaux de surface et souterraines | + prévention du réchauffement excessif de l’eau
+ ↓ 50 % érosion éolienne et ↓ érosion des berges
+ ↓ ruissellement
+ ↓ dérive des pesticides | + ↓ 5 % à 25 % rejets azotés et phosphorés dépendamment de la pratique (les effets de ces pratiques sont cumulatifs jusqu’à un certain point) | + ↓ érosion de 87 %
+ ↓ pertes de phosphore sédimentaires de 80 %.
+ fixe une plus grande quantité de nitrates : ↓ fertilisants
+ ↓ significative pesticides
- animaux d’élevage ne doivent pas avoir accès aux cours d’eau |
| Apports en sédiments | + ↓ 50 % érosion éolienne
+ ↓ érosion des berges par la stabilisation de celles-ci
+ ↓ ruissellement | non significatif | + ↓ érosion de 87 %
+ ↓ travail du sol : ↓ risques d’érosion
+ ↓ ruissellement
+ ↓ pertes de phosphore sédimentaires de 80 %.
- ↑ compaction du sol par piétinement : ↑ risques d’érosion |
ANNEXE 5 – JUSTIFICATION DES NOTES ATTRIBUÉES POUR L’ANALYSE MULTICRITÈRE (SUITE)

<table>
<thead>
<tr>
<th>Pratique</th>
<th>Haie brise-vent (suite)</th>
<th>Stratégie d’alimentation (suite)</th>
<th>Pâturage extensif (suite)</th>
</tr>
</thead>
</table>
| Pertes de sol | + ↓ 50 % érosion éolienne
+ ↓ érosion des berges par la stabilisation de celles-ci
+ ↓ ruissellement | non significatif | non significatif |
+ ↓ significative des fertilisants et pesticides : ↓ nb de passages donc ↑ structure du sol
+ ↓ fertilisants : ↓ acidification du sol
+ ↓ érosion
- ↑ compaction du sol par piétinement : ↓ structure du sol |
| MO | + ↓ érosion | non significatif | non significatif |
| Efficacité énergétique | + ↓ besoins en chauffage de 10 à 15 % | non significatif | + ↓ consommation de carburant |
| Dépendance aux énergies fossiles | + ↓ besoins en chauffage de 10 à 15 % : ↓ énergies fossiles liées au chauffage (propane, gaz naturel, mazout) | non significatif | + ↓ élévée des carburant
+ ↓ significatives des fertilisants donc ↓ fabrication d’engrais |
| Qualité des habitats et des milieux naturels | + ↑ habitats fauniques. Ex : ↑ oiseaux insectivores
+ prévention du réchauffement excessif de l’eau
+ ↓ érosion
+ ↓ poussières en suspension
+ ↓ CO₂
- ↑ insectes ravageurs | + ↓ N₂O
+ ↓ CH₄
+ ↓ NH₃
+ ↓ 5 % à 25 % rejets azotés et phosphorés dépendamment de la pratique | + ↓ N₂O et CO₂
+ ↓ CH₄
+ ↓ NH₃
+ ↑ significative pesticides
+ ↓ significative fertilisants
+ ↓ érosion |
| Insectes pollinisateurs | + ↓ dérive des pesticides et les protège du vent
+ ↑ oiseaux insectivores : ↓ insecticides
- ↑ insectes ravageurs : ↑ insecticides | non significatif | + ↓ significative des pesticides |
| Autres | | | |
ANNEXE 5 – JUSTIFICATION DES NOTES ATTRIBUÉES POUR L’ANALYSE MULTICRITÈRE (SUITE)

<table>
<thead>
<tr>
<th>Critère</th>
<th>Amélioration génétique</th>
<th>Efficacité énergétique des bâtiments</th>
<th>Électrification de la machinerie et biocarburants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Émissions de GES</td>
<td>+ ↓ rejets azotés par l’amélioration génétique du taux de conversion alimentaire (↓ N₂O) + ↓ 5 % à 20 % du CH₄ par la réduction du nombre de têtes + ↓ 10 % à 20 % du CH₄ par l’optimisation de l’efficacité alimentaire</td>
<td>+ remplacement des systèmes de chauffage au mazout et gaz naturel par des systèmes à l’électricité, biomasse, géothermie, etc. Ex : un système de chauffage par géothermie permet de réduire les émissions de 100 tonnes équivalent CO₂ par ferme par année + ↓ significative utilisation énergies fossiles : ↓ émissions de GES. Ex : ↓ 45 % énergies fossiles par l’amélioration de la ventilation et de l’isolation</td>
<td>+ ↓ 5 % à 14 % carburant par les tracteurs hybrides (↓ CO₂) + ↓ 24 % à 91 % émissions de GES par les biocarburants + ↓ 10 % diesel par l’entretien fréquent de la machinerie (↓ CO₂)</td>
</tr>
<tr>
<td>Pollution atmosphérique</td>
<td>+ ↓ rejets azotés par l’amélioration génétique du taux de conversion alimentaire (↓ NH₃) + ↓ significative utilisation énergies fossiles : ↓ polluants atmosphériques. Ex : ↓ 45 % énergies fossiles par l’amélioration de la ventilation et de l’isolation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nuisances olfactives</td>
<td>+ ↓ rejets azotés</td>
<td>non significatif</td>
<td>non significatif</td>
</tr>
<tr>
<td>Contamination des eaux de surface et souterraines</td>
<td>+ ↓ rejets azotés et phosphorés</td>
<td>non significatif</td>
<td>non significatif</td>
</tr>
<tr>
<td>Apports en sédiments</td>
<td>non significatif</td>
<td>non significatif</td>
<td>non significatif</td>
</tr>
<tr>
<td>Pertes de sol</td>
<td>non significatif</td>
<td>non significatif</td>
<td>non significatif</td>
</tr>
<tr>
<td>Structure du sol</td>
<td>+ ↓ concentration des fertilisants : ↓ acidification du sol donc ↑ structure du sol</td>
<td>non significatif</td>
<td>non significatif</td>
</tr>
<tr>
<td>MO</td>
<td>non significatif</td>
<td>non significatif</td>
<td>non significatif</td>
</tr>
<tr>
<td>Efficacité énergétique</td>
<td>non significatif</td>
<td>+ ↓ significative des besoins énergétiques. Ex : ↓ 20 % à 50 % besoins énergétiques par certaines technologies et ↓ 15 % à 70 % besoins énergétiques liés à l’éclairage par les ampoules fluorescentes + possibilité d’économiser de l’énergie en changeant le système de chauffage</td>
<td>+ ↓ consommation de carburant</td>
</tr>
</tbody>
</table>
ANNEXE 5 – JUSTIFICATION DES NOTES ATTRIBUÉES POUR L’ANALYSE MULTICRITÈRE (SUITE)

<table>
<thead>
<tr>
<th>Critère</th>
<th>Pratique</th>
<th>Amélioration génétique (suite)</th>
<th>Efficacité énergétique des bâtiments (suite)</th>
<th>Électrification de la machinerie et biocarburants (suite)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dépendance aux énergies fossiles</td>
<td>non significatif</td>
<td>+ ↓ significative utilisation énergies fossiles. Ex : ↓ 45 % énergies fossiles par l’amélioration de la ventilation et de l’isolation + ↓ utilisation énergies fossiles par le changement du système de chauffage</td>
<td>+ ↓ 5 % à 14 % carburant par les tracteurs hybrides + ↓ élevée des combustibles fossiles par les biocarburants + ↓ 10 % diesel par l’entretien fréquent de la machinerie</td>
<td></td>
</tr>
<tr>
<td>Qualité des habitats et des milieux naturels</td>
<td>+ ↓ N₂O + ↓ CH₄ + ↓ NH₃ + ↓ rejets azotés et phosphorés</td>
<td>+ ↑ qualité de l’air par la réduction des combustibles fossiles utilisés</td>
<td>+ ↑ qualité de l’air par la réduction des combustibles fossiles utilisés</td>
<td></td>
</tr>
<tr>
<td>Insectes pollinisateurs</td>
<td>non significatif</td>
<td>non significatif</td>
<td>non significatif</td>
<td></td>
</tr>
<tr>
<td>Autres</td>
<td>non significatif</td>
<td>non significatif</td>
<td>non significatif</td>
<td></td>
</tr>
</tbody>
</table>

- les biocarburants s’avèrent une solution peu envisageable à court terme au Québec
ANNEXE 5 – JUSTIFICATION DES NOTES ATTRIBUÉES POUR L’ANALYSE MULTICRITÈRE (SUITE)

<table>
<thead>
<tr>
<th>Pratique</th>
<th>Chemins agricoles réfléchis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Émissions de GES</td>
<td>non significatif</td>
</tr>
<tr>
<td>Pollution atmosphérique</td>
<td>+ ↓ poussières en suspension</td>
</tr>
<tr>
<td>Nuisances olfactives</td>
<td>non significatif</td>
</tr>
</tbody>
</table>
| Contamination des eaux de surface et souterraines | + ↓ poussières en suspension
+ ↓ érosion par la ↓ compaction
+ ↓ ruissellement et ↑ infiltration de l’eau |
| Apports en sédiments | + ↓ érosion par la ↓ compaction
+ ↓ ruissellement et ↑ infiltration de l’eau |
| Pertes de sol | + faible ↓ érosion par la ↓ compaction
+ ↓ ruissellement et ↑ infiltration de l’eau |
| Structure du sol | + ↓ compaction
+ faible ↓ érosion |
| MO | + faible ↓ érosion |
| Efficacité énergétique | non significatif |
| Dépendance aux énergies fossiles | non significatif |
| Qualité des habitats et des milieux naturels | + faible ↓ érosion
+ ↑ abris |
| Insectes pollinisateurs | + possibilité d’augmenter la présence de fleurs sauvages |
| Autres | |